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KUGELSCHALEN ÜBER VIER- UND VIELECKIGEM
GRUNDRISS.

COUPOLES MINCES Ä PLAN RECTANGULAIRE ET POLYGONAL.

SPHERICAL CUPOLA SHELLS, RECTANGULAR OR POLYGONAL
IN PLAN.

A. AAS JAKOBSEN, Oslo.

1. Vorwort.
Eine wichtige Konstruktionsform des Schalenbaus ist die Kugelschale

über vier- oder vieleckigen Grundflächen. Es wird aus einer Kugel ein
Flächenstück mit der gewünschten Grundrißform ausgeschnitten und diese
mit Binderscheiben abgesteift (Fig. 1). Die Tragwirkung besteht jetzt darin,
daß die Kugelschale ihre Vertikallast durch Schubspannungen nach den
Bindern überträgt. Die Binderscheiben können senkrecht zu ihrer Tragfläche
keine Kräfte aufnehmen. Es besteht jetzt die Möglichkeit, die Binder so zu
konstruieren, daß die Druckspannungen in der oberen Faser der Binder, wo

sie mit der Schale verbunden werden, mit der
Druckspannung der Schale übereinstimmen für
eine durchschnittliche Belastung z. B.
Eigengewicht r i/2 Nutzlast. Die Randstörungen, die
bei den anderen Belastungszuständen auftreten,
sind dann klein und auf eine schmale Randzone
beschränkt. Die Spannungen in der Schale werden

darum durch den Membranspannungszustand
(Spannungen gleichmäßig über die Schalenstärke
verteilt) sehr genau wiedergegeben.

Die Erfindung dieser Schalenform stammt von Professor Dr. Dischinoer,
der hierfür auch das erste Rechenverfahren geschaffen hat und dieses im
Jahre 1930 bei dem Preisausschreiben der Akademie für Bauwesen zusammen
mit anderen Arbeiten eingereicht und dafür den ersten Preis erhalten hat1).
Für die Berechnung dieser rechteckigen Kuppel unter Verwendung der
Kugelschalen hat Dischinger vorgeschlagen, den rotationssymmetrischen Be-
lastungs- und Stützungszustand durch die Lösung der homogenen Differentialgleichung

der Kugelschale zu überlagern und damit die Randbedingungen
zu befriedigen.

Eine allgemeine Fassung des Membranspannungszustandes ist von
A. Pucher2) gegeben. Pucher hat gezeigt, daß die Membranspannungen
durch eine Spannungsfunktion beschrieben werden, und daß diese Spannungsfunktion

durch eine partielle Differentialgleichung 2. Ordnung bestimmt ist.
x) Ellerbeck: Preisaufgabe der Akademie des Bauwesens aus dem Gebiete des

Eisenbetons. Zbl. Bauverw. 1930, H. 24. — D.schinger, Fr.: Eisenbetonschalendächer Zeiss-
Dywidag zur Überdachung weitgespannter Räume. 1. Intern. Kongreß für Beton und
Eisenbeton, Lüttich 1930. Edition „La technique des Travaux". — Dischinoer, Fr.: Die
Rotationsschalen mit unsymmetrischer Form und Belastung. Bauing. 1935, H. 35—38.

•) Pucher, A.: Der Spannungszustand in gekrümmten Flächen. Beton u. Eisen
1934, H. 19.

Binderscheibe
Ferme en disque
Gable truss

Fig. i.

Abhandlung V
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Diese Gleichung läßt sich für viele Fälle nur durch Näherungsmethoden lösen
und ist oft mit viel Rechenarbeit verbunden. Zu diesen Fällen gehört auch
die Kugelschale über vieleckigem Grundriß.

In der vorliegenden Arbeit wird nun in Fortsetzung der Arbeiten von
Dischinoer untersucht, in welchem Fall eine Lösung mittels der Differentialgleichung

möglich ist und wie sie durchgeführt werden muß, um für die
verschiedenen Lastfälle eine möglichst gute Erfüllung der Randbedingungen
zu ergeben. Es wird das praktische Rechnen durch mehrere Tafeln
erleichtert. Weiter wird das Gleichgewicht in der Ecke ohne Heranziehen von
Biegungsmomenten nachgewiesen.

2. Spannungen des Grundbelastungszusiandes.
Für die Ausrechnung der Schalenspannungen soll immer das

Koordinatensystem gewählt werden, das die Berechnung am einfachsten gestattet.
Für Eigengewicht, Schnee, Kuppelaufsatz bezw. jede drehsymmetrische
Belastung mit drehsymmetrischer Stützung (Grundbelastungszustand) gibt eine

sf>*i w/\zJN**^ K

Fig. 2 a. Fig. 2 b.

vertikale Bezugsachse die einfachsten Formelausdrücke. Die Gleichgewichtsgleichungen

eines Schalenelementes (Fig. 2) sind
für die Z-Richtung:

Nv + Ny, + Za 0,
für die X-Richtung:

d d N
-r— (A/*, sin w) — Nyj cos <p -\ r-^ + Xa sin cp 0,
dcp * dip

für die F-Richtung:

-yy + A^COSq? + ^~(AW sin<?) + Yasm<p 0.

Diese partiellen Differentialgleichungen können in totale überführt und
integriert werden3) und die Spannungen werden für Eigengewicht (konstante
Schalenstärke) :

Belastungen: Schnittkräfte:

X=0 (la) Nw —ga^ { ^=z~-ga-Ag
Y g sin cp

Z g COS cp

(la)

(lb)

(lc)

1 + COSQ9

Nvv 0

3) Dischinoer, Fr.: Handbuch für Eisenbetonbau, Bd. IV. Wilhelm Ernst & Sohn,
Berlin 1928.
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für Schnee (konstante Belastung p0 pro Flächeneinheit der Horizontalprojektion
der Schale):

Schnittkräfte:

a • As

p0a - Bs

Belastungen: Schnittkräfte:

X 0 (2a) W<p — A> 0 • 0,5 — /j0

Y p0 sin cp cos cp (2 b)
cos 2 09

M/, -/?o« 2

Z p0 cos2 cp (2c) AW 0

für Kuppelaufsatz:
X Y ¦= Z 0

Gewicht des Kuppelaufsatzes P

»- p (3a)
2jrfl

(3b)
Veränderliche Schalenstärke bezw. andere Eigengewichtsbelastungen
a) g go*pc'> Z gcos<p

Y gsmcp
X= 0

Man erhält:

Jy
0" n

ev'sitKp d<p — -^äyV+l) [(^sin95 - cos99) «^" + 1]* ~~ sin>
A/v — Za — Nv; Nvv 0

b) g g0 Cos c<p

N =- -^V— Cosrö9sino9öfo9 --j—^-^-5— (l+^sinQ9CosQ9-cosQ9Coscö9)v sin2o9j0 (l + f2)sin209 ^ r r ^7

Am einfachsten werden g0 und C durch folgende Ansätze bestimmt:
Scheitel: cp 0 d. h. g ^ go >

bei einem mittleren Öffnungswinkel 9^: ^rr^Cosc^
y4 r Cos —

oder c

n

c) Durch den Ansatz g a^-\ 2" av cos vcp kann auch jeder beliebige Ver-
1

lauf der Eigengewichtsbelastung angenähert werden und zwar so, daß die
Annäherung im Mittel die beste ist, indem eine harmonische Analyse
eingeführt wird.

Für n 1 erhält man g =- a0 + #1 cos 99. Diese kann als ein
Eigengewicht g0 a0 und eine Schneelast pQ ^ aufgefaßt werden und die
Spannungen werden durch die Formeln (1) und (2) der Belastung g und p0
erhalten.

3. Herausfreiende Kräfte an den Rändern einer Vierecksschale.
Die vieleckigen Kuppeln werden durch vertikale Binderscheiben begrenzt

und getragen. Da die Binderscheiben nur eine Steifigkeit in der Vertikal-
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ebene haben, müssen die heraustretenden Kräfte senkrecht zur Binderscheibe
zu Null werden (Fig. 3).

Nd cos d 0

Indem cos ö 4= 0, muß längs der Binderscheibe Nö gleich Null sein und
die Schale wird also nur von Schubspannungen getragen. Um diese
Randbedingungen zu erfüllen, kann der Grundbelastungszustand durch solche
homogene Spannungszustände überlagert werden, daß A^ am Rand
annähernd zu Null wird.

N6 für den Grundbelastungszustand wird am einfachsten aus den
Gleichungen (1) — (3) durch eine Spannungstransformation gefunden. Der

Schafenrand
Bord du i/o/le I
Edge oF shell I

r-A
Hott

k N
Nfy

Fig. 3. Fig. 4.

Winkel y zwischen Nh und N\p (Fig. 3) wird durch das Sinusgesetz für
Kugeldreiecke bestimmt:

sin y __
sin 90°

sxnß
~~ sin 99

Der Fig. 3 wird weiter entnommen:
sin 8 sin cp • sin ip

Hieraus:

(4)

Oben eingesetzt:

(5)

tg ß — tg cp COS ip

sin ö
sin<

sin ß

sin y ~

sin d - cos?/;
cos d • sin \p

cos \\)

COS()

y und cp sind durch dieselben transzendenten Gleichungen (4) und (5)
bestimmt und können der Tafel 1 entnommen werden. Als eine der
unabhängig Veränderlichen haben wir xp gewählt, was u. a. den Vorteil hat, daß
xp für Schalen mit derselben Anzahl Eckpunkten zwischen denselben Grenzen
läuft und weiter sehr einfache Rechenformeln gibt.

Die heraustretenden Kräfte an den Rändern können jetzt durch
Spannungstransformationen gefunden werden.
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Gleichgewicht gegen Verschiebung in der d-Richtung gibt (Fig. 4):
(6) Nö 7VV, sin2/ f Nip cos2/ 4- 2N(py, sin y cos y.

Gleichgewicht gegen Verschiebung in der ^-Richtung:
(7) Nbß (Ny — Ny,) sin ycosy + Nvyj (sin2 y — cos2 y)

i {n<p — nv) sin 27~- Nw COS 2 y.
In ähnlicher Weise wird A> gefunden:

(8) A/ä A^ sin2 y + A^ cos2/ — 27Vrv, sin / cos/.

Tafel 1.

Argument für y — Argument pour y. — Degrees of ö for detennination of angle y.

'¦5

S.5

<2

^«*-

.S;^

QJ CO

SCÜ

<Q

0 10 15 20 25 30 35 40 45

45 45° 00' 45° 54' 47°04' 48° 48' 51°17' 54°44' 59°40' 67°24' 90° 00' 45
50 40 00 40 45 41 44 43 10 45 11 47 55 1 51 42 57 02 65 22 40
55 35 00 35 37 36 26 37 37 39 16 41 29 i 44 27 48 30 54 13 35
60 30 00 30 31 31 11 32 09 33 28 35 15 37 37 40 44 45 00 30
65 25 00 25 25 25 57 26 44 27 48 29 13 31 04 33 29 36 42 25
70 20 00 20 20 20 44 21 21 22 10 23 16 24 40 26 31 28 55 20
75 15 00 15 14 15 33 15 59 16 36 17 24 18 25 19 45 21 28 15
80 10 00

'

10 09 10 22 10 39 11 03 11 34 12 14 13 06 14 13 10
90

i

0 0 0 0 0 o 0 0 0 0

l

I 90 80 75 70 ' 65 60 55 50 45

£2

bjn bJO

Argument für < Argument pour cp. — Degrees of ip for determination of <p.

Für jeden Punkt (xp, S) des Schalenrandes sind cp durch Gl. (4) und y
durch Gl. (5) bestimmt und können der Tafel 1 entnommen werden. Für
den Grundbelastungszustand erhalten wir die heraustretenden Schnittkräfte
Ndt am Schalenrand, indem wir die Ausdrücke für Nq,, Nw und Nq)ip aus
Gl. (1) — (3) in Gl. (6) einführen. Sie werden:

für Eigengewicht:
(9) Ns,

für Schnee:

—ga[Ag cos2 y + Bgsm2y]

—ga [cos2/ + (sin2rr + cos99) sin2/],1-4- COS9:

(10) Nö) — —p0a [0,5 — sin2<p sin2/].
Für Schnee ist Nö —p0a (0,5 — sin2/?); also konstant längs einem
Meridiankreis durch die X- bezw. F-Achse.

Kuppelaufsatz:

01) N,
cos2 / sin-/ 1

sin2 (7? sin2 99
(2 cos2/ — 1)

M„ ist aus Tafel 2 zu entnehmen.

4. Zusatzbelaslungen zur Erfüllung der Randbedingungen.
Um die Randbedingungen zu erfüllen, kann die Grundbelastung durch

einen Spannungszustand, der die homogenen Gleichgewichtsgleichungen
befriedigt, überlagert werden.
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Indem für den homogenen Fall X Y
gewichtsbedingungen in folgende über:

(12a) Nv + Nv 0

Z 0, gehen die Gleich-

(12b)

(12c)

4- (Nv sin?) - Nv coscp + 6-^ 0
dcp dxp

dN d
-^—^ + Nvyj cos <p + — (Nyy, sin 99) 0
cxp ccp

Tafel 2.

10 15 20 25 30 35 40 45

Eigenge>»vicht — Poids propre — Dead weight: Nöo — ga
45 + 0,4840 0,4615 0,4249 0,3673 0,2761 0,1246 -0,1416 -1,000
50 0,4899 0,4757 0,4525 0,4162 0,3594 0,2689 + 0,1186 -0,1500
60 0,4972 0,4932 0,4862 0,4746 0,4557 0,4249 0,3741 + 0,2887
70 0,5012 0,5025 0,5040 0,5049 0,5047 0,5015 0,4931 0,4749
80 0,5033 0,5073 0,5130 0,5200 0,5286 0,5386 0,5494 0,5605
90 0,5038 0,5087 0,5158 0,5246 0,5359 0,5497 0,5663 0,5858

Schnee — Neige — Snow: Nöo —Po<2

45 0,4689 0,4282 0,3675 0,2826 0,1667 0,0097 -0,2039 -0,5000
50 0,4781 0,4494 0,4067 0,3469 0,2653 0,1547 + 0,0042 -0,2039
60 0,4896 0,4761 0,4559 0,4275 0,3889 0,3366 0,2653 + 0,1667
70 0,4959 0,4905 0,4824 0,4712 0,4559 0,4351 0,4067 0,3675
80 0,4991 0,4978 0,4959 0,4932 0,4896 0,4848 0,4781 0,4689
90 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

Kupipelaufsafc1 — Lanterneau -— Lanter•n: Nöo — p

45 -0,5141 -0,5373 - 0,5667 -0,6086 -0,6667 -0,7450 -0,8526 -1,000
50 2,879 1,000 0,3210 -0,0204 -0,2390 -0,4131 - 0,5798 - 0,7654
60 12,05 5,196 2,783 1,643 1,000 + 0,5809 + 0,2686 0
70 22,25 9,884 5,547 3,535 2,431 1,748 1,286 + 0,9394
80 30,17 13,54 7,726 5,033 3,567 2,683 2,106 1,706
90 33,16 14,93 8,547 5,599 4,000 3,040 2,420 2,000

Aus Gl. (12 a) ist A^
eingeführt wird

—Nw und indem folgende harmonische Analyse

Ny — A^ NVn cosnxp

N^ N(pyJns\nnyj

gehen die Gleichungen in zwei totale simultane Differentialgleichungen über:
dN,
dcp

v" + 2Nv„ctg<p+
n

sin 99
NVVn 0

dN,~" + 2NV¥nctg(p + £^NVn
Die Lösung dieser Differentialgleichungen ist:

(13a) • l
N^ 2s^P(C^nY + D^nJ
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(13b) N<pxpn

1

2s\n2cp
Cn tgn %- + Dnctg« 2,

Die zwei Integrationskonstanten entsprechen zwei möglichen homogenen

Belastungszuständen. Der Zustand D hat für cp 0 und cp n einen
Pol und bedeutet also Einzellasten bezw. Einzellastgruppen, eine im Punkt
99 0 und eine entgegengesetzt gerichtet im Punkt 99 n. Der Zustand C
ist über die ganze Kugel regulär und kann durch eine äußere Randbelastungsgruppe

z. B. am Äquator erzeugt werden.

F a 11 a) Zustande.
Es ist: D 0

N<Pn

(14)
Nv

Nm

^Vn — ™<PVn C"2sin>
CnF(Pncosn\p

-C„FVn cos ny>

- Cn Fq>n COS tl xp

Cn
sin'2 ^99

'(1-f- cos 99)"

wo

*^n *q<Pn

___
sin^-299

(pn ~ \\ + COScpY

Die konstanten C„ werden von den Randbedingungen des herausgeschnittenen
Schalenstüqkes bestimmt. Bei der Ausrechnung der heraustretenden

Kräfte zeigt sich der größere Vorteil der früheren Wahl der Koordinaten d
und xp.

Tafel 3.

10 15 20 25 30 35 40 45

K (* 4)

45
50
60
70
80
90

10~2

+ 0,01263
0,06166
0,1349
0,1709
0,1888
0,1944

10~2

+ 0,06953
0,1873
0,3278
0,4007
0,4374
0,4487

10~2

+ 0,2504
0,4347
0,6486
0,7572
0,8110
0,8268

10~2

+ 0,7377
0,9361
1,1633
1,2795
1,335
1,353

10~2

+ 1,963
1,946
1,989
2,038
2,054
2,062

10-2 1 10~2

+ 5,110 +14,39
4,040 8,613
3,282 i 5,541
3,106 1 4,662
3,024 4,336
3,003 4,248

10~2

+100,0
20,24

9,327
6,932
6,077
5,886

K (n 8)

45
50
60
70
80
90

10~8

- 3,056
-30,75
-27,52
- 8,162
+ 6,306
+11,39

10~7

- 8,984
-40,77
-33,47
- 9,516
+ 7,578
+13,49

10~6

-11,09
-28,23
-20,59
- 5,508
+ 4,586
+ 7,998

10-5

- 8,935
-14,27
- 8,856
- 2,173
+ 1,927
+ 3,269

lO"4

- 5,783
- 6,091
- 3,073
- 0,6730
+ 0,6480
+ 1,064

lO"3

- 3,505
- 2,425
- 0,9304
-0,1714
+ 0,1981
+ 0,2968

lO"2
- 2,427
-0,9713
-0,2571
- 0,03738
+ 0,05015
+ 0,07458

10~2

-100,0
- 4,526
- 0,6704
- 0,06689
+ 0,1244
+ 0,1732

< (n \2)

45
50
60
70
80
90

10"11
+ 0,7390
+ 8,014
+ 1,403
-1,183
-0,1313
+ 0,6677

10-io
+11,60
+54,57
+ 8,497
- 7,339
- 0,7643
+ 4,055

10~9

+ 49,15
+122,5
+ 16,08
- 14,46
- 1,378
+ 7,738

lO"8
+108,2
+156,8
+ 16,11
- 15,39
- 1,289
+ 7,900

lO"7
+170,4
+147,4
+ 10,65

- 11,38
- 0,7840
+ 5,485

106
+240,5
+119,1
+ 5,055
- 6,421
- 0,3430
+ 2,932

10~5

+409,6
+ 93,60
+ 1,600
- 2,904
- 0,1071
+ 1,309

lO"4
+10000,0
+ 89,07
+ 0

- 1,344
- 0,0176
+ 0,5098
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Wir erhalten nach den Gl. (6) und (14)
Nöa CnF<pn [(cos2/ — sin2/) cosmp — 2 sin/ cos/sin//?/;)

(15a) Nda Cn FVn cos (2y + ny) Cn N*n
Nöan wird der Tafel 3 entnommen.

In ähnlicher Weise erhallen wir:
(15b) Np - Cn F(Pn cos (2y + n «,,)

(15c) Nß*= Cn F(Pn sin (2 / + n ip)

Diese Spannungen können durch äußere Kräfte am Äquator von der Form
TT

Mfp Cn cosnxp; N(pl/) Cn s\n n\p erzeugt werden, indem F(Pri 1 für 99

_ sin"-2 90

Vn ~ (1 +Tos^)/7

ist der Abklingungsfaktor. Er ist für cp - gleich 1 und klingt bei

abnehmendem cp sehr schnell ab und ist für cp 0 gleich Null.
Bilden die äußeren Kräfte am Äquator eine Gleichgewichtsgruppe und

ist n 4, 8, 12, so werden bei einer viereckigen Schale die Spannungen
von derselben Symmetrie, wie die rotationssymmetrischen Grundbelastungs-
zustände für Eigengewicht, Schnee und Kuppelaufsatz.

Zur Erfüllung der Randbedingungen einer viereckigen Schale für
Eigengewicht, Schnee und Kuppelaufsatz stehen also die homogenen Spannungs-
zustände für n 4, 8, 12, zur Verfügung und die Aufgabe wird sein.,
eine möglichst gute Annäherung der Bedingung 2NÖ -— 0 zu finden. Der
homogene Spannungszustand

Nöa= 2 CnFrncos(2y + ny>)
w=4,8,12...

COS XJJ

wo / -= aresin - -. ist, wie man sieht, keine Fourierreihe und eine be-
COS

liebig genaue Annäherung der Randbedingungen ist durch Zufügung immer
neuer Glieder nicht möglich.

Fall b) Zustand C D.

Um eine bessere Erfüllung der Randbedingungen zu erzeugen, kann die
Schale im homogenen Zustand in verschiedener Weise aus der Kugel
herausgeschnitten werden, und zwar immer so, daß dieselbe Symmetrie der
Schnittkräfte wie die des Grundbelastungszustandes erreicht wird. Bei den
Polen ist Fall a) (Fig. 5) die einzige Möglichkeit. Beim Äquator bestehen
mehrere Möglichkeiten, wie in Fig. 5 angedeutet. Um die notwendige
Symmetrie der Spannungen zu erreichen, müssen die beim Äquator
herausgeschnittenen Schalen um 90° gegeneinander gedreht und überlagert werden.
Der homogene Spannungszustand muß beim Fall b) und c) durch äußere
Kräfte außerhalb des Äquator erzeugt werden und aus Symmetriegründen
des Grundbelastungszustandes und des äußeren Gleichgewichtes halber

müssen die erregenden Kräfte symmetrisch zum Äquator sein, d. h. für 99 -
muß Nqy, =: 0 sein. Dies ergibt C„ -- Dn du und die Schnittkräfte werden:
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cp\ _ ^ (1 + cos^)" + (1 -cos97)"
(16a) N,H =2^b(^^ + ig" -. dn

2 sin/z+29°

(16b) NQW =^-4^9iü—L\cfn 9 iofl <t\ _ d (l + cosy)*-(l-cosy)"
nV\ g 2 ö 2/ ~ n 2sinn+£q

Bei den Fällen b) und c) (Fig. 5) hängt die Symmetrie der Spannungen nicht
von n, sondern von der Herausschneidungs- und Uberlagerungsweise ab.

Case

Fig. 5.

Fall
z Cas \b

Case)
Rand
Bord I
edge

Flg.

Fall
Cas \b

ase
Fand
Bord
Edge

Fig. 7.

Für Eigengewicht, Schnee und Kuppelaufsatz genügt es, den Fall b)
heranzuziehen und zwar nur für n — \, indem n 0 ziemlich genau
dieselben Randspannungen wie Fall a) für n -= 4 ergibt. Mit der Z'-Axe als
Bezugsaxe (Fig. 6) wird nach Gl. (16) für Fall b') (n 1)

Nq' =- Ay N^n cos n >/ sjn \^, cos y»',

Nyy, Af' sin n xp' — :- sin (//.sin3 99'

Da durch diesen Spannungszustand der Fall a) überlagert werden soll,
müssen sie auf eine gemeinsame Koordinatenaxe bezogen werden. Als solche
wählen wir die Z-Axe und aus Fig. 6 und 3 ergibt sich

d
2 - <r

P Vi

Die Spannungen Nd am Rand / des Z-Axensystems werden gleich den
Spannungen N<p' des Z'-Axensystems.

Um dieselben heraustretenden Spannungen an allen Rändern zu erhalten,
muß noch ein Fall b") nach Fig. 7 zugezählt werden.

Die Spannungen längs des Randes / sind hier N<p", Nw" und Nq [[, und
die Spannungstransformation wird dieselbe wie für Fall a).

Wir erhalten:

<j sin2() d1k
\N,"

d1

(1 -sin2 d ctg2cp)2 sin-?/> (sin2d + k2)2

wo k2 1 —0sin2 v
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Durch Überlagerung dieser zwei Fälle b') und b") ergibt sich:

(17a) Nöb ~ Nßb dl k [—^ —
* t^Iv ' ai ^034^ (sm2d + k2)2]

(17b) Nöbß —dx sin2 6 ctg xp
f 1 1

cos4d s\n2d + k2\

Die Normalspannungen Nöb an den Rändern können der Tafel 4 entnommen
werden. Die Spannungen Nv, Nw und A«^ der Schale können mittels den
Transformationsgleichungen in geschlossenen Formeln mit xp und d als
unabhängige Veränderliche abgegeben werden, aber ähnlich wie sich die
einfachste Rechnung für Fall a) durch Auflösung der transzendenten Gleichungen

(4) und (5) ergab, so auch hier. Man erhält / aus Gl. (5) und N<p, Nw
und Ntpy aus Gl. (6) bis (8), indem man d und ß mit 99 und yj vertauscht.
(Vgl. Tafel 1.)

(18a)

(18b)
Nv =~Ny Nö cos 2 y + Nßö sin 2 /
AW N* sin 2 7 — Nß* cos 2 Y

Nach der Bestimmung der Integrationskonstanten d1 wird Wö und A^ö
mittels Gl. (17) ausgerechnet und in Gl. (18) eingeführt und die verschiedenen

Belastungsfälle können summiert werden.

Tafel 4.

10 15 20 25
'

30 35 40 45

;V/ (n 1)

45 0 0 0
1

0 i 0 0 0 0
50 0,0187 0,0444 0,0852 0,145 0,228 0,348 0,495 0,600
60 0,0418 0,098 0,1833 0,307 0,480 0,718 1,043 1,478
70 0,0540 0,1260 0,234 0,387 1 0,600 0,891 1,302 1,880
80 0,0602 0,1393 0,258 0,426 1 0,658 0,976 1,420 2,067
90 0,0620 0,1437 0,266 0,437 0,674 1,000 1,458 2,121

5. Die Randbedingungen der Schale.
Die Schale wird durch Randglieder getragen, die nur in ihrer Vertikalebene

Kräfte aufnehmen können. Wie früher gezeigt, ist diese Bedingung
durch

(19) ZNs 0,

wo 2 die Summe der Grundbelastungs- und Zusatzbelastungszustände
bedeutet, ausgedrückt. Diese Gleichung dient zur Bestimmung der Integrationskonstanten

der Gleichungen (13). Die Bedingungen der freien horizontalen
Ausweichung der Binderscheiben sind gewöhnlich gut erfüllt, während die
Forderung derselben Spannungen der oberen Faser im Randglied und Schalenrand

selbstverständlich nicht für alle Belastungszustände zutreffen kann.
Der Unterschied in den Spannungen, d. h. in den Deformationen löst am
Schalenrand eine Biegewelle aus, die doch nach dem St. VENANT'schen Prinzip

sehr schnell abklingt und von wenig Bedeutung wird, wenn der Unterschied

der Spannungen in der Schale und im Randglied für die durchschnittliche

Belastung möglichst klein gemacht wird.
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5 a) Bestimmung der Integrationskonstanten.
Das einfachste Verfahren zur Bestimmung der Integrationskonstanten

ist, die Gl. 2 Nö 0 in einzelnen beliebig gewählten Punkten zur Erfüllung
zu bringen und zwar in ebenso vielen Punkten wie Zusatzbelastungen
herangezogen werden. Man erhält dadurch ebenso viele Gleichungen wie
unbekannte Integrationskonstanten, aber die Bestimmung wird erstens ein wenig
zufällig und zweitens besteht die Gefahr, eine Zusatzbelastung heranzuziehen,
die zwar die Gl. (19) in einem neuen Punkt zur Erfüllung bringt, aber die
durchschnittliche Übereinstimmung nicht verbessert. Dies kann bei Fall a)
für kleine und große Öffnungswinkel leicht passieren. Wie schon früher
erwähnt, stellt für den Fall a):

W 2 CnFfPncos{2y + nxp)
/7=4,8.--

keine Fourierreihe dar und eine beliebige Annäherung an eine gegebene
Funktion ist hierdurch nicht möglich. Bei kleinen Öffnungswinkeln (d —+ 0)
wird für die Eckpunkte xp 45°, y^xp und:

Nö « 2 CnFVn cos(2 + ti) 45° 0
«=4,8"-

Es bestehen also hier durch diesen Ansatz für kleine Öffnungswinkel
Schwierigkeiten bei Erfüllung der Randbedingungen in den Ecken (Fall c
für n 1 muß hier herangezogen werden). Bei großen Öffnungswinkeln
(d—>45°) wird in der Nähe des Eckpunktes /^90° 2xp

Nd^ZCnFVncos(n + 4)45° SCnFVn

Indem cos (2/ -f- nxp)<^\, kann als Abschätzung gesetzt werden

N6i<Z CnF^
Da bei wachsendem n, F(pn sehr schnell längs des Randes abklingt, werden
für zunehmendes ti nur Kräfte in der Ecke übrig und man kann nur
Ausgleich der Randkräfte in der Nähe der Ecke erwarten4). Durch Probieren
können wir bei Heranziehen verschiedener Zusatzbelastungen als Maß für
die Güte der Annäherung den mittleren Fehler

wo [ee]

die Summe der Quadrate von e =¦ 0 — 2Nd -= —2NÖ in tn ausgewählten
Punkten z. B. für xp 50°, 60°, usw. ansehen. Für einfache Fälle wird
dieses Verfahren zum zufriedenstellenden Ausgleich führen, aber in
verwickelten Fällen, wo man vorher nicht genau weiß, welche Zusatzbelastungen
und wie viele herangezogen werden müssen, gibt das Probierverfahren viel
Rechenarbeit. Hier wird es einfacher, von dem Ansatz [es] Min auszugehen

und die im Mittel beste Annäherung zu suchen. Wir haben:

(20) [ee]=J=f(NÖ9 — 2 Nöt)2 ds Min

Hier ist: Nöo Randspannung des Grundbelastungszustandes

Ndl QNö; Randspannung des Zusatzbelastungszustandes.

4) Erzwingt man durch die Wahl von Cn einen Ausgleich der Spannungen Nö am
Rand außerhalb der Ecke, so treten in der Ecke große Nö auf. Diese Erscheinung, die
also von der Wahl der Zusatzbelastung abhängt, kann durch Zufügung anderer
Zusatzbelastungen beseitigt werden.

-V [ee]
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Für unsere Zwecke ersetzen wir das Integrationszeichen durch das Summenzeichen

und indem wir für 5 Schalenpunkte mit Hilfe von r Zusatzbelastungen
die beste Annäherung suchen, erhalten wir

/ 2 (Mö0 — 2 QNöy-As= Min
1 1

Eingeführt wird C, xt + x,, wo x, angenäherte Werte sind, die z. B. durch
r

n»„ — 2 Mf • // 0
1

für r beliebige Randpunkte bestimmt werden.
Durch Einsetzen erhalten wir:

s r r
.1 =¦ 2 (M, ~ S '-/ • M>, — 2 */ M/)- J s Min

I 1 1

Weiter wrird gesetzt:
2 m Nhi — N% l

s r
J - 2(t + ExiN6/)*As

1 I

Jmui ist bestimmt durch

c xn

wodurch man r Gleichungen zur Bestimmung von xu x2, xr erhält. Durch
Differentiation:

- 2%(e + £xiNö.) NdnAs 0
1 1

oder:
r s s

(21) 2 */2 M„ Nd[ As + Z N6„ e A s 0
1 1 1

S

2 wird durch [ ] ersetzt und wir erhalten z. B. für r 2:

xi [NölNdlAs] + xa[NdlNÖ2As] + [NöleAs] =0
xl[NdiN6lAs] + x2[NÖ2NÖ2As] + [N6ieAs] 0

A s kann als Gewicht aufgefaßt werden und es genügt, die Werte
zeichnerisch zu bestimmen.

Es ist weiter über die Genauigkeit der Spannungsbestimmung zu
bemerken, daß der maximale Wert von e auch die maximale Abweichung der
Schalenspannungen von den theoretischen Richtungen angibt.

6. Gleichgewicht des Membranzustandes für die Eckpunkte.
Für ein beliebiges Schalenelement gibt die Gleichgewichtsbedingung in

der Z-Richtung
N,P + N^ + Za 0

oder
Nß + N* + Za 0



Kugelschalen über vier- und vieleckigem Grundriß

Längs des Randes ist Nö 0 also
Nß — Za.

In dem Eckpunkt ist Aß =}= 0, was keineswegs in Widerspruch zu den
Randbedingungen des benachbarten Randes steht, da A3 nicht senkrecht auf dem
Rand steht und keine heraustretende Kraft, sondern eine Schnittkraft ist.
Als ein analoges Beispiel der zweidimensionalen Statik können wir die nur
durch äußere, gleichmäßig verteilte Schubkräfte p beanspruchte Rechteckplatte

betrachten. Die Hauptnormalspannungen sind:
NZ —Ny=P

Nxy 0

und die Spannungen sind sowohl an den Rändern wie im Innern durch die
Transformationsgleichungen oder den MoHR'schen Kreis verbunden und am
Rand verschwinden nur Spannungen, die normal zum Rande sind, nicht
dagegen Nx und Ny.

Es muß in ähnlicher Weise für eine Schale im Membranzustand auch
in den Ecken die Spannung im Gleichgewicht sein, was nachfolgend durch
ein Beispiel beleuchtet werden soll.

Aus den Randbedingungen erhält man für rotationssymmetrische
Belastung durch Betrachtung einer Ecke (Fig. 8) mit den Koordinaten cp cp0,

xp 45 ° für Verschiebung in der 99-Richtung mit N™£x T
2 Tadcp Vi + cos2 99 sin/0 — N(p2adcp cos 990 0

cos 45° 1

sin /oHier ist:
cos ö Vi -+- cos29^0

Durch Einsetzen und Umformung:
(22) T 7V„ cos cp0

oder: %r T
Nv

NM

COS cp0

— Za T_
COS cp0

Verschiebung in Richtung ß gibt (Fig. 8):
(Nß — Nyj) cos y0 T • sin y0

Za, also ist obenstehende Gleichung
COS990

Hier ist Aß
erfüllt, indem

cos/o

sin/0

yi + cos2^
1

V 1 + COS2 9^()

Wir wollen auch das Gleichgewicht der Ecke an einem
Beispiel nachweisen.

Beispiel:
ö 30°, Belastung X Y 0, Z konstant.

ff
ad<p cosv

r\

Fiff. 8.

Grundbelastungszustandid: Nv M
Nv —

Za
2

N* —
Za

N,fi 0

Nn,,,, 0

(cos2 y + sin2;')
Za
2



14 A. Aas Jakobsen

Wir erhalten einen genügend genauen Ausgleich durch die
Zusatzbelastungen Fall a) und zwar mit

C4 50 -^-, 3°/0 max. Abweichung der Spannungen.

Mit

50

Q 48,9

C8 — 80

2 '

Za
~2~

Za
~2~

erhält man 6 °/00 max. Abweichungen

und 3 %o mittl. Fehler, d. h. kleiner als der des Rechenschiebers. Der mittlere

Fehler der Zusatzbelastung Fall a) mit C4 50 -=- ist ~ 2,5 o/o und es

wird nachstehend der Ausgleich mit dieser Zusatzbelastung durchgeführt.
Für den Rand ist:

Nb —

N* —

Za
+ 50 ~FVtcos(2y + 4rp)2

Za
~2~

Za

2

Za
250~/V.cos(2r + 4V)

Nßi - 50 -£¦ FVt sin (2y + 4yj)

Tafel 5.

Randspannungen (cS=30°, ^ 45°-90°)

V 27 Ftpt, Nö Nß Nöß

45° 109° 28' 0,0589 -0,02 -1,98 -2,78
50° 95° 50' 0,0447 -0,03 -1,97 -2,01
60° 70° 30' 0,0306 -0,01 -2,00 -1,32
70° 46° 32' 0,0244 + 0,02 -2,02 -0,65
80° 23° 08' 0,0216 + 0,03 -2,03 -0,31
90° 0 0,0206 + 0,03 -2,03 - 0

Za Za Za
Multiplikator ~2~ T~ 2

Diese Schnittkräfte sind in Tafel 5
ausgerechnet.

Die Schnittkräfte sind im Schnitt:

0° (90°).

Nv —
Za
~2 + 50

Za
~2

F1 (pi,

Ny, —
Za

— 50 Za
~2~ F.,

1^<py) ^
Tafel 6.

Schnittkräfte in Schnitt y> - 0° und y>=45°

qp Fq>4
xp 0° (90°) yj 45°

Ncp Nip Ncp Ny>

0
10
20
30
40
45

0
0,19-10~2
0,83 „
2,06 „
4,25 „
5,89 lO"2

-1,00
-0,91
-0,58
+ 0,03

-1,00
-1,09
-1,42
-2,03

-1,00
-1,09
-1,42
-2,03
-3,12
-3,94

-1,00
-0,91
-0,58
+ 0,03
+ 1,12
+ 1,94

Multiplikator
Za
~2~

Za
~2~

Za
2

Za
~2~

yj 45°;

Nv= —
Za
2 — 50

Za
~2~

F

Ny,= —
Za
~2~ + 50 Za F1 Vi

Diese Schnittkräfte sind in Tafel 6
ausgerechnet.
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Für die Eckpunkte: Nach Tafel 5 ist: Nß^ — Za

Aus Tafel 6: Nv + Nv (— 3,94 + 1,94) -± -

Es ist für die Ecke: <Po 45°

Nach Ol. (22) ist: T N6ß Nv cos<p0

- Za

3,94 • 0,707^ 2,78f
was mit dem in Tafel 5 ausgerech- ö_2S
neten Wert der Schubspannung N6ß
für den Eckpunkt xp 45 ° übereinstimmt.

Es tritt also in der Ecke
keine Art Unstetigkeiten auf.

In Fig. 9 ist das Ergebnis bei
Ausgleich am Rand mittels verschiedener

Zusatzbelastungen für eine
Schale mit d =-- 25 ° und mit
Eigengewicht belastet angegeben. Die
Wichtigkeit einer richtigen Wahl
der Zusatzbelastungen geht hier
deutlich hervor.

In Tafel 7 sind für die häufigst
vorkommenden Schalen und
Belastungsfälle die Integrationskonstanten

angegeben, die in einfachster

Weise die Randbedingungen
befriedigen.

7. Vieleckige Kuppeln.
Was über viereckige Kuppeln

gesagt ist, gilt auch für vieleckige.
Der einzige Unterschied ist nur,
daß xp zwischen anderen Grenzen
schwankt und für die
Zusatzbelastung Fall a) andere n gewählt
werden müssen, um die Symmetrie
des Grundbelastungszustandes zu
erreichen. Es wird z. B. für:
6-Eck:

xp 0 — 30° bzw.
xp 60° —>- 90°

d 0 -* 60°
Fall a: n 6, 12, 18 ••••
8-Eck:

xp 0-> 221/2° bz<

6 0 -> 67 V
Fall a: n 8, 16, 24 • • • •

Ausgleich der RandkräFle Für Eigengewicht
Egalisalton des eZForls aux bords pour le poids propre
Lqualisation oF Hm Forces For dead weight

Fall - cas - case a
C4 0.394.70 ga
C8 =-0,333.70 ga

0M

2*6

0.03

002 Q - 0 392 ¦ 70 ga
Cg---0.I9 .10 ga
C^= 0.7k .10 ga

001

001
^.

0.01

- cas - case ö

dQ « 3,37 ga
d,~-0M2 ga

-070

ZNS
Fall - cas - case a * ö-

C4 « 050 10 ga
d, - -0,352 ga

Fig. 9.

xp 67 Vi0-* 90°

Daß Fall a) zur Erfüllung der Randbedingungen bei bestimmten
Öffnungswinkeln ungenügend ist, zeigt sich bei sechseckigen Kuppeln noch
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deutlicher als bei viereckigen. Es ist wie vorher für Zusatzbelastung Fall a):
N6 — Cn FfPn cos (2 y + n xp)

Hier ist y derselbe Winkel wie früher
COS xp

sin y cos 6

Für den Eckpunkt (xp 60°) ist tixp =- 360° oder ein Vielfaches von 2n,
also cos (2 y -f- tixp) cos 2y. Für 2 y 90°, d.h. y 45 ° und c> 45°

Tafel 7.

Integr.-
constant.

<5° 15
| 20 25 3) 35 40

Multiplie. Eigengewicht — Poids propre — Dead weight

di
ga • 658

- 17,0

170

- 3,35
50,0

- 0,352
14,07

+ 0,364
2,60
0,472

- 1,05

0,419

C*

dy

Schneelast — Neige — Snow

p0a •

J?0ß •

608
'

146 37,2

- 15,55 - 2,65 - 0,01

7,80
0,498

- 0,61

0,517

Schneelast — Neige — Snow

d,
p0a •

/?0tf •

147,7
225

- 2,72

39,0
60

- 0,066

9,72
41,7

0,433

4,53
63,3
0,344

-10,0
50,8

0,661

Tafel 8.

Grundbelastungszustand
Charge de base
Basic load

Zusatzbelastung Fall a
Charge supplementaire cas a
Additional load case a

y> \ 30 35 40 45 30 35 40 45

Eigengewicht - Poids propre - Dead weight: -ga • NÖ6 (n 6)

60
70
80
90

0,4557
0,5047
0,5286
0,5359

0,4249
0,5015
0,5386
0,5497

0,3741
0,4931
0,5494
0,5663

0,2887
0,4749
0,5605
0,5858

10~3

1,0325
- 0,5736
-1,277
-1,481

lO'3
1,7135

-1,386
-2 636
- 2,985

1Q-*

• 2,076
- 3,203
-5,117
- 5,629

IO"3
0

- 7,195
- 9,517
-10,10

60
70
80
90

60
70
80
90

Schnee - Neige - Snow: -p0a • Nöu (/z 12)

0,3889
0,4559
0,4896
0,5000

0,3366
0,4351
0,4848
0,5000

0,2653
0,4067
0,4781
0,5000

0,1667
0,3675
0,4689
0,5000

10~7

10,65
-11,38
- 0,7840

5,485

10~6

5,055
-6,421
- 0,343

2,932

10~5

1,600
- 2,904
-0,1071

1,309

10~4

0
-1,344
-0,0176

0,5098

Kuppelaufsatz - Lantemeau - Lantern : -/?. "*. (* 18)

1,000
2,431
3,567
4,000

0,5809
1,748
2,683
3,040

0,2686
1,286
2,106
2,420

0
0,9394
1,706
2,000

lO-io
10,97

- 4,517
2,483

- 2,031

10~9

14,91
- 6 644

3,557
- 2,880

io-8 10-7

12,33
1

0
- 7,388 -6,246

3,801 j 4,098
- 3,045

1 -2,574
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wird N6 0 für jeden Wert von ti (n 6, 12, 18, und da Nö sowohl
für Eigengewicht als auch Schnee 4= 0 ist, müssen andere Zusatzbelastungen
herangezogen werden.

6-Eck: Für die Qrundbelastung erhalten wir die Normalkräfte am
Schalenrand aus Tafel 8 und zwar für \p 60°, 70°, 80°, 90°. (60°
Eckpunkt.)

Die Zusatzbelastung Fall a) gibt folgende Spannungen in der Schale:

Nv — — Nw CnF(Pn cosnxp,
N(pip CnFfPnsinnip,

und am Schalenrand die Normalspannungen

Nö CnF(Pncos(2y + tzxp) wo FVn ^^^CnN6n
\ %n 60° —> 90°

y wird aus Tafel 1 entnommen; Ä i0n ö, 12, 18 • • • •

A/<^w wird der Tafel 8 entnommen.
Die übrigen Zusatzbelastungen, die eine dreimalige Überlagerung

erfordern, ergeben sich, wie für das Viereck gezeigt, und der Rechnungsgang
soll hier nicht wiederholt werden.

Zusammenfassung.
Es wird der Membranspannungszustand vier- und vieleckiger

Kugelschalen untersucht und für das praktische Rechnen werden Tafeln
ausgearbeitet.

Resume.
L'auteur etudie dans ce memoire Fetat de tension dans les coupoles

minces ä plan reetangulaire et polygonal. II donne une serie de tableaux
pour le calcul pratique de ces ouvrages.

Summary.
In this paper the author examines the conditions of stress in thin shells

of rectangular or polygonal plan and gives a series of tables for the design
of such structures.

Abhandlungen V
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