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DIE BERECHNUNG DER DEHNUNGSSPANNUNGEN
VON ROTATIONSSCHALEN MIT HILFE VON

SPANNUNGSFUNKTIONEN.

LE CALCUL DES TENSIONS DE DILATATION DANS LES VOILES
DE ROTATION Ä L'AIDE DES FUNCTIONS DE TENSION.

THE CALCULATION OF EXPANSION STRESSES IN ROTARY SHELLS
BY MEANS OF STRESS FUNCTIONS.

Dr. techn. A. PUCHER, Berlin-Charlottenburg.

I. Einleitung.
Der Membranspannungszustand von Rotationsschalen beliebiger

Meridianform ist sehr einfach zu behandeln, solange nur achsensymmetrische
Belastung und stetige Stützung längs eines Breitenkreises in Betracht
gezogen wird.

Die Untersuchung anderer Belastungszustände, erstmals von Reissner1
angestellt, führt auf zwei simultane Differentialgleichungen für die Schnittkräfte,

deren gleichzeitige Integration in einigen speziellen Fällen möglich
ist. Aus den simultanen Differentialgleichungen lassen sich jedoch wertvolle
Schlüsse ziehen über die Wirkungsweise der Rotationsschalen, wenn man
vom Gleichgewicht des Flächendifferentials auf das von endlichen Flächenteilen

übergeht. Diese von Dischinoer2-4 gefundene Methode erweist sich
als sehr fruchtbar. Insbesondere gestattet sie eine weitgehende Behandlung
von Kugelschalen' auch unsymmetrischer Form, wobei von der Tatsache
Gebrauch gemacht wird, daß jeder Durchmesser der Kugel als Rotationsachse
angesehen werden kann. So finden recht kompliziert erscheinende Probleme
oft eine verblüffend einfache Lösung.

Die Kugelschale auf Einzelstützen wurde erstmalig von Dischinger 3'4

behandelt. Flügge 6 untersucht ebenfalls die Rotationsschalen auf Einzelstützen

und zeigt hierbei auch einen Weg, um bei allgemeiner Meridianform
mittels Differenzenrechnung zum Ziele zu gelangen. Sein Verfahren

erfordert jedoch die Kenntnis von zwei zugeordneten Schnittkräften in einem
Punkt des Kämpfers und führt deshalb erst nach einigen Versuchsrechnungen
durch Verbesserung von zunächst geschätzten Ausgangswerten zum Ziele.

In der folgenden Arbeit soll gezeigt werden, wie die hier angeschnittenen
Probleme durch Einführung der Spannungsfunktion für die Membranschnittkräfte,

deren Existenz vom Verfasser7'8 ganz allgemein nachgewiesen wurde,
in übersichtlicher Weise behandelt werden können, ohne eine Voraussetzung
über die Form des Meridians machen zu müssen. Die Gruppe der simultanen
Differentialgleichungen für die Schnittkräfte wird hierbei durch eine einzige
Differentialgleichung für die Spannungsfunktion ersetzt, deren Integration
in den wichtigsten Fällen möglich ist, gegebenenfalls führt eines der
bekannten Verfahren der numerischen Integration zum Ziele.
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IL Die Differentialgleichung für die Spannungsfunktion.
Die Rotationsschale sei in dem System der Zylinderkoordinaten r, #, z

gegeben durch die Gleichung der Mittelfläche

z z(r).
Wir betrachten das Flächenelement begrenzt durch zwei benachbarte
Meridiane & und # + d$ und die Breitenkreise rund r-\-dr. Die Bogenlängen

dieses Elementes sind und rdw bezw. (r ~t- dr) dl), worin w=^ arctg —rcos cp
\ \ / > r s dr

den Neigungswinkel der Meridiantangente darstellt. Entgegen der Gewohnheit,

die Gleichgewichtsbedingungen auf ein Achsenkreuz zu beziehen, das
gebildet wird durch die Flächennormale, die Meridiantangente und die auf
diese beiden normale, dritte Richtung, wollen wir das Gleichgewicht in
der Richtung des Radiusvektor r, der Tangente an den Breitenkreis und der
z-Achse betrachten. Dementsprechend zerlegen wir die auf die Flächeneinheit
der Grundrißebene r$ bezogene Belastung des Elementes in die Komponenten

P (Ro), 0 (Theta), Z (Zeta) in Richtung dieser Achsen. Die Schnittkräfte

bezeichnen wir mit Nr, Nb, Nrf) bezogen auf die Längeneinheit. Die
drei Gleichgewichtsbedingungen in Richtung des Radius, der Tangente und
der Z-Achse sind:

la)

lb)

¦M (Nr COS 09) -| Nr COS w Na + JL 1_
r dcp

(Nr,) + P=0,
1 d (k, 1

COS cp

¦) + 2^ + f_A^ + © 0,

lc)

Wir nennen

2)

er
1o 1

— (Nr sin cp) + — Nr sin cp -\ —crx r r dcp
(Nr*tgi>) + Z 0.

9lr Nr COS cp,

1

9U N
COS cp

rti
die reduzierten Schnittkräfte, die die Horizontalkomponenten

der tatsächlichen Schnittkräfte Nn N6 und N^
darstellen. Sie können wie die Schnittkräfte in der ebenen

Scheibe von einer Spannungsfunktion abgeleitet werden.

Setzt man nämlich:

3)

9lr

9U

r clr
_1__
~r^~d»2

e_

6r
^cPF
r en£).

rtf

T Nr,#

#•0

Fig. 1.

so werden Gl. (1 a) und Gl. (1 b) identisch erfüllt, sofern die Größen
und B folgenden Differentialgleichungen genügen:
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4)
er r r

-If +0 0.
r £0

Diese Gleichungen enthalten außer A und B nur die als bekannt anzusehenden
Belastungsgrößen und sind leicht zu integrieren. Es ist:

B — | QrdÜ,
5)

A - —[(p+ — \ GrdArdt

^' ~2~ ^ U2
' 7T2 ' ^~ ^ ^

' 7^2" ' ^T 77^ ;T#- ^

tr.
.'ov f Jtf0 ^

Führt man die Spannungsfunktion in die Gleichung (1 c) ein, so erhält man
die Differentialgleichung

dö2 er2 ' 7 c r
'

Tr2 VIT2 clr
Die Störungsfunktion q wird durch die Belastungsgrößen ausgedrückt:

7) g =-\Z + UAiz) + '-Ai2]' L cr\ er) r c ri
Die Integration von Gleichung (6) liefert die Spannungsfunktion F, die

die inneren Kräfte einer Rotationsschale eindeutig beschreibt. Das partikuläre
Integral der inhomogenen Differentialgleichung genügt hierbei den auf die
Schale wirkenden Flächenlasten. Mit Hilfe des allgemeinen Integrals der
homogenen Differentialgleichung (q 0) können die Randbedingungen,
sofern sie mit einem ungestörten Membranspannungszustand verträglich sind,
befriedigt werden. Die homogene Differentialgleichung beschreibt die
inneren Kräfte einer Rotationsschale, die nur durch am Rande angreifende
Kräfte beansprucht wird. Diese Randkräfte müssen allerdings dem Membranzustand

entsprechen, d. h. ihre Resultante muß in der Tangentialebene am
Rande der Schale liegen.

Die Anwendung der oben skizzierten Methode der Spannungsfunktion
bringt keine Vorteile gegenüber den bekannten Verfahren, solange nur die
einfachen Belastungsformen (Eigengewicht und Schnee) bei stetiger Stützung
längs eines Breitenkreises betrachtet werden. Jedoch schon bei
Windbelastungen ist sie von Vorteil, sofern man sich nicht mit dem einfachen
Sinus-Windgesetz begnügt. Dieses Problem, das eingehend von Dischinger 2

und neuerdings von Nemenyi 9 und Wiedemann 10 behandelt wurde, läßt sich
auf die Integration einer totalen Differentialgleichung zurückführen, die eine
übersichtliche Lösung gestattet. Am Schlüsse dieser Abhandlung wird darauf
noch eingegangen werden.

Das allgemeine Integral (q 0) gibt die Möglichkeit, die verschiedenen
nicht rotationssymmetrischen Stützungsarten ohne Voraussetzung einer
besonderen Schalenform zu behandeln.

III. Die Integration der homogenen Differentialgleichung.
Die homogene partielle Differentialgleichung

QX
1 d2F c2z 1 6Fd2z 1 c2F dz n
rl c1 ü2, c r£ r c r c r- r c r1 c r
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läßt sich zurückführen auf eine totale Differentialgleichung mit der
unabhängig Veränderlichen r, wenn man die Spannungsfunktion als das Produkt
zweier Funktionen ansetzt, die nur von r bezw. von # abhängig sind:

F=f(r).g(V)
Wenn die Funktion g (#) der Differentialgleichung

9) i*£ ± V$
C x) *

entspricht, so fällt sie aus Gl. (8) als Faktor heraus und es ergibt sich eine
totale Differentialgleichung für / (r):

10) /"+ Z~[ff T ^
• *,/ 0

z r z

Dem negativen Vorzeichen in Gl. (9) entspricht bekanntlich g =^ sin£# bezw.
g cos k #, dem positiven jedoch g Sin k d bezw. g Cos k #. Die beiden
letzten Möglichkeiten wollen wir aus der Betrachtung ausschließen und uns
somit auf den Ansatz beschränken:

F(r0) /(r)sin*3,
bezw. F(r Iß) f (r) cos k #.
Jede Linearkombination dieser beiden Grundfunktionen genügt ebenfalls der
Differentialgl. (8). Da über k als Parameter frei verfügt werden kann, so
entspricht das allgemeine Integral dem Ausdruck

11) F(rd) ^ fk(bk sin kO +ckcosk0).
k

Der Index k in fk(r) zeigt an, daß diese Funktion einem bestimmten Wert
von k gemäß der Diff.-Gl. (10) zugeordnet ist.

Die reduzierten Schnittkräfte sind nunmehr durch fk und deren
Ableitungen darstellbar:

12a) %. ^{\fk- ^f^j(bksmk0 + ckcosk9)

12b) %, 2 fk" (bk sin kü + cfc cos * !>)
k

12c) Wrö S k{— fk —\ fk) (Pk cosk9 — ck sin k&)
k \ r r- /

In Gl. (11) bezw. Gl. (12) ist k als Parameter und bL und ck als Integrationskonstanten

frei wählbar. Diese Freiwerte sind aus den Randbedingungen,
also aus dem Verlauf der am Rande der Schale angreifenden Kräfte, zu
bestimmen.

Die Aufgabe ist somit auf die Integration einer linearen homogenen
Differentialgleichung zweiter Ordnung zurückgeführt, die nun für die
wichtigsten Schalenformen durchgeführt wird.

ci) Die Rotationsparaboloide.
Wir betrachten zunächst Rotationsschalen von der Form:

z arn, n > 2
Es ist

z, anrn~1, z"—an(ti— 1) rn~2
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und die Diff.-Gl. (10) hat die spezielle Form
r2 fk" +{n — \) rfk' — k2 (n — l)fk 0

Wir setzen

Mr) f
Für v ergibt sich die Bestimmungsgleichung

v(v- l) + (n — \)v — k*(n- 1) 0
Daraus folgt:

n--2 n^r + *->- 1)

k an:
Die nachstehende Tabelle gibt die Werte von v für verschiedene n und

tl

k

1 2 3 4 5 6 7 8 9 10

2 t 1 ± 2 t 3 + 4 ± 5 l fc 6 1 fc 7 ±3 fc 9 h 10

3 + 1,000
- 2,000

+ 2,372
- 3,372

+ 3,772
- 4,772

+ 5,179
-6,179

+ 6,589
- 7,589

+ 8,000
- 9,000

+ 9,412 1+10,823
-10,412 j-l 1,823

+12,237 | +13,651
-13,237 | -14,651

4 + 1,000
- 3,000

+ 2,606
-4,606

+ 4,292
- 6,292

+ 6,000
- 8,000

+ 7,718
-9,718

+ 9,440
-11,440

+11,561 +12,892
-13,561 1 -14,892

+14,621 +16,349
-16,621 -18,349

Das partikuläre Integral wird durch Potenzen von r dargestellt. Für
jeden Wert von k gibt es zwei Exponenten v, einen positiven und einen
negativen. Der letztere bedingt Singularität im Scheitel (r 0). Bei geschlossenen

Schalen sind daher die negativen Werte von v auszuschließen. Die
Spannungsfunktion klingt vom Rande gegen den Scheitel zu monoton ab. Bei
Schalen mit Öffnungen im Scheitel (Laterne) erhalten die negativen v jedoch
Bedeutung und entsprechen Randkräften, die am oberen Rande angreifen und
die Schnittkräfte bedingen, die mit wachsendem r abklingen.

Damit aber die Schnittkräfte im Scheitel geschlossener Schalen endlich
bleiben, genügt es nicht, wenn fk für r 0 verschwindet. Wie aus den
Gl. (12) hervorgeht, muß vielmehr v =z > 2 sein. Aus der Zahlentafel
geht hervor, daß dieser Forderung immer bei k — 2 genügt wird, bei
k=\ ist jedoch für jedes n der positive Wert von v gleich der Einheit. Es
wird sich später zeigen, daß bei allen Schalenformen der Wert k=\ eine
Sonderstellung einnimmt. Deshalb wird im nächsten Abschnitt allgemein darauf

eingegangen.

ß) Der gerade Kegel.
Die Gleichung der Kegelfläche in Zylinderkoordinaten ist

z ar\
da z' -=- a, z" 0 ist, so entartet die Differentialgleichung (10) zu

/" o,
deren Integral

/ -" V r q
eine lineare Funktion, unabhängig von k, ist.
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Die Spannungsfunktion wird damit:

F — 2 r(bk sin k Ü + ck cos k t>) + 2 (**' sin £ # -f **' cos k 0),

da man die Integrationskonstanten p und q in die Freiwerte bk und <?Ä, bezw.
6*' und c^ einbeziehen kann.

Da die Spannungsfunktion von niedererem als zweitem Grade in r ist,
so werden nach Gleichung (12 a, c) die Schnittkräfte SHr und 9?r# im Scheitel
unendlich, während nach Gl. (12 b) eine Schnittkraft 9?^ überhaupt nicht
auftritt. Das Kräftespiel in einer Kegelschale ist, wenn Membranzustand
bestehen soll, sehr wenig mannigfaltig. Die Kegelschale wird bei nicht stetiger
Unterstützung des Randes mit Biegungsmomenten arbeiten müssen und ist
daher für viele Aufgaben des Kuppelbaues ungeeignet. Die Ursache hierfür

ist, daß der Kegel keine doppelte, sondern nur einfache Krümmung hat.
Es liegen ähnliche Verhältnisse vor wie beim Zylinder, der, ebenfalls nur
einfach gekrümmt, nur in beschränktem Maße ohne nennenswerte Biegungsmomente

zu bestehen vermag.

y) Die Kugel und das Ellipsoid.
Beide Flächen führen, da zwischen ihnen Affinität besteht, auf dieselbe

Differentialgleichung. Die Gleichung des Meridianes ist

z h

für die Kugel wird h d.

1 ¦V' ¦(;r

Wir setzen o und beachten, daß ~c r
1

d'
Es ist:

cz
er

ez2
cV2

z +
h

d{l-Q*)2V>a

h
*" + TT,

1

Fig 2.

d? (l — e2)3;
1

z' do(\ — Q9-)

Die Differentialgleichung (10) wird zu
1 Ä8

/*" + /*'¦
1

dQ(l-Q»)
oder, von den Brüchen befreit:

rfVO — e8)/*"+*(>/*'

d* Q'il — Q*)
h

hIn dieser Gleichung erscheint das Verhältnis -j überhaupt nicht mehr. Die

Lösungen gelten daher sowohl für jedes Rotationsellipsoid als auch für die
Kugel. Der Einfluß des Pfeilverhältnisses macht sich erst beim Übergang
von den reduzierten auf die tatsächlichen Schnittkräfte bemerkbar.

Zur Integration bedienen wir uns der Methode der unbestimmten
Koeffizienten und setzen das Integral als Potenzreihe an:

/* S "v {'"



Berechnung der Dehnungsspannungen von Rotationsschalen 281

ie Ableitungen von /* nach

/*'

r sind:
1 °°

Qv~l

/*"
1 °°

a v 2
-\)av <,-*

Wir führen diese Reihen in die Differentialgleichung ein und ordnen nach
Potenzen von q. Die Gleichung kann nur dann für jedes g identisch
verschwinden, wenn die Koeffizienten jeder Potenz von $ zu Null werden. Daraus

ergeben sich die Bedingungsgleichungen, aus denen die Koeffizienten
bestimmt werden. Man erhält:

a0 0

(1 — k2)ax 0
(4 - k2) a2 0

(9 — k2) a% 0

(16—£2)a4 — 2a2 0

(25 — k2)ab —6a3 =0
(36 — k*)ae — 12ö4 0

(v2 — k2) av — (v—2) (v — 3) ß„_2 - 0

Aus diesen Gleichungen geht hervor, daß in der Reihenentwicklung von
fk alle Koeffizienten mit der Ordnungsziffer v<k verschwinden, die Reihe
daher mit Qk als niederster Potenz beginnt. Ferner verschwinden alle Koeffizienten

mit der Ordnungsziffer v =^ k -V- 2n — 1 («=1,2, 3 usw.), so daß
die Reihe mit q2 fortschreitet. Die Koeffizienten, die nicht verschwinden,
sind mittels der Rekursionsformel

_(r 2)(,-3)
V2 — k -2

aus dem vorhergehenden av_2 einfach zu berechnen. Der erste Koeffizient
av==k ist Freiwert.

Der Grenzwert des Quotienten zweier aufeinander folgender Koeffizienten

konvergiert gegen die Einheit

lim -«L lim (>-2H^3)
Die Reihe konvergiert daher für alle Werte von o<l, bezw. r<d.

Eine Sonderstellung nimmt auch hier k 1 ein, da in diesem Falle
alle Koeffizienten, ausgenommen au zu Null werden. Es wird darauf im
nächsten Abschnitt näher eingegangen werden.

Im nachfolgenden sind die Reihen für die Werte k 2 bis k -= 6
angegeben.

k 2, a2 ist Freiwert

at q2 [1 + 0,1667 q2 + 0,0625 o4 + 0,0313 e6 + 0,0182 ?8 + 0,0118 q10 + ]
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k 3, a3 ist Freiwert

13 3 7 0 00 1

1+8^ + 16^ + 64^+128^ + 2Ö84^0+---J
as e3 [1 + 0,375 q2 + 0,1875 ?4+ 0,1096 eö + 0,0704 gs + 0,0479 ?10+ • ]

k 4, aL ist Freiwert

ß4 ?4 [1 + 0,6000 ?2 + 0,3750 q± + 0,2500 ?6 + 0,1758 q8 + 0,1288 e10 + • • • ]

k 5, #-, ist Freiwert
_"] -L 5

9
5 15 „ 275

K
143

1(l
1

«5 £5 [1 + 0,8333 q2 + 0,6250 ^ + 0,4568 eG + 0,3580 q* + 0,2794 q,0 + ]

k 6, a6 ist Freiwert
~s rli 15

p
15

4
25

ß
165

8
273

10 1

aGQG [1 + 1,0715 q2 + 0,9378 ?4 + 0,7815 q« + 0,6445 e8 + 0,5336 e10 + • • •]

Die hier angegebenen Reihen stellen noch nicht das allgemeine Integral
der homogenen Differentialgleichung dar. Der Funktion fk entsprechen
Randbelastungen längs eines Breitenkreises, die gegen den Scheitel zu abklingen.
Da die Differentialgleichung von zweiter Ordnung ist, existiert noch ein
zweites, von fk nicht linear abhängiges Integral, das einem vom Scheitel
gegen den Rand der Schale abklingenden Spannungszustand entspricht,
analog den mit negativen Exponenten behafteten Potenzen r~v bei den Para-
boloiden. Rein formal läßt sich dieses zweite Integral jk durch Quadraturen
aus fk berechnen, die jedoch nicht ohne weiteres durchführbar sind, da
Singularitäten auftreten. Im nächsten Abschnitt wird darauf zurückgekommen.

d) Am Kämpfer stark überkrümmte Rotationsschalen.
Bei flachen Rotationsschalen ist es von Wichtigkeit, zur Verminderung

der Randstörungen die Meridiankurve in der Nähe des Kämpfers stark zu
krümmen. Dischinoer 2 hat die Einschaltung eines Übergangsbogens bezw.
gegen den Kämpfer stetig zunehmende Krümmung vorgeschlagen. Man kann
diesen Effekt erreichen, wenn man den Meridian nach Kurven formt, die der
Gleichung

z hY~~ (1 —äv r n *' * usw'

entsprechen. Je kleiner n gewählt wird, desto stärker ist die Überkrümmung.

Es wird: z' 2/^o(l -p2)«"1, Q ~rd d

z" 2n J, (1 — r')"" * [1 + Q2 0 - 2«)]

*L — !jt_£Ü!.ZL?«)
Z' ~ d-Q(l — Q*) Fig 3

"¦i
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Damit lautet die Differentialgleichung (10):

oder, von den Brüchen befreit:
d2Q2(\— Q2)f" + d- q[\ + Q2(\~-2n)]f' — k2[\ + Q2(\—2n)].f 0

Das Integral setzen wir wieder als Potenzreihe
OD

/ S 0v Qv

an und bestimmen die Koeffizienten nach der gleichen Methode wie im
vorhergehenden Abschnitt.

Wir erhalten folgende Bestimmungsgleichungen:

a0 0

(1 — k*)ax 0

(4 - k2) a2 0
(Q —A2)a3 + (1 — *2)0 — 2/1)^ 0

(16 —A2)a4 + [(2 -k*)(\—2n) — 2]a2 0

(25- £2)a5 + [(3-£2)(l — 2/*) —6]ß3 0

(36 — k2)a6 + [(4 - k2)(\ — 2n)—\2\aA 0

allgemein:
(*2-£2)ß„ + [(v-2-k2)(\-2n)- (v-2)(v- 3)] ß„_2 0

Die Reihen sind ganz ähnlich gebaut wie die für die Kugel maßgebenden.
Für ti \ gehen sie in diese über. Ebenso ist der Konvergenzbereich der
gleiche (q<\, r<d). Auch bei dieser Schalenform ergibt sich bei k 1

für fk keine Reihe, sondern der Ausdruck fx ax • r, ebenso wie bei allen bisher

behandelten Formen.

Die Integration der Differentialgleichung (10) ist mithin für die
wichtigsten Rotationsschalen durchgeführt. Sollen andere Formen untersucht
werden, so führt, wenn die vorhin angewendeten Methoden versagen, eines
der bekannten Verfahren zur numerischen oder graphischen Integration von
linearen Differentialgleichungen zum Ziele. Wir haben aus den obigen
Darlegungen gesehen, daß die von Singularitäten freien Integrale fk, und das
sind die für die Aufgaben des Schalenbaues wichtigen, am Ursprung gleichzeitig

mit ihrer ersten Ableitung verschwinden (für r 0 ist fk -= 0 und
fk =0). Da somit die Anfangsbedingungen bekannt sind, steht der
Anwendung eines Approximationsverfahrens nichts im Wege, da hierdurch
zahlenmäßige Ergebnisse von genügender Genauigkeit erhalten werden.

IV. Die Singularitäten des Membranzuslandes.
Den im Abschnitt III untersuchten Spannungszuständen liegt eine in

der Ringrichtung kreisperiodisch verlaufende Spannungsfunktion zu Grunde.
Es zeigt sich, daß die zwei partikulären Integrale der homogenen
Differentialgleichung (10) verschiedene Bedeutung haben. Das erste (fk) verläuft
regulär und beschreibt Spannungszustände, die gegen den Scheitel der Schale
zu abklingen. Das zweite, in der Folge fk bezeichnet und das nur am Para-
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boloid ermittelt wurde, wird im Scheitel singulär und entspricht Spannungs-
zuständen, die vom Scheitel, in dem die Spannungen unendlich groß werden,
nach außen hin abklingen. Diese zweite Gruppe hat nur Bedeutung für offene
Kuppeln (Laterne), wo der Ort der Singularität außerhalb des Bereiches
liegt. Es sei hier erwähnt, daß in den Fällen, wo die Integration nach der
Methode der unbestimmten Koeffizienten zum Ziele führt, dieses zweite,
singulare Integral der Differentialgleichung (12) nach dem Frobenius'schen
Verfahren ermittelt werden kann, indem man

oo

/ <r S «V <?"

v 0

setzt. In bekannter Weise wird x (Kappa) aus der determinierenden
Fundamentalgleichung und die Koeffizientenreihe ay aus einem System linearer
Gleichungen gefunden. Wegen der geringen Bedeutung für die Probleme
des Schalenbaues wird hier nicht näher darauf eingegangen.

Alle diese Belastungszustände entsprechen
Randbelastungen entweder am untern, oder bei offenen
Schalen am oberen Rande, die in sich ein
Gleichgewichtssystem bilden. (Fig. 4).

Es gibt aber noch eine zweite Gruppe von
Singularitäten, die von Randbelastungen stammen, die an
sich kein Gleichgewichtssystem bilden; diese Gruppe
wird in diesem Abschnitt behandelt.

Fig. 4.

Da nun nach Gl. (12 a) die am Breitenkreis eines Schalenabschnittes
auftretende Meridianschnittkraft Nr den gleichen periodischen Verlauf hat
wie die Spannungsfunktion, so entspricht dem Falle k 1 eine
Randbelastung, die von einem positiven Maximum auf der einen Seite in ein
negatives Maximum auf der anderen Seite übergeht. Die Schnittkräfte stehen
nicht im Gleichgewicht, sondern bilden ein resultierendes Moment (Fig. 5).
Ist jedoch k> 1, so steht die Randbelastung in sich im Gleichgewicht. Wir
wollen nun den Singularitäten der Belastung in der Differentialgleichung
nachgehen.

a) Die Einzellast im Scheitel (r-=¦ 0).

Wir müssen hier auf die partielle Differentialgleichung

8)
1 'F c2z 1 6Fc*z
r2 cV1 er2 + r dr 6r2 +

1 ¦F cz— qr c r- c r

zurückgreifen. Da q nur von den stetig verteilten Flächenlasten abhängt,
wird es bei dem Fehlen solcher zu Null. Wegen der Symmetrie der Be¬

lastung muß die Spannungsfunktion unabhängig von
# sein.

Fig. 5.

F(r)
c2F

Es wird somit --^,= 0 und ebenso q 0. Differential-
c 0 -

gleichung (8) wird zu

r + f' o
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Man kann durch Trennung der beiden Funktionen integrieren und erhält:

F' c

z

Nach Gleichungen (3 a) wird die reduzierte Meridianschnittkraft

SSir
1

eoc< r dr
c

7z'

Das Integral der Vertikalkomponenten der Meridianschnittkräfte wird, da

A// g(trtg9> - (tg<p *'),

rJo
N/ • rdit — 2tz • c

Das Integral ist von r unabhängig. Der Einzellast im
Scheitel entspricht die Spannungsfunktion

dF
er f=/-¦Inz

Fig. 6.

und die reduzierten Schnittkräfte

91,
2mz'

p
2~n

*-=^(t!S «

Selbstverständlich gelten in der Nähe des Scheitels diese Gleichungen nicht,
da ein Membranzustand in der Nähe von Einzellasten nicht möglich ist. Aber
in einiger Entfernung vom Scheitel nach Abklingen der Biegewelle sind sie
maßgebend.

ß) Das um die Rotationsachse drehende Torsionsmoment.
Wir setzen die Spannungsfunktion als nur von d- abhängig an.

F=C-g(»)

0

Es ist dann er
er _ e2F

~ Jr2 0,

r-

daher

' e2g
•¦ a.*>2

JUS
en

c folgt.

Die reduzierten Schnittkräfte sind:

yir % 0

% ¦*- iAt)- c

72~

Fig. 7.

Wir bilden das Moment der Schnittkräfte eines Breitenkreises um die Ro-
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M Wror9-dÜ —2nt
o

Dem Moment M entsprechen die Spannungsfunktion

SF_ _ _ M_

dir ~ 2n
und die Schnittkräfte

Nr Nit 0, Nr»
M

2r2

rf-0

Fig. 8.

y) Das um eine Achse normal zur Rotationsachse
drehende Moment.

Diese Belastung ist identisch mit dem Falle k=\
aus Abschnitt III. Wir setzten dort die Spannungsfunktion

an zu

F= f(r) cos#,
Der Ansatz F=f(r) sin # bedeutet nur eine Drehung

gegenüber der Richtung # 0 umy.
Mit k 1 wird die charakteristische Differentialgleichung

(10) zu

r + Tf-TT''"-
die durch / cr befriedigt wird. Die Spannungsfunktion F cr cos # stellt
jedoch eine geneigte Ebene dar, der spannungsloser Zustand in der Schale
entspricht. Da aber / cr nur ein partikuläres Integral von (10) ist, so
existiert noch ein zweites von / linear unabhängiges Integral /, das, wie sich
zeigen wird, tatsächlich dem Biegungsmoment im Scheitel entspricht.

Ist von einer Differentialgleichung zweiter Ordnung
y" + pt(x) >/ + p2(*)y 0

ein partikuläres Integral yx bekannt, so kann ein zweites, davon nicht linear
abhängiges y2 durch Quadraturen aus der Differentialgleichung erster
Ordnung

y\ -y% —y* -y/ c • exp ^— I
px (x) dxj

abgeleitet werden.

In unserem Falle entspricht p± der Ausdruck—T, so daß wir / aus der

Differentialgleichung

gewinnen

Da j?

f-f'-f'-f Cexp

dr — In z' ist, so wird

\t dr

f-f'-t'-f
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Diese Differentialgleichung läßt sich integrieren. Es ist

/ / Q + CAM\
Wir führen nun für / c • r ein und erhalten, da CL unwesentlich ist, das
gesuchte partikuläre Integral:

f ar
F f • cos 0 C - r J y}*

dr
• cos ti.

Die Schnittkräfte können angegeben werden, ohne die Integration
ausführen zu müssen. Es wird

^ ("TT /'- \ f) ' COS ''^Zr*- COS V

TT
Die Größe des Momentes um die Achse d ± - wird wieder durch

Integration über einen Breitenkreis erhalten. Es ist

N/ Mr • Z' =r ~ • COS tirl

M N/ • r2 cos ti • dti C\ cos20 du 2Cjt;
Jo Jo

daher ist C =—
Ztt

Die Querkraft, das Integral über die Seitenkomponenten in Richtung
ft 0 der Schnittkräfte Nr# und N, verschwindet. Das steht in
Übereinstimmung mit dem Ergebnis, daß das Moment M von r unabhängig ist.

Die Schnittkräfte in der Schale sind somit:

s\> _ M cos ti
In z r-

cn I" o Af z"
SRd / cos ti — ,-,- • cos ti

2 n z 2r

sJU^-(l/-'_7L/-)sin,V Af sin ti
2tt z r2

Die hier behandelten Belastungsfälle an Rotationsschalen, Singularitäten
der Belastung, sind zum Teil schon lange bekannt. Die Membranschnittkräfte

infolge einer Einzellast im Scheitel können auf elementare Weise
abgeleitet werden, mit dem Torsionsmoment arbeiten z. B. die Flugzeugbauer

und von dem Biegungsmoment im Scheitel einer Rotationsschale hat
Dischinger 4 bei der Berechnung unsymmetrischer Kugelschalen Gebrauch
gemacht. Es war aber notwendig, diese Fälle als Singularitäten aus der
Differentialgleichung für die Spannungsfunktion herauszuschälen und die
Zusammenhänge zu klären, damit bei der Anwendung der Methode nicht
unversehens ein solches singuläres Integral in unzulässiger Weise angesetzt
wird.
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V. Rotationsschalen bei nicht stetiger Stützung längs eines
Breitenkreises.

Die bisherigen Untersuchungen haben das allgemeine Integral der
homogenen Differentialgleichung zum Gegenstande gehabt. Es soll nun
gezeigt werden, wie mit dessen Hilfe Rotationsschalen der verschiedensten
Stützungsarten behandelt werden können. Wir beschränken hierbei die
Betrachtungen auf den Fall des Eigengewichtes, da dieser der weitaus
wichtigste ist und daran das Charakteristische der Methode genügend klar gezeigt
wird.

a) Die Kuppel auf Einzelstützen.
Wir betrachten eine Kuppel mit tn Einzelstützen. Der Zentriwinkel eines

2n
Sektors zwischen zwei Stützen ist dann —. Wir nehmen die Meridianschnitt-

m
kräfte aus Eigengewicht Nrg be/w. deren Horizontalkomponenten 91r* als
bekannt an, da deren Bestimmung eine elementare Aufgabe darstellt. Im
endgültigen Zustand treten am Kämpfer nur innerhalb der Stützenbreite e von
Null verschiedene Meridianschnittkräfte % auf, dazwischen sollen sie
verschwinden. Wir fügen zu dem Zustand %e eine Randbelastung %° hinzu,
die an jeder Stelle des Randes r R0 der Bedingung genügt:

91/ + SRo Mrj bezw. Skr« + %

Der Zustand %lr° wird durch das allgemeine Integral

F° 2 ck fk cos k & dargestellt, worin fk das
k

reguläre Integral der Differentialgleichung (10)
bedeutet. Es ist nach Gleichung (12 a):

0.

WS 2 ck
k

1

U

Längs des Kämpfers ist r R0
auch der Ausdruck

k2 \
Y fk) cos k ti

: const, daher

1

/*'¦ £*) const,

«fc

Fig. 9.

hat aber für jedes k einen anderen Wert. Am Rande ist also $lr° nur von #
abhängig und mittels der harmonischen Analyse können die Freiwerte ck so
bestimmt werden, daß %° den gewünschten Verlauf nimmt.

Da die Stützkräfte bei tn Stützen ebenso viele Perioden bei einer
Umfahrung des Randes durchlaufen, treten in der Reihenentwicklung der
Spannungsfunktion nur die Indizes m -k (k 1, 2, 3...) auf. Die Spannungsfunktion

lautet also:

F° Yjckfmk cos mkti, k 1,2, 3 • • • •

k

Die Koeffizienten ck werden, wie schon gesagt, durch harmonische Analyse
gewonnen. Die Schnittkräfte infolge der zusätzlichen Randbelastung werden
durch Differenzieren der Spannungsfunktion gefunden und sind:

<nr°
k \ r

tn2k2 \
~~jpT~~'mk) cos mkti



Berechnung der Dehnungsspannungen von Rotationsschalen 289

9^° 2 Ck fm k cos mkti k 1, 2, 3 • • • •

k

%°» —^ck-mk (— fmk „ fmk) sin /ra£#

Zu diesen Schnittkräften sind die aus Eigengewicht 9i/ und 91/ hinzuzufügen,

um den Spannungszustand der Kuppel auf Einzelstützen zu erhalten.
An den nicht unterstützten Strecken des Kämpfers sind jetzt wohl die

Meridian-Schnittkräfte verschwunden, es treten aber Schubkräfte auf, die
durch ein in der horizontalen Ebene biegungssteifes Randglied aufgenommen
werden müssen.

ß) Die Halbkuppel (Apside).
Bei der vollen Kuppel treten unter Eigengewicht Schnittkräfte in der

Ringrichtung N#g auf, die nur von r abhängen. Wird eine solche Kuppel
aufgeschnitten, so können diese Ringspannungen nicht mehr ungestört auftreten.
Da die Randaussteifung nicht im Stande ist, die Kräfte aufzunehmen, so
müssen im endgültigen Zustand die N& längs des Randes
ti 0 und ti 7t verschwinden. Wir haben also an diesen

Rändern Randkräfte anzubringen, die in jedem Randpunkt

der Bedingung
mf + 9i5 - o

genügen.
Nach Gleichung (3) war jedoch

r2 F% - M-i + B.
c r2

Da sowohl für Eigengewicht, als auch im Zustand 9?d° die
Größe B verschwindet, so können wir die vorige Bedingung

auch schreiben: am Rande § 0 und & ti ist
62F8 d2F°

c r- er*
0.

Fig. 10.

Das ist aber nichts anderes als die Bedingung, daß die den Endzustand
beschreibende Spannungsfunktion F =- Fg -+- F° längs der Ränder # 0 und
$ n nach einer Geraden verläuft. Aus Symmetriegründen kann man die
gleichwertige Aussage machen, daß F längs des Randes den Wert Null
annehmen muß.

Die Kenntnis der Spannungsfunktion für Eigengewicht Fg ist jedoch
zur Durchführung dieser Aufgabe nicht notwendig, sondern lediglich die der
auf bekannte Weise zu ermittelnden Ringspannungen.

Wir setzen das allgemeine Integral wieder als Summe an:
F° 2 ck fk cos k ti, k — 2,4, 6

k

k 1 ist wegen der daraus folgenden Singularität auszuschließen und für
die Lösung der Aufgabe nicht notwendig. Wegen der Symmetrie zur Rich-

71

tung d - können weiters die Koeffizienten ck mit ungeraden Indizes

k — 3, 5, 7... von Haus aus zu Null angenommen werden.

Abhandlungen V 19
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Die dieser Spannungsfunktion entsprechenden Ring-Schnittkräfte sind

915 -^rP Eckfk" cos k#.
er k

Die Funktionen fk und deren zweite Ableitung fk" sind als Integral der
Differentialgleichung (10) als bekannt anzusehen. Es sind hier die Freiwerte ck
so zu bestimmen, daß am Rande # 0 und # n

1 (mi—M2)2dr
Jo

zum Minimum wird. Da k 2, 4, 6... ist, so wird am Rande ti 0 und
# ti immer cos k& -4-1. Wir erhalten daher

J= I m-Zckfk")2dr-
Jo k

mm

Diese Minimalbedingung tritt hier an die Stelle der harmonischen Analyse.

Damit sie befriedigt wird, muß für jedes k ~ — 0 werden, da nur über die

Freiwerte ck noch nicht verfügt ist. Es wird:

^ — 2 f (Stf— £ chfk")fi".dr=09 i 2,4,6..-.
V Ci Jo /?=2,4,6 ¦..

Man erhält ein lineares Gleichungssystem zwischen den Koeffizienten cL:
rR ?R

S ck fl'fd'dr SSig • //' • dr, i 2, 4, 6 • • •

Ä=i,4,6.-.J0 Jo

Es ist hier nicht ohne weiteres möglich, die Spannungsfunktion F° als Reihe
mit beliebig vielen Gliedern (k 2, 4, 6..) anzusetzen, da dann eine
unbestimmte Anzahl von Unbekannten aus linearen Gleichungen ermittelt werden
müßten. Es wird jedoch genügen, sich auf eine kleinere Anzahl von
Reihengliedern, etwa 4 (k 2, 4, 6, 8), zu beschränken. Von der Genauigkeit der
Lösung kann man sich jederzeit überzeugen, indem man am Rande die
verbleibenden Ringspannungen 9^* — 9i#° berechnet und prüft, ob sie genügend
klein geworden sind, um vernachlässigt zu werden.

Es gibt jedoch einen Weg, um mit beliebig vielen Reihengliedern zu
rechnen. Die /-te Reihe des Gleichungssystems der Koeffizienten ck ist
ausführlich geschrieben:

rR rR rR rR rR

'i fi"-fi"dricA f2"'fi"dr+...+Ci\ fi'2 dr ^ • • • + ck\ ff fk" dr f/'%f dr.
Jo Jo Jo Jo Jo

Bildet man aus der Gruppe der Funktionen fk" eine Gruppe von zueinander
orthogonalen Funktionen <Pk als Linearkombinationen von fk", was allerdings
eine mühselige Arbeit ist, so verschwinden bedingungsgemäß die Integrale

rR rR

<J)f(l)kdr und nur (Di2 dr ist von Null verschieden.
J 0 J 0

Die Bedingungsgleichungen, die nun mit den Funktionen @k und den
Koeffizienten bk angesetzt werden, enthalten auf der linken Seite der /-ten
Zeile nur mehr ein Glied mit

*/ f (D^ dr I
SR# ®t dr

.' o .' o
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Es ist jeder Koeffizient aus einer einzigen Gleichung zu ermitteln. Vor allem
sind aber jetzt die bk von der Anzahl der angesetzten Reihenglieder
unabhängig und jede Hinzufügung eines weiteren Gliedes verbessert das Ergebnis.
Es ist zu beachten, daß die Funktionen <Pk als Linearkombination von fk nicht
direkt in die Spannungsfunktion eingeführt werden können, da der Ansatz
£}2/70

9 =2jbk<Pk cos k # falsch ist. Es müssen vielmehr aus den bk die den Funket
r- k

tionen fk" entsprechenden Koeffizienten ck ermittelt werden. Man wird die
Orthogonalisierung nur zu Hilfe nehmen, wenn eine kleine Anzahl von
Reihengliedern nicht im Stande sind, befriedigende Ergebnisse zu liefern.

Aus den Darlegungen des Abschnittes III und IV über die Funktionen fk
geht hervor, daß in dem Reihenansatz für F° bei der Halbkuppel nur die
regulären Integrale von Differentialgleichung (10) berücksichtigt werden.
Deren Charakter als Potenzen von r (Paraboloid) oder als Potenzreihen
macht die Berechnung der Integrale J f" fk" dr nicht allzu schwierig,
gegebenenfalls ist sogar deren Auswertung nach der Simpson'schen Regel
ausreichend.

Nach der Bestimmung der Freiwerte ck ist die Spannungsfunktion F°
bestimmt.

E° 2 Ckfkcoskti, k 2,4,6
k

Die Spannungen in der Apside infolge 9?#° können an jeder Stelle berechnet
werden.

fftr =S'*(y h'-yj^j COS kir

91" S'*/*"cos*#
k

91r°* - S cu k (- /*' — \ fk\ sin kir
k \ r r~ I

Da wegen k 2, 4, 6... an den Rändern i> 0 und ti ti immer
sin k ti 0 ist, bleibt infolge der zusätzlichen Randbelastung $ld° der Rand
frei von Schubspannungen. Da auch das Eigengewicht in der Vollkuppel
keine Schubspannung erzeugt (91^ 0), so hat die Halbkuppel unter
Eigengewicht tatsächlich einen spannungsfreien Rand. Dieses Ergebnis hat schon
Dischinoer4 für die Kugelschale nachgewiesen; es zeigt sich, daß es
allgemein für jede Rotationsschale unter achsensymmetrischer Belastung gilt.
Um der Schale genügende Knicksteifigkeit zu geben, wird man trotzdem
nicht auf eine Randaussteifung verzichten können. Am Kämpfer treten
selbstverständlich Meridian- und Schubkräfte auf, die die Stützung aufzunehmen
imstande sein muß.

y) Die durch Scheiben ausgesteifte Rotationsschale über
vieleckigem Grundriß.

Da die aussteifenden Binderscheiben keine Biegesteifigkeit normal zu
ihrer Ebene haben, müssen längs des ganzen Randes die normal zum Rande
wirkenden Spannungen 91n verschwinden. Die Schale wird lediglich von den
Rand-Schubkräften 3ins bezw. deren Vertikalkomponenten getragen.

Wir greifen zurück auf die Bedeutung der Spannungsfunktion. Diese
stellt eine doppelt gekrümmte Fläche dar, deren zweite Ableitungen einen
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im Gleichgewicht stehenden, ebenen Spannungszustand darstellen und zwar
sind ganz allgemein in zwei aufeinander normalen
Richtungen n und s des Grundrisses

ro _ ^J7H" ~ es2

9L f2F
c~n2

W —-"Ins —
c2F

c n es

Auf den im Grundriß geraden Rand angewendet?
folgt daraus, daß die zu einem Rand 5 normalen
Spannungen 9ln dann verschwinden, wenn

—1 H

Fig. 11.

wird, d. h. wenn F dort nach einer Geraden verläuft. Diese Tatsache zeigte
sich schon bei der Apside. Bei der Kuppel auf Einzelstützen konnte davon
kein Gebrauch gemacht werden, da dort der Rand ein Kreis war und infolgedessen

die Meridiankonvergenz von Einfluß war. Eine eingehendere Behandlung

der Bedeutung der Spannungsfunktion und deren Randbedingungen
wurden vom Verfasser in früheren Arbeiten gegeben 8-n.

Wir wollen jetzt von dieser Eigenschaft der Spannungsfunktion
Gebrauch machen, da hierdurch die Lösung der Aufgabe sehr übersichtlich wird.
Wir haben zu der Spannungsfunktion Fg, die den Schnittkräften der längs
des Breitenkreises Ra stetig unterstützten Schale unter der gegebenen
Belastung entspricht, ein Integral F° der homogenen Differentialgleichung so
hinzuzufügen, daß längs des mit Scheiben ausgesteiften vieleckigen Randes
Fg + F° 0 wird. Zur Lösung dieser Aufgabe ist daher die Kenntnis von
Fg notwendig.

Wir setzten zu Beginn des Abschnittes V als Belastung Eigengewicht
voraus. Es behalten aber alle Überlegungen für jede achsensymmetrische
Belastung Gültigkeit. Wir wollen uns der Einfachheit halber wieder auf
Gewichte beschränken (P @ 0), die gegeben seien durch die Belastungsfunktion

Z Z (r). Wegen der Symmetrie der Belastung kann auch die
Spannungsfunktion nur von r abhängig sein. Die Differentialgleichung (6) für Fg
wird daher zu 62Fz z" cF^

dr2 z er
X

dFDas ist eine lineare Differentialgleichung in — \ deren Integral
or

F*

er + Mc+J>>]
ist.

Durch Quadratur kann daraus F^ gefunden werden. Ohne näher darauf

einzugehen, wollen wir Fg als bekannt voraussetzen.
Das allgemeine Integral sei wieder

F° 2 Ck fa cos*/& Am*.
k u!i ?mm:i *

worin fk die regulären Integrale der Differentialgleichung (10) sind.
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Zunächst müssen die Werte von F* und F° längs des Randes bestimmt
werden. Wir bezeichnen alle Randwerte durch einen darübergesetzten Querstrich

(F, r usw.).
Jedem Punkt des Randes, gegeben durch dessen Abstand von Randmitte

s, ist eindeutig Winkel ti und Radiusvektor r zugeordnet. Es ist

tsti s r= * -J_& Ri' cos ti sin ti

Wir drücken die Randwerte als Funktion von 5 aus
und setzen

J* Fs (s), F» F° (s) ^ck fk
Fig 12.

In der letzten Gleichung bedeutet fk Jk (s) die Werte, die fk cos k ti am
TT

Rande 5 annimmt. Wir bemerken noch, daß # von 0 bis — läuft, wenn wir
L m

uns am Rande von s 0 nach s =^ bewegen.

Da wegen der Symmetrie die Schnittkräfte an jeder Randscheibe gleich
sind, brauchen wir nur die Glieder der Reihe F° mit den Indizes m • k zu
berücksichtigen. Wir setzen daher:

F° S ck fmk- cos mkti k 0, 1, 2, 3

und fk fmk (r) • cos mk ti I k. fk (s)
cos D

Jetzt bewegt sich nfti zwischen —n und -j-ti, also einer vollen Periode,

wenn 5 von — bis + läuft.

Wir fordern zur Bestimmung der Freiwerte ck, entsprechend den
Überlegungen, die bei der Halbkugel angestellt wurden, daß

1 L
r+2 - 1

2 - ^ -J \ (F* - F°)2ds (P-Sft fk)2 ds
J L J Ip k

2 2

zu einem Minimum wird. Wir müssen wieder -^- 0 setzen und erhalten

ganz entsprechend dem Abschnitt V,ß

+ T +|
S Ck[ 2rJi'Jkds \

2

F^Jids, / 0,1,2,3...-
k=0, 1,2 • • J _ L J _ L

2 2

Die Funktionen fk haben einen den Kreisfunktionen ähnlichen Verlauf, da
der Winkelt hierin den stärksten Einfluß hat. Die Abweichung wird durch
die Änderung des Radiusvektor r beim Durchlaufen einer Periode

hervorgerufen, da bei & 0, f Rt und bei § ~t —> r Ra ist.

Die Koeffizienten ck gewinnen wir aus einem System linearer
Gleichungen, dessen Koeffizienten die bestimmten Integrale

L

Hk
f 2 _ _

ds
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und dessen rechte Seite die Integrale

<*o/:
C 2

J LFz-fids

sind. Da innerhalb einer Periode // bezw. fk zwischen positiven und negativen
Werten schwankt, so ist bei der Auswertung der Integrale dik, falls die
Integration nicht streng, sondern numerisch durchgeführt wird, sehr
sorgfältig vorzugehen. Lediglich

/

*« }_> ds

wird nur aus positiven Funktionswerten gebildet, wird also bedeutend größer
werden als die dlk. Einerseits erfordert also die Bestimmung der 6ik große
Sorgfalt, andererseits sind aber die Koeffizienten öu der Hauptdiagonale des
Gleichungssystems bedeutend größer als die übrigen, so daß das System
gegen Ungenauigkeiten wenig empfindlich ist. Eine Ungenauigkeit in der
Berechnung der Slk wird dadurch weitgehend ausgeglichen, und auf das
Endergebnis wenig Einfluß haben.

Mit der Bestimmung der Freiwerte ck ist die Aufgabe gelöst, da aus der
nunmehr bekannten Spannungsfunktion F Fg -f- E° durch Differentiation
an jeder Stelle die Spannungen 9lr, 91» und 9lrxi zu berechnen sind. An der
Scheibe muß man die Spannungen 9ls und 9l„s bezogen auf die Richtungen n
und 5 kennen. Diese sind aus einer einfachen Transformation zu ermitteln.
Es wird in bekannter Weise:

% % sin2 ti + %j cos2 ti 4- 91^ sin 2 ti

TC

Fig. 13.

mns *k^k Sin 2 ti + 9U cos 2ti

Schließlich wird
y\n 9lrCos2ti + mt,sm2ti — 9Usin2#.

Die letzte Gleichung ermöglicht die Nachprüfung, ob die Spannungsfunktion

genügend genau berechnet wurde, so daß tatsächlich am Rande 9ln
verschwindet, bezw. von welcher Größenordnung die Ungenauigkeit ist.

VI. Rotationsschalen unter Windbelastung.
Wir setzen voraus, daß das von Dischinoer 2 vorgeschlagene Gesetz der

Verteilung der Winddrücke
w u>0 sin2 cp (0,85 sin ti 0,15 sin 3 ti)

die Belastung der Schale in befriedigender Weise beschreibt. Zur Ermittlung
der Spannungsfunktion, die den Schnittkräften der Schale unter der
Windbelastung zugeordnet ist, greifen wir auf die Differentialgleichung in ihrer
allgemeinen Fassung Gl. (6) und (7) zurück:

6)

7)

1

ex2
i eF „+ 7 7rZ + er2

< — [* + h{*rhT*r\
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Hierin ist die Größe A durch Gleichung (5) gegeben:

A =— — (p+~ f ®rdti)rdr.
r JoV r J#0 /

Zunächst sind die auf die Einheit der Grundebene bezogenen
Belastungskomponenten P, &, Z zu bestimmen. Da der Winddruck w normal auf die
Schale angenommen wird (die Reibung ist vernachlässigt), so wird O=0.
Weiters ist

P dr — w sin cp ds, Z dr — w cos cp ds.

is dr, wird
cos cp

P — —wigcp, Z=w, 0z=O.

Da ds dr, wird
cos cp

dr 1

.1 '

r >^ '\^V 1

'* /^ '

Fig 14.

Führen wir das DiscHiNGER'sche Windgesetz ein, so wird
sin3 w

P w0 M#x sin ,'/ + bs sin 3 ti) F0(bx sin ti + b3 sin 3 ti)
COS cp

Z u>0 sin2 99 (^! sin ti + b-d sin 3 #) Zo^sin ti + b3 sin 3 #)

Die Größen P0 und Z0 sind nur mehr von r abhängig, bx und 63 ist statt der
besonderen Werte gesetzt. Da P und Z demselben Gesetz in # gehorchen,
können wir auch

A A0 (bx sin ti + b3 sin 3 ti)
q ~ q0 (b1 sin ti + #3 sin 3 #)

setzen. Nach Gleichung (5) wird

y40 P0 r rfr - \ r dr
r Jo r Jo cos9?

und nach Gleichung (7)

Qo - [*o + fr(A>*') + | A,*] - [Zo + (*' +
*

*') >40 + z^].
Wegen des kreisperiodischen Verlaufes der Störungsfunktion kann auch die
Spannungsfunktion auf Grund dergleichen Überlegungen wie im Abschnitt III
angesetzt werden als

F 2 bkfksmkti.
k=),3

Wir erhalten für die Funktionen fk die inhomogene Differentialgleichung
2. Ordnung

rz'fk" + rz"f£ — k2 z"fk r2 q0

mit deren Integration die Aufgabe gelöst ist.
Es ist im allgemeinen nicht möglich, die Integrationen zur Berechnung

der Größen A0 und q0 auszuführen. Ebenso versagt die Integration der
inhomogenen Differentialgleichung in geschlossener Form. Es muß daher ein
numerisches Verfahren angewendet werden.

Die Belastungsgröße

^0 f sin3<»
A0 r \ r ^drr Jo cos cV
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kann durch Quadraturen (Simpson'sche Regel) mit beliebiger Genauigkeit
an jeder Stelle berechnet werden. Durch die Bestimmung des Grenzwertes
überzeugt man sich leicht, daß

lim A0 0
r~yO

wird. Unstetigkeiten sind ausgeschlossen, solange cp < -—, daher ist die

Anwendung eines numerischen Verfahrens ohne weiteres zulässig. Ebenso ist
aber auch

lim - - 0
r^o dr

so daß auch q0 keine Unstetigkeiten aufweist. Für r 0 ist q0 0.
Es ist zweckmäßig, die numerische Integration der inhomogenen

Differentialgleichung mittels der Differenzenrechnung durchzuführen, da diese
mindestens ebenso genaue Ergebnisse liefert, wie das zu Grunde gelegte
Windgesetz die tatsächliche Belastung der Schale bei Wind wiedergibt.

Wir ersetzen die Differentialquotienten in der Differentialgleichung
durch die Differenzenquotienten. Die Funktion fk habe an drei aufeinander
folgenden Punkten m — 1, m, m-\-\ den Wert rjm — u rjm und rjm + 1. Wir
setzen an der Stelle tn statt fK r\n/my

2A r
-1

*/«+! — 2 ijm + rjm--1
fr,-, Vm Vm.,

m-1 rn n*/ r
h-r^

statt fk'

Statt fc""" Ar2

statt ^om-- Rm Fig*15*

Damit geht die inhomogene Differentialgleichung in eine lineare Beziehung
zwischen drei aufeinander folgenden Werten rjm_u i]m, rjm + 1 über:

r I z' z"\ rz' \ r I z' z"\
77 \Tr + Ti ' Vn+1 -\2Jr2+ k2z") 1*+J?Xä?- TJ ''-' *-

Die Werte 7] können schrittweise berechnet werden, da aus zwei bekannten
Größen 7]m^1 und rj^ der nächstfolgende r}m + 1 ermittelt werden kann.

Eine besondere Überlegung erfordert die Bestimmung der Anfangswerte
7]0 und rj-L. Im Scheitel der Schale verschwinden die Schnittkräfte Nr, N& und
Nr# infolge der Windbelastung. Nach Gleichung (12 a, b, c) muß deshalb
für r 0

fk fkr fk" 0

werden, d. h. die Funktion fk hat im Scheitel einen Flachpunkt. Bei der
Rechnung mit Differenzen kann man dieser Tatsache nicht mehr streng
gerecht werden, wir wollen sie aber dazu benutzen, um die Anfangswerte daraus

zu gewinnen. Aus fk 0 bei r =- 0 folgt, daß r]0 0 sein muß. Nachdem

wir als Ausdruck für den ersten Differentialquotienten fk' den

Differentialquotienten h^+l^Zj^tzl. setzen, so folgt aus /,/ 0 bei r 0, daß

^i ^_i sein muß. Da aber auch die zweite Ableitung, für die wir
-^±1 ~~ -—^ setzten, im Ursprung verschwindet, so muß y)1=^y} _ t ¦= 0

werden. Wir wählen nun eine solche Anordnung der Punkte tn, daß der erste
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(tn 1) im Abstand ^ vom Ursprung liegt. Aus der Differenzengleichung,
auf den Punkt tn 1 angewendet, in der y _ x ^=?]l — 0 und rj2 enthalten sind,
berechnet man i]2. Bei schrittweisem Fortschreiten sind dann die weiteren
Werte in den Punkten 2, 3 usw. jeweils aus einer Gleichung zu ermitteln.

Nachdem die Werte rjm berechnet sind, folgen die Schnittkräfte infolge
Wind aus folgenden Gleichungen:

Mr =S bk^fk'—^f^sinkti + A

%> S bkfk'smkti
k—\,3

Wr» Zj k'bk( fk — 2 fk) - COS k ti Fig. 16.

Hierin sind sinngemäß statt der Differentialquotienten die Differenzen-
quotienten zu setzen.

Die Genauigkeit des hier angedeuteten Verfahrens ist von der Spanne
A r im Verhältnis zur Größe der Schale abhängig und kann durch Verkleinerung

von A r gesteigert werden. Es ist jedoch bei der Unsicherheit, die in
der Annahme eines Verteilungsgesetzes der Winddrücke liegt, nicht gerechtfertigt,

allzu große Anforderungen an die Ergebnisse der Rechnung zu
stellen, solange die ihr zu Grunde liegenden Belastungen nicht besser der
Wirklichkeit entsprechen, als das hier angenommene Windgesetz.

VII. Schlußbemerkung.
In den vorliegenden Untersuchungen konnte mit Rücksicht auf den Umfang

der Arbeit Vieles nur angedeutet werden. Die Absicht, die vielseitige
Verwendbarkeit der Methode der Spannungsfunktion darzustellen, gebot
eine Beschränkung im Eingehen auf Einzelheiten. So wurde auf eine nähere
Behandlung der mit Singularitäten behafteten Gruppe der partikulären
Integrale ~fk verzichtet und die Spannungsfunktion der belasteten Schale nur so
weit als notwendig verwendet.

Es ist zu beachten, daß bei allen Untersuchungen vorausgesetzt wurde,
daß im Scheitel stetig verlaufende Kuppelformen (Rundkuppeln) vorliegen.
Die Ergebnisse haben zum Teil auch Gültigkeit für die Spitzkuppeln; es
hätte ebenfalls zu weit geführt, zu zeigen, wann das der Fall ist und wann
nicht.

Die Methode der Spannungsfunktion versagt an Schalen mit senkrechten
Endtangenten. Die Ursache hiervon ist, daß nicht mit den tatsächlichen
Schnittkräften gerechnet wird, sondern mit deren auf die Grundebene
bezogenen Horizontalkomponenten. An einem senkrechten Schalenelement
wird naturgemäß die eine dieser Komponenten zu Null, die andere unendlich

groß. Es ist vielleicht möglich, durch Grenzübergänge auch hier noch
zu Ergebnissen zu gelangen, was jedoch noch nicht versucht wurde, da in der
Zeit, seitdem die Schalenbauweise den großen Aufschwung erlebt hatte, aus
konstruktiven und architektonischen Erwägungen kaum eine bedeutende
Kuppel mit senkrechtem Rand gebaut wurde. Es sei jedoch daran erinnert,
daß bei Kugelschalen die Wege, die Dischinoer eingeschlagen hat, hierbei

zum Ziele führen, bei anderen Schalenformen ist man auf das Verfahren
angewiesen, das Flügge b in diesem Falle angewendet hat.
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Abschließend sei festgestellt, daß die Einführung der Spannungsfunktion
viele bereits gelöste Probleme in sehr übersichtlicher Form zu berechnen
gestattet, darüber hinaus aber von der Schalenform weitgehend unabhängig
macht und Aufgaben der Berechnung erschließt, deren Lösung bisher nicht
gelang.
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Zusammenfassung.
Durch die Einführung der Spannungsfunktion für die Membranspannungen

dünner Schalen ist bei der Berechnung von Schalenkuppeln statt
allgemein drei simultaner Differentialgleichungen nur eine einzige zu
integrieren.

Die Anwendung auf die Rotationsschalen wird gezeigt. Es wird zunächst
die homogene Differentialgleichung der Spannungsfunktion für die wichtigsten

Schalenformen integriert und dann mit deren Hilfe die Berechnung
von unsymmetrisch gestützten Rotationsschalen (Kuppel auf Einzelstützen,
Apside, Rotationsschalen über vieleckigem Grundriß), sowie die Ermittlung
der Schnittkräfte unter Windbelastung durchgeführt.

Bei Anwendung der Spannungsfunktion werden bisher ungelöste
Probleme der Berechnung zugänglich gemacht und manche schon bekannte
Lösung vereinfacht, beziehungsweise der erforderliche Aufwand an Rechenarbeit

verringert.

Resume.
L'introduction de la fonetion de tension pour les tensions des voiles

minces permet de n'integrer qu'une seule au lieu de 3 equations diffe-
rentielles simultanees dans le calcul des coupoles en voiles minces.

L'auteur montre Fapplication de cette theorie aux surfaces minces de
rotation. II integre d'abord l'equation differentielle homogene de la fonetion
de tension puis calcule ä l'aide de cette equation des voiles de rotation dont
les appuis ne sont pas symetriques (coupoles sur appuis ponctuels, absides,
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voiles de rotation ä plan reetangulaire). II determine ensuite les efforts en-
gendres dans les sections par la charge du vent.

L'emploi de la fonetion de tension permet de calculer des problemes
jusqu'alors insolubles et de simplifier bien des methodes connues en tant
au moins de reduire l'ampleur du calcul.

Summary.
By the introduetion of a stress function for membrane stresses in thin

shells, the number of simultaneous differential equations that have to be
integrated for the design of shell cupolae is reduced from three to one.

The application of this device to shells generated by revolution is
explained and the homogeneous differential equation for the span function
applicable to the most important shapes of shell is integrated, leading to
its application to unsymmetrically supported shells which are surfaces of
revolution (a cupola on a single support, an apside, a circular shell on a
polygonal plan), and also to the determination of shear stresses caused by
wind loading.

By the use of the stress function hitherto unsolved problems in design
are rendered calculable and many known Solutions are simplified with a
consequent reduction in the time required for calculation.
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