
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 5 (1937-1938)

Artikel: Calcul direct de la poutre Vierendeel par la méthode des systèmes
équivalents

Autor: Marneffe, A. de

DOI: https://doi.org/10.5169/seals-6161

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-6161
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


CALCUL DIRECT DE LA POUTRE VIERENDEEL PAR LA
METHODE DES SYSTEMES ÄQUIVALENTS.

BERECHNUNG DES VIERENDEEL-TRÄGERS NACH DER METHODE
DER GLEICHWERTIGEN SYSTEME.

THE DIRECT CALCULATION OF VIERENDEEL GIRDERS BY THE
METHOD OF EQUIVALENT SYSTEMS.

A. DE MARNEFFE, Professeur ä PUniversite de Liege, Belgique.

Iniroduciion.
Le calcul de la poutre Vierendeel habituelle de tn panneaux se ramene

ä la Solution d'un Systeme de tn equations etagees ä m inconnues, chaque
equation comprenant trois inconnues sauf les extremes qui n'en comportent
que deux. Nous sommes parvenus ä exprimer sous une forme relativement
simple l'expression directe de chaque inconnue en fonetion de la sollicitation
exterieure de la poutre et de coefficients qui ne dependent que des dimensions
de celle-ci, qui peuvent donc se calculer directement et dont nous donnerons
une Interpretation concrete. C'est ce resultat que nous nous proposons d'ex-
poser dans ce memoire.

Cette Solution est basee sur la methode de calcul des constructions
hyperstatiques utilisant l'ellipse centrale d'elasticite d'un element
elastique dont eile represente toutes les proprietes elastiques. Ne pouvant
reprendre ici l'expose de cette methode nous sommes obliges de renvoyer
le lecteur ä notre ouvrage intitule „Les constructions hyperstatique

s" x) mais pour sa facilite nous reprendrons cependant les definitions
des notations utilisees.

Soit ds la longueur d'un element d'arc, de coordonnees courantes (f, >y),
ds

dont la section presente un moment d'inertie: /. Alors do =-- —^ est la masseEi
elastique de cet element d'arc.

On peut aussi envisager (fig. 1): la masse elastique totale de l'arc G0G^:
s

a jdo; son centre de gravite Cgi de coordonnees (x\ y') obtenues par
o

le calcul des moments du 1er degre de ces masses; ainsi que leurs moments
du 2e degre, analogues ä des moments et produits d'inertie, pris par rapport
Laux ax^s coordonnes OXY:

ix. | r*do iy js*d° Ay ieydo.
0 0 0

r) Bibliotheque scientifique beige: No. 31, 1Q37. G. Thone, editeur ä Liege, et
Dunod, editeur ä Paris.

Les numeros indiques dans le texte se referent aux paragraphes et formules de cet
ouvrage.
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Ces valeurs definissent une ellipse dite ellipse d'elasticite de l'arc,
et si les axes coordonnes sont les axes principaux Cgxy de cette ellipse
passant par Cg eile prend le nom d'ellipse centrale d'elasticite
de l'arc.

Soit fi, v, % les moments de flexion, efforts normaux et efforts tranchants
qui se produiraient sous l'action de charges exterieures dans les diverses

sections Gf du Systeme isostatique
de reference. Ce Systeme est ici une
poutre reposant librement sur deux
appuis O0 et OlB

Les valeurs definissant la reaction
complementaire hyperstatique de l'arc
7?ft sont:

A moment de cette reaction
par rapport ä l'origine des axes —
7?0 • d. B et C projections de cette
reaction sur les axes OF et OX.
Ces valeurs, inconnues hyperstatiques,

sont donnees par les equations
generales (no 23).

C/ cj — l^tda -f (cdx — co0)

Gi(*,y,

rn?,

Go(xoy0)

A R0xd

Fig. 1.

(23)

A o -f Bx' cj

Ax' o + BIy--CJXy' J" LL^da — lv q2 —~ do — ^ TQo-~p^do

+ (Vo — "o*o) — (vi — <"i xx)

Ay' (7 + BJxy> — CIX> — — l li ij do + J vq2 — do

ds

— («o + (,>oyo) + («i + wi yi) ¦

En appelant u le deplacement horizontal de la section de l'arc indiquee par
l'indice.

v son deplacement vertical,
co sa rotation.

Si l'on choisit comme axes coordonnes les axes principaux Cgxy de l'ellipse
centrale d'elasticite de l'arc, alors C, et 0 se confondent et x' ^= y' ¦= 0
IX'y 0 Ix> et Iyx deviennent Ix et /, et les premiers membres des equations
(23) deviennent (24).

| Aö — Inda + (co1 — co0)

(24) BIy= —$Lt£do— (etc.)

— CIX =- —lfi^da+ (etc.)

Lorsque plusieurs trongons d'arc se fönt suite on peut les considerer comme
ne formant qu'un seul are dont on peut rechercher l'ellipse centrale d'elasticite

par voie de sommation. C'est ce que nous appelons „combiner les
arcs en seri e".

Tous les systemes ayant meme ellipse centrale d'elasticite sont identique-
ment deformables et peuvent se substituer Fun ä l'autre au point de vue des
deplacements elastiques de leurs extremites. Ce sont des systemes dits
„e q u i v a 1 e n t s".

De meme deux points peuvent etre reunis par plusieurs arcs elastiques.
On peut substituer ä tous ces arcs un are unique ayant meme ellipse centrale
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d'elasticite que tous ensemble donc equivalent. La recherche de cette ellipse
est ce que nous appelons „combiner les arcs en parallel e".

Les formules necessaires ä ce sujet sont donnees aux numeros 47 a 51
et 70—71 de l'ouvrage precite.

1. Sollicitation d'un cadre trapezoidal, panneau isole d'une
poutre Vierendeel de hauteur variable.

Soit ab b'a' (fig. 2) un panneau trapezoidal isole de la poutre Vierendeel,
tourne de 90° dans son plan, de hauteur a et dont les longueurs des cotes
paralleles a a! et b b' sont respectivement ha et hb.

Nous le rapportons au Systeme d'axes 0 x' y' diriges comme l'indique la
figure 2, avec l'origine 0 en a.

Ak

Fig. 2.

Soit cp et cp' les inclinaisons des cotes ab et a' b' sur la direction 0y',
le signe des cp etant pris dans le sens trigonometrique. On a alors la relation:
ha — Aft — a (tg<P — tg<P')- Nous supposons ce cadre sollicite (voir aussi la
figure 3):

1 ° par un moment de flexion Mb exterieur agissant au droit de b b' et
Mö

se decomposant en un couple de forces -f -.— appliquees en b et b' \

2° par une force T appliquee en b parallelement ä bb'. Nous adoptons
comme Systeme de reference celui dans lequel aa' est coupe en a et reposant
en a et a' sur des appuis exterieurs, fixes dans le sens 0 y', mais elastiques
dans le sens Ox'. Les reactions des appuis sont donnees par: Ma — Mb-+- T l
soit selon Oy':

M«
__

Mb L1
ha ~en a:

ha ha
et en a':

Ma
^ ha

et selon 0xf, T se partage entre a et a' soit en Ta et Ta' en sorte que
T + Ta + Ta' 0.

C'est une hypothese que nous pouvons prendre comme point de depart
ou sollicitation de reference, nous choisirons plus loin Ta et Tn', en vue de
simplifier la Solution.
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Les sollicitations isostatiques des barres sont alors

Ma

(141)

barre ab: x' —/ tgcp Yab —
ha

Xaab Ta

barre a'b': x' ha —yf tgcp'

*..=/(£ ig r-r.)
Y'a-b-

barre hb':

barre aa':

v - T*

0

Ha'V

M,

ha

y \ha

ha ^ hb

ubb- — l \~ lg<f< — Ta

¦Xa'b' — Ta'

igv'+Ta')

T

ha

Mb
hb

— 0 Maa' 0

Les caracteristiques elastiques des barres sont:

(142)

' barre

ab

a'b'

bb'

aa'

masse

Oab-
V

Elat cos cp

Oa'b'-
V

Eta'b ' cos cp'

ob
h^
Eib

Oa-
ha

Eia

tg<p

[ha-^tg<p'

ha

2

Iab-

la'b' -

Ix

Gab^2

*vab

Gq'b'h2

4 Va'b'

0

0

h

Ia bigf2

la't/tgV

h _
obhb2

~~

4vb

Ia _
aaha2

~
4va

Jxy

-lab igcp

la'b'tgcp'

0

0

Remarque: V, ha', hb' sont les longueurs reduites en tenant compte de Pinfluence
des goussets qui se fait sentir egalement dans le choix des valeurs des coefficients va,
Vb> vab (voir formule 38 et 39 ouvrage precite).

2. Deformations du portique isostatique ouvert.
Ces deformations sont donnees par les termes en pt, v, % des equations (23)

mais nous pouvons d'abord negliger Finfluence des termes en v et t vis ä vis
de celle des termes en pt. Dans ce cas il nous suffit de calculerlptdo, Jjut] do
et l fjL^do.

Le probleme se simplifie aussi beaucoup si l'on adopte par raison de
symetrie

<*ab =^ °db c'est-ä-dire iab cos cp ia'Y cos cp' (143)
cela revient ä adopter le meme moment d'inertie reduit pour ab et a! br. On
a egalement la relation

ha — hb -l (tgcp-tgcp'). (144)
Si nous appelons pcb et li# les valeurs de pt en b et b', il vient: en envisageant
les diagramrnes triangulaires des pt (voir fig. 2) :
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f Mb Ob Mb" Ob Mb'"
J LI du Oab^r + TT/ r — 75-r r2 2 (iib —nv) 2 (Hb ~~Mb')

+ Oab
Mb'

On constate que si l'on pose ptb — Ltb', il vient: Ipcdo 0, ä cause de la
symetrie elastique de a b et a'b', et aussi: J pirj do=0. Nous pouvons donc
nous imposer cette condition pour determiner notre Systeme de reference
et en deduire les valeurs ä attribuer ä Ta et Ta'. Ceci se justifie par le fait
que nous negligeons les deformations longitudinales des barres aa' et b b'.

La condition ptb —ptb>, se traduit par:

l(jaig(p- Ta *(%*<+ T<

soit

d'oü Ta

Ma
ha

(*g<P + tg?') Ta — Ta- T+2Ta

~Y + T/t{t8<p + ig(p'} et T" ~ T ~ Tit{ig(p + tg(p'}-

Dans ces conditions les sollicitations par flexion des diverses barres s'ex-
priment en remplagant Ta et Ta>, par leurs valeurs:

,ab =±y [T+ Ja(tgcp-tgcp)\ =iy [—j- -j—-j-—J

(145)

y'hblMq
21 \ha

Mb
hb

1 Jr,^/*„ *„ J /hblMa Mb\
Ma'b'= iy [T+ ^(tgcp-tgcp^ _^___j
i"66

II restera ä calculer J pc^do pour ces diverses barres.
Dans cette expression | est l'abscisse des elements do prise par rapport

ä l'axe Oy' mais comme Ipcdo =¦ 0 on peut le calculer par rapport ä un axe
parallele ä Oy', ä une distance quelconque =- xe.

En effet soit £ x'—xe alors l Li£do l f.tx'da— xe$uda J/ax'da
On obtiendra pour a b et a' b' en conservant l'axe 0 y':

[Ö lMa Mb\ hb f\
{g<p

40 ^
b' [>k ck

Pour #6

Pour a'b

x -y'tgtp \x'y'da — tgcp\y'2da
1 a ^0 Vab

PÖ /»/i /»A

A« -/tg?>' x'yda — ha \y'da — tgcp'\y'2da
Ja' J 0 J 0

^6>t2 /l + ^Afl -y tgg/
Vab

Pour ££':
Aa/

et ici pour simplifier on choisit l'axe par le milieu de bb', il vient:
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2 iib
Mbb 7—

hb

A. de Marneffe

Qbhb2

Avb
JMa_Mb] f (Ma Mb]

On obtiendra donc par sommation, pour un axe quelconque parallele ä Oy':
I* rb rb' *b'

— v Luf da /Ltgdo + fit £ da— pigdo

v —
Ma _ Mb
ha hb

\Qbh
L 4v>

b2 Ogbhb

Vb
+ 8

2AÄ + ^'^Mtg^-lg^))]

*to

et en adoptant les notations suivantes-:

Vab-1
I -h nb\~-2A'6 Afl(-

il vient

Ö'aö Aft Ä'ö

hab+\\
2A'a ha

Tab

Vab + l\
"»ab l

Oab ha ha

+ hb
Vgb-l

Vab

—'£-£)¦<*+*>

^ab

(146)

(147)

(148)

3. Caracteristiques elastiques du cadre ferme.
Determinons l'ellipse centrale d'elasticite du cadre complet abb'a'.
Sa masse elastique totale oe oa -+- ob + 2oab (14Q)
Son centredegravite 0,, de coordonnees x'e, y'e par rapport ä 0 x' y'

(150)y;=A Ob+Oab ^ ha l /x x A Ob + aab
2"-^(tg<? + tg?/) i[ha-y'e(tgcp + tgcp')]

ae z z ~ • ' ae

Nous prendrons ensuite ses moments du second degre par rapport ä des axes
orthogonaux O^xy passant par ce centre de gravite.

I
Ixe — 2 lab + 2 Oab

Or -yl l
l2

Oa + Oab

•y'e) + obß—yi)2 + oay'e2

l Oa Obk

2 ye 2 ae

Ixe — 2 Iab + <frr2 [oab(oa-Ob)2 + 2ob(oa + oab)2 + 2oa(ob + oab)2]
Z Oe

et simplifiant:

l2
Ixe 2 lab + 77~ [oa(ob + Oab) + Ob(oa + Oab)\

z ae
(151)

-Jxye lab tg<P + Iab tg<p'+Oab[^ ~y'e \\x't + y *g V) ~ G«<>\2 ~ Xj (A« ~ ^ tg<P'-Jr'\

i-y'e ye'
Ob —f± [ha - l (tgq> + tgcp') - X'e] + Oa~~ (tg<P + tg<p')
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et il vient

Jxye =--/»• HQ<P + tg?') (152)

Iye hb (tg2 + tg2 ?') + /« + Ib + <*«* [(^ + 2 tg j + [ha — j tg ?' — *;)"]

+ Ob y~2 —xe — ltgcpj + aa \~^ — xej

Iab(tg2<P + tg*<p') + Ia + Ib+^[hahb-ye(l-ye)(tg<P + tg<pV+ ^ (tgV + tgV)]

+ [ab{—f^ + Ca^}(ig<p + \g<p7-

et apres transformation et simplifications:

he Ia ±Ib + Iab(Uvab)(tg2 ¦ 4.~v f\ Gab ha
+ tg29?)+ 2

hb l*
Ob~-Gab2)(tg? + tg?')2 (153)

Calculons encore l'expression suivante qui se justifiera dans la suite:

Jxye
Ire — Iye ' Iye-Ixe 'i(tgcp + tgcp')2

r r r öabhahb (1 + Vab) ,.9Ire Ia + Ib~\ ö + lab ~ ~ (tg<P~ tgcp)~

Ire Ia + h +
Oab

[(ha + hb)2 + (ha- hby
Vab

]

Or: (ha + hby + <£°—W =2ha hä + 2hbh'b
Vab

Ire Ia + h + lab + I'ätab
Jk/ Jxye
Jxe

(154)

4. Reactions complementaires de fermelure du cadre.

Pour pouvoir refermer le cadre sollicite et ouvert en a il faut appliquer
sur les levres de l'ouverture des forces egales et de signes contraires et les
composantes agissant sur a, extremite de ab, sont A, B, C, si on les exprime
par rapport aux axes Oexy, fig. 2. Elles se deduisent des formules (23) qui
deviennent ici:

(Aoe -l^do 0 0

(155) \BIye- CJxve - f m f d a v) donc / „V n y Jy J

C B^=-~(tgcp + tgcp') (156)
B

l BJxye - CIxe -$m rjdo 0

et alors

BMl B/re=v donc (157) B et
Z Ire
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avec (148) on obtient finalement:

(158) B Ma_Mb
ha hb

\ h + Tab

/ Ia + h + Tab + Tab

,{Ma_Mb
ha hb

si on pose / h + Tab

5. Sollicitations totales des barres du cadre ferme.
On les obtient en ajoutant les effets des reactions complementaires aux

sollicitations isostatiques (141) et (145)

X'— j (tgcf + tgcp')X X' + c

y v + b

M= n + Bx — Cy u + ß\x' + ^ (tgcp + tgcp') ?]

Soit pour chaque barre apres simplifications

Barre ab Yab Ya'b 4- B Man Mb
Ta^-^-Tb7

(159)

(160)

B
xab xa\ — y (tev + tg?5') -Vab-i(tg<P+tg<P') (161)

Mab -)\-/ß-y')ha + (\ r')y'hb]2l\ha hb,

On voit que Mab s'annule pour une section donnee par y'0 tel que
yö KY___

l-

(162)

Barre a'b' Ya'b' Yab

-Jo

Xa'b'

hb(\~ /)'

^ + Yab '}>(tgcp + tgcp') (161)

Ma'V Mab

Donc en resume, si l'on fait une coupe complete dans le cadre parallelement
ä Ox' et si on suppose enleve ce qui est au-dessous, les sollicitations dans
les membrures coupees sont les suivantes:

Les moments de flexion sont egaux et de meme signe: Mab Maf6'(162).
Les composantes des efforts selon Oy sont egales et de signes

contraires (160).
Les composantes transversales selon 0 x sont inegales mais leur somme

equilibre l'effort total T car on verifie par (161) et (161') que Xab -+ Xa>b' T.
Notamment aux extremites des barres on obtient:

en b

en a

y'=l Mb.

y'=0 Ma=-

+
(1 ?M£ Mb

hb

ha (Ma
2 \ha

Mb
hb

(163)

6. Montant fictif equivalent ä un cadre.

Supposons qu'au cadre abb'a' soit accole un autre cadre analogue dont
la barre aa' constituerait un element commun. On peut considerer que le
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1er cadre constitue un montant fictif du second et on peut se proposer de
calculer les caracteristiques elastiques c'est-ä-dire les caracteristiques de
l'ellipse centrale d'elasticite du Systeme equivalent au portique abb'a' et ä
la barre aa' disposes en parallele entre les deux points aa'.

On peut donc ä cet effet utiliser les formules etablies dans l'ouvrage
precite pour la combinaison des arcs en parallele (47) et (51).

Nous conservons les axes Ox'y' et soit o'ae, x'ae, y'ae, Txae, Tyae, J'ae les
caracteristiques de ce Systeme equivalent.
" Tn-1

n+1

n+2

Fig. 3.

Comme on suppose que aa' est indeformable longitudinalement on
obtient de suite y'ae 0 Txae -= 0 donc )'ae 0 et il reste ä calculer Tyae

que nous pouvons ecrire simplement Tae par la formule *)
*

—
1

-l
*

oupr V — V —
J*ya

Y> — /' "r /~~ avec ira — iya Jf
*ae 'ra *a lxa

Tra se rapporte uniquement au portique abb'a' dont il convient de calculer
les caracteristiques elastiques en posant simplement ot -= 0 dans les valeurs
etablies pour le cadre (149 ä 154)

Ob + Oab ha

(164)

/iac\ i v« — °b + 2(Jfl£
(165)

| Vm Ib -\- Tab + lab

On obtient donc alors

y'a A- Xa -x
y* (tg^ + tg^)

(166) /' —
Az • I'ra _ Ig (h + lab 4- Tab)

Ia + Tra Ig + h + Tab + lab

ha
On obtient aussi facilement x'ae ==- ^ par symetrie elastique. On peut se

dispenser de calculer o'ac qui ne nous sera pas necessaire dans la suite.

*ire lorsque

alors A d(ae — b2)

*) Les formules (47) et (51) permettent d'ecrire lorsque
y'ae ° bf-ce 0 \

Jge 0 bc

DJautre part

et alors

donc

e

ae — b2

-af=0i

x' ^^ —

donne — 0
d

lyae ae— bs

b2

ae— b2

'yae
+

Abhandlungen V 16
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7. Cadre equivalent ä un panneau d'une poutre Vierendeel.
Soit fig. 4 une poutre Vierendeel constituee par une serie de cadres

trapezoi'daux accoles et soit le cadre ti compris entre les montants numerotes
(/z —1) et n que nous reproduisons (fig. 3). Soit Tn_1 la resultante des
forces exterieures appliquees ä gauche du montant (n—1), soit Qn^l la
force exterieure appliquee en (n — 1) et soit Tn la resultante des forces
exterieures appliquee ä droite de (ti— 1). On a Tn Tn^t + Qn ~ i- Sur la
ligne d'action de T„ _ ± prenons un point Gn __ ± que nous relions aux noeuds
(n — 1) et (n'— 1) par deux barres indeformables articulees ä leurs
extremites. Ces barres apporteront en ces noeuds des forces dont les composantes

horizontales seront egales et de signes contraires, soit -| /*~1, et
hn-l

dont les composantes verticales egaleront ensemble Tn_x. A celles-ci
s'ajoutera la force exterieure Qn-i appliquee directement en (n—1). Si
on neglige les deformations longitudinales des montants il n'est pas
necessaire de determiner chacune des composantes verticales appliquees en

t(a-,)e

m-1n-1
n+1

Fig. 4.

(n—1) et (n' — 1) et on peut supposer la resultante totale Tn appliquee
en (n—1). Cela revient ä choisir le point Gn^1 au niveau de (n!—1).
Nous pouvons de meme relier un point Gn de la ligne d'action de Tn aux
noeuds n et n' par des barres indeformables et articulees ä leurs extremites.
Nous pouvons aussi choisir Gn au niveau qui nous convient le mieux pour
simplifier nos calculs tant que le cadre n est suppose ouvert en n. Ce cadre /;
sera alors sollicite exactement comme le cadre type abb'a' represente fig. 2
tourne de 90°, avec cette difference que le montant (n — 1) n'est pas constitue
par une barre unique mais par tout le trongon de poutre de Oa (ti — 1) qui se
trouve ä gauche et le montant n est constitue par tout le trongon de poutre
de n ä tn se trouvant ä droite. Nous devrons donc remplacer ces trongons
par des montants fictifs equivalents et presentant les memes caracteristiques
elastiques que ceux-ci. La sollicitation interne du panneau ti sera alors donnee
par les formules (146) ä (166) ci-dessus etablies pour le cadre abb'a' en
remplagant les indices a par n et b par (n — 1). II vient en utilisant les
formules (165—166) et en appelant T (n^1)e le moment d'inertie elastique
du montant fictif equivalent ä toute la partie gauche de 0 ä (n — 1), l"ne
celui d'equivalent ä toute la partie droite de n ä m et ecrivant /'„ au lieu
de I',n:

In I(n-i)e + I(n-\)n + I(n-i)n
fn ¦ In

'ne — In + Tn
avec IL Io

(167) In + i — I(n+i)e + In(n+i) + In(n+l)
In * In + i(168) * ne avec 1'^ im

Jn ~r '/z + i
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et pour le cadre equivalent complet:

int I{n-i)e + I{n-i)n + I(n-\)n + Ine

243

(169)

avec les Conventions suivantes deduites des formules (146 et 147)

j> tf(«-i)« hn_l hn_x /17m r„ 0(n_X)nhnhn
I(n-i)n — T (1 IV) /(,i_i)w -7

avec 2ä;^ hnA\ + —L_) + A„(l- —?—)
v vin-\)nj \ v(n-i)n>

2 hl hn (l + -1—) + a„_, (l —)
\ V-l)«' \ V-D«'

(171)

Alors la reaction complementaire due ä la sollicitation s'exergant dans le
cadre equivalent est donnee par Fapplication de (158)

/170\ Pf Vn \Mn Mn_A I(n~i)e-\~ I(n-\)n ^ D * Un. ,„ /X(172) Bn — T\ —- I Cn -Bn-±(ig<pn + ig<pn)
'nt \Hn tln~\ / Int

Si nous appelons N'n la composante horizontale, c'est-ä-dire parallele ä Faxe
de la poutre, de l'effort longitudinal dans les membrures (n — 1) n.

On a N'n Bn-

donc — Nfn Int

Mn
hn

ou bien N'nInt=Vn-MunI,lt
hn

-JT^-Vin-^e + I(n-l)n) + -~ (Ine + T(n-i)n)
tln~i an

(173)

8. Influence de la deformation d'un panneau sur le
panneau voisin.

Comme en realite la resultante Tn _ t exerce son action aux noeuds (n — 1)
et (n!— 1), non par les barres articulees mais par les panneaux precedents
de la poutre il en resulte que ces panneaux (ti— 1), (ti — 2) se deforment
et cela influencera la deformation du panneau ti. II faudra donc tenir compte
de cette influence due ä la suppression des barres Gn _ t.

Plagons-nous d'abord dans le panneau 1. L'effort sollicitant le montant
11' est B1 et d, avec Iyl It et Jxyl 0. II vient pour l'expression de v'21,
deplacement horizontal de V par rapport ä 1, du ä la sollicitation interne du
panneau 1:

v'2l Bx h or Bx y^-r d'oü v'2l v\ —^— v\ ^ (174)

Ce deplacement v'2i viendra s'ajouter au v'2 du ä la sollicitation du second
panneau. II en serait ainsi successivement de panneau en panneau. Appelons
donc v'm le deplacement v' apporte dans le panneau ti par la sollicitation
interne du panneau / seul, et soit alors v'nn le deplacement v' dans le panneau
n du ä sa propre sollicitation (148).

Les v' exergant successivement leurs effets d'un panneau ä l'autre on
aura successivement:
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Vi
Tie
/'l
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— etc. soit Ki __
Tie

Yu
~~

Ti 'hl
hn-i)e

(175)

et de droite ä gauche, en utilisant alors les indices "

" I" m"V(m-i)m '(m-i)e v(m-2)jn I" '/"'(m~l)e '(m-2)e
C Im-l

Ine I(n + \)e

'n+2 Tl
(175)

avec

vi lÄ/'~Ä/'_",,^/*'-1)'+/(''-1)/ (176)

Pour obtenir le deplacement total vnt dans le panneau n il faudra donc faire
la sommation des deplacements v'm et v"n dus aux deformations de tous les
autres panneaux de part et d'autre, en ecrivant v'm si i<n et v"m si />/z

i=n -1 i—n-\-\
Vnt — 21 v«/ + y*" + 2 C

/ 1 / m
(177)

On en deduira alors Bnt -nt et
Int

KT Mn Vnt

_ Nn Int ^ (J\n-l)e + Hn-i «)) + ^ (C + /(Vi).) ~ 2 Vnl - £ tf, (1 78)

9. Sollicitation totale d'un panneau.
On peut simplifier l'expression de N„. Pour cela examinons la somme

des termes relatifs ä trois panneaux consecutifs. Soit d'abord les panneaux
(n— 1), n et (n~\- 1), la part de N„ y relatif est donnee par

Mn
vn{n-\) -h -J— 'nt— Viin

Hn
v'n(n+i) qui developpe donne

ln-1 MKA(, \ !([„_!) e Mn_x

n~i tln_2 I \ / ln~\ tln-i v

Af« (,* ,* \ /iWÄ Mn+l\ (Jlf „ \ Ine

M
et en groupant les termes de meme-, il vient:

+ M»-2(r> ./' \ Hn-l)e Mn-X\I{n-x)e[r \ 1

^ 11(n-2)e + I(n-2)(n~i)J'-JT +
^ [^77 \In-i ~ I(n~2)e~ I(n-2)(n-l)J + I(n~l)n}^

Mn\ 'ne I r» rit j„ \\ Mn+1 j „ ,„ \ /''
+ -7-^ /(«-!)« + 75— -A«+l)« —^(ff+D + ^+l + "7, [I(n+l)e+ In(n+l) ' -j—hn L y«+i \ 7 J "«+1 v 7 //n-i

Or d'apres (167) Tn_1 —I{n^2)e — I[n-2){n~\) /(«-2)(«-i)
et In+1 I(n+l)e — In(n+i) — 'n(n+l)
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et alors il vient:
Mn~2 Tr I(n-i)e [Mn-i r, Mn_x „ \ T{n-i)e

+ u ' hn-2)e ' ~j, V I -7 I{n-2)(n-l) + "7 ^(«-2)(«-l)l ' ~77
tln-2 ln-\ v "/z-2 ''/f-i ' 'n-l

+ va^t 1{n~l)n + irn f^i)n

+ (Mn r Mn+l \ Ce Mz+i r Ce
\ u Jn(n+U ' ~Z Jn(n+l)j v, -T h Jn(n+i) * 777—
\ nn rin+i / ' /z+i "/z+1 y/z+]

et en adoptant la notation

on obtient:

Mn~i r Mn j„Vn — -~h I{n-\)n + ~r~ I(n-i)n
tln-i ftn

(179)

rf I{n-l)e I(n-i)e Ine Mn+1 „ Ine
Hn-2)e—, h Vn-\ ' ~p h Vn + Vn+i JT, h MT I(n+i)e~pr

Mn-2
/ * l(n-2)e jt T vn-\ wr i * n i r n+i wir i M\n^-L)e wir
tln-2 'n-l *n-\ ' n + i nn+i ' n+l

Si nous envisageons ä present deux termes consecutifs tel que v'ni et v'n (l v 1j

l)e
#

I(n-\)e
J(i+1)

(Mi MiA( \ Tie /(/+d
I'n-i

vn(i+\)
Mti+l Mi)(r J_ /' \ /('+1>*

VA(/+D

/(/z-i)g
/LiA/+i hi

Les expressions (167) donnent encore
I[i-l)e + /(lf-1)/ U /(/-l)/ et //^ + //(/+i) //+i — //(/+i)

On peut donc remplacer ces termes Fun par l'autre et en adoptant celui
M

dont l'expression comporte le meme indice que le — qu'il multiplie, il vient
h

en additionnant les deux termes:

[+ "7" \J(i-l)e + J(i-i)ij-j7 + J^ [Ile + //(/+i) — He + /(/-i)/ •

^7
M>

h
1+1 (v J" i (/+1

t+l v /J y/+l
)' T{n-l)e

I'n-i

et enfin

^M r //* //W/_x Af/ \//<,
_+ nr /(/-i)tf' //+ ter(M)/+"ä7 (/-i}v //

+ /^/ iW/+l \ Mi+l ~\Iii+i)e

r^/-i r //>, Av, /tf/+i,. i /(/+d* AVpg
-77— /(/-i)^ • -77 + v/. jj + vi+1 — -j—li+l -jr—- j,L rli^i li li ni+l J I(i+l) ln~\

T{n-i)e
Tn-!

et en adoptant la notation vt definie ci-dessus (179)
ML

Dans la sommation totale il ne demeure que les termes v, et on obtiendra
donc:

(180)

kt r he I{n-i)e he
I\ In-\ h
I" I"'ne 'ne+ Vn + Vn+l y, h ' ' ' + Vm-x JJT

'n+l 'n+l

fjn-pe
I'n-i~

i{m-2)e ine
wtf i vm w/f

'm-l 'n+i

f(n-i)e

'(m-\)e
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Ce qui peut s'ecrire sous la forme simplifiee:

(181) -NnInt =' S V V4 + vn + 'S'r/g-'
i \ Vu =/z+l

si l<n) on prend V

si />/*[les rapportsj v"

Teile est la formule qui donnera pour chaque panneau n la composante
horizontale de l'effort Nn dans les membrures. On constate qu'elle comporte
un terme par panneau et le principal est vn. Les autres termes vont rapidement

en decroissant au für et ä mesure que / s'ecarte de n de part et d'autre.
En' pratique pour / n -\- 3 ils deviennent negligeables.

10. Sollicitation des divers elements d'un panneau«
La connaissance de l'effort Nn permet d'obtenir rapidement les

sollicitations des divers elements d'un panneau. Les composantes horizontales
des efforts internes dans les membrures sont donc egales ä Nn et de
signes contraires pour chacune, soit -\- Nn dans (n!—1) n' et —Nn dans
(n — 1) n.

Les composantes verticales sont alors donnees par:

/-^x Mn-M„_i Nn/L „ Mn-Mn-i xr//x hn-hn-i
(182) ou =^_-JLl + y(tgy + tg7/)== n nl+Nn({tg<p+ *

nr I Z tln £ £ tln \ £ tln

Les moments de flexion sont egaux dans les sections verticales correspondantes

des deux membrures et comme ils varient lineairement il suffit de
les connaitre aux noeuds. Dans chaque panneau nous devrons donc calculer
les deux moments: M(n _ 1} n et Mr (r _ v.

La formule (159) nous donnera:
hn Nn hn Mn

au noeud ti: x'=0 y'=0 u 0 Mn(n-i)

X LI

Bn

au noeud (n — 1): x'= — htgcp y'-.

hn-xlMn Mn-A hn-i

V(4^-^) et
2 \hn hn-i I

M(n-i)n

On a donc

hn hn-i
Mn

Nn +'fn) ~ 4(^-1 4" Nnhn-i)

Mn(n-i) ~~\{Mn + Nn hn) Mn (n+1) i(Mn + Nn+1hn) (183)

On en deduit le moment de flexion ä l'encastrement des montants

Mn(n+i) — Mn(n-i)mn
hn

(Nn-Nn+1) mn (184)

Le moment est (-f- tnn) ä la tete du montant et (— mn) au pied.

11. Procede pratique de calcul : tableaux.
On procedera par tableaux qui comporteront autant de colonnes verticales

que de montants ou de panneaux. Les panneaux portent les numeros
de leur montant de droite. On inscrira sur chaque ligne du tableau les valeurs
calculees des expressions figurant dans la colonne marginale.
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Le tableau I donnera les caracteristiques elastiques dela
poutre. Le tableau 11 donnera lesrapports des deformabilites-^
et Ar1 qui se calculent d'apres les formules (175) en multipliant les rapports

vu
entre eux.

Ces deux premiers tableaux sont independants de la mise en charge de
la poutre.

Pour chaque mise en charge alors envisagee pour la poutre entiere il
faut etablir deux autres tableaux: III et IV.

Le tableau III est la suite du tableau I: mise en charge et sollicitations.
Le tableau IV correspond au tableau II oü l'on introduit les vn, selon les
diagonales et les multipliant ensuite par les rapports correspondants se
trouvant sur la meme ligne du tableau II. Nous donnons ci-dessous un modele
de ces divers tableaux.

12. Influence d'une difference de temperature entre les
membrures.

En tenant compte d'une difference de temperature 0, le coefficient de
dilatation etant x, on obtient pour l'expression des deplacements:

v — jpSdo + Oy.(yl—y0)
a — J Livedo — 0 z (xx — x0)

Si nous faisons maintenant abstraction de la charge, c'est-ä-dire posant ju -= 0,
il ne restera que les termes en 0.

Supposons qu'il s'etablisse entre les membrures une difference de temperature

0 0ilb — Oa' b' et que les montants prennent une temperature moyenne,
la temperature etant donc supposee symetriquement distribuee selon un axe
parallele aux montants.

Pour le cadre type complet abb'a' a il vient: xY x0 et u 0 mais v
ne s'annule pas car pour ab on a Qabx(l— 0) et pour a'b' il vient
0a'b'x(0 — X). Pour aa' et bb': yA—yQ 0.

II reste donc v 0abxl -\- 0afb'^(—X) xOX.
Ce terme est independant de h et sera le meme pour tous les panneaux

d'une poutre si les membrures sont chacune ä la meme temperature sur
toute leur longueur, c'est-ä-dire: 0 Cte. II suffit donc de remplacer dans
l'expression de Bn, v'n par xOL Cependant si dans le calcul des
caracteristiques elastiques on a suppose E =- 1, c'est-ä-dire si l'on a suppose que

partout le terme - a ete mis en evidence, il faudra en tenir compte en le

retablissant et il faudra ecrire

Bne —£— Nno car Bn0 Nno

et la formule generale (178) deviendra en posant E xOX vnfi

i—n—\ r i — m n

Nnvlnt S m ¦ V4 + VllH + 2 V,„ ¦ -4 (185)
/ l Vu /=/i + l Vu

et si / est le meme partout ainsi que 6 alors vfl9 Cte et peut se mettre en
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Tableau I. Caracteristiques elastiques. Tableau III. Mise en charge et sollicitations.

n 0 1 n m

K

u >V-i)/* + l
fCn '

v(n-i)n

Hn-l)n-\
>Ln '

v(n-i)n

nn — n^~2^ n+1YV

v+1 ^-1
hn K -77— + K-x -77—2 v 2v |

1

1

on =- -r-(hn-ae)
In

(X — ae)
G(n-i)n •

l(n~i)n COS 99

j onhn2
ln~ 4vn

I(n-i)n — G(n-i)n a

r hn hn
In (n-l) — ^(/z-i)/z »

l'i~I(n. i)> H I(n i)« + /«(«-i)

Ine In
In In + In

jf In ' In
he ~ Tn + Jn

/o

In Ine + In(n-i) + l(n~\)n

In e //z

//z+1 /« "f //1+1

^/r In ' //z+l

In t //z+i

//zz4 — /« + /««? — //z_i^ + /«

0

Mn

NU

K
Mn-i.

I(n-i)n
iln—\

Mn ,„
h ln(n-\)
tCn

„ _Mn-i f, Mn
Vn ~ "7- I(n-\)n-T-j^ln(n-\)

2 Vt — (voir tableau IV)
Vu

v Vm
2vt —

\7 Vl1

Int

— Nnhn

Nn hn-!

mn ^^(Nn-Nn+i)

Mn

Mn

*'(n-l)n + 1

V(n-i)n

Vl)n— 1

V{n-l)n

8 \ v v

G(n--—^-[Mn \Mn 1 —8 V v v J

Mi I{n-l)n

Nn In (n-l)

An d (form. 210)

1
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Tableau II. Rapports des defortnabilites.

24Q

n 1

1

2
1

3 4 n tn

*¦= 1
lu
Ii

Ile l'te

li '
/2

Vni

vu

i 2
IS

1 lu pour

i <i n

3
I'ie tie

li ' IS
I'ie
I'i

1 Ize

4
I'ie

ti
1

i Vni
-r PC
Vu

»ur i^> n 1

m

1

—

1

2Vju
Vii

— —
l

Tableau IV. Rapports des deformations.

n 1 2 3 4 n m

/- 1 Vi Vl'7T Vi '
1

1 W
Vni

vu

i 2
I'ie

V2' /I ^2
IL i pour

3 ^3 *

I'ie
V3' Ä

Vb
he

4 Va

i Vni
Vi • —

V//
pour / > n

1

Vn

m

— —

Vm

^7
— —
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evidence, il vient:

^^nr^M+i?^] (.86,
Int L i—\ Vu i=n-h\"uJ

et le terme [ ] se calcule par sommation des colonnes du tableau II.

13. Comparaison avec la methode de calcul de Frandsen dite:
par ouverture des mailies.

La Solution obtenue par cette methode est pour le panneau n *):

^L(Xn~Xn+i)--^- • (Xn-i-Xn) ^~ (K-l + hn)(MN-hnXn) (187)
LZ ln E ln—i E* Inr

Avec nos notations et Conventions nous pouvons poser:

A on
--A-

„(n_1)n Xa -N„ de plus ici v 3 donc /„ °P^L
C. In E-lnr 1 ^
h'n est ici la hauteur du panneau au droit du centre geometrique et est donc:
donne par

_ l hn + 2hn^
_ 2h2n+2hnh„^ + 2 A^l

y< - T ' hn + K-, ^ 3l0rS k" ~ 3(Afl + AB_1)

De meme yW^ est le moment exterieur au droit de ce meme centre et s'ex-
prime par:

MN Mn. #4-iK + m^ hn + 2h^
3(A„ + A„_,)

' "-^(A^ + A^.,)
Et alors:

3(A„ + A„_,)(Afw— £„*„) Mn(2hn + hn_x) + jW„_. (A„ + 2A^1) +
27V„(A2 + A„A„_, + A2

L'equation (187) peut donc s'ecrire successivement:

— On hl (N„ — Na+1) + ff„_j A2 (A/«-i — Ntt) (!(n-i)n [M„ (2 A„ + A^J +
Mn_, {hn + 2A„_0 + 2Nn(hl + hnhn-i + A2 )]

Gn hn Nn+1 -Nn[onhn+ öVz_i hn_x + 2 (fy-D/i (A„ + hn A«_x + A„_x)] + A/^ ö^ Art_t

G{n-i)n [Mn(2hn + hn-i) + Mn-i(hn + 2hn-i)\

r ki kt \i / hn(2hn + hn-i) hn-i(hn + 2hn-i)\ KT TIn Mz+1 ~ Nn \In + h-i + tf(/z-i)/z —" j7> + a<«-D* ^2 J +Nn-l!n-l :

_ Mn hn (2 hn + A,^) iWÄ_j hn-i(hn + 2hn-i)- Tn °{n-l)n 12 + hZZi °{n-l)n 12

Or en posant v 3 dans nos Conventions (170 et 171) nous obtenons

h» 2hn + hn-i hn + 2 hn-i r _ G(n-i)nhn-i h'n-i
nn — o Hn-i — 77 l(n-i)n — 7

w„ G(n-\)nhnhn
In(n-]) 7

*) K. Kriso. Stabilite des poutres Vierendeel, Paris, Beranger.
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et finalement:
M M _(188) Nn+iln- Nn(In + In-i + T(n-i)n + I'n(n-i)) + Nn^In-i -r~ In(n-i) + -7 A'/z-l)/z Vn
nn nn~i

Ecrivons Ina In + T{„_1)n + /«(«_d + /«-i
et nous referant aux formules de recurrence no. (167) ä (169) nous en de-
duirons les relations suivantes qui nous seront utiles:

I2 I T
(189) Ina 7 M—TT— In + /(/z-i)/z + In(n-i) + 7 ~T~f> In + I(n-i)n

'n-i ~T 'n-l 'n-l~J~ 'n-l
InTn
V'ne

De meme:
I2 I f"

//za r r// — 'n—i^r'n— r» Cl 'n^'n
i2'n

w jif *n—i ' ~n — rrr "*"¦ ' n < * ri [ \ T'n'T'n-l '(n-i)e 'n'T'n+l
Alors l'equation type de cette methode s'ecrit:

In-i Nn-i — InaNn + /«M

+ Tn(n-i) + /(/z-i)£ In + Tn ~ ~fT'nt

— In + IL Int (190)

(191)

Le Systeme d'equations etagees ä resoudre est donc le suivant:

— AflA/i + hN2 vt

IxNi —I2aN2 + I2N3 i/2

/2 N2 — /3« A^3 + 4 ^4 VS

/m-2 Nm_2 I(m-i)a Nm_i -f- //«-i A^w

/a/z_i Nm-i ImaNm

lequel peut aussi s'ecrire sous la forme:

-A/1+A^, A
/iß M0

f//z-i

Vm

"i — TNi + ^f-Ns'2a
A

A
Ix A

/m"2
A/„

Im-i

Im i
Ima

hm-l)a N xr __ Vm-i

'm-i 'm-i

Nm-i — N„,
Vm

Ima

Eliminant successivement les N en commengant par Nu il vient en addition-
nant les deux premieres equations:

'1 \ 'la' 'l '\a Ji

or ici /,' /„ + /ü, + /,o /,„ /,' + A donc:
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He
¦(/, + I*)Nt + /aNt v1-j?+v, ou bien:

— Nt + 77 N,
He

+ Vi
I2 + fi"S " 'l /{(/. + /2) A +/2

et additionnant alors la 3^ equation etagee on a:

-%('--du) N' + lN' =—'i' ¦-
qui se transforme en:

I\e Ike I&e

-jf ' -jt -r v2-jh h h

1

_ +
v3

/i(/2 + /2r /2 + /2 /2

(/3 + /3)^3 + /3^4= Vi «^ ' ^+ V2^ + V8

Ainsi en operant successivement on obtiendrait pour le panneau n:
T(n-i)e

(192) (In + Tn)Nn + InNn+i v/-£ • 'j?

iL
'lk

I'(n-\ )e

/7t +

I'n-x

+ V„_1/f^ + Vn
ln-l

A'n

En procedant de meme en commencant par m on obtiendra pour le panneau
(«+- 1) une seconde equation analogue soit donc un groupe de deux equations
ä deux inconnues ä resoudre:

[ ' I +InNn-(In + /'n+l)Nn+l A'n^
et la Solution donne

A'„
+

Nn
In ' In + In

In + I'n In

A' A- A" Ine

' n+l
Int

Fig. 5.
In In ~r In+i

et l'on retrouve l'equation generale (180) sous la forme:
I"

(194) —NnInt — A'n + An+i • yß^~ qui apres developpement de A„ et An+i
//z+1

est la meme. Les deux methodes sont donc identiques et se verifient l'une
par l'autre. Celle basee sur les systemes Äquivalents a cependant l'avantage
de donner une Solution directe s'ecrivant au moyen de coefficients ayant une
signification concrete, et en outre eile permet de tenir compte dans les calculs
de l'influence des goussets par les valeurs choisies pour les a et les v.

14. Influence des deformations longitudinales des membrures.
L'ellipse elastique des trongons de membrures ne se reduit plus alors

ä une droite et il faut envisager ses deux axes principaux qui seront donnes
par (voir fig. 5)

2 oP gX*
Ix 0Q2 IY= —_ —4 v 4v cos *

cp
avec

5 COS cp

Par rapport aux axes orthogonaux Oxy, d'angle cp sur OXY on obtient:
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oX2
Ix Ixsin2cp + IYcos2cp — 1- oo2 sin2«?

4v

Ixcos2cp + IY sin2 cp
gX2

4 v
tg2cp -f gq2 cos29?

/^ (Ix—h) sin 99 cos 99

gX2

~4V igcp + a £2 sin 99 cos 99

Comme pratiquement 99 est assez petit, il en sera de meme de sin 99 et le
terme £ sin 99 sera tout ä fait negligeable devant X. Nous pourrons alors ne
conserver pour les caracteristiques elastiques d'une membrure ab que les
valeurs suivantes:

lab
Gabh2

Av *yab lab tg2 cp + Gab Qab COS2 99 Jxy — Iab tgcp

et il n'y aura de correction quelque peu sensible ä apporter que sur la valeur
de Iyab (142) par l'addition du terme oab$ab cos2 cp et de meme pour Iya> b> par
Ga' b' Qa' V COS2 99'.

Les caracteristiques elastiques du cadre ferme (149) ä (154) ne seront
modifiees que par l'addition ä lye (153) et Ire (154) du terme correctif suivant
que nous appellerons V"ab

lab Gab (gib cos2 99 + O^if cos2 99')

Alors ce terme s'ajoutant partout ä Tab et I"ab il viendra:

Ia + Ib + lab + lab + Itab

(195)

(196)

expression dont on se servira dans toutes les formules de recurrence (167)
ä (169). Cependant le deplacement v (148) devra aussi etre corrige par
l'addition du terme contenant la deformation longitudinale.

v — \ li £ dG — \ v —r Q2 dG
J } ds

Ce terme correctif se calcule aisement

K ha
V^02dG

1 2
—— • COS 99 • Qab d Gab
cos 99

+ iat ha COS
£OS<pQa'1f(—dOa'b)

Ma t 2 2

cos 99

Par consequent l'expression (148) de v deviendra

Gab (Qab + Qa'b')

(Ma Mb\ „ AfÄ 2 2 v

\ha ~ Tb) {h + lab) +
ha

°ab {Qab + Qa'b'] (197)

Nous pouvons obtenir l'expression corrigee de B =- —
/re

B

Ma
ha

Mb
hb J (h 4- Tab) + 7^ °«b (?«* + £«'*')

ha

Ia + Ib -U lab + lab + lab
(198)
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II vient alors pour (173)

kf' r Mn r (Mn Mn-i\n v

NnInt =Vn— J~ Int ^ + ^ (//z+1 + I(n-l)n)

Mn r / 2 .2 \ r 1

A~" ^(/z-1)rt w*-1)* + £(«'-i)*') — //zd

Or /^ G(n~i)n (Q(n-i)n + £(/i'-i)/*') I(n-i)e + I(n-i)n + Tn(n~i) + Ine

+ (On-i)n [Q2(n-i)n (COS2 cp - 1) + ^_1)n' (COS2 99' — 1)]

et les termes correctifs en q se ramenent ä

— 0(n-i)n (Q(n-l)n sin 2 99+ Q(n'-i)n' SUI2 cp')

qui sont de l'ordre de grandeur et ceux que nous avons negliges ci-dessus.
Dans le cas de membrures paralleles c'est-ä-dire si 99 99' 0 ces

termes s'eliminent completement.
On voit donc que la correction due aux deformations longitudinales des

membrures peut etre negligee dans les termes qui dependent de la mise en
charge. Elle ne peut avoir quelques valeurs que dans les calculs des
caracteristiques elastiques des systemes equivalents en adoptant les expressions (196)
au lieu de (154) c'est-ä-dire en tenant compte du terme correctif (195) qui
dans le panneau n s'exprime par

/ 2 9 2 o ,v /// COS 9? COS 99' \/iqq\I(n-l)n G(n-1)m(Q(n-l)n COS^Cp + Q(n>_l)n' COS2cp — I f- liyyi
£Z \ö (ji — l) n o (n — 1) nl

oü Sfn — vn et s'fn — un sont les sections des membrures.

15. Influence d'une difference de valeurs entre les masses
elastiques des membrures: aab =|= o(n/.

Dans ce cas la condition qui annulerait \pcdo n'annulerait plus J po]do
comme au § 2, ä cause de la dissymetrie elastique et par consequent on ob-
tiendra alors un deplacement u different de zero. Les reactions complementaires

de fermeture du cadre etablies au § 4 seraient donnees aussi par les
equations (155) mais modifiees en ajoutant u.

A 0

ß vi uj (20())
'xe'ye Je

C __ —Ulye+ Vje

AGe— J jLI d G 0

BIye — CJe — — l jii^dG v donc

BJe — C Ixe — J t-l *jdG U
I

Ixe Iye Jt

On constate que C n'est plus relie ä B par un simple coefficient geo-
metrique (156).

II reste par consequent ä determiner separement dans tous les panneaux
les valeurs inconnues de B et C et cela double les inconnues. De plus il faut
proceder au calcul des formules de recurrence de Ixe et Ie en plus de celle
de Iye.

Cette question est donc tres complexe et, n'ayant qu'un interet pratique
reduit, ne sera qu'indiquee ici pour ne pas allonger ce memoire; nous nous
reservons d'y revenir ulterieurement.
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16. Deformations de la poutre Vierendeel.
La poutre etant cornposee d'elements droits dont nous connaissons

maintenant les sollicitations, on peut en exprimer facilement les deformations
en utilisant les formules connues (no. 85) qui dans le cas d'elements sy-
metriques teile qu'une poutre ab, sans charge intermediaire, deviennent:

(201)

G V+\ V-\
¦ coa -ö + -r\ma + mb4 V v v

10b r= + S +
G V -\
Tr-MM + rtib-

v + \
ou bien

tob — coa + -~- (ma + mb)

C0a + Cüb o
—2— + 4~(m«-mö)

avec co rotation de noeud a ou b ö inclinaison de l'axe de la barre
m moment de flexion aux extremites a ou b.

Nous pouvons appliquer ces equations ä chacune des barres du cadre
trapezoidal abbfa' fig. 2, en admettant Pegalite des co aux extremites com-
munes.

Barre aa', les indices a et b deviennent a et d', par symetrie il vient:
oama

*

ma — tna' coa 0>a' Sa coa +
Barre bb', de meme:

mb - - mb> cob wb> db cob +
Barre ab

2va

Gbjtlh
2vb

(202)

Les moments aux extremites sont differents soit mab et mba

(203) cob cüa + -^- (mab + mba) Sab w« + —^ (tnab+ mba) + j^~ (mab ~ mba) (204)
^ 4 4 Vab

Barre a!b'': par symetrie elastique avec ab on a:

oa coa cob cob dab Sa'b' ntab tna' b' mba mb>a>

Si nous exprimons que la somme des projections v des deplacements des
noeuds sur l'axe 0y, doit etre nulle pour le cadre entier, on obtiendra:

- Sab * tg cp + Sb hb + Sb>a> Xtgcpf- Sa ha 0 ou bien Sab —y^—vp—^ (205)
tla ~ IIb

Si l'on egale les deux valeurs (204) et (205) de 6ab on obtient une equation
qui, en utilisant les equations d'equilibre des moments aux noeuds, reproduit
l'equation de Frandsen (188), base de la Solution du calcul de la poutre.

Appliquons ä present ces formules ä un panneau quelconque de la
poutre en remplagant les indices a et b par n et (n — 1) et en donnant aux
moments d'extremites les valeurs obtenues pour Mn(ll_lh M(n_1)tn tnn et
exprimees par (183) et (184).

II vient alors:

v on mn
Sn W/z + -?r-lv„ V)n W/z-i — -°^~^ (Mn(n-i) + M(n-i)n)

\n-i)n - I0n + ^^ (Mn(n-i) + M(n_l)n) + j^^ (Mn(n-i) — M{n_l)n)
t" ^v(n-\)n

(206)
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Dans le panneau suivant exprimons cV^ + u sous la forme:

Sn (/z+i) 0)n
°n(,l+l) (M(n+l)n + Mfl(n+i)) + ^^ (M(fl+l)n~-Mn(n+i))

Du panneau # au panneau (/z -\- 1) il y a donc une Variation de rotation des
noeuds et d'inclinaison des barres donnee par:

n—

2

-i>
2 vn-i

(207)

A C0fl 10n &„_! — {n~)jL (Mn(n-l) + ^(/z-l)/z)

A Sn — A con +
on mn on-i mn-i «,

o„
.v,

Sn-i

A A ,V A — <7in-^n\AA v(n-i)n +1 >'(«-l)/z — ^

4ö <>/z(*+i)-0(«_i)« — - \Mn(n-i) —- +/W(«-1)«—
4 \ v(n-\)n v(n-i)n '

CT»("+l)/'^f |;(«+1)«"1 yi/f ^(;z+i)/z + l\
^ V '(/H-l)/* ^(«+l)/z /

On peut considerer ce And comme jouant le meme röle que les zlco dans une
poutre prismatique et appliquer alors ä une des membrures de la poutre
les formules de Navier-Bresse (7) qui deviennent ici avec

M d g ^ An S v0 0 x0 0 x i X

au noeud /:

ß/ ß0 + SJ„d
0

/
Vi ilü0 + l"Z(l — n)J„ä

0

A l'extremite in on obtiendra, tenant compte que V0 Vm 0

ß„ ß0 + ZAnS
u

m

Vm ml£20 + l%(m — n)And 0 d'oü

Qm +
1 m

-sm o
«J„ d

m

S(« -«) ^« <J

Üo —
0

/«
--

(208)

et alors les equations des deformees de la membrure deviennent:
z i m

Ui 2 AnS ^(m — n) AnS
m o (209)

Vi —l — Z {m — n) AnS + X 2 (i — n) Anä
m o u

De la connaissance des fi, en chaque noeud on peut deduire par (205) les
inclinaisons öt des montants correspondants. Dans le cas oü la poutre est
de hauteur constante ces inclinaisons <5/ des montants sont toutes les memes.

II suffit donc de calculer les diverses valeurs de A„d et de les considerer
comme des masses elastiques concentrees au centre de rotation soit au noeud n
de la membrure.

Remplagant dans (207) les M par leurs valeurs no. (183) et (184) on
obtient:
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r-V
Mn+1In <> "( g0" (Mn "f1 + M„ ^1) + *f*(M. ^±1 +

+-Y- ** (*« m1+*« "t1)+mT *•« (ä» 71+h*»";
ce qui devient avec (170) et (171)

(210) ,^ ^(^^ + ^1^) + ^g±ü(Af.^ViWw^)
+ NnT(n-i)n + Nn+iTn(n+i)-

Cette expression peut aussi s'ajouter ä la fin du tableau III si l'on desire
determiner la deformee de la poutre.

La determination des deformations de la poutre Vierendeel permet egalement

de determiner ses caracteristiques elastiques, et par suite d'aborder le
calcul de la poutre Vierendeel exterieurement hyperstatique teile que la
poutre continue sur plusieurs appuis.

Resume.

Le calcul de la poutre Vierendeel habituelle ä m panneaux se ramene ä

la Solution d'un Systeme de m equations etagees ä tn inconnues, chaque
equation comprenant trois inconnues sauf les extremes qui n'en comportent
que deux. La Solution de ce Systeme necessite des calculs delicats. Si l'on
veut une precision süffisante, il faut chiffrer les Operations avec de nom-
breuses decimales et, la regle ä calcul etant alors inutilisable, employer la
machine ä calculer.

A la fin de l'ouvrage que nous avons publie en 1937 et intitule „Les
constructions hyperstatique s"1) nous avions ebauche (pages210
ä 214) une methode de calcul de la poutre Vierendeel basee sur lam ethode
des systemes equivalentset servant d'exemple d'application. Cette
methode utilise specialement l'ellipse centrale d'elasticite d'un
element elastique dont eile represente toutes les proprietes elastiques. Tous
les systemes ayant meme ellipse centrale d'elasticite, pouvant alors se
substituer l'un ä l'autre, sont donc consideres comme systemes equivalents.

En approfondissant l'emploi de cette methode pour le calcul de la poutre
Vierendeel, eile s'est montree des plus fecondes. Elle nous a permis de
ramener le calcul d'une poutre de hauteur variable ä la Solution d'equations
ne comportant chacune qu'une inconnue. Chacune de celles-ci s'exprime sous
forme d'addition de termes ne contenant que des rapports simples, calculables
avec une precision süffisante ä la regle ä calcul. C'est donc une Solution
directe, rapide et pratique. Chaque inconnue s'exprime en fonetion de la
sollicitation exterieure de la poutre et de coefficients qui ne dependent que
des dimensions de celle-ci et de l'etendue des goussets. Ces coefficients
peuvent aussi se calculer directement dans la methode des systemes
equivalents oü ils trouvent une interpretation concrete.

x) Bibliotheque scientifique beige, No. 31, 1937. Liege, G. Thöne, ed.

Abhandlungen V
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Zusammenfassung.
Die Berechnung des gewöhnlichen Vierendeel-Trägers mit tn Feldern

läßt sich auf die Lösung eines Systems von m Gleichungen mit m
Unbekannten zurückführen, wobei jede Gleichung drei Unbekannte enthält. Eine
Ausnahme hiezu bilden die Anfangs- und Endgleichungen, die nur zwei
Unbekannte umfassen. Die Lösung dieser Systeme führt zu empfindlichen
Berechnungen. Um eine genügende Genauigkeit zu erreichen, sind die
numerischen Rechnungen mit zahlreichen Dezimalen durchzuführen und, da der
Rechenschieber für diese Genauigkeit nicht mehr genügt, muß die
Rechenmaschine verwendet werden.

Am Ende der im Jahre 1937 veröffentlichten Abhandlungen, betitelt: „Die
statisch unbestimmten Systeme" *), haben wir (Seiten 210—214) eine
Berechnungsmethode für Vierendeel-Träger angedeutet, die sich auf die Methode
der gleichwertigen Systeme stützt und die als Anwendungsbeispiel

diente. Diese Methode verwendet insbesondere die Elastizitätsellipse
eines elastischen Elementes, dessen elastische Eigenschaften sie darstellt.
Alle Systeme mit gleichen Elastizitätsellipsen können einander ersetzen, sind
somit als gleichwertige Systeme zu betrachten.

Diese Methode hat sich für die Berechnung des Vierendeel-Trägers als
sehr zweckmäßig erwiesen. Dank dieser Methode kann die Berechnung
eines Trägers mit veränderlicher Höhe auf die Lösung von Gleichungen,
von denen jede nur eine unbekannte enthält, zurückgeführt werden. Jede
dieser Gleichungen stellt sich dar als eine Superposition von Ausdrücken,
die nur einfache Verhältnisse enthalten, welche genügend genau mit dem
Rechenschieber berechnet werden können. Es handelt sich also um eine
direkte Rechnung und praktische Lösung. Jede Unbekannte drückt sich
aus in Funktionen der äußeren Belastung des Trägers und von Beiwerten,
die nur von den Abmessungen desselben abhängen und von der Ausdehnung
der Knotenbleche. Diese Beiwerte können auch direkt mit Hilfe der
Methode der gleichwertigen Systeme berechnet werden, nach der sie eine
tatsächliche Auslegung erfahren.

Summary.
The design of an ordinary Vierendeel girder of in panels is referable to

a system of m equations with m unknowns, each equation containinjg three
unknowns except the first and last equations which contain two only. The
Solution of such a system involves intricate calculations which, to secure
sufficient accuracy, have to be carried to many decimal places; for this pur-
pose the slide rule is inadequate and recourse must be had to a calculating
machine.

At the end of the publication which appeared in 1937 under the title
"The Statically Indeterminate System"1) we have explained, on pages 210
214, a method for the calculation of Vierendeel girders which depends on
the method of equivalent Systems and serves as an example. In
this method use is made, in particular, of the ellipse of elasticity representing
the elastic properties of an elastic element. All Systems having the same
ellipses of elasticity can be substituted for one another and are to be re-
garded as equivalent Systems.

J) Bibliotheque scientifique beige, No. 31, 1937. Liege, G. Thöne, ed.
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The application of this method to the calculation of Vierendeel girders
has been found very effective. In this way the calculation of a girder of
varying depth can be referred to a Solution of equations containing only
one unknown each. Every such equation is formed from a combination of
expressions of simple relationships which can be worked out with sufficient
accuracy on the slide rule; a direct calculation and a practical Solution are,
therefore, obtainable. Every unknown is expressible as a function of the
external loading of the girder and of coefficients which depend only on the
dimensions of the latter and on the extensions of the Joint plates. These
coefficients, also, can be calculated in an actual design by using the method
of equivalent Systems.
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