Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 5(1937-1938)

Artikel: Calcul direct de la poutre Vierendeel par la méthode des systémes
équivalents

Autor: Marneffe, A. de

DOl: https://doi.org/10.5169/seals-6161

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-6161
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

CALCUL DIRECT DE LA POUTRE VIERENDEEL PAR LA
METHODE DES SYSTEMES EQUIVALENTS.

BERECHNUNG DES VIERENDEEL-TRAGERS NACH DER METHODE
DER GLEICHWERTIGEN SYSTEME.

THE DIRECT CALCULATION OF VIERENDEEL GIRDERS BY THE
METHOD OF EQUIVALENT SYSTEMS.

A. DE MARNEFFE, Professeur a "Université de Liége, Belgique.

Introduction.

Le calcul de la poutre Vierendeel habituelle de m panneaux se rameéne
a la solution d’un systeme de m équations étagées a m inconnues, chaque
équation comprenant trois inconnues sauf les extrémes qui n’en comportent
que deux. Nous sommes parvenus a exprimer sous une forme relativement
simple ’expression directe de chaque inconnue en fonction de la sollicitation
extérieure de la poutre et de coefficients qui ne dépendent que des dimensions
de celle-ci, qui peuvent donc se calculer directement et dont nous donnerons
une interprétation concrete. C’est ce résultat que nous nous proposons d’ex-
poser dans ce mémoire.

Cette solution est basée sur la méthode de calcul des constructions hyper-
statiques utilisant 1’ellipse centrale d’élasticité d'un élément
élastique dont elle représente toutes les propriétés élastiques. Ne pouvant
reprendre ici I’exposé de cette méthode nous sommes obligés de renvoyer
le lecteur a notre ouvrage intitulé ,Les constructions hypersta-
tiques‘?t) mais pour sa facilité nous reprendrons cependant les définitions
des notations utilisées.

Soit ds la longueur d’un élément d’arc, de coordonnées courantes (&, #),

. . . L ds
dont la section présente un moment d’inertie: /. Alors d o = i est la masse

élastique de cet élément d’arc.
On peut aussi envisager (fig. 1): la masse élastique totale de 'arc GG, :

S
o = [do; son centre de gravité C,, de coordonnées (x’, y’) obtenues par
0

le calcul des moments du ler degré de ces masses; ainsi que leurs moments
du 2¢ degré, analogues a des moments et produits d’inertie, pris par rapport
aux axes coordonnés OXY':

S ) S
Ie = [ n%do lyf:f§2d0 _/x'y'::J'EndU.
0 0 0

1) Bibliotheque scientifique belge: No. 31, 1937. G. Thone, éditeur a Liége, et
Dunod, éditeur a Paris.

Les numéros indiqués dans le texte se réferent aux paragraphes et formules de cet
ouvrage.
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Ces valeurs définissent une ellipse dite el 11 pse d’élasticité de larc,
et si les axes coordonnés sont les axes principaux C, xy de cette elhpse
passant par C, elle prend le nom d’ellipse centrale d’élasticité
de l’arc.

Soit w, v, v les moments de flexion, efforts normaux et efforts tranchants

qui se produiraient sous laction ‘de charges extérieures dans les diverses

sections G’ du systéme isostatique

S de réiérence. Ce systéme est ici une

%) poutre reposant librement sur deux
appuis G, et G,.

Les valeurs définissant la réaction
complémentaire hyperstatique de I'arc
R, sont:

= moment de cette réaction
par rapport a l'origine des axes =
R,-d. B et C projections de cette

Y

»
5
X
Q
-
>

| 1 réaction sur les axes OY et OX.
0 6 6 + Ces valeurs, inconnues hyperstati-
Fig. 1. : ques, sont données par les équations
générales (no 23).
Ao+ Bxo—--Cyo= — Judo+ (v, — w,)
Ax o+ Bly—CJlyy = [uéda— [vo? %sﬂ do-——[tof %é:do
(23) + (Vo — 0o %) — (v — wy X%y)
: . ., dé ,dy
Ay'o+ BJyy—Cly=— fuydo+ jro? s do—|v 7d0

— (g + 0opo) + (1 + 0, yy).

En appelant # le déplacement horizontal de la section de P’arc indiquée par
I’indice.

v son déplacement vertical,

w sa rotation.

Si ’on choisit comme axes coordonnés les axes principaux C, xy de 1’ellipse
centrale d’élasticité de l’arc, alors C, et 0 se confondent et ¥ = y =0

Jey =0 [y etlp, devxennent l.et], et les premiers membres des equatlons
(23) deviennent (24)

‘ Ao = —[Judo + (v — 0,)
(24) Bl, = — [uédo — (etc.)
l —Cly = — fuydo + (etc.)

Lorsque plusieurs troncons d’arc se font suite on peut les considérer comme
ne formant qu’un seul arc dont on peut rechercher ’ellipse centrale d’élasti-
cité par voie de sommation. C’est ce que nous appelons ,combiner les
arcs en série‘.

Tous les systemes ayant méme ellipse centrale d’élasticité sont identique-
ment déformables et peuvent se substituer I'un a Pautre au point de vue des
déplacements élastiques de leurs extrémités. Ce sont des systémes dits
séquivalents*.

De méme deux points peuvent étre réunis par plusieurs arcs élastiques.
On peut substituer & tous ces arcs un arc unique ayant méme ellipse centrale
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d’élasticité que tous ensemble donc équivalent. La recherche de cette ellipse

est ce que nous appelons ,combiner les arcs en parallele‘.
Les formules nécessaires a ce sujet sont données aux numéros 47 a 51

et 70—71 de I'ouvrage précité.

1. Sollicitation d'un cadre trapézoidal, panneau isolé d'une
poutre Vierendeel de hauteur variable.

Soit a b &’ @’ (fig. 2) un panneau trapézoidal isolé de la poutre Vierendeel,
tourné de 90° dans son plan, de hauteur =41 et dont les longueurs des cotés
paralleles a «’ et b & sont respectivement 7, et /4.

Nous le rapportons au systeme d’axes 0 x’ y’ dirigés comme l’indique la
figure 2, avec ’origine 0 en a.

sy’ 1
1 o '
/'; !
e [f
! 7 T
|
2
i
!
l Ve
T X’
0\a
My Xe
hs |

Fig. 2.

Soit ¢ et ¢’ les inclinaisons des cotés a b et @’ &' sur la direction 0y,
le signe des ¢ étant pris dans le sens trigonométrique. On a alors la relation:

h, — hy=— 1 (tg ¢ — tg ¢’). Nous supposons ce cadre sollicité (voir aussi la
figure 3):
1° par un moment de flexion M, extérieur agissant au droit de & & et

se décomposant en un couple de forces + %‘: appliquées en b et &’;

2° par une force 7 appliquée en & parallelement a & 6’. Nous adoptons
comme systeme de référence celui dans lequel a «’ est coupé en a et reposant
en a et « sur des appuis extérieurs, fixes dans le sens 0 y’, mais élastiques
dans le sens 0 x’. Les réactions des appuis sont données par: M, == M, T 1
soit selon 0y’:

en . - @3 —_— Aﬂ — Z—}:‘ et en a,- Ma
T e T he C Ttk
et selon O0x;, T se partage entre a et « soit en 7, et 7, en sorte que
I +7,-+T/=0.

C’est une hypothése que nous pouvons prendre comme point de départ
ou sollicitation de référence, nous choisirons plus loin 7, et 7./, en vue de
simplifier la solution.
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Les sollicitations isostatiques des barres sont alors

barre ab: ¥ = —y'tge Yéb:ﬂ% Xar = T
Uap =) (%% tgop — Ta)
barre a't': X = h,—y'tg¢’ Yo = +£4" Xy = To
a

(141) sy = — (ﬂag tg of -+ Ta:)

barre b6': v =—Ty r:~%4f + //wl—:

Uppy = l(jltgq° —T) (% —%/Ibb>x'
barre aa’: v =20 T =20 Ugew = 0

Les caractéristiques élastiques des barres sont:

barre masse x' V' Iy I, sy
ab aab:mﬁow S gp 4 larj":f Lstg e Ltgy
bY | 0y = g’b ({Zzlf—lvtgqa): A} 0\ %%‘ 0
aa | 6,= g;’; ' %’ j 0 | 0 ]a:o;;,:z:_gl 0

Remarque: A, 4/, /,’ sont les longueurs réduites en tenant compte de 1’influence
des goussets qui se fait sentir également dans le choix des valeurs des coefficients v,,
Yy, Va5 (vVoir formule 38 et 39 ouvrage précité).

2. Déformations du portique isostatique ouvert.

Ces déformations sont données par les termes en u, », r des équations (23)
mais nous pouvons d’abord négliger l'influence des termes en » et 7 vis a vis
de celle des termes en u. Dans ce cas il nous suffit de calculer fudo, fundo
et jutdo.

Le probleme se simplifie aussi beaucoup si 'on adopte par raison de
symétrie

o.p = 0/, Cest-a-dire i,, cosg = i/’ cos ¢’ (143)

cela revient a adopter le méme moment d’inertie réduit pour a & et ' &' On
a également la relation

he—hy = — 7 (tgp —tg ¢'). < (144)
Si nous appelons u; et up, les valeurs de u en & et &', il vient: en envisageant
les diagrammes triangulaires des u (voir fig. 2):
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M Op Hp® Oplip> U
do — —
.r(u g rab 2 + 2(‘le—[.lb’) 2(‘llb—“ ‘llb) + O-tlb 2
On constate que si 'on pose u, =— upy, il vient: fudo = 0, a cause de la

symétrie élastique de a b et a’ &', et aussi: [undo=0. Nous pouvons donc
nous imposer cette condition pour déterminer notre systeme de référence
et en déduire les valeurs a attribuer a 7, et 7,/. Ceci se justifie par le fait
que nous négligeons les déformations longitudinales des barres aa’ et b &'.

La condition u, = — u,, se traduit par:
A (ﬂ" tgp — Ta> == 4 <Aﬁ tgo’ + Ta')
; M,
soit hA(tgqa-i—th): To— Ty =T+ 2T,
a
- - r M, , T M ,
doit To=—5 + 5, (1gp +1g¢) e To=— 5 — JE(gp+1igy).

Dans ces conditions les sollicitations par flexion des diverses barres s’ex-
priment en remplacant 7, et 7,, par leurs valeurs:

M,—M Ma(hg— hs
tab = 3J' [ (tg‘Pﬁ“tg‘P)]:% [ 7 — Ta(»-l——#)] =
Y ks (Ma _ %)
24 \A, hy

(145)

i (Me M)
A \h, he

| " |
Hay = %y’[TJr h (tgoﬂ—fgw)] = “—yz 1

M
torr = % [ha— (1€ @ + tg ") — 2] (72 hbb)

Il restera a calculer j,ufda pour ces diverses barres.

Dans cette expression £ est 'abscisse des éléments d o prise par rapport
a 'axe 0y mais comme [udo = 0 on peut le calculer par rapport a un axe
parallele a 0y’, a une distance quelconque = x,.

En effet soit & = x'— x, alors [uédo = [ux'do—x,fudo=[Jux'do
On obtiendra pour a & et &’ & en conservant 'axe 0 y’:

b
M, My K
ja'“ab X doy = (Z; b) 23 j X'y dog

b
Pour ab: x' = —y'tge ‘x'y'do:———tg(pjy"ldo‘:—tg(p
s a 0

GabA. (1 + vab>
4— Yab

v A A
Pour a't’: X' = h,—y'tgq’ j ’x’y’ do=h, [y’do — tgqn’j’y’zd(f =
a J0 0

O‘L’Z” . , Oap A2 (1 + Vab>
ha 5 tgo 4 v
Pour 60’ Up = “’“.“b,—-— gb(h,_k Ahdb)
a b

et ici pour simplifier on choisit I’axe par le milieu de 60, il vient:
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2up . (Ma M, j”' (M M,,) O hp?
S 0 = — — — — et "Edoy = — (2 —T0) 0%
L hy 3 e /Zb) b‘“bb $d0p ke he/ 4w

On obtiendra donc par sommation, pour un axe quelconque paralléle a 0y
b & b
—_—y = j‘uédo = [yé‘da + j yEdﬂ—J ukdo
Ja b a

M, M\ [ 0php? owh 1+ », n\
”:< - )P@;+ §b@%+nﬁgfugw—@wm

ha hb
1 g - ! ) —_—
Or 2#h,+ (_f 1ab) Ltgp—tgq) = 2h, + (li"l”) (o~ ha) = ha Vap 1 s Vap +1
Vab Vab Vab Vab

et en adoptant les notations suivantes:

2y = ka(”“j_l-) + /u,(i”ifr Nooan= /za<"""“) s (”"”“1) (146)

Yab

ab Vabp Vab
; hy b’ p ha ha
AR LI Iy = Tt hata (147)
o M
il vient y (’l‘f _ /Tb) N (148)
a b

3. Caractéristiques élastiques du cadre fermé.

Déterminons ’ellipse centrale d’élasticité du cadre complet abbd’ .
Sa masse élastique totale = 6, = 0, -+ 6, + 20, (149)
Soncentredegravité 0, de coordonnées x’,, y’, par rapport a0 x’' y’

Op+ Ogp ’ fltg

; A N Op+ 0 , ,
(150) o= 24—~ xi="'- S (tg o +1g¢) — " =}[hayeltgpttge)]

Nous prendrons ensuite ses moments du second degré par rapport a des axes
orthogonaux 0,xy passant par ce centre de gravité.

;oA

v

Le = 2 Iap + 200 |- — yo) + op(h—pl)? + Gayl?
2 .

. , .0 o 4 , L Og—0C
Or h— Yo = A Oa + Oab = — Ve = o ¢ b
Oc

2

A , 2
Lee =2 I + 2782 [O-ab(ﬁa_o'b)z + ng(‘ia + 0'ab)g + 20, (Ub + O'ab)“]

et simplifiant:

A2
Iee = 2 Inpp + 2. [O'a(O'b + O'ab) —+ Ob(()'a + Gab)] (151)
4 ]‘ ’ ’ z‘ 2’ ’ )., ’ ’
~Jye = lan g ¢+ Lo tg @'+ %b(i —ye)(err itg (p)~(7,,b 5 ——ye) (ha— itgqp ~xe)

)b—ye' ’ ’ y;zt 7
— 05 [ M(tgp+tg¢) - x] + 0.5 (18P +tgy)
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et il vient

_/xye = Ixe ' %(thQ + tg(pl) (152)

! : , A 2 A /\ 2
be = L1820 + 18 9") + La+Io + 0| (x4 5 tg0) + (ha— 3 tgg’—xt) |
h ’ 2 ha ’ 2
+ 0y (—21’—~xe-—— ltgqo) + o, (—j —xe)

= L (tg* p+1*¢) + lat I + 5" 5 lh ho—yi (i) (g P+ g ) +-~—-(tg ¢ +1g’ ¢)]

RS

et apres transformation et simplifications:

a hah 242 5] n9
lie = Io+ Tyt Lo (14 va) (17 9 +18% ') + “220 %0 4 = (04,05 — 0s%) (tg 9 + 12 )
e

](tg99+fg99)

(153)

Calculons encore I’expression suivante qui se justifiera dans la suite:

[re - Iye_ & — ]ye _‘[xe' lei(tg(p + tg(p,)z

Iye
Oap o 1
]re = Ia -+ Ib + b2 b ( T

””)(tgw tg ¢')*
ha— ho)? ]

Vab

Le =1Io + Iy + -"f”’[(/z + hs)® + (

(g — ho)*
Vab

Or: (/Za+hb)2—{— :2/la/l;z'—l—2/2b/l1;

2
e =10+ Io + oo + oo | = Lje— {xye (154)

4. Réactions complémentaires de fermeture du cadre.

Pour pouvoir refermer le cadre sollicité et ouvert en « il faut appliquer
sur les levres de I'ouverture des forces égales et de signes contraires et les
composantes agissant sur a, extrémité de ab, sont 4, B, C, si on les exprime
par rapport aux axes 0,xy, fig. 2. Elles se déduisent des formules (23) qui

deviennent ici:

Ao, = ~fudo =0 A=0
(155) B[ye" ijye - “jﬂfdﬂ —v { donc _/xye B ,
BJye—Cle =-fundo=0 =8 » #“i(tgw+tg¢) (156)

et alors

2
-V
B[Iye—{—xz]:Blre:V donc (157) B=—| et C:—‘Q‘"]’;tg(}f)thg()Ol)

xe -
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avec (148) on obtient finalement:

B (44_‘, M,,) Iy + Loy
o Lo+ 1o+ 1op+ Iop

(M, Mb) . Y
= y'{=— —="]| si on pose y =" -F
7 <h{l hb p 7 Ire

(158) o

5. Sollicitations totales des barres du cadre fermé.

On les obtient en ajoutant les effets des réactions complémentaires aux
sollicitations isostatiques (141) et (145)

X=X +C=X—7 (tgp+1g7)
Y=Y 4+ B
M= u+ Bx—Cy =u-+ B[x'—l—% (tgp +tg¢) ——/;a] (159)

Soit pour chaque barre apres simplifications:

Barte ab Vi = Vi + B = Mo Mo, (160)

/Za hb
’ B ’ T 1 ’
Xab = Xab — §(tgqo +tg¢) = — 5 — Ya- 3 (tgp + tge’) (161)
1M, Mb) iy , i1
Mas = o7\ — )= 7 =) ha + (1= 7}y o] (162)
On voit que M,, s’annule pour une section donnée par y’, tel que

S hay
b=y (1)

Barre o'’ Yoy = — VYoo  Xoy =-- _sz + Yo - 2 (g9 + tg¢) (161)

Moy = Map

Donc en résumé, si ’on fait une coupe complete dans le cadre parallelement
a 0x et si on suppose enlévé ce qui est au-dessous, les sollicitations dans
les membrures coupées sont les suivantes:
Les moments de flexion sont égaux et de méme signe: M,, = My » (162).
Les composantes des efforts selon Oy sont égales et de signes con-
traires (160). ‘
Les composantes transversales selon 0.x sont inégales mais leur somme
- équilibre ’effort total 7 car on vérifie par (161) et (161’) que X,, + Xpp =T.
Notamment aux extrémités des barres on obtient:

en b y’:)., Mb:_’_(i__zly)hb(%’_//‘gb_b) ] |
, Che (Mo M, - (163)

6. Montant fictif équivalent a un cadre.

Supposons qu’au cadre abb’a’ soit accolé un autre cadre analogue dont
la barre aa’ constituerait un élément commun. On peut considérer que le
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ler cadre constitue un montant fictif du second et on peut se proposer de
calculer les caractéristiques élastiques c’est-a-dire les caractéristiques de
I’ellipse centrale d’élasticité du systeme équivalent au portique abb'a et a
la barre aa’ dlsposes en parallele entre les deux points aa’.

On peut donc a cet effet utiliser les formules établies dans I’ouvrage
précité pour la combinaison des arcs en parallele (47) et (51).

‘Nous conservons les axes Ox’y’ et soit o4y X'uey Viaes I'vaes I'yaes I ae 1€8
caractéristiques de ce systeme équivalent. ~

Moy P
/7/7-7 //’J N

To-s

Fig. 3.

Comme on suppose que aa’ est indéformable longitudinalement on ob-
tient de suite y’,, = 0 /'y, = 0 donc J,. = 0 et il reste a calculer /',
que nous pouvons écrire simplement /’,, par la formule *)

1 1 1 Jiya®

—— = . - I = — 492
(164) I 7 + I avec [, va I
I’,, se rapporte uniquement au portique ab&’a’ dont il convient de calculer
les caractéristiques élastiques en posant simplement o, = 0 dans les valeurs
établies pour le cadre (149 a 154)

r 0b+0ab ' k@ o :Vé ,

(165) | o0 = 0p+ 200  yo= 127 Ga xp= ot Y (tgg + tgg)

| o= 1Ty + Iy + 1Igs
On obtient donc alors

(166) »_ a- Ira _ 1a(ls + Loy + I2p)
a ]a + I;a Ia + Ib + Izlzb + ab

. ) ) h e s . .
On obtient aussi facilement x’,, = 42’3 par symétrie élastique. On peut se dis-
penser de calculer ¢’,, qui ne nous sera pas nécessaire dans la suite.

*) Les formules (47) et (51) permettent d’écrire lorsque

Yoe = 0 bf—ce =0 A — e
T =0 be—af=0 1 alors d(ae— b?
D’autre part I, =20 donne % =0
et alors e- o
e 4 A b II . a ) 82 - 1
Oae = ¢ _p2 ae T o yae T ge—b®  ae— b2 e
1 1 1
donc e = -, = = -+
lyae Im I(l

Abhandlungen V 16
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7. Cadre équivalent a un panneau d'une poutre Vierendeel.

Soit fig. 4 une poutre Vierendeel constituée par une série de cadres
trapézoidaux accolés et soit le cadre » compris entre les montants numerotés
(n — 1) et n que nous reproduisons (fig. 3). Soit 7, _, la résultante des
forces extérieures appliquées a gauche du montant (n — 1), soit Q,_, la
force extérieure appliquée en (72 — 1) et soit 7, la résultante des forces ex-
térieures appliquée a droite de (r—1). Ona 7, =7, _, + Q,_,. Surla
ligne d’action de 7, _, prenons un point G, _, que nous relions aux noeuds
(n—1) et (## — 1) par deux barres indéformables articulées a leurs ex-
trémités. Ces barres apporteront en ces noeuds des forces dont les compo-
Mn-1

santes horizontales seront égales et de signes contraires, soit - , et

n—1
dont les composantes verticales égaleront ensemble 7, _,. A celles-ci
s’ajoutera la force extérieure Q,_, appliquée directement en (2 —1). Si
on néglige les déformations longitudinales des montants il n’est pas né-
cessaire de déterminer chacune des composantes verticales appliquées en

T
//‘
o
) A, Aney hn
lo\ [(;r-r}e Zne
\}\
ﬂ-\—_____‘—
n
Fig. 4.

(n—1) et (¥ —1) et on peut supposer la résultante totale 7', appliquée
en (n—1). Cela revient a choisir le point G, __, au niveau de (7’ —1).
Nous pouvons de méme relier un point G, de la ligne d’action de 7', aux
noeuds 7 et n’ par des barres indéformables et articulées a leurs extrémités.
Nous pouvons aussi choisir (G, au niveau qui nous convient le mieux pour
simplifier nos calculs tant que le cadre » est supposé ouvert en n. Ce cadre »
sera alors sollicité exactement comme le cadre type ab&d’a’ représenté fig. 2
tourné de 90°, avec cette différence que le montant (# — 1) n’est pas constitué
par une barre unique mais par tout le troncon de poutre de 0a (z — 1) qui se
trouve a gauche et le montant » est constitué par tout le troncon de poutre
de n a m se trouvant a droite. Nous devrons donc remplacer ces troncons
par des montants fictifs équivalents et présentant les mémes caractéristiques
€lastiques que ceux-ci. La sollicitation interne du panneau # sera alors donnée
par les formules (146) a (166) ci-dessus établies pour le cadre abd’a’ en
remplacant les indices « par # et b par (n — 1). Il vient en utilisant les
formules (165—166) et en appelant /', _,), le moment d’inertie ¢lastique
du montant fictif équivalent a toute la partie gauche de 0 a (n —1), 17,
celui d’équivalent a toute la partie droite de » a m et écrivant /I, au lieu

de /,,:
I = Itn_yye + Ln—1yn + Lin-1yn (167) It = dgrvye + Tnne) + Ta(nan)
[ * 1, 1 & ];1, 1
e = 2" avec I, =, 168 L., =-2"*1 avec It =]
ne 1” + ]’l oe o ( ) ne 1” + ]’l+1 me m
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et pour le cadre équivalent complet:

]rzt = 1(,n—1)e -+ 1(’,,__1),, = ](’;1—1)/2 + Ir,z,e (]69)

avec les conventions suivantes déduites des formules (146 et 147)

, —yynhny b . —iyn bty
Lu_yyn = 2ln=0)m 4,, LIl (170) Ly = ff!iﬁéli'}ﬁl

avec 20, = h”;;(i4- 1 ﬁj +-hn(1~Mf~1 ) (171)

Y(n-1)n

zﬂ:wJL+ 1~~~)+’2n~1(1“‘1“)
Vin-1)n Vin—-1)n

Alors la réaction complémentaire due a la sollicitation s’exercant dans le

cadre équivalent est donnée par 'application de (158)

o (Mn_ M) st l
hn 12/1~1 [nt

(172) B, =-

7 Cn:~Bn-%(fg%+tg9°é)
nt

Si nous appelons N’, la composante horizontale, c’est-a-dire parallele a I’axe
de la poutre, de 'effort longitudinal dans les membrures (n — 1) #.

On a N, = B, — M, ou bien N, Ly = v, — My L
/Zn }lﬂ
’ M — 7 ’ M ” /4
donc — ]V,Z Int = ./;’L£ ([(nfl)e -+ I(n—l)n) + h_/z (Ine + I(n—l)n) (173)
n-1 n

8. Influence de la déformation d’'un panneau sur le
panneau voisin.

Comme en réalité la résultante 7, _ , exerce son action aux noeuds (n — 1)
et (W — 1), non par les barres articulées mais par les panneaux précédents
de la poutre il en résulte que ces panneaux (n— 1), (# — 2) se déforment
et cela influencera la déformation du panneau 7. Il faudra donc tenir compte
de cette influence due a la suppression des barres G, _ ;.

Placons-nous d’abord dans le panneau 1. L’effort sollicitant le montant
11" est B, et C,, avec /,, == I, et J,,, = 0. Il vient pour I'expression de v’y,,
déplacement horizontal de 1’ par rapport a 1, dit a la sollicitation interne du
panneau 1:

V,l N ’ — . 1 oy {’_L_e
g, dou Va=vie =y (174)

1
i + 1’1 ! 1,1

Ce déplacement v, viendra s’ajouter au v’, dit a la sollicitation du second
panneau. Il en serait ainsi successivement de panneau en panneau. Appelons
donc v',; le déplacement v’ apporté dans le panneau z par la sollicitation -
interne du panneau / seul, et soit alors v’,, le déplacement v’ dans le panneau
n dit a sa propre sollicitation (148).

Les v’ exercant successivement leurs effets d’un panneau a 'autre on
aura successivement:

V,21 p— Bl [1 or Bl =
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Var _ 1o V31 — ﬁf [,2%’___ etc. soit Kf,”-— 1;3 li1)e In_1)e (175)

— - 7 o g ’
v’ll 1’1 v’ 11 11 ] Ivii It I[+1 1,’2,1

”

et de droite a gauche, en utilisant alors les indices

Vinym _ dm-ye  Vin-nym _ Jim_ve  Uim-2e
V”r’l m [f,"l v””l m [’,7,1 1;;‘ -1
"_"f:_" - ,{”? . ,](l;j,tlle L e (175)
Vii vy Tnye I;
avec
’ M M ” M'—- M. 4 ” I
Vi = (lz,-l e El—ll) (1(1 et i 1)[> (176) | vii = (7;;_11 — El) (lie + I(i_m‘)

Pour obtenir le déplacement total v,, dans le panneau » il faudra donc faire
la sommation des déplacements v’,; et v”,; dus aux déformations de tous les
autres panneaux de part et d’autre, en écrivant v/,; si i<<n et v, si i>n

i=n-1 i=n+41
Vpt = Z Vai + Van + 2 Vi (177)
i=1 i=m
On en déduira alors B, = Yt et N, = Mu _ Vne
[fzt /ln Int

M , , M . " n—1 n+41
— Nyl = _’ n—1 (](,,_l)e + 1(,,_1,,)> -+ 77"? (]ne + 1(rz~1)n> 2 Vi — 24 Vi (178)

(7 n

9. Sollicitation totale d'un panneau.

On peut simplifier expression de N,. Pour cela examinons la somme
des termes relatifs a trois panneaux consécutifs. Soit d’abord les panneaux
(n—1), n et (n-+1), la part de N, y relatif est donnée par

MIZ

— Va(n-1) + = It — Vi — Vi(nyry qui développé donne:
M,_ 1 M, ) ) 1(’n-1)e Mll—l ( ’ ’ )
— Iin_oye + I, s Iin_ I
(h’H h s ((n 2)e + lin—g)(n-1) I + Fon s (n-1)e T din-1)n
Mrz / ” ” > (Mll Mn+1> ( ” " ) III:E
e+ Lyn) —\ 5" — T Irye + 1 .
-+ h[z ( ne + (n-1)n /Z,, hn+1 (n+1)e 1+ n(n+1) In+1

M .
et en groupant les termes de méme b il vient:

Mo, , In-iye  Mu_y [ [
+ & 2(1(n—2)e+1(n—2)(n—1)>‘ (”; X + l (n; 1)e(1 1(;z~2)e 1(n~2)(n 1))‘*‘1(11-1);1]
hn 2 n-1 h n-1 1]2-1
Iill'e Mn+1 .

" " " ” » ) 1
l+ v I(n 1)n -+ [" ( 1(ﬂ+1)e_ n(n+1) + 1n+1)]+_—"(1(n+1)e+ 1n(rz+1)) ' 7’5—

by

Or d’apl‘és (167) ]’_1 — 1(,n-2)e — 1(’,,_2)(”_1) — 1(';1_2)(,1_1)
et Iy —Igyye — i) = Ingn)
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et alors il vient:

Mrz~2 ’ 1(,n-1)e (Mn—2 ’ M ” ) I(n—l)e
i T SR Loyin kil SNy /48 Hn-1)e
+ Rhu_s lin2re In_y + Rus f-8) (1) + N G 2)(” ) 1n—1
My, My,
+ (kn_ll I(n—l)rz + “/27 [(n~1)n)
Mn n+1 ” ) Ir’z'e Mn+1 ];;e
+ (/Z /z(n+1) + +1 1n(n+1) In+; + hlz+1 ]n(ﬂ+1) In:
. ’ Mn_._ ’ Mll ”
et en adoptant la notation Vn = - "2 Kn—yyn + e Iin1yn (179)
n—-1

on obtient:

M ](,Z_l)e ](” 1)e [;;e Mn+1 1;;8
1 T Vi v T 1
hn-2 (n—-2)e” ]n~1 + Vn 1 [nAI + + n41 1n+1 + -«h_n—:l (n+1)e1n+1
Si nous envisageons a présent deux termes consécutifs tel que v/,; et v/,,; 1)
' M; M;_ 1)< ) Lo Line Lo vye
_— = 1__ [__ RN S
ni — (hi hz . (i—1)e 1 (i~1)i Ii, 1(i+1) 1n~1
Mi+1 Mt)( ) 1(’i+1)e 1(’n—1)8
Vi — — [ + 7} : vy wans S LNE
n(i+1) ( }li+1 kz ie i(i+1) ](t'+1) 1”‘1

Les expressions (167) donnent encore
1(1—1)e + [(’i—1)i = I/ — 1(/;'-4)1' et 11',9 + Iil(i+1) —= [;'+1 - tf’(l'+1)
On peut donc remplacer ces termes 'un par l'autre et en adoptant celui
. A g M . U
dont 'expression comporte le méme indice que le " qu’il multiplie, il vient

en additionnant les deux terines:

M - ]{e M ’ ’ ” II,
[+ }l,ll k[(, 1)e + 1(#1)1\) [llT + ‘/’l—: (Iie = ]i(i+1) te ~+= [(t 1)i° ‘ITE)
Mi+1( ’ " )] 1(’l'+1)e I(n—l)e
Elaa Yy LA e L. -1)e
ki+1 ‘ i+1 7 Li(i+1) Ii+1 1”_1
et enfin
My, lip | (Miy M; ) I,
l‘l” 71;'1"1(14);: : 7;'7 “+ (/1; ) l(l—l)l + = /l 1(z 1)i ],
M; M; M; I; I
fr I+l ! ) “ oy ] (+v)e - fn-1)e
+ (fl i(i+1) + /l » (l+1) hz+1 i4+1 ];'+1 1;14

et en adoptant la notatlon v; définie ci-dessus (179)

M lie M; I L.
[“L}' 1(l~1)e "l’ it , + Vi — 2e 1z+1] (I,H)e e (n, Lie
hl—l 1(i+1) 1n~1

Dans la sommation totale il ne demeure que les termes v; et on obtiendra
donc:

hivy

I I I A
| Nolu = v, 2 ey g e Savey oy, | Sae

I, I, I
(1 80) 1” ’ZV 1 [II [’/n 1 [I/ 1’1 ’,1
v v 1 . oy e w b8 s (”’”‘2)" LA it 4
l + " + ik I'l+1 + e [n+1 Im-l + " 11z+1 Im
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Ce qui peut s’écrire sous la forme simplifiée:

f—=n—1 s .
e vee | S l<”} on prend {V'

181 — = . Lot
(181) NI ’;l Vi Vet %:H"t vi; | si i=> n|les rapports

Telle est la formule qui donnera pour chaque panneau » la composante hori-
zontale de l’effort N, dans les membrures. On constate qu’elle comporte
un terme par panneau et le principal est v,. Les autres termes vont rapide-
- ment en décroissant au fur et & mesure que / s’écarte de n de part et d’autre.
En’ pratique pour i == n + 3 ils deviennent négligeables.

10. Sollicitation des divers élémenis d'un panneau.

La connaissance de l'effort N, permet d’obtenir rapidement les solli-
citations des divers éléments d’un panneau. Les composantes horizontales
des efforts internes dans les membrures sont donc égales a N, et de

signes contraires pour chacune, soit -+ N, dans (2’ — 1) n’ et ——N,, dans
(n—1)n.
Les composantes verticales sont alors données par:
lunl_ __M Mrzl_ ( h hﬂl)
(182) ou l_ 5 (gw+tge) = =5 == F Nu((tgp+ 5

Les moments de flexion sont égaux dans les sections verticales correspon-
dantes des deux membrures et comme ils varient linéairement il suffit de
les connaitre aux noeuds. Dans chaque panneau nous devrons donc calculer
les deux moments: M,, _,;, et M, ., _ 1)

La formule (159) nous donnera:

’ 4 ll Nn hn MIZ
au noeud n: ¥=0 y'=0 u=0 M,n ) ——B, 5= g T g
o, ,  huy (M, M,H)
au noeud (n—1): xX=—Altgp y' = U=y (/z,, hor s et
hﬂ— M” MIZ—— h’z_ Mfl
Moyn = 25t (G = ) = Pt (Nt ) = — 4O+ N
On adonc | Mu_y) = — 3 (M + Nt ) Muinst) = — % (My + Nuyy 1) |(183)

On en déduit le moment de flexion a I'encastrement des montants

hn
m, = Mn(n+1) - Mn(n-1) — "2* (Nn - N/z+1) = m, (184)

Le moment est (4 m,) a la téte du montant et (— m,) au pied.

11. Procédé pratique de calcul : tableaux.

On proceédera par tableaux qui comporteront autant de colonnes verti-
cales que de montants ou de panneaux. Les panneaux portent les numéros
de leur montant de droite. On inscrira sur chaque ligne du tableau les valeurs
calculées des expressions figurant dans la colonne marginale.
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Le tableau 1 donnera les caractéristiques élastiques de la
poutre. Le tableau Il donnera lesrapports des déformabilités Kv'-f,f
(I' ii
et 5’? qui se calculent d’aprés les formules (175) en multipliant les rapports
ii
entre eux. '
Ces deux premiers tableaux sont indépendants de la mise en charge de
la poutre.
Pour chaque mise en charge alors envisagée pour la poutre entiere il

faut établir deux autres tableaux: III et IV.

Le tableau III est la suite du tableau I: mise en charge et sollicitations.
Le tableau IV correspond au tableau II olt 'on introduit les v,, selon les
diagonales et les multipliant ensuite par les rapports correspondants se
trouvant sur la méme ligne du tableau I1. Nous donnons ci-dessous un modele
de ces divers tableaux.

12. Influence d'une différence de température entre les
membrures.

En tenant compte d’une différence de température == 6, le coefficient de
dilatation étant », on obtient pour ’expression des déplacements:

v =— [u&do + 02(y, —yo)
u=—fundo— 0x(x; — x,)

Si nous faisons maintenant abstraction de la charge, c’est-a-dire posant @« —= 0,
il ne restera que les termes en 6.

Supposons qu’il s’établisse entre les membrures une différence de tempé-
rature 6 =0, , — 0, »» et que les montants prennent une température moyenne,
la température étant donc supposée symétriquement distribuée selon un axe
parallele aux montants.

Pour le cadre type complet ¢ bb"a a il vient: x,=x, et # =0 mais v
ne s’annule pas car pour ab on a f,,x (21— 0) et pour &b il vient
Oy pyx(0—12). Pour aa’ et b0": y, —y, = O.

Il reste donc v = 0,524 + Oppu(—7) = »x0..

Ce terme est indépendant de / et sera le méme pour tous les panneaux
d’une poutre si les membrures sont chacune a la méme température sur
toute leur longueur, c’est-a-dire: 6 = Ct. Il suffit donc de remplacer dans
Pexpression de B,, v/, par x0 1. Cependant si dans le calcul des caracté-
~ ristiques élastiques on a supposé E = 1, c’est-a-dire si ’on a supposé que

partout le terme F €té mis en évidence, il faudra en tenir compte en le

rétablissant et il faudra écrire

Itzt

et la formule générale (178) deviendra en posant E x 01 = v,

f=n—1 f==p ”
1% Vni

Nug e = 2 Vig * M’Ill_f_ Vio + z Vig » — (185)

F=1 Vii i=n+1 Vii

et si / est le méme partout ainsi que 0 alors v,0 = C'* et peut .se mettre en
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Tableau I.

A. de Marneffe

Caractéristiques élastiques.

Tableau 1II.

Mise en charge et sollicitations.

Ine

In
I

Ir;e ==

"
Ine _

Ln(n-1) = Oty - 4

,,l:[<’q~1),’ l‘](’lz..l)n‘{‘l,:(nAl)

I I+l

It,l’ - I;;e + Irll,(ll~1) + I(’n_l)n

h’ll hl’l/

In 1

- n
+1,

I

Ii.

Lo In+1n

I I
Lo+ Iniy

It = If’z+];z’e — [r’z~1e+/;;

(1) ( mMm ’_:1)
8 v v

ﬂyw{ -1
8 M, v -

Mz 1(’11—1 yn

Nn II,;(llal)

A, 0 (form. 210)

I I i
n 0 ‘ 1 i n m n f 01 n m
o ‘ . I
| ]
h, ... t ................. M, L
|
Vin-1yn + 1 L M,
by - - JAEE R W e kel U DU O OO T
V(n-1)n L hn
\
Yn—1)n — 1 ‘ My, ,
h, - -emURT 0 ahial o S ZO8N U FOUOS DN R N
* Vin-1)n ‘ hny (-a)e
, vt1 v—1 | | M, .,
hn - /ln —Q_V— hn+1 2, |77 R R e e 7:* Irz(n_l) """"""""""
. v+1 r—1 M, , M, ,
hi = h, 5;‘4‘&,2,1 W """"" Vip = _’;jl::l‘l(n—])n—l——il_,;,—llﬂ(n.—l).”” AR R R R I
1 Vai 5
On = == (B —ce) | 2y (voir tableau IV) ool oo foee
n 124
1
(L — ae) v -
O, - = e B e N LRl RN EE N EEEERY P . 123 »
(n-1)n itn-1)n COS @ — N, = i R
0, 12
1” — ——4—/;};;— ---------- — Nn hn """""""
, By b
[(n_1)n = O(n-1)n ’qu e — Nphy,_y |l
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Tableau IL

Rapports des déformabilités.

240

=1 2 | 3 ; 4 . n m
—_—— ’1‘ e e e ! 3 ——
! [ ‘ \
i—1 1 i [l’e ‘ Il,e IZ’e 1 V;ll
- —_ | el B Rt bbbt ieh bbbt " ----------------
‘ M I ‘ Vii
|
A lie - powr
l : ‘4;” r A=t 0020 [RANBEFIGERRIRTURETE « . rmmmmmmmmmmEEEmes
12 .[ | I o i<n
g | M B L 1 Be |
Iz Is ‘ I3 I3
|
| \ I3
4 | IS =t | S T
Is
5 V;;i .
L — pour I Z>m | ) N S
Vii
m .. [ cmsmmsnncsomsnsnns | vsompsssn cunnves ................................... 1
| !
I I N I }__,,fofﬁ, U e
s | | |
Tableau IV. Rapports des déformations.
% n=1 2 3 4 E n m
| i .
o ] ’ 1 ’
/ [ v
i—=1 v I L Vit e b i LA
h ‘ Vii
|
| I Le . pour
1 = 2 V2 e V2 V2 . s | V2 ......... i L e
JE Iz L i<n
I
3 ]é/e ]?:e 1
Vg « ... Vg » - 1% : Sy N A
3 5 p 3 | A |
! |
A4 | e V4 i ...................................
. V;;z . ‘
L 12} 7 pour L > | ... oo Vo e
Vii i
i
mo U DEUUURR Vi
. Vi |
2 Vl'ﬂ —_— PR — ‘ - — —
Vii
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évidence, il vient:

. i=n—1 r i=m r/
NRH:E"“[ IIRLNI ) - ] (186)

]nt i=1 Vii i=n+1 lt

et le terme [ ] se calcule par sommation des colonnes du tableau II.

13. Comparaison avec la méthode de calcul de Frandsen dlte.
par ouverture des mailles.

La solution obtenue par cette méthode est pour le panneau n*):

’13<X X)) — h3 K —Xa) = (b + b (My— 1 X,) - (18T)

lny

Avec nos notations et conventions nous pouvons poser:
hn .)v

—=2a — = O(n—
Ei, ? Ei,, te-1)e

i’ est ici la hauteur du panneau au droit du centre géométrique et est donc:
donné par

2
X,—=—N, deplusici v=3 donc / :%’Jf

Lo a2k, . 2hE 4 2hu b + 202,
Ve = 3 ¥ s et alors &, = 3 (on + fon )

De méme My est le moment extérieur au droit de ce méme centre et s’ex-
prime par:

2hy + hy g hn + 2h,

My = M, - M, ,
N 3 1 b)) T M 30 By )

Et alors:
3(/2;1 + kll—l) (MN— hr’z Xn) — Mn (2 hrz + hrzg1) + an1 (/l,l = 212)14-1) +
2Nn(h13 + hnhrz—l + hrzzvl)
L’équation (187) peut donc s’écrire successivement:
— Oy hrzz (er - Nn+1) + 04y hi—l (Nn_1 — rz) = O(n—-1)n [MIZ (2 h, + hn—1) +
Muy (b + 2 b)) + 2Ny (b + hubnsy + By)]

Un h,zl Nn+1 - Nn [UIZ h,zl + (7;1_1 h3~1 + 2 G(ﬂ—l)ﬂ (/Z,QI + hn hﬂ—l + /l,zz_l)] + Nll~1 O’Z—l h,zl_l p—
= O(n-1)n [M (2 hn+ hn-l) + Mﬂ—-l (kﬂ + 2/Z’l—l)]

h 2 h + h” hll-— 3 hn +“2/ZIZ—
IIZNIZ+1 Nﬂ [1ﬂ+lll 1+6(ﬂ—1)fl £—1_2~__i)‘+0(”_-1)n 1( 12 1)]+N’z_11n_1:
—_— /—Wf o ﬁ&@ifi’tﬁ 4 ’{*1 hpy (B +2 h”—L)
— }ln (’l~1)n 12 /Z”_vl (IZ l)fz ]2

Or en posant » = 3 dans nos conventions (170 et 171) nous obtenons

B — 2hn + huy h hn + 2k, 1 I __ O(a-1)n By by
g 3 n-1 — = 3 (n-1)n — 4 :
” O(n—1)n /zn hn
[n n.y) — T g

(n—1) 4

*) K. Kriso. Stabilité des poutres Vierendeel, Paris, Béranger.
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et finalement:

’ 4 M ” MIZ— ’
(188) N,z+11ﬂ"‘N,z(1ﬂ+1n_1+1(n._1)n+[n(n_1))+Nn,11n_,1 — *’l—”ln(n_l)‘l‘ “h—‘l‘ 1(,1*1),1 = Vu.
n n-1

Ecrivons Ina = I, + [(n—l)n < ]r:(n—l) + [n-l

et nous référant aux formules de recurrence no. (167) a (169) nous en dé-
duirons les relations suivantes qui nous seront utiles:

I Loy I
189 Ina — = 7 :In+[’~ n l/ln— _izl"z‘_fl‘* - In+1,n—
U0 e T A A s
" ’ ’ [n ]’
= ]IZ(IZ—I) an 1(”—1)8 =1 = Ip = 1—,’£
ne
De méme:
12 ] 1’/ 12
o n =1, 111:_£Z:1 n ]r Y — n — ’!Z " —
[na In_+_1",;&‘1' ] —1 + n l(,’,l‘__l.)_e et n+] 1” +“ ];;_}_1 ] +1,zg Int (190)
Alors P'équation type de cette méthode s’écrit:
[n—l Nn—l - [ndNn -+ InNn+1 = Vp (191)

Le systeme d’équations étagées a résoudre est donc le suivant:
— liaNy + 1} Ny = v,
Iy Ny — I3a Ny + I, Ny = vy
IyNy — I3 N5 + I3 N, = vy

I 9 Nm_og — l(mfl)a Np oy + Ly Np = Vi y

In-y Ny —— Ina N = Vm
lequel peut aussi s’écrire sous la forme:
/ v
~— N, + LN, =1L
" ha P
L 1, Vo
N, A N, + A Ny = 7.

/ /
2 N g — i) Nu_y 4+ Np = =

Iy - Tin_y )
[mn—1 Vin

e Nﬂﬁ - Nm = 5
[ma Zl [ma

Eliminant successivement les N en commencant par N,, il vient en addition-
nant les deux premiéres équations:

1 ( A ) A R Vo
e N =g

orici I =1, + Iy + Iy Le =1 +1; donc:
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— Uy + B)N, + I, Ny = vl 1 ° + v, ou bien:
1
1 11e Vg
—N. Nz == v F IR
2+12+12 ’ 111(12+12)+12+12

et additionnant alors la 3me equation étagée on a:

L _1_ (1 ]2 > N. + ]le —I— 1 +
L\ L+ B Ne =Nyt + B T L+ B
qui se transforme en:
’ . Il’e I2e 12e
— s+ B)N; + I3 Ny, = vy A + Vs VA + v3
Ainsi en opérant successivement on obtiendrait pour le panneau #:
He I L(n_
(192) — (I + ) Ny + IyNpyy = v, £ 28, JDe
11 12 In—l
123 [(nﬁl)e

I(n_ ,
+.-.+Vﬂ71 (”,l)e"ljvn:An

+V2 1, “wa e [ll*l

’
In

En procédant de méme en commencant par m on obtiendra pour le panneau
(n - 1) une seconde équation analogue soit donc un groupe de deux équations
a deux inconnues a résoudre:

’ "—(lrz +1r’z) N, +[nNn+1 — Atlz

Py

(193) , "
l_ + [nNn—(1n+1n+1)Nn+1 - An+1
et la solution donne P ’
Al’l A;,H-l ’ ” 1;;6
=L A+ App - 5o
N, — Iy t+ In+ Ty — _”_+ e Tniy
" Irz + [;z . lrz [rzt

1y In + Thyy Fig. 5

et 'on retrouve 1’équation générale (180) sous la forme:

"

(194) — N, I, = A, + Apyq - 1—]’3’1 qui apres développement de A, et A,
n+1

est la méme. Les deux méthodes sont donc identiques et se vérifient 'une

par Pautre. Celle basée sur les systemes équivalents a cependant I’avantage

de donner une solution directe s’écrivant au moyen de coefficients ayant une

signification concrete, et en outre elle permet de tenir compte dans les calculs

de l'influence des goussets par les valeurs choisies pour les o et les ».

14. Influence des déformations longitudinales des membrures.

L’ellipse élastique des troncons de membrures ne se réduit plus alors
a une droite et il faut envisager ses deux axes principaux qui seront donnés
par (voir fig. 5)
__o? A2 I A
Ix =00t Iy="2L — 9% =L =
X ¢ 4y 4vcos2<p avec ¢ S Cos @

Par rapport aux axes orthogonaux Oxy, d’angle ¢ sur 0XY on obtient:
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. A2 .
I, = Ixsin?q@ + Iy cos? ¢ = —i—v + 09?sin?¢

2

' . A
I, = Ixcos®’q + Iysin?gp = gﬂ'[ tg2e + 002 cos?e

. o A? "
Jy = (Ux—Iy)sing cosp = — 1 tgp + o00? sing cos g
Comme pratiquement ¢ est assez petit, il en sera de méme de sing et le
terme o sin ¢ sera tout a fait négligeable devant i. Nous pourrons alors ne
conserver pour les caractéristiques élastiques d’une membrure ab que les
valeurs suivantes:

Iop = 4, ]yab = I th(P + Oap Qab COSz(P ,/xy = — I tg(P

et il n’y aura de correction quelque peu sensible 2 apporter que sur la valeur
de /,,, (142) par ’addition du terme o, 9,5 cOs? @ et de méme pour /,, » par
0./t Oa & COSZ .

Les caractéristiques élastiques du cadre fermé (149) a (154) ne seront
modifiées que par ’addition a /,, (153) et /,, (154) du terme correctif suivant
que nous appellerons /",

"

Iy = 0Oap (gﬁb cos? g + Q,z,r p COS? ¢') (195)

Alors ce terme s’ajoutant partout a /., et /”,, il viendra:

Ie = lo+ o+ Lo + Loy + I (1906)

expression dont on se servira dans toutes les formules de recurrence (167)
a (169). Cependant le déplacement v (148) devra aussi étre corrigé par I’ad-
dition du terme contenant la déformation longitudinale.

v = -—j“ufdoﬁ (vFIJ/QQdG
J o ds
Ce terme correctif se calcule aisément:
dny [b - M, 1 2
i 02de — .. " d
jvdsg o= ) he cos ¢ COSE * Qav @ 0as

b’
M, 1 2 M, 2 2
= L' i, EO—S'QO + COS @ 0y y (— dog v) = h. Oab (Oab + 0 &)

Par conséquent ’expression (148) de v deviendra

L (Mq M)
T /Za ,Zb /

. M,
(]b + Iab) + /Z' Ogp (szzb + Qg’b’) (197)

p o - v
Nous pouvons obtenir ’expression corrigée de B =
re

a M ’ Ma 2 2
(e — 58) U+ 1) + . 0 s + €0)

B= " S - 108
[a+lb -+ ]ab +Iab+[ab ( )




254 A. de Marneffe

I1 vient alors pour (173)

, , M M, M, ,
annt = Vp— _h—l‘l nt — (’h'”ﬂ -+ h_”’l) (1n+1 + I(n—l)n)
n n n—1

M 2
+ Z_n [0(”—1)'1 (Q?ﬂ—l)ﬂ + Q(n’_.1)n’) e [tzt]
n

O —_ 2 e — 4 ” ”
r In O(n-1)n (Q(n—l)tz + Q(lz’—1)n’) = ln-1)e + l(n—1yn + Inn-1) + Ine
2 2 ,
+ (On_1)n [Q(rz-])rz (COS2 Q@ — 1) + o 1) (cos2 @ — ])]

et les termes correctifs en o se rameénent a

Y

2 . 2 . ,
— O(n-1)n (Q(n—1)n SIN * @+ @Gw_1yw SIN* )
qui sont de 'ordre de grandeur et ceux que nous avons négligés ci-dessus.

Dans le cas de membrures paralleles c’est-a-dire si ¢ = ¢’ = 0 ces
termes s’éliminent complétement.

On voit donc que la correction due aux déformations longitudinales des
membrures peut étre négligée dans les termes qui dependent de la mise en
charge. Elle ne peut avoir quelques valeurs que dans les calculs des caracté-
ristiques élastiques des systemes équivalents en adoptant les expressions (190)
au lieu de (154) c’est-a-dire en tenant compte du terme correctif (195) qui
dans le panneau n s’exprime par
Lin1yn = Or-1)m (@1 COS* @+ Q1w COS* ') = é( 08Py R ) (199)
Sm—1)n Srh—-=1n

olt S¢, _1n €t 8’ 1), sont les sections des membrures.

15. Influence d'une différence de valeurs enire les masses
élastiques des membrures: o, 3+ 6oy

Dans ce cas la condition qui annulerait | u d o n’annulerait plus [ uydo
comme au § 2, a cause de la dissymétrie élastique et par conséquent on ob-
tiendra alors un déplacement # différent de zéro. Les réactions complémen-
taires de fermeture du cadre établies au § 4 seraient données aussi par les
équations (155) mais modifiées en ajoutant u.

Ao, = Judo =0 A=20
vie —uj,
B[Jre——cje :——f‘LlSdO’:V dOﬂC B :m (200)
BJe —Cl, = —Jundo=u C— —thetv)e
o I;ce]ye(:]e2

On constate que C n’est plus relié a B par un simple coefficient géo-
métrique (150).

Il reste par conséquent a déterminer séparément dans tous les panneaux
les valeurs inconnues de B et C et cela double les inconnues. De plus il faut
procéder au calcul des formules de recurrence de /., et /, en plus de celle
de 7,,. '

Cette question est donc tres complexe et, n’ayant qu’un intérét pratique
réduit, ne sera qu’indiquée ici pour ne pas allonger ce mémoire; nous nous
réservons d’y revenir ultérieurement.
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16. Déformations de la poutre Vierendeel.

La poutre étant composée d’éléments droits dont nous connaissons
maintenant les sollicitations, on peut en exprimer facilement les déformations
en utilisant les formules connues (no. 85) qui dans le cas d’éléments sy-
métriques telle qu’une poutre @b, sans charge intermédiaire, deviennent:

o v+1 v—1 o
—Wg =~ 0+—|my, mg Wy = g + - (Mg + mp)
4 . 2
(201) ou bien
+(§+U(myh1+m v+1> 5 f0a+wb+(7(m 23)
Wy =— — a = A -
b 4 v b 2 gy e

avec w == rotation de noeud ¢« ou & & = inclinaison de I’axe de la barre
m = moment de flexion aux extrémités a ou b.

Nous pouvons appliquer ces équations a chacune des barres du cadre
trapézoidal abd’a’ fig. 2, en admettant I’égalité des w aux extrémités com-
munes.

Barre aa’, les indices « et & deviennent a et &', par symétrie il vient:

My = — My Wy = @y 0p = g, + JalMa
2 v,

Barre 64’, de méme: (202)
OpMp

my — —— My Wy == Wy d'b = wp + —2__;

Barre ab

Les moments aux extrémités sont différents soit m,, et m,,

(203) wp = wa + %"—”(W 1 Mpa)  Oap = g+ f’gﬁ (Map+ Mba) + 212:%, (ittap — mpg) (204)

Barre &' &’ : par symétrie élastique avec ab on a:
’ : 14
Y Wy = Wy Oup = Oprpy Map = My p Mpy = My o

Si nous exprimons que la somme des projections v des déplacements des
noeuds sur ’axe 0,, doit étre nulle pour le cadre entier, on obtiendra:
. Ogho— Oph

~ Oppht@ o+ dphp+ Oy Atge’'—dshy, = 0 ou bien d, = —“—h“—zu
a — Ith
Si 'on égale les deux valeurs (204) et (205) de ¢,, on obtient une équation
qui, en utilisant les équations d’équilibre des moments aux noeuds, reproduit
I’équation de Frandsen (188), base de la solution du calcul de la poutre.

Appliquons a présent ces formules a un panneau quelconque de la
poutre en remplacant les indices « et & par n et (# — 1) et en donnant aux
moments d’extrémités les valeurs obtenues pour M,/ ), My 1), m, et
exprimées par (183) et (184).

I1 vient alors:

(205)

O, O(n—
’éz“;"z Wp = Wp 3 — oL (Mrz(nal) -+ M(n*l)n)
n

0p = v, + 2

\ (206)
|

O(n— On...
(s(n—l)n = w, + (,£41)” (Mn(rzﬂ) I M(n»—1)n) + Z"F”Qﬂ (M”(”—l)__ M(ngl)n)
Yin-1)n
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Dans le panneau suivant exprimons d,, + ; sous la forme:

() 0,
(5,1(,,_,,1) = Iy — '“,?"(ELI‘) (M(n+1)n + M/zf(rz+1)) + Z—’:'(_”’ﬂ (M(n+1)n” ”Mn(n+1))
Vi (n+1)
Du panneau n au panneau (2 --1) il y a donc une variation de rotation des
noeuds et d’inclinaison des barres donnée par:

O(n—1)n

Aw, = w0y — Wy y = —- 7'721” (Mn(n-1) + Mn_1yn)
Onllty Gy My , ‘
A6y = A, + 2l Onalle-t 5 5,
(207) 200 2w
o \ \ O Vi +1 Vi ___1
4,0 = Onusny = a1y =~ p" (Mnm-w(i”” F Mgy 20022
: Vin-1)n Y(n-1)n -
a V - v +1
o ,l(ll-nil)<M(n+1)n' AT + Mrz(n+1) (’Hl)n“‘)
Y(nt1)n Yns1)n

On peut considérer ce 4,0 comme jouant le méme réle que les 4w dans une
poutre prismatique et appliquer alors a une des membrures de la poutre
les formules de Navier-Bresse (7) qui deviennent ici avec

Mdo ~ 1,0 v, =0 x, =0 x = Il
au noeud /:

0= 0, + EO]A,, J

Vi=ihQy + A2 (i —n)d,0

A P'extrémité m on obtiendra, tenant compte que V, =V, = 0
m 1 ”’r
9y + 4,0 Qm:+;§0]rzdnd‘
Y = (208)
V,,,::mlﬂo-f—li(m——n)d,,dzo d’ot g(m—n)a,,a‘
0 Dy =— ———n P
et alors les équations des déformées de la membrure deviennent
Q; = Zl: J,Zd——-l—i(m——tz) A, d
0  a (209)

V; = — —Z(m-—/z <)+12(L»-n A, d ]

De la connaissance des ©; en chaque noeud on peut déduire par (205) les
inclinaisons d; des montants correspondants. Dans le cas oit la poutre est
de hauteur constante ces inclinaisons J; des montants sont toutes les mémes.
I1 suffit donc de calculer les diverses valeurs de 4,6 et de lesiconsidérer
comme des masses élastiques concentrées au centre de rotation soit au noeud 7
de la membrure.
" Remplacant dans (207) les M par leurs valeurs no. (183) et (184) on
obtient:
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. UG n l’j—l V- 1) 0n(n+1)( r+1 y — 1)
»J:z 0= *8 (Mn o ’7 =} M/z—l ” + 8 Mrz ¥ -+ Mn+1 "

On_1)n r+1 v —1 g v+ 1 y -1
+ ("SJ)’ N, n (h/z ‘*'“’"'—’ + hn—l ‘T’A) + l”_(é’j;L) Nn+1 (/l/z 7?’ +‘ hrz+1 ’ ;"' )

ce qui devient avec (170) et (171)

v Oact)n v+1 'x{:-;l) On(ns1) ( v +1 v — 1)
(2]0) /’]IZ () = 8*"* <M}1 H’;" + M/l—l - + - 8 Mll - l,’_, + M'Z+1 g‘/—b/

+ Nn[(’;z—l)n 4 Nn+1 11,1(n+1)-

Cette expression peut aussi s’ajouter a la fin du tableau III si Pon désire
déterminer la déformée de la poutre.

La détermination des déformations de la poutre Vierendeel permet égale-
ment de déterminer ses caractéristiques élastiques, et par suite d’aborder le
calcul de la poutre Vierendeel extérieurement hyperstatique telle que la
poutre continue sur plusieurs appuis.

Résumé.

Le calcul de la poutre Vierendeel habituelle a /. panneaux se rameéne a
la solution d’un systéeme de m équations étagées a m inconnues, chaque
équation comprenant trois inconnues sauf les extrémes qui n’en comportent
que deux. La solution de ce systeme nécessite des calculs délicats. Si I’on
veut une précision suffisante, il faut chiffrer les opérations avec de nom-
breuses décimales et, la regle a calcul étant alors inutilisable, employer la
machine a calculer.

A la fin de 'ouvrage que nous avons publié en 1937 et intitulé - ,Les
constructions hyperstatiques‘?') nous avions ébauché (pages 210
a 214) une méthode de calcul de la poutre Vierendeel basée surlaméthode
des systemes équivalents et servant d’exemple d’application. Cette
méthode utilise spécialement 1’ellipse centrale d’élasticité d’un
¢lément élastique dont elle représente toutes les propriétés élastiques. Tous
les systemes ayant méme ellipse centrale d’élasticité, pouvant alors se sub-
stituer 'un a l'autre, sont donc considérés comme systemes équivalents.

En approfondissant emploi de cette méthode pour le calcul de la poutre
Vierendeel, elle s’est montrée des plus fécondes. Elle nous a permis de
ramener le calcul d’une poutre de hauteur variable a la solution d’équations
ne comportant chacune qu’une inconnue. Chacune de celles-ci s’exprime sous
forme d’addition de termes ne contenant que des rapports simples, calculables
avec une précision suffisante a la regle a calcul. C’est donc une solution
directe, rapide et pratique. Chaque inconnue s’exprime en fonction de la
sollicitation extérieure de la poutre et de coefficients qui ne dépendent que
des dimensions de celle-ci et de I’étendue des goussets. Ces coefficients
peuvent aussi se calculer directement dans la méthode des systemes équi-
valents ol ils trouvent une interprétation concrete.

1) Bibliotheque scientifique belge, No. 31, 1937. Liége, G. Thone, éd.

Abhandlungen V 17
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Zusammenfassung.

Die Berechnung des gewohnlichen Vierendeel-Trigers mit m Feldern
1aBt sich auf die Losung eines Systems von m Gleichungen mit m Unbe-
kannten zuriickfiithren, wobei jede Gleichung drei Unbekannte enthilt. Eine
Ausnahme hiezu bilden die Anfangs- und Endgleichungen, die nur zwei Un-
bekannte umfassen. Die Losung dieser Systeme fiihrt zu empfindlichen Be-
rechnungen. Um eine geniigende Genauigkeit zu erreichen, sind die nume-
rischen Rechnungen mit zahlreichen Dezimalen durchzufithren und, da der
Rechenschieber fiir diese Genauigkeit nicht mehr geniigt, muB die Rechen-
maschine verwendet werden.

Am Ende der im Jahre 1937 ver6ffentlichten Abhandlungen, betitelt: ,Die
statisch unbestimmten Systeme*‘ '), haben wir (Seiten 210—214) eine Berech-
nungsmethode fiir Vierendeel-Triager angedeutet, die sich auf die Methode
der gleichwertigen Systeme stiitzt und die als Anwendungsbei-
spiel diente. Diese Methode verwendet insbesondere die Elastizititsellipse
eines elastischen Elementes, dessen elastische Eigenschaften sie darstellt.
Alle Systeme mit gleichen Elastizitatsellipsen kdnnen einander ersetzen, sind
somit als gleichwertige Systeme zu betrachten.

Diese Methode hat sich fiir die Berechnung des Vierendeel-Tragers als
sehr zweckmaBig erwiesen. Dank dieser Methode kann die Berechnung
eines Triagers mit verinderlicher HShe auf die L3sung von Gleichungen,
von denen jede nur eine unbekannte enthilt, zuriickgefithrt werden. Jede
dieser Gleichungen stellt sich dar als eine Superposition von Ausdriicken,
die nur einfache Verhiltnisse enthalten, welche geniigend genau mit dem
Rechenschieber berechnet werden kdnnen. Es handelt sich also um eine
direkte Rechnung und praktische Ldsung. Jede Unbekannte driickt sich
aus in Funktionen der duBeren Belastung des Trigers und von Beiwerten,
die nur von den Abmessungen desselben abhingen und von der Ausdehnung
der Knotenbleche. Diese Beiwerte kdonnen auch direkt mit Hilfe der Me-
thode der gleichwertigen Systeme berechnet werden, nach der sic eine tat-
sachliche Auslegung erfahren.

Summary.

The design of an ordinary Vierendeel girder of m panels is referable to
a system of m equations with m unknowns, each equation containing three
unknowns except the first and last equations which contain two only. The
solution of such a system involves intricate calculations which, to secure
sufficient accuracy, have to be carried to many decimal places; for this pur-
pose the slide rule is inadequate and recourse must be had to a calculating
machine.

At the end of the publication which appeared in 1937 under the title
“The Statically Indeterminate System’’!) we have cxplained, on pages 210- -
214, a method for the calculation of Vierendeel girders which depends on
the method of equivalent systems and serves as an example. In
this method use is made, in particular, of the ellipse of elasticity representing
the elastic properties of an elastic element. All systems having the same
ellipses of elasticity can be substituted for one another and are to be re-
garded as equivalent systems.

') Bibliotheéque scientifique belge, No. 31, 1937. Liége, G. Thoéne, ed.
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The application of this method to the calculation of Vierendeel girders
has been found very effective. In this way the calculation of a girder of
varying depth can be referred to a solution of equations containing only
one unknown each. Every such equation is formed from a combination of
expressions of simple relationships which can be worked out with sufficient
accuracy on the slide rule; a direct calculation and a practical solution are,
therefore, obtainable. Every unknown is expressible as a function of the
external loading of the girder and of coefficients which depend only on the
dimensions of the latter and on the extensions of the joint plates. These
coefficients, also, can be calculated in an actual design by using the method
of equivalent systems.
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