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DER QUERSTOSS AUF EINEN BALKEN.

INFLUENCE DES CHARQES DYNAMIQUES SUR UNE POUTRE.

THE EFFECT OF IMPACT ON A BEAM.

Dr. techn. J. KREBITZ, Graz.

Von den Ursachen, die bei Tragwerken dann zusätzliche Beanspruchungen
hervorrufen, wenn die aufgebrachten Lasten nicht ruhend, sondern bewegt
sind, ist die überwiegende Mehrzahl schon rechnerisch erfaßt. Auf Grund
der bezüglichen theoretischen Untersuchungen können z. B. der Einfluß des
Rollens der Last, die Wirkung gleich gerichteter Schwingungen usw. zum
mindesten in guter Annäherung ziffermäßig ermittelt werden1). Praktisch
werden diese Einflüsse zusammengefaßt dadurch berücksichtigt, daß die
bewegten Lasten für die Ermittlung der Beanspruchungen mit einem Beiwert,
der sogenannten Stoßziffer, versehen werden, deren Ausmaß zumeist wesentlich

über jenem liegt, das durch die vorliegenden theoretischen Ergebnisse
begründet wäre. Es wird mit dieser Stoßziffer, wie schon der Name sagt,
auch die Wirkung tatsächlich auftretender mechanischer Stöße mit in Rechnung

gezogen. Ebenso verwenden theoretische Untersuchungen über den
Einfluß von Stößen gleichfalls Stoßziffern, mit welchen Durchbiegung und
innere Kräfte vervielfältigt werden 2). In Wirklichkeit werden durch stoßende
Lasten wesentlich andere innere Kräfte geweckt als durch ruhende oder langsam

aufgebrachte, sodaß eine gleichmäßige Vergrößerung der Spannungen
mit Hilfe einer Stoßziffer zu günstig, unter Umständen aber auch zu
ungünstig sein kann. Nach K. FIohenemser und W. Prager ist die Berechnung
der Beanspruchung infolge eines Stoßes nicht möglich, solange die Art des
Stoßvorganges unbekannt bleibt3). Nachstehende Untersuchung zeigt, wie
man zur Kenntnis des Stoßvorganges bei einem vollwandigen Träger von
gleichbleibendem Querschnitt gelangt. Bei sonst zutreffenden
Voraussetzungen und bei Kenntnis der grundlegenden Werte können, wie
Vergleichsberechnungen für andere dynamische Einflüsse zeigen1), die Ergebnisse

dieser Untersuchung zweifellos bei allen Balkenträgern angewendet
und so die ziffermäßige Größe der unter Stoßlasten auftretenden inneren
Kräfte mit hinreichender Schärfe erfaßt und bei der Bemessung der einzelnen
Tragwerksteile berücksichtigt werden.

Differentialgleichung der dynamischen Biegungslinie.
Bedeuten: p das Gewicht des Trägers für die Längeneinheit, g die

Beschleunigung der Schwere, y die Durchbiegung, / das Trägheitsmoment des
Trägerquerschnittes, E die Dehnungsziffer des Baustoffes und q die Auflast

i) Vergl. Bleich, Theorie und Berechnung eiserner Brücken, Seite 41 ff.
2) Hawranek, Einfluß fallender Lasten auf durchlaufende Träger, Abhandlungen

der Internationalen Vereinigung für Brückenbau und Hochbau, I. Band, 1932.
3) K. Hohenemser und W. Prager, Dynamik der Stabwerke, Seite 303.
4) Bleich, a.a.O. Seite 50.
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für die Längeneinheit, x die waagrechte Entfernung von einem auf der un-
verbogenen Trägerachse gelegenen Anfangspunkte und endlich t die Zeit, so
lautet die Differentialgleichung des schwingenden Balkens:

1) L.*ll= ^JL_(Ef^l\+Q 5)}
g dt2 dx2\ J dx2)^ q'

Hiebei ist vorausgesetzt, daß der ganze Träger in gleichartiger Bewegung
ist, bezw. daß eine Anregung zur Bewegung, die von irgend einer Stelle des
Trägers ausgeht, sich plötzlich über den ganzen Träger verbreitet. In
Wirklichkeit erfordert die Fortpflanzung einer an irgend einer Stelle des Trägers
angeregten Bewegung Zeit, sie erfolgt nicht plötzlich mit unendlich großer
Geschwindigkeit, sondern mit endlicher, die den Wert c haben möge. Soll nun:
2) y f(*t)
jene Funktion sein, die die Form der verbogenen Trägerachse bei zeitlicher
Fortpflanzung der Bewegung, bezogen auf ein durch den noch ruhenden
Angriffspunkt C der Stoßlast S gelegtes Achsenkreuz XY für den in A und B
aufliegenden Träger (Fig. 1) zur Zeit t wiedergibt, so müßte die aus dieser

Funktion abgeleitete Änderung -—- auch jenen Anteil der Verbiegung

enthalten, der dadurch entsteht, daß die Fortpflanzung der Bewegung Zeit

braucht. Da sich y nach der Zeit um ^\ dt ändert und die Zeit, welche die
ct dx

Bewegung braucht, um die Länge dx zu durchlaufen, ist, so muß bei

plötzlicher Fortpflanzung der Bewegung rechts der Stoßstelle die Änderung

von v um • größer sein als bei zeitlicher.J et c
In Gleichung (1) stellt das erste Glied rechts des Gleichheitszeichens

die auf die Längeneinheit bezogene Änderung der Querkraft vor, die der
durch die Funktion y umschriebenen Formänderung entspricht. Verwendet

c v c y
man den Operatur statt ~-, so erhält man jene Querkraftsänderung, die

der durch plötzliche Fortpflanzung der Bewegung entstehenden Vermehrung
der Formänderung entspricht. Addiert man diese Querkraftsänderung zu der

durch Anwendung des Operators^ entstehenden, so entspricht diese Summe

der ganzen, bei plötzlicher Fortpflanzung der Bewegung sich ergebenden
Änderung der Querkraft, ausgedrückt durch die Funktion, welche die
Biegungslinie bei zeitlicher Fortpflanzung der Bewegung darstellt. Setzt man
diese Summe an Stelle des ersten Gliedes rechts in Gleichung (1), so bleibt
deren Gültigkeit erhalten. Da die einzige abhängige Veränderliche der so
entstehenden Gleichung die Funktion y der Biegungslinie für zeitliche
Fortpflanzung der Bewegung ist, gelangt man in einfacher Weise zur Differentialgleichung

der dynamischen Biegungslinie. Sie lautet, wenn q 0 gesetzt
und E und / für den ganzen Träger konstant angenommen werden:

3) <iy + MMM + p e** 0"' ixi ^ (* ¦ c t4- EJg et*
Die tatsächlich auftretenden inneren Kräfte, d. s. das Biegungsmoment M und

°) K. Hohenemser und W. Präger, a.a.O., Seite 80, Gleichung 60.
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die Querkraft Q, folgen aus der der Differentialgleichung genügenden Funktion

y mit:

4) m=-~ejU und Q=-^B-
Betrachtet man einen links der Stoßstelle liegenden Trägerquerschnitt,

so wechselt das Vorzeichen des Operators. Durch die je zweimalige
Verwendung desselben für die Bestimmung der Querkraftsänderung bleibt deren
Vorzeichen gleich wie beim rechten Trägerteil, sodaß die Differentialgleichung

(3) für den ganzen Träger gilt.
Wie später gezeigt wird, lassen sich hinreichend partikuläre Lösungen

der Gleichung (3) angeben, um die Randbedingungen in jedem Falle erfüllen
zu können.

Zusammenhang zwischen Stoßlast, Stoßgeschwindigkeit und
Formänderung.

Kennt man die Form der Biegungslinie als Funktion des Ortes und der
Zeit, so ergeben sich die an den Schnittflächen des an der Stoßstelle durchtrennt

gedachten Trägers wirksamen Querkräfte: Q/ und Qr nach (4) und
aus diesen die Stoßkraft S:

5) S =-- Qt - Qr (Vergl. Fig. 2)

Stößt eine Last G mit der Geschwindigkeit v0 gegen eine an der Stoßstelle

angebracht gedachte Feder, die sich unter der Stoßkraft 1 um cp Längen-

*C/X

Fig. 1. Fig. 2.

einheiten durchbiegt, so wirkt die Kraft 5 dem Gewichte G entgegen. Auf die
Stoßlast wirkt daher eine nach abwärts gerichtete Gesamtkraft von der Größe
G — S ein.

Multipliziert man die Gleichung:
6) dv y • dt,
in der y die Beschleunigung der stoßenden Masse und v deren Geschwindigkeit

bedeuten, mit der Masse, so erhält man die Beziehung:

7) ° dv (G—S)dt.

Zählt man die Zeit vom Beginne des Stoßes, d.i. von dem Augenblicke, in
welchem die Stoßlast die mit dem Träger verbunden gedachte Feder berührt,
so dauert die erste Stoßzeit T bis zu jenem Augenblicke, in welchem die
Geschwindigkeit der Stoßlast Null geworden ist. Integriert man (7) über die
erste Stoßzeit, so ergibt sich:

° (0 v0) =GT—\ Sdt oder
g Jo
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8) °(j+T J n
Sdt.

Die Bedingung, daß die Geschwindigkeit der stoßenden Masse Null wird,
liefert die Gleichung für die Bestimmung der ersten Stoßzeit. Der Weg der
stoßenden Masse zur Zeit t:s ist gegeben durch:

5 — ys + cp • 5,
worin ys die Durchbiegung des Trägers an der Stoßstelle bedeutet.
Differenziert man den Weg nach der Zeit, so folgt für die Geschwindigkeit der
stoßenden Masse:

dys es

und daraus die Bestimmungsgleichung für T:

10) (77+*??). -=<!>¦ct/t :

Endlich muß, wenn sich der Stoß ohne Unstetigkeit vollziehen soll, die
Anfangsgeschwindigkeit der stoßenden Masse v0 der Beziehung:

H)
\ o t dt/t o

entsprechen.
Aus (8), (10) und (11) ermitteln sich: die Größe der ersten Stoßzeit

und zwei Konstante der dynamischen Biegungslinie, die demnach im Falle
der richtigen Lösung in der Funktion y nach Erfüllung der Randbedingungen
noch enthalten sein müssen, und zwar dient (11) der Bestimmung einer dieser
Konstanten, während man die zweite in geeigneter Weise annimmt und für
die gemachte Annahme nach (8) mit dem aus (10) bestimmten T die
zugehörige Stoßlast rechnet.

Partikuläre Lösungen der dynamischen Differentialgleichung.
Wie man sich durch Einsetzen leicht überzeugen kann, sind die

Funktionen:

LI
sin yx

LI
COS yX

©in '—*

©of ^x

sin at <&\üßt

sin at ©of ßt

cos a t ©in ß t

cos at ©of ßt

und

LI Lt
sin yjc ©tn~ x

sin x ©of ~x
LI ^, tl

COS jX ©Uly*

COSy X ©Of yX

sin yt

cos yt

Bin dt

©of dt

partikuläre Lösungen der Differentialgleichung (3), wobei jeweils jedes Glied
links der Klammer mit jedem Glied rechts derselben verbunden werden kann.
In den Lösungen ist zu setzen:

p c212 _ li 1 /1 + n
___

li a I1 — n
n

ll */l + n
a JC\ 2-'2gEJ^

y ^c]!^A + ti2—n, d ^c^/T+^+n.
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Für die Zusammenfassung der partikulären Lösungen zu einer
allgemeinen können diese noch dadurch beliebig vermehrt werden, daß man (.1 mit
einem Beiwerte versieht. Endlich genügen der Differentialgleichung auch
Potenzen von x bis x% und t in der ersten Potenz.

Anwendung.
Eine allgemeine Lösung, die bei Stoßbeginn und unmittelbar hernach

entspricht, kann von vorneherein nur für jenen Bereich gelten, über den sich
die Formänderung in der seit Berührung der Stoßstelle durch die Stoßlast
verflossenen kleinen Zeit t ausgebreitet hat, d. h. sie gilt von x -= — et bis
x -{-ct. Mit Rücksicht auf die Symmetrie genügt die Verfolgung des positiven

Astes der Biegungslinie.

A

p/z

-150

Z5/25

-180 -

Fig. 3. Fig. 4.

Da der Träger im Zeitpunkte, in welchem die Stoßlast die mit ihm
verbundene Feder berührt, vollkommen in Ruhe sein muß, haben für t 0

y und -— an der Stoßstelle gleichfalls Null zu sein. Aus dem gleichen Grunde
ot dymüssen y und ~4 für jedes t in x =-dt

et von höherer Ordnung klein sein

als in x 0. Damit sich der verbogene Trägerteil flüssig an den noch

et, wenn nicht Null, so doch möglichstcy wruhenden anschließt, muß —— in xdx
klein gegenüber der Durchbiegung an der Stoßstelle ys sein. Endlich kann
die Stoßkraft bei Stoßbeginn keinen endlichen Wert haben, muß also von
Null ansteigen.

Fassen wir zunächst nur den Fall ins Auge, daß sich der ganze
Stoßvorgang abwickelt, bevor die Bewegung die Auflager erreicht hat, so kommen
für die Zusammenfassung zu einer allgemeinen Lösung nur jene partikulären
Integrale der Differentialgleichung in Betracht, in welchen die Zeit wenigstens

einmal in einer rückkehrenden, also trigonometrischen Funktion
enthalten ist.

Allen vorangeführten Bedingungen entspricht der Ansatz:

12) y /cJ2cos^x©of *l xcosyt—(©of' X + cos ?*) COS at&tfßt

x + cos - x) sin a t ©in ß t1/4 + n1 (k f u
+ \t=^\^t

13995+ 4032/2 14+ /z^ + 3101 n2 et _. p
~\ —L= sin Vx e>ttt x cos y t

3780(V4 + /z2 +/z) / /

Abhandlungen V 15
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19620 +6972/2 V4"+^+10-696/22/^ r// /li \ „ r „+=~ —— ©üf^x— cos^x )cosat&o'\ßt
3780(V4+/22 +n) V ' ' /

1395 V4 + w«- 2097/2 + 161 n2]/4Tn2 — 3563/23/rr f i" « \
H - r t== -(©Of-^JC—COS + JC

3780(V4 + /22 + /2)Vl — /22 V '/ / /

1125 + 588/2 |/4T^+ 1519/22 /#*** • sin «/©in/?/

756(V4T^+^ ~^~
19845 +2772//VIT^ + l 771/22 / Lt _ f/i // « \

H t=L (sin^xSof + x-cos x-Sm^-je sin yt
7560|74 + /22 +/2 v ' ' / l }

6615 V^T^2 +4137/2 + 1001 /22V4T/*2—1001 /23/^, ^ ju \
' 756Ö ' (©m^-sinA-*).

m/ smat&oißt— 1/y-— cos at (Bin ßt)

945 + 2772/2 V4 +/22 + 1771/22/^. u u\~ 756Ö \*m T v - ^T*) '

1/Vr— sin a/ ©of /? * + l/y-— cos at Sin ßt\\

Entwickelt man die Ausdrücke von y in Potenzreihen, so enthält das
Ll^C^t4"

erste nicht verschwindende Glied von yv den Faktor '——— Für y in x ct

verschwinden alle Glieder bis zu jenem mit dem Faktor u10c10t10 dy
1

z10""' Tx
cy u10cdt9 Lt10c10liJ

und ^4 in x et bis zu jenem mit dem Faktor -———, bezw. ——et /10 /lü
Automatisch wird auch die Querkraft an der Stoßstelle klein von niedrigerer
Ordnung als am Ende des Formänderungsbereiches. In Potenzreihen
entwickelt, hängt sie an der Stoßstelle von der Zeit in der ersten Potenz ab, in
x et von der dritten, woraus hervorgeht, daß durch die zeitliche
Fortpflanzung der Bewegung auch die Weiterleitung der Kraftwirkung beeinflußt

wird.
Aus (12) erhält man nach (10) die Bestimmungsgleichung für die erste

Stoßzeit, und zwar:

iOX 19845 + 2772/2 t/4 + n2 + 1771 n2
13) ^ cosyr

945 + 2772 n )lÄ~^n2 + 1771 n2 _ „ _
5780 cosaT^\ßT

6615 14+ /22 +3192/2 —1771/22V4 + /22 — 2772/23 _. a^y sin a T ©tn ß T
3780 Vi — n2
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Die Stoßlast G ergibt sich aus:

1A\ * V2c2(l _±_ T\r 19845 + 2772/2 V4 + /22 + 1771 n2 „14) 5<p—^--1 H )G -1 z (1 — cos vT)l^ ^g vJ 3780(V4 + /22 +//)
V / '

6615V4T^2+ 4137/2 + 1001 n2 i^Vn2 — 1001 n3 „ ^^ r v

2^gö 0 ~~ cos a r®°f A r)
945-3843/2 V4T^2-2366/22-1001/23 V4T/22 +IOOI/24

,—
f- sin a T ©in ß T.

3780 Vi — n2 '

Für die Konstante K erhält man nach (11):

15) K= V°l"
20 li* cEJcp '

Kennt man K, so können aus (12) nach (4) die Momente und die Querkräfte
für jede Stelle innerhalb des Formänderungsbereiches bestimmt werden, im
besonderen ergibt sich für die Stoßkraft S:

,ÄX 0 v0 / I 39690 + 5544/2 V4 + /22 + 3542n2
16) S -= 1- -,— sm yt5{<ccp I 7560]/y4 + /z2 +/2

6615 y/4T72¥+ 4137/2 + 1001 n2 f4 + n* — 1001 n'6

7560 ~ ~

V y sin «tf ©of ßt— 1/ - cos«/ Sin /i/j
945 + 2772/2V4 + /22+l77l/22/1/ ~2~ x~ s ^ i/~2~ _. _\\

7560 (y^sina/©of^ + y^cos«^tn^[
Wird 5 0, so ist der Stoß beendet. Hat die Formänderung in der für

die Abwicklung des Stoßes erforderlichen Zeit die Auflager noch nicht
erreicht, so genügen die Beziehungen (12) bis (15) vollkommen für die
Darstellung des Stoßvorganges.

Für die ziffermäßige Anwendung der vorstehenden Ergebnisse ist vor
allem die Kenntnis der Geschwindigkeit erforderlich, mit welcher sich die
Durchbiegung von der Stoßstelle aus fortsetzt. Sie wird für verschiedene
Baustoffe, wahrscheinlich auch für verschiedene Bauformen verschieden sein.
Eine genaue Ermittlung ihres Wertes kann bei längeren Tragwerken keine
unüberwindlichen Schwierigkeiten bieten. Soweit mit einfachen Mitteln
festgestellt werden konnte, liegt c bei Stahltragwerken wahrscheinlich unter der
Schallgeschwindigkeit in der Luft, weshalb im nachstehenden Ziffernbeispiel
c 333 m/sek. angenommen wird.

Beispiel.
Für eine stählerne Eisenbahnbrücke von der Stützweite / — 25 m gilt:

p 2,23 t/m, / 0,106 m4G). Der Querschnitt der Brücke entspräche der
in Fig. 4 gegebenen schematischen Darstellung. Das Trägheitsmoment der
Holzschwelle stellt sich auf 0,000 325 5 m4, jenes des Querträgers sei
0,00143 mK Mit den Dehnungsziffern 1,100,000 t/m^ für Holz und

6) Nach Bleich, a. a. O. Seite 49, Tafel 4.
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21,000,000 t/m2 für Stahl erhält man für die Senkung der auf beide Schienen
verteilten, gerade über den Querträgern liegenden Gesamtlast P bei
unverrückten Auflagern des Querträgers:

P^ | 0,152(3- 1,8 — 4-0,15) M 1,552(3-4,9 — 4- 1,55)"|0,152(
[ 1100 0,0001636 P

100 000 • 0,000 325 5 ' 21 000 000 • 0,001 43

Schwelle und Querträger wirken also als Feder mit einem cp= 0,000 1636 m/t.
Mit diesem cp und mit c 333 m/sek., weiters für /u 5 ergibt sich die
Bestimmungsgleichung für T in der Form:

5,467 512 cosy 7— 0,467 5126 cos« 7"<Sof<?7 — 3,645 592 sin«7"©in/?T
-0,251 446 sin y T + 0,357393 sin a T• ©of ßT 4- 0,150 174cos a7©in£7=0.
Die näherungsweise Lösung liefert: T 0,012 9316 sek.

S
0128125

i ••¦—,_^^30 - ^"
10 \0

yP ^5

st1.

10t1

/ Stosszeit
* 1eduree du choc

1st shock

2 Stosszeit
=001293159sek*\* 2e duree du choc *

2nd shock s
\\\

\ \
/¦-

0.100 --

0.050 1-

0.000^

0,000sek 0.0,95 0.010 0.015 0.620 §
1

0,025sek

0.300

0,400

5mt \

2? \

y

10 mt -

20

30

77881m

'

¦x.

1

40

50

Mp
Fig. 5.

Nimmt man an, daß die gesuchte Last aus einer Höhe von 2 cm auf die
Schienen fällt, so folgt die Stoßgeschwindigkeit v0 mit:

v0 ^2g^~ÖjÖ2 0,6264 m/sek.

Mit diesem vQ rechnet sich nach (14): G 3,420 29 t, eine Last, die ungefähr
dem ungefederten Anteil des Achsgewichtes eines Bahnwagens entspricht.
Für die Stoßkraft erhält man:

5 11,49805 (3,731 792 sin yt- 2,741 618 sin at ©of/»*+2,447939 cos a^©tn ßt)
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Das Biegungsmoment an der Stoßstelle ergibt sich zu:

Ms 28,745120 (2,688 329 cos a t ©of ß t — 1,873 491 cos y t -
— 0,310 810 sin at ©in ßt — 1,629 676).

Der Verlauf von S und Ms ist in Abhängigkeit von der Zeit in Fig. 5

eingetragen, ebenso jener der Durchbiegung an der Stoßstelle.
Der größte Wert von 5 tritt mehr oder weniger genau am Ende der ersten

Stoßzeit auf. Der ganze Stoßvorgang benötigt eine Zeit von 0,023 372 sek.

+300
+ 400

500ml

Fig. 6.
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4 30622m
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07992
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3000t

800mt
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¥00
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-200

^5-100
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XX

Querkraft
Q s Effort tranchant

Shear force

öiegungsmomenf
£> M Moment de flexion

Bending momenl

In dieser Zeit setzt sich die Bewegung von der Stoßstelle nach links und
rechts auf eine Länge von 7,783 m fort. Liegt die Stoßstelle nicht mehr als
25/2 — 7,783 4,717 m außer der Feldmitte, so erreicht die Formänderung
nach Ablauf des Stoßvorganges höchstens eines der Auflager. Für Stöße in
einer Zone von 2. 4,717 9.434 m nächst der Trägermitte gelten daher
gleiche Verhältnisse. In allen diesen Fällen ruft eine aus 2 cm Höhe fallende
Last von 3,420 29 t eine größte Stoßkraft von 31,983 18 t, d.i. die 9,351-
fache Wirkung hervor. Das Biegungsmoment an der Stoßstelle erreicht seinen
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größten Wert knapp vor dem Encje der zweiten Stoßzeit und stellt sich dann
auf 48,7788 mt. Das statische Moment der Stoßlast rechnet sich in Trägermitte

mit 21,3768 mt; das größte dynamische Biegungsmoment wird also
2,28185 mal so groß. Die Durchbiegung an der Stoßstelle nimmt auch nach
dem Ende des Stoßvorganges noch zu und erreicht seinen Größtwert im
allgemeinen erst, wenn die Bewegung bis zu den Auflagern vorgedrungen ist.

Fig. 6 zeigt den Verlauf der Biegungslinie, der Querkraft und des
Biegungsmomentes zur Zeit t -= 0,01293159 sek., d.i. am Ende der ersten Stoßzeit

und für t =- 0,022 sek., d. i. knapp vor dem Ende der zweiten Stoßzeit.
dyIm zweitgenannten Falle ergibt sich in x et:y 0,001 536 und ^p —

0,000 000 6737 gegen ys 0,25955 mm. Die Randbedingungen sind demnach

auch am Ende des Stoßvorganges noch praktisch genau erfüllt.

Verlauf der Biegungslmie
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Fig. 7.

Fig. 7 gibt schließlich noch die Entwicklung der Biegungslinie während
des Stoßvorganges wieder. Die eingetragenen Biegungslinien entsprechen,
mit t 0,0072 sek. beginnend, aufeinander folgenden Zeitabständen von
0,0024 sek.

Es wäre übereilt, aus den vorstehenden allgemeinen und besonderen
Ergebnissen schon weittragende Schlüsse zu ziehen, bevor eine genaue
Bestimmung der Fortpflanzungsgeschwindigkeit c vorliegt. Dann soll auch erst
die Wiedergabe weiterer allgemeiner Lösungen der dynamischen Differentialgleichung

erfolgen. Jedenfalls aber kann festgestellt werden, daß mit
Stoßziffern, die Kraftwirkung und Formänderung gleichartig vergrößern, der
tatsächlichen Einwirkung eines Stoßes auf das Tragwerk nicht beizukommen
ist, ebensowenig wie etwa bloße Durchbiegungsmessungen zum Ziele führen
können. Infolge der Raschheit des Stoßvorganges dürfte auch eine unmittelbare

Messung der Kraftwirkungen kaum tunlich sein, sodaß nur von der
Rechnung genauer Einblick in das Geschehen beim Stoße zu erwarten ist.

Als feststehend kann auch gelten, daß der schwach gefederte Stoß die
Stoßkraft wesentlich stärker erhöht als das Biegungsmoment. Je größer man
im Ziffernbeispiele pt wählt, desto kleiner wird G und umso stärker
vermehrt sich die Stoßkraft gegenüber dem Biegungsmoment. So erklärt sich
in einfacher Weise die DurchscHlagung eines Trägers infolge Überwindung
des Scherwiderstandes, wenn eine kleine Masse aus größerer Höhe, also
mit einem großen v0 auf ihn fällt.
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Zusammenfassung.
Der Vorgang beim Stoß einer schweren Masse auf einen elastischen

Balken wird auf Grund der Erkenntnis theoretisch verfolgt, daß die durch
die Stoßlast an der Stoßstelle hervorgerufene Querbewegung des elastischen
Balkens sich nicht plötzlich auf den ganzen Träger fortsetzt, sondern hiezu
Zeit braucht. Unter der Annahme, daß die Fortpflanzung dieser
Querbewegung in Richtung der Trägerachse mit einer für verschiedene Baustoffe
und Bauformen erst experimentell genau festzustellenden Geschwindigkeit
erfolgt, kann die Differentialgleichung der dynamischen Biegungslinie, d. h.
der Form der verbogenen Trägerachse bei zeitlicher Fortpflanzung der
Querbewegung erstellt werden. Die leicht gefundenen partikulären Lösungen der
Differentialgleichung genügen, um zu allgemeinen Lösungen zusammengefaßt
zu werden, die alle Randbedingungen in hinreichender Weise erfüllen. Den
Zusammenhang zwischen dem, aus der dynamischen Biegungslinie folgenden
Widerstand, den der Träger der Verformung an der Stoßstelle entgegensetzt

einerseits, und der stoßenden Masse und ihrer Geschwindigkeit andererseits

gewinnt man durch Verfolgung der Bewegung der stoßenden Masse.
Die beim Stoße und unmittelbar nachher gültige allgemeine Lösung,

mit welcher der Verlauf eines schwach gefederten Stoßes auf den Balken
erfaßt werden kann, ist mit den hieraus folgenden Beziehungen für die Größe
der stoßenden Masse, für die Stoßzeit und die Stoßkraft wiedergegeben.
Unter Annahme einer mit einfachen Mitteln als wahrscheinlich festgestellten
Fortpflanzungsgeschwindigkeit von 333 m/sec (gleich der Schallgeschwindigkeit)

wird der Vorgang beim Stoße einer aus 2 cm Höhe auf die Schienen
einer stählernen Eisenbahnbrücke von 25 m Stützweite fallenden Masse von
3,24 t ziffermäßig erfaßt. Die gewonnenen Ergebnisse sind in mehreren
Abbildungen übersichtlich dargestellt und zeigen, daß der Stoßvorgang sich sehr
rasch abwickelt, weiter, daß die hiebei geweckten Kraftwirkungen im Träger
ihre Höchstgrenze längst erreicht haben, bezw. schon wieder verschwunden
sind, bevor die größte Durchbiegung an der Stoßstelle eintritt. Eine
Proportionalität zwischen den Kraftwirkungen besteht weder untereinander noch
zur jeweiligen Durchbiegung. Endlich wird durch den Stoß die Querkraft
wesentlich stärker gesteigert als das Biegungsmoment.

Resume.

L'auteur etudie theoriquement les effets produits par le choc d'une masse
pesante sur une poutre elastique en se basant sur le fait que le mouvement
transversal produit par le choc en un point de la poutre elastique ne se

propage pas instantanement ä toute la poutre mais au contraire que cette
propagation de ce mouvement transversal dans le sens de Faxe de la poutre
se fait ä des vitesses qu'il faudra determiner tres exactement ä Faide de Fex-
perience pour les differents materiaux et les differentes formes de construction,

il est possible d'etablir Fequation differentielle de la ligne elastique
dynamique, c'est-ä-dire la deformee de l'axe de la poutre compte tenu de
la propagation dans le temps du mouvement transversal. Les Solutions parti-
culieres, faciles ä obtenir, de l'equation differentielle, permettent d'arriver
ä des Solutions generales qui tiennent compte, de maniere süffisante, de
toutes les conditions aux appuis. L'etude du mouvement de la masse qui
produit le choc permet d'etablir la relation qui existe entre la resistance,
resultant de la ligne elastique dynamique, que la poutre oppose ä la
deformation au point de choc d'une part et la masse et sa vitesse d'autre pari.



232 J- Krebitz: Der Querstoß auf einen Balken

La Solution generale, valable au moment du choc et immediatement apres,
qui permet de representer Failure d'un choc legerement elastique sur la
poutre est representee par les relations qui en resultent pour la grandeur
de la masse agissante, Jgour la duree et la force du choc. En admettant une
vitesse de propagation de 333 m/sec, egale ä la vitesse du son determinee
d'une fagon tres vraisemblable ä l'aide de moyens tres simples, les effets
des choses ont ete etudies numeriquement en laissant tomber d'une hauteur
de 2 cm une masse 3,24 t sur les rails d'un pont metallique de chemin de
fer de 25 m de portee. Les resultats acquis sont representes sur plusieurs
figures et montrent que les effets du choc se developpent tres rapidement et
en outre que les efforts developpes dans la poutre ont atteint depuis long-
temps leur valeur maxima, et meme ont dejä disparus lorsque la fleche devient
maxima au point d'action du choc. II n'existe aucune proportionnalite entre
les efforts eux-memes ni entre ces efforts et la deformation. Disons pour finir
que l'effort tranchant est beaucoup plus fortement influence par le choc que
le moment flechissant.

Summary.
The phenomena attending the impact of a heavy mass onto an elastic

beam are worked out theoretically from the basis that the transverse movement

set up in the beam at the point of impact by the loading is not im-
mediately propagated throughout the whole of the beam, but requires time
for its development. Assuming that the propagation of this transverse movement

takes place in the direction of the axis of the beam at a velocity de-
pendent on the material and the shape of the member, which can be
determined by experiment, it is possible to arrive at the differential equation
for the line of dynamic flexure, or in other words the bent shape of the axis
of the beam when undergoing transverse movement in time. It is easy to
find particular Solutions to this differential equation and hence to infer
general Solutions which adequately satisfy all the marginal conditions. The
relationship between the resistance corresponding to the line of dynamic
flexure assumed by the beam at the place of impact on the one hand, and
the magnitude and velocity of the impinging mass on the other, may be
obtained by reference to the movement of the impinging mass itself.

The general Solution which holds good at the moment of impact and
immediately afterwards, corresponding to what happens when the impact
is slightly damped, is stated, as is also the relationship between the magnitude
of the impinging mass, the time taken for the impact, and the magnitude of
the impact inferrable therefrom. Assuming a velocity of propagation of
333 m. per second (equal to the velocity of sound), which may be shown by
simple means to be probable, a numerical calculation is given for the impact
of a mass of 3.24 tonnes falling from a height of 2 cm. onto the rails of a
steel railway bridge of 25 m. span. The results so obtained are indicated in
a number of figures and go to show that the impact develops very rapidly;
moreover the forces thereby set up in the girder attain their maximum value,
and again vanish, before the deflection at the point of impact has reached its
maximum. There is no proportionality either between the forces called into
play, or between these and the momentary deflection. Finally, the shear
force is increased considerably more by the impact than is true of the bending
moment.
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