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DIE KLASSISCHE ERDDRUCKTHEORIE MIT BESONDERER
RUCKSICHT AUF DIE STUTZWANDBEWEGUNG.

LA THEORIE CLASSIQUE DE LA POUSSEE DES TERRES, COMPTE
TENU DU DEPLACEMENT DE LA PAROI DE SOUTENEMENT.

THE CLASSICAL THEORY OF EARTH PRESSURES WITH SPECIAL
REFERENCE TO THE MOVEMENTS OF RETAINING WALLS.

Prof. Dr. Ing. J. JAKY, Budapest.

Einleitung.
a) Qeschichtlicher Riickblick.

Das Problem des gestiitzten Erdkorpers und der mit diesem
Problem eng verbundene Begriff der Stiitzwand reicht in die Urzeit des
Menschen zuriick. Die Stiitzwand war — wie wir es aus der Bibel wissen —
schon den Voélkern des Altertums, so besonders den Chaldidern, diesen
berithmten Meistern der Naturwissenschaften, bekannt. Indenhédngenden
Giarten Babyloniens standen viele dieser Bauwerke, was auch durch die
Ausgrabungen bestitigt wird.

Diese Mauern wurden aller Wahrscheinlichkeit nach nicht nach Pldnen
und Berechnungen, sondern lediglich auf Grund empirischer Erfahrungen
erbaut, was auch fiir die Stiitzwéinde der altertiimlichen Befestigungs-
bauten gilt.

Dies dndert aber nichts an der Tatsache, daB diese Festungsmauern sehr
standsicher ausgefiihrt waren und eben deshalb nach dem Sturz des romischen
Kaisertums von den Festungsbaumeistern des Mittelalters zum Vorbild
genommen wurden.

Die ilteste Vorschrift fiir Mauerbemessungen stammt von dem berithmten
franzosischen Festungstechniker General VauBan (1687), der etwa 3 Mil-
lionen m3 Stiitz- und Futtermauern verschiedener Abmessungen nach festen
Regeln erbaut hat. Vausan gibt die Stirkeabmessungen der Mauern als
lineare Funktionen der Wandhohe (%) an (1). Die Stichhaltigkeit
und Vollkommenheit dieser empirischen Regeln ist derart auffallend, daB
PONCELET in einem seiner Werke die Vermutung ausspricht, daB es sich bei
diesen Regeln um die Ergebnisse irgendeiner uns unbekannt gebliebenen
Erddrucktheorie handeln miisse (2).

Die nahe Beziehung, in welcher das Problem der Stiitzmauern zufolge
ihrer hauptsichlichen Verwendung fiir militirische Bauten zu den Kriegs-
wissenschaften stand, hat das Problem des Erddruckes bis zur Mitte des
XIX. Jahrhunderts zu einem Problem der Militiringenieure gemacht, die die
Losung in verschiedener Weise gesucht haben. Von den bekannten Forschern
sollen hier nur die Namen BELiDoOrR, CouLomB, FrRANcAIS, MAYNIEL, AUDOY
und PONCELET genannt werden.
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Aus dieser Reihe hebt sich besonders der weltberithmte franzdsische
Physiker CHARLES CouLoMB hervor, der mit seiner im Jahre 1773 veroffent-
lichten Studie die Grundlagen der klassischen Erddruck-
theorie niedergelegt hat (3). Die zweite Hilfte des XVIII. Jahr-
hunderts war eine Periode der klassischen Mechanik. Aus dieser Wissen-
schaft heraus haben sich dietechnischen Bau wissenschaften ent-
wickelt, so unter anderem auch die Theorie des Erddruckes, die
im XVIII. und XIX. Jahrhundert zu den meistbehandelten Problemen ge-
hort hat.

Die klassische Erddrucktheorie behandelt die Frage des Erddruckes als
ein statisch bestimmtes Problem, etwaige im Erdkérper auf-
tretende Deformationen finden daher keine Beriicksichtigung. Als Ausgangs-
punkt der Theorie dient ein Erdprisma, das sich im Moment der
Gleichgewichtsstorung loslést und an der sog. Gleit-
fliche ins Rutschen geraten, seitlichen Druck auf die
Stiittzwand ausiibt. Dieser Druck wird Erddruck genannt.

b) Die CouLomB’sche Theorie des maximalen Druckes.

CouLoms stellt sich folgendes Problem: Wenn die Wand A — B nach
Fig. 1 um ihren FuBpunkt A sich etwas nach vorne neigt, so wird sich er-
fahrungsgemiB das bisher gestiitzte Erd-
prisma ABC liangs einer ebenen Bruchflache
. von dem Erdkoérper lostrennen und an der

Fliche AC abgleiten. Im Sinne der CouLoms-
schen Reibungstheorie kann aber ein Ab-
s gleiten an einer beliebigen Fliche AC nur
eintreten, wenn die Schubkomponente (7)
der resultierenden Kraft R groBer ist als das
Produkt der Normalkomponente (N) und
f=1tg o, wo ¢ den inneren Reibungs-

Triangle des contraintes
Stress distribution

Spannungsdrereck

Surface de giissement
Sliding plane

Coulomb’scllzlleg.l’rlc;blemstellung. Winke.l des ges.tht.en Erdkérpers bedeu-

Le probléme de Coulomb. tet. Hieraus ergibt sich als Voraussetzung
Coulomb’s statement of the problem. des Gleitens:
T=N-tgo

GemiB der wichtigsten Voraussetzung Couromss wird von den unend-
lich vielen Ebenen, die durch 4 gelegt werden kdnnen,
jene die gefahrliche sein, fiir welche der Erddruck £ zum

Maximum wird, weil die Wand auch dem groBten Erddruck wider-
stehen muB. a

Auf analytischem Weg 1aBt sich beweisen, daB das Maximum des Erd-
druckes eintritt, wenn

a:4w+n§ 1)

ist, und daB dann der maximale Erddruck betrigt:

_ Ry ( o__g)
Emay = — 18?450 - 2)
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Der Angriffspunkt des Erddruckes liegt an der Riickseite der
Stiitzmauer an ihrem unteren Drittelpunkt, denn die Differentiation
nach / der Gleichung 2) fithrt zu einer dreieckférmigen Span-
nungsfigur (e¢), deren Schwerpunktlinie durch den besagten Punkt geht.

Nochmals zusammengefaBt, bedient sich die Couromp’sche Theorie nach-
stehender Voraussetzungen:

1. Die Gleitfldachen sind Ebenen,

2.bei beginnendem Gleiten ist an der Gleitfldche
3.von den unzihligen Erddriicken wird der seinem
Werte nach groB8te der maBlgebende sein.

Von diesen Voraussetzungen scheint nur die zweite der Wirklichkeit zu
entsprechen, wogegen sich die erste und dritte Voraussetzung durch keiner-
lei physikalische Beweisfiihrung unterstiitzen 1i8t. Letztere dienen lediglich
dazu, die Losung des Problems zu vereinfachen und zu erleichtern.

Die Annahme, daB die Trennfldche eine Eben e ist, wird von CouLoMB
nicht bewiesen, und was den maximalen Erddruck anbelangt, kann
dieser nicht als Voraussetzung gelten, er tritt vielmehr als Folge ein, was
bereits durch WINKLER (4) betont wurde, und was auch aus den folgenden
Ausfithrungen erhellen wird.

Zu Gunsten der CouLoms’schen Theorie sei noch erwiahnt, daf3 sie sich
auch mit jenem der Wirklichkeit unzweifelhaft ndherliegenden Fall befaBt
hat, in welchem im Erdkérper auBer der inneren Reibung auch Kohédsion
zur Geltung kommt. In diesem allgemeineren Fall erscheint auch das Druck-
problem der bindigen Béden (Tonboden) inbegriffen zu sein, wogegen
die spiteren Forscher lediglich die Reibung beriicksichtigen, weshalb ihre
Theorien nur fiir trockenen Sand Giiltigkeit besitzen kénnen. Ein AuBer-
achtlassen der Kohision fiithrt unvermeidlich zuiiberdimensionierten
Mauern, und wenn sich dabei auch einfachere theoretische Ergebnisse er-
zielen lassen, so entfernt man sich doch zu weit von der Wirklichkeit.

Die nach CourLomB folgenden franzosischen Forscher wie: FrAncgas,
Aupoy, PonceLET und andere haben sich mit Stiitzwinden belie-
biger Form, sowie mitdurch geneigteOberfldche begrenzte
Erdkorper befaBt. Sie haben jenen allgemeineren Fall des Erddruckes
untersucht, in welchem der Druck nicht mehr horizontal, sondern innerhalb
des Reibungskegels (4 = ¢) unter beliebigem Winkel 6 wirkt (Fig. 2).

Von PoNceLeT stammt die auch heutzutage gebrauchliche einfache
geometrische Konstruktion des Erddruckes, die auf der mit Zirkel und
Lineal durchfiihrbaren zeichnerischen Ermittlung der mittleren Pro-
portionale beruht.

CULMANN (5), der Vater der Statik, hat den Beweis erbracht, daf die
dem Erddruck proportionalen Lingen e fiir verschiedene Gleitflichen sich
als Ordinaten einer Hyperbel dndern, und daB diese an der Gleitflache
(AC) ihr Maximum erreichen.

REBHANN (6) hat bewiesen, daB die Gleitfliche das Viereck, gebildet
durch die Wandflache, die Terrainoberfliche, die natiirliche Béschungslinie
(<C @), sowie durch die Stellungslinie (CD) in zwei gleiche Teile zerlegt,
d. h. daB

area ABC, o area ACD 3)
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ist und daB die GréBe des Erddruckes gleich ist dem Flacheninhalt des
schraffierten Dreieckes, d.h.

— P9
E="Z5v 4)

Neben der Kenntnis der GroBe ist aber auch die Kenntnis der Rich-
tung des Erddruckes von hochster Wichtigkeit. Uber die Richtung des
Druckes wufiten die auf der Annahme ebener Gleitflichen beruhenden
Theorien nichts auszusagen. Betreffend den Winkel 6 stehen uns nur aus

nach - daprés - according to - Rebhann: £= 2y

8 [4
N 5 2"’/;?‘::/7:3/1 ac ;/ﬁcheA o
% e ire ire
Z Area 4 Ares 4

Culmann's Ayperbel
Hyperbole de Culmann
Culmann's hyperbolo

Fig. 2.
Die Ponceletsche Konstruktion und die Culmannsche Hyperbel — L’épure de Poncelet
et ’hyperbole de Culmann — Poncelet’s construction and Culmann’shyperbola.

Erddruckrichtung beliebig bei: Poncelet, Scheffler, Culman, Rebhann (XIX. Jahrhundert)

— Direction quelconque de la poussée des terres d’apres: Poncelet, Scheffler, Culman,

Rebhann (XIXe¢me si¢cle) — Free direction of earth pression according to: Poncelet,
Scheffler, Culman, Rebhann (XIXth century).

Versuchen gewonnene Erfahrungen zur Verfiigung. Eines der iltesten Er-
gebnisse auf diesem Gebiet stammt von Prof. MOLLER, der den Neigungs-
winkel des Erddruckes zwischen den Grenzen

Lo << d< do 5)

anzunehmen empfiehlt (7).
Spatere Forschungen haben fiir den Neigungswinkel groBere Werte er-

geben, als von MOLLER ermittelt; so haben z. B. duBerst genaue Messungen
von MULLER-BREsLAU (1906) bei unbelastetem Boden

§ = 3¢ | 6)

bezw. bei belasteter Hinterfiillung den verminderten Wert von 6 = { ¢ er-
geben (8).

Die Versuche, die zur Kliarung dieser Frage bisher unternommen wurden,
sind aber so gering an der Zahl, daB aus ihnen keine feste Regel betreffend
die Richtung des Erddruckes abgeleitet werden kann und deshalb wird die
Frage des Erddruckes auch heute noch fiir ein ungeldstes Problem gehalten.

Die Bestimmung des durch belastete Erdkdérper verursachten
Druckes unter Zugrundelegung ebener Gleitflichen ist ein Verdienst der
ungarischen Forschungsarbeit.

Prof. Dr. K. v. Sziy (Budapest) gab, gestiitzt auf die CourLoms’sche
Theorie, im Jahre 1912 die graphische Losung des Druckproblems von unter
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der Einwirkung von Einzellasten und von gleichmidBig verteilten
Kraften befindlichen Erdkdrpern (9) und im Jahre 1928 eine gleiche Lo-
sung fiir haftende Bodenkdrper (10).

c) Qleichgewichtsbedingungen [ir Krifte.

Die Bedingungen des Gleichgewichtes der Kriafte £, G und R waren
in der CouLomB’schen Theorie durch die Annahme eines senkrecht auf die
Wand wirkenden Druckes restlos erfiillt. Durch das Einfithren der
Wandreibung durch spiatere Forscher konnte der Druck unter be-
liebigem Winkel  wirkend angenommen werden, was aber zu Gegensitzen
zu den Gesetzen der Mechanik gefiihrt hat.

Die Krifte £ und R greifen namlich durch die Dreieckform ihrer Span-
nungsverteilungsfigur bedingt im unteren Drittelpunkt an; dem-
gemaB treffen sich die Krifte G und R an der Gleitfliche (Fig. 1 und 2)
und folglich muB auch der Erddruck E durch diesen Punkt verlaufen, woraus
sich eine zur Bodenoberfliche parallele Druckrichtung ergibt, d.h. die
Moglichkeit eines unter beliebigem Winkel ¢ auftretenden Druckes entfallt.
Die Annahme des parallel zur Oberfliche wirkenden Erddruckes erscheint
demnach als ein Schénheitsfehler der ganzen Erddrucktheorie, welcher der
Annahme ebener Gleitflichen entspringt. Durch die Voraus-
setzung gekriimmter Gleitflichen kann dieser Fehler ausgeschaltet werden.

d) Die RANKINE’sche Erddrucktheorie.

In der Theorie CouLomss und seiner Anhdnger hat es sich bei der Unter-
suchung des Gleichgewichtszustandes um die Gleichgewichtsverhéltnisse von
Kraften gehandelt, die auf raumlich begrenzte Koérper wirken.
RANKINE (1857) hat das Problem auf Grund der Spannungen fiir
unendliche Erdkdrper gelost, und zwar in theoretisch vollig ein-
wandfreier Weise (11).

Der Gedankengang RANKINES 148t sich kurz wie folgt schildern: An-
genommen sei im Erdinnern — das seiner waagerechten und lotrechten Aus-
dehnung nach als unbegrenzt angesehen werden kann — ein unendlich
kleiner Erdkeil (Fig. 3), an dessen Seiten die Spannungen oy, o, und r wirken,
die Funktionen der die Lage des Punktes P bestimmenden Koordinaten x
und y sind. Die an der unter beliebigem Winkel a geneigten Hypothenuse
auftretenden Spannungen ¢ und 7 sind nicht nur Funktionen der Koordi-
naten x und y, sondern auch des Winkels a.

Die Voraussetzungen des Gleichgewichtes lauten nach CaucHy fiir den
Fall nach Fig. 3 wie folgt:

dax + 9% _
a0y _6_2 _
ady + dx 7
Aus der Erwigung heraus, daB im unbegrenzten Erdkdrper die Span-
nungen nur Funktionen der Tiefe y sein konnen, d. h. 8%: 0 und 7% = 0
% C

sind, kann abgeleitet werden, daB die Gleitflichenneigung «, bei unter < e
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geneigter Terrainoberfliche durch das Gesetz

sin ¢ :
oS (2ay—e—¢) = Sing 7)

bestimmt ist. Bei horizontaler Oberfliche, wenn also

e =20
ist, betrigt der Neigungswinkel der Gleitfldche gleich der
CouLomp’schen Theorie

a0:450+% 8)

In der RankiNE’schen Theorie wird auBer dem Reibungsgesetz
(! = ntge) nur die Annahme einer unendlichen Ausdehnung in
waagerechter Richtung gemacht. Die Theorie beruht daher auf der
Annahme, daB es fiir die im Erdinnern herrschenden Spannungsverhiltnisse

Glerchgewrchisbedingungen
Conditrons d'équilibre .
Conditions of equilibrium

Gleichgewichtsbedingungen:
Condiitions d equilibre:
Conditions of equilibrium:
3g; , 0T
Sy - 0
ax "Iy \ Cauchy
96y 9T _
%t )

Gleitflache
Surface de glissement
Sliding plone
g

Fig. 3.
Rankine’sche Theorie
La théorie de Rankine

Rankine’s theory.

vOllig belanglos ist, wenn man sich an Stelle der Hinterfiillung eine Wand,
eine Ersatzwand denkt. Gegen diese Auffassung konnen allerdings Ein-
wendungen erhoben werden, doch mufl zugegeben werden, daB unter dieser
Voraussetzung die Theorie absolut einwandfrei ist, weil sie den drei
Bedingungen des Gleichgewichtes gerecht wird und die
Gleitflichen nicht nur hypothetisch, sondern bewie-
senermafBen Ebenen sind.

In dem RANKINE’schen Kontinuum handelt es sich um ebene Gleit-
flachen, die parallel zueinander verlaufen, bezw. sich in
jedem Fallunterdem gleichen Winkel (90°—¢) schneiden.

Das beachtlichste Ergebnis der RANKINE’schen Theorie liegt im Er-
kennen des Umstandes, daBl die Oberfldchenneigung und
die lotrechte Richtung einander konjugierte sind. Die
Theorie liefert nimlich den Beweis, da der Druck wirkend auf das
zur Oberflidche parallel liegende Element lotrecht auf-
tritt, bezw. daf am lotrechten Element eine zur Ober-
fliche gleichgerichtete Spannung auftritt.

Aus dieser Regel ergibt sich fiir den RANKINE’schen Fall als Gesetz,
daB der Erddruck auf eine senkrechte Mauerriickwand mit
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der Oberflache gleichgerichtet ist und daB der an einer Mauer
mit beliebiger Riickwandfliche AB auftretende Erddruck E, sich durch Zu-
sammensetzung der Krifte E, auf die lotrechte Wand in A und G, ermitteln
1aBt (Fig. 4).

Nach der RANKINE’schen Theorie ist, — im Gegensatz zu der CouLoms-,
PoNceLET-REBHANN’schen Theorie, — eine willkiirliche Annahme
des Neigungswinkels des Erddruckes weder notwendig
noch zuliassig, weil die Richtung des auf eine senkrechte Wand wir-
kenden Erddruckes mathematisch parallel zur Erdoberfliche liegend fest-
gelegt ist. Der auf geneigte Wandfldachen gerichtete Erddruck 14Bt
sich durch Vereinigungder Einzelkrifte bestimmen, wie aus Fig. 4
ersichtlich ist.

Aus alle dem miiite der SchluB gezogen werden, daBl wir in der RANKINE-
schen Theorie eine endgiiltige und einwandfreie Losung des Erd-
druckproblems besitzen, denn sie scheint einesteils den Grundgesetzen
der Mechanik zu entsprechen, und andererseits gestattet sie eine eindeutige
Bestimmung des Erddruckes nach seiner Richtung und GroéBe, wie
auch die Bestimmung des Angriffspunktes (im unteren Drittelpunkt
der Wand). Der wunde Punkt dieser vom mathematischen Standpunkt durch-
aus einwandfreien Theorie liegt lediglich in der Einfiithrung des durch
eine Wand getrennten halben Kontinuums und damit in der Annahme
ebener Gleitfldchen.

Es fragt sich nun, wie es sich mit den Versuchen verhilt. Von den zahl-
reichen Versuchen auf diesem Gebiet aus dem Anfang des XX. Jahrhunderts
verdienen insbesondere die mit peinlichster Genauigkeit durchgefiihrten Ver-
suche von MULLER-BRESLAU (8) hervorgehoben zu werden, durch welche die
RANKINE’sche Theorie, namentlich ihre Ergebnisse betreffend die Richtung
des Erddruckes im ganzen widerlegt worden sind. Diese Versuche haben
vielmehr bewiesen, daB ganz bedeutende Anderungen der Ober-
flichenneigung von keiner nennenswerten Richtungs-
dnderung des Erddruckes begleitet sind, d. h. daBB die
Druckrichtung nicht dem RaNkINE’schen Gesetz unter-
worfen ist, nach welchem der Erddruck stets mit der Terrainoberfliche
gleichgerichtet auftreten miite. Auch hat MULLER-BRESLAU groBere
Druckwerte (um 10—15 oo groBere) gemessen, als man sie auf Grund der
RANKINE-CouLomB’schen Theorie auf dem Wege der Rechnung er-
halten hitte.

Die Versuchsergebnisse von MULLER-BREsLAU haben durch die spateren
Versuche von J. FELD (12), H. Krey (13) und K. v. TErzacH! (14) vollige
Bestitigung gefunden, so daB als feststehend angenommen werden muf,
daB

l.der Erddruck nicht parallel zur Oberfliache auftritt
und

2.daB er seiner GroB8e nach die Rechnungsergebnisse
nach der CouLoMB-RANKINE’schen Theorie iiber-
schreitet.

Dies muB zur Uberzeugung fithren, daB die Fehlerquelle einztg und
allein in der Annahme der ebenen Gleitfldche liegt, bezw. in
derwillkiirlichen Einfiithrung einer Ersatzwandan Stelle
des Kontinuums, woraus sich die ersterwihnte Annahme ergeben hat.

Abhandlungen V 13
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Schon MULLER-BRESLAU hat an Hand zahlreicher Beispiele dargelegt, daB
gekriimmte, z. B. kreisformige Gleitflichen tatsachlich hohere Erd-
druckwerte ergeben und daB der Druck in diesem Falle unter beliebigem
Winkel auftreten kann. Aus praktischen Erfahrungen heraus, wie auch auf
Grund der Lichtbilder iiber die Versuche sind die Forscher zu der gleich-
lautenden Feststellung gelangt, daB die Gleitfldche — zumindest in
ihrem unteren Teil — irgendwelchesanftgebogene Fldcheist,
keinesfalls aber in ihrer ganzen Linge eben sein kann.

Abgesehen von ein bis zwei Studien aus dem vorigen Jahrhundert wirkte
besonders das dem Weltkriege folgende letzte Jahrzehnt sehr befruchtend
auf die Bereinigung dieser Fragen. In der neuesten Zeit haben die besonderen
Plastizititsuntersuchungen von Prof. PranpTL (15) die Auf-
merksamkeit der Forscher auf die gekriimmte Gleitfliche gelenkt. Die fol-
genden Untersuchungen von HENcky, KARMAN und NApar konnten dann auf
eine Anzahl von Problemen hinweisen, die auch ohne Kenntnis der
Deformation, auf rein statischer Grundlage, gelost werden kdnnen. Zu
diesen Problemen gehdrt auch die Theorie des Erddruckes.

Im folgenden soll die andere Richtung der Erddruckerforschung be-
handelt werden, namentlich die Theorie der gekriimmten Gleitflichen.

0
Coms E
‘\‘ T~ /\?\ - ) - A b }
! -
1
HKreiszylinder Fellenius (1927) Goo-
I Cylindre o/'/'cu/a/‘/‘e{lrre] (1928) ? . R
ircular cylinder \Terzaghi(1929) Auf theorelischer Grundlage ;ﬁz A e( /{%‘g )
I Dsprés /; ///eor/e} Kermin(1927)
] P ] On the theory o Jahy (1934)
Fig. 5.

Gekriimmte QGleitflichen — Surfaces de cession incurvées — Curved slip surfaces.

Erddruck bei Voraussetzung gekriimmter Gleitflachen.
a) Allgemeines.

In den letzten zehn Jahren sind auf dem Gebiet der Erddruckerforschung
gewaltige Fortschritte gemacht worden. Die hierbei vorgenommenen Ver-
suche lassen sich ihrer Natur und ihrer Methoden nach in zwei Gruppen
einteilen.

I. Zur ersten Gruppe gehoren jene Untersuchungen, die auf moglichst
einfache Art praktisch brauchbare Ergebnisse zu geben wiinschen,
ohne auf eine mathematisch einwandfreie Losung des Problems
Gewicht zu legen. Sie liefern Naherungswerte, denen es zwar an der theo-
retischen Unterlage fehlt, die jedoch mit der Wirklichkeit gute
Ubereinstimmung zeigen. Begriinder dieser Schule war Prof.
W. FeLLENIUs (Stockholm) (17), der den Vorschligen SveNn HuLtiNs und
PETTERSONS folgend, kreisfdrmige Gleitfldche annimmt. Jahr-
zehntelanges Arbeiten und Beobachtungen der Kommission fiir Boden-
mechanik in Schweden haben zur Erkenntnis gefiihrt, da die Gleitflachen
bei Rutschungen von Eisenbahndimmen, bei Kaimauereinstiirzen usw. nahe-
zu kreisformige Form besitzen.

Diesen Spuren folgen Prof. Krey (13) und Prof. TErzacH! (17), die
die Gleitflache in ihrer vollen Linge fiir eine Kreislinie halten. Die graphischen
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Verfahren dieser Forscher behandeln das Problem in sehr iibersichtlicher
Weise, nur sind diese Verfahren gegeniiber den analytischen "Methoden
duBerst schwerfillig und langwierig. Die Untersuchung einzelner Pro-
bleme erfordert zuweilen zeichnerische Konstruktionsarbeit von mehreren
Tagen. Vom theoretischen Standpunkt aus sind diese Methoden — wie ge-
sagt — nicht einwandfrei, weil sieden Gleichgewichtsbedingungen .
nur teilweise und nicht restlos entspre-

chen. X

II. Die zweite Richtung, die durchaus wissen- tntgy
schaftlich ist und auf rein theoretischer
Grundlage steht, paBt sich den Gesetzen der - —
Mechanik genauest an und nimmt die Form 7,
der Gleitfliche deshalb nicht als bekannt
an, sondern sucht sie auf mathemati- e

schem Weg zu bestimmen. Surface de glissement
Stiding slope "

An der Spitze dieser Schule steht der deutsche Fig. 6
Mathematiker Fr. K&TTER (18), der schon im Jahre pi. kattersche Gleicl
1003 die Ditferentialgleichung fiir die auf beliebiger ‘f_,‘ggu;;;; e Kotter

Gleitfliche entstehende resultierende Spannung ab- Kotter’s equation.
geleitet hat.
Nach KOTTER ist
dg da .
;,»s—~2q-tgqaz,§__ysm(a ®) 9)

In dieser Gleichung bedeuten ¢ die resultierende Spannung, <C¢ den Rei-
bungswinkel der kérnigen Erdmasse, yt/m® ihr Raumgewicht, ds den un-
endlich kleinen Bogenteil der gekriimmten Gleitfliche und « den Winkel
zwischen der Bogenlinie und der Waagerechten (Fig. 6). Die KO&TTER’sche
Gleichung gibt aber noch keine Losung des Problems, nachdem sie eigent-
lich zwei Unbekannte, ndmlich gg und ¢, enthilt. Einer dieser Werte muB
angenommen werden, um den anderen berechnen zu kénnen. Wire z. B. die
Form der krummen Gleitfliche bekannt, so konnte die auf
derselben entstehende Spannung ¢ berechnet werden. Dies ist aber nicht
der Fall und ihre Form kann ohne Verletzung des Gleichgewichtsgesetzes
auch nicht angenommen werden. Alle Hypothesen, welche die krumme Gleit-
flache, z. B. als einen Kreisbogen (FeLLEnius, KrRey, TErRzAGHI), oder als
eine logarithmische Spirale (PHERA) annehmen, fithren nur zu
Niherungsergebnissen, geben aber keine restlosen Losungen, weil
sie den Bedingungen des Gleichgewichtes nicht Rechnung tragen. Die
K&6TTER’sche Gleichung gehort zur Losung der Frage, ohne eine voll-
kommene Losung geben zu kdnnen.

Prof. M. RiTTer (1910) gibt eine sehr elegante und einfache Ableitung
der Ko&TTER’schen Gleichung und hat in seinem neuerlich (1936) erschie-
nenen Werk (19) in analoger Weise die Trajektions-Differential-
gleichung der Hauptspannung abgeleitet. Damit wurden neue
Wege erschlossen und es darf angenommen werden, daB fiir die Haupt-
spannungsflichen geschlossene Formeln gefunden werden.
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In den vor kurzer Zeit erschienenen Studien von H. REissNER (20) und
TH. v. KARMAN (21) wurde auf die Tatsache hingewiesen, dall die Gleit-
flachen keine fortlaufenden Kriimmungsfldchen sind,
sondern sich aus den RANKINE’schen Ebenen und aus
krummen Fliachen zusammensetzen, wie dies der Fig. 5 zu ent-
nehmen ist. y

Von Prof. ReEissNer (1924) wurde nachgewiesen, dafl die Gleitflachen
kohisionsloser schwerer Erdmassen Charakteristiken der partiellen
Differentialgleichung zweiter Ordnung der Airy’schen Spannungsfunktion
sind und da die Differentialgleichung zweiter Ordnung hyperbolischen
Charakter aufweist, lassen sich die Gleitflachen
aus mehreren Integralflichen zusammensetzen.

Die Rankine’schen Gleitflachen
sind dementsprechend nur bis zur
Geraden AC Ebenen und setzen sich
von da ab in gekriimmten Flachen
fort. Lage und Form der gekriimmten Gleit-
flichen innerhalb des Prismas ABC sowie der
herrschende Spannungszustand werden bestimmt
1. durch die Gleichgewichtsbedin-

Fig. 7. gungen, 2. durch die Reibungsver-

Gleichgewichtsbedingungen, ~Nadltnisse an der Wand und 3. durch

Conditions d’équilibre. den glatten Ubergang der ebenen

Conditions of equilibrium. Gleitflachen in die gekriimmte Fort-
setzung.

REIsSNER riickt der Losung des Problems von Schritt zu Schritt naher,
Prof. KARMAN (1927) gibt eine Losung fir den Sonderfall, daff die
Mauerriickwand ebenfalls zur Gleitflache wird und beweist,
daB der — unter Voraussetzung einer gekriimmten Gleitfliche — ermittelte
Erddruck nicht um vieles von dem CourLomB’schen Wert
abweicht.

Eine kurzgefaBte Darstellung und die allgemeine Losung des Problems,
wie auch die Differentialgleichung der Gleitfldachen hat als
erster der Verfasser dieser Studie anldBlich des IV. Internationalen
Kongresses fiir Mathematik und angewandte Mechanik
im Jahre 1934 in Cambridge gegeben. Im folgenden wird die ausfiihr-
liche mathematische Behandlung der Frage gezeigt (22) und (23).

b) Gleichgewichisbedingungen.

Stellt man sich einen Erdkorper vor, der durch eine unter dem Winkel ¢
geneigte unbelastete Flache begrenzt ist (Fig. 7), so kann man nach
BoussiNEsQ (24) annehmen, daB sidmtliche Spannungen (4, n, und o,) in
linearem Verhiltnis zu der vom Punkte 0 gemessenen Entfernung /% stehen
und nur Funktionen des Polwinkels g sind, d. h.

n, = ki (6)
t, = kf2(5) 10)
or = hfs(B)

Die Gleichgewichtsbedingungen des unendlich kleinen Kreissektors OAB
sind in den wohlbekannten partiellen Differentialgleichungen nach Cauchy
ausgedriickt, nach welchen
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. — in
+ = + ﬁ ysing

g 11
2¢ t 1 é)/z1 —— )
h noop 7
Nach Einfithrung der Ausdriicke unter 10) wo z. B.
0 _ d (tl)
ist, kommt man zu den Glelchungen
20, —n d [t .
hh ‘ ;2? (7) = ysin g
12)

Wenn nun das unendlich kleine Dreieck ABC nach Fig. 7, dessen Hypo-
thenuse AC ein Differentialbogenelement ds der durch den Punkt A gehenden
Gleitflache ist, in welchem ferner die Spannungen # und » Komponenten der
an der Gleitfliche wirkenden Spannung sind, an die Fliche AB gelegt wird,
so lassen sich aus dem Gleichgewicht der an den Seiten des Dreieckes ABC
wirkenden Krifte folgende Gleichungen aufschreiben:

t =2 ; M sin24 4 ¢, cos 22
13)
_ f”l;’il_*_ f’?,gffcos2l-—f1 sin24

Nachdem fiir das Gleiten dasjenige Bogenelement in Betracht kommt, fiir
welches die Bedingung
0 [t ot on
<‘n‘)—- 0 d.h. 7} tg(}’ ]A

v
& A
erfiillt erscheint, wird aus der Gleichung 13) die Gleitspannung sein:

{ = "’"2“”‘ cotg (21 — g) 14)

Andererseits ist im Sinne des CouLomp’schen Gleitgesetzes /= n - tg ¢,
so daB sich nach Zusammenziehen der Gleichungen 13) und 14) die Span-
nungen o,, n, und ¢, als Funktionen der Verdnderlichen ¢ und 2 ausdriicken
lassen, woraus

- 1+sm<psm(21—-<p)

B sin ¢ cos @

", ____tl—su?qjsm(Z/l—(p) 15)
sin ¢ cos ¢

t :t‘CQS(ZX-—(p)
COS ¢
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Der in diesen Gleichungen vorkommende Winkel 1 148t sich mit dem
Neigungswinkel « der Gleitfliche ausdriicken (Fig. 7), d.h.

L=a4 3000 16)

Fig. 7 laBt weiters leicht erkennen, daB8 der in der Differential-
gleichung 12) enthaltene Ausdruck

—— = — h cotg (a + f) 17)

ist.

Durch Einfithrung in die Gleichungen 12) der unter 15) gegebenen
Formeln mit zwei Veridnderlichen gelangt man nach lingeren Zwischenrech-
nungen bei gleichzeitiger Beriicksichtigung der unter 16) und 17) enthaltenen
Vereinfachungen zu nachstehenden Gleichungen:

cos g sin (a + f#~— ¢) da . o 0 ]
z‘[ sin(e + 5) +2d{)’ sing sin (2« 4+ 27 (p)

! sing cos (2a + 28— @) = hysinfBsingcos ¢

- dB
t [»CQ-SQD cos («+ 5 — @) + 2 4e ing cos Qe+ 28— )]
sin (a + B) ap > ? i
+gﬂ [1 +singpsin(2Qa 4+ 28 —¢)] = Ay cospsing cos ¢
aus welchen sich fiir £ und ;’Tl: folgende Auflésungen ergeben:
£ = hysingcos g Sln/)—{—slrl@COS(Za—}—ﬂ;(p) 18)
4 sin ¢ sin (@ 4 B) cos (a + /)’—(p);i% + cos?g
. . , do sin (o — @)
2singsin(2a + f—q¢) 5o + " cos
gf—:: hy sin ¢ cos @ dp__ sin (aJ”g) 19)
# 4 sin ¢ sin (¢ + B) cos(a + f — qo)dﬁ+C052(p

Die in einem beliebigen Punkt des Erdkorpers herrschende Spannung
1aBt sich in Kenntnis der Koordinaten /Z und des Winkels f aus der obigen
Gleichung 18) bestimmen, vorausgesetzt, da der Zusammenhang zwischen
den Winkeln a und g geklart ist. Zur Aufklirung dieses Zusammenhanges
wird die Differentialgleichung der Gleitflache Handhabe bieten.

Durch zweckmiBige Behandlung der Gleichungen 18) und 19) 1d8t sich
ein duBerst einfacher Funktionszusammenhang herstellen. Man bildet den

Ausdruck
dt da>
(dﬂ 2ttg o a7

woraus sich nach entsprechenden Substitutionen und Zusammenziehungen die
Formel
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g%~—2ﬂg>fﬁ£::hyﬁn¢ggyk_gl 20)

ergibt, die eigentlich mit der unter 9) bereits angefiihrten KOTTER’schen
Gleichung identisch ist, wenn man bedenkt, daB '

;
q nd- bds )

Tsing " gy Tsin@rp O
woraus sich nach Einfithrung in die Gleichung 20) tatsichlich die Gleichung
dq

da .
gs 298y o = ysin(e—g)

d.h. die KOTTER’sche Originalgleichung ergibt. Damit erscheint also be-
wiesen, daBB die KOTTER’sche Gleichung lediglich eine Folge der Gleichungen
18) und 19) darstellt und darum ihrem Inhalte nach wesentlich
beschrinkter ist als obige Gleichungen. Wihrend nidmlich in
der KotTER’schen Gleichung das KriimmungsmaB der Gleitfliche (%,g) un-
bekannt ist, sind durch die Gleichungen 18) und 19) aufler dem Letzteren
auch die Gleitspannung ¢ und die Form der Gleitflache be-
stimmt, es ist somit eine vollkommene und restlose Losung ge-
geben. Durch entsprechende Behandlung der Zusammenhinge 18) und 19)
1aBt sich auch noch eine andere, der K&6TTER’schen Gleichung dhnliche, von
ihr aber vollig unabhidngige Gleichung ableiten, namlich

at . . : ; 5
T [sin(Qe+28-¢)+sing]+£cose = hysingcosgsin(2a+p—¢)

7 20a)

welche zufolge ihrer Eignung zur Bestimmung der Gleitspannung (¢) der
Ko6TTER’schen Gleichung an Bedeutung nicht zuriicksteht.

Ein anderer wichtiger Umstand, der nicht unerwihnt bleiben darf, ist
darin zu erblicken, daB die urspriingliche KOTTER’sche Ableitung nicht aus
den unter 10) angefithrten BoussiNEsQ’schen Voraussetzungen hervorgeht,
sondern auf ganz eigenen Wegen zur Gleichung 9) gelangte. Dadurch aber,
daB die BoussiNnesQ’schen Annahmen letzten Endes in der KOTTER’schen
Gleichung auslaufen, erscheint ihre Richtigkeit vollig bewiesen
zu sein.

Die anfangs unserer Ableitung gemachten Annahmen haben nun auf-
gehort, Hypothesen zu sein, sie haben sich vielmehr als Folgen der
KOTTER’schen Gleichungen und mithin als durch die allgemeine Natur des
Problems bedingte Gegebenheiten enthiillt.

Nach diesen Ausfithrungen konnen wir nun dem Gesetze der bisher
unbekannten Gleitflache ndhertreten.

c¢) Differentialgleichung der gekrimmten Gleitfliche.

Die obigen Ableitungen haben uns zu den Gleichungen der Gleitspan-
nung ¢ und zu ihrem Differentialquotienten nach < p gefiihrt. Differentiieren
wir nun die Gleichung 18) nach < § und bringen wir sie mit jener unter 19)
in Verbindung, so 148t sich angesichts des Zusammenhanges
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ah
ip = — & cotg (a -+ B)

der Wert /2 ausschalten und wir gelangen zu einer Differentialgleichung
zweiter Ordnung, in welcher nurmehr « und g erscheinen. Sie lautet nach
entsprechenden Vereinfachungen:

dz da\? d
A ) e+ B@d)(55) + Cn) 55 =0 21)

wo
A, B) = {[sinﬂ+sinqacos(2a+p’—qo)] sin (a + B) cos(a+p’—qp)}

B(a, ) = {4sinqocos(a+{s’—<p) sin (a + g) sin (2a + 8 - ¢) \
+cos(2a+ - ¢) [sin,6’+sinqocos(2a+ﬁ_qu]}
Cle,p) = {Sin(2a+p’~qo)cos2¢7+cos(2a+2,6’—~<p)[sinﬂ+sin¢ cos(2a+{>’—<p)]}21a)

Funktionszusammenhinge / (a, f) sind.

Durch die Gleichung 21) erscheint die Gleitflichenform vollkommen
festgelegt zu sein, sowie die Moglichkeit geboten, die zum Aufschreiben
des totalen Integrals der Differentialgleichung zweiter Ordnung erforder-
lichen zwei Randbedingungen anzugeben.

Das Integral selbst konnte ich in keine geschlossene Form bringen
und es scheint auch wenig Aussicht zu bestehen, daB dies jemals moglich
sein wird, sind doch die Versuche einer geschlossenen L&ésung viel ein-
facherer Differentialgleichungen zweiter Ordnung bis jetzt erfolglos ge-
blieben. Dies bedeutet aber kein Hindernis fiir die restlose Losung des
Problems, wie es spater noch dargetan wird. Fast gleichzeitig mit dem Ver-
fasser trat Prof. A. CaQuoT (25) mit einer Studie vor die Offentlichkeit, in
welcher er die Differentialgleichung der Gleitflache auf v6llig anderer Grund-
lage nach eigenen Methoden aufgestellt hat und in einer recht geistreichen
Weise der Niherungslosung heranriickt.

1. Die ebene Gleitfliache.
Zuriickgekehrt zur Gleichung 21), a8t sich diese unzweifelhaft zu

do
a5 = 0 22)

auflosen, woraus sich a als Konstante ergibt, d.h. die M6glichkeit
ebener Gleitfldachen bewiesen erscheint.

Suchen wir nun die an der ebenen Gleitfliche auftretende Spannung *¢
g% = 0 in die Gleichung 18), so

erhidlt man als gesuchte Funktion der Spannung

Setzt man zu diesem Zwecke den Ausdruck

t:/zytgqa[sinp’+sinzpcos(Za-}-ﬂ—-(p)]:I 23)

Nachdem dieser Zusammenhang fiir jeden einzelnen Punkt der
ebenen Gleitflidche zu Recht besteht, mu8 er auch fiir den
Punkt P, der Oberfliche zutreffen (Fig. 8), woraus sich unter Beriicksich-
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tigung, daB bei unbelasteter Bodenoberfliche ¢ == — 8 durch # = 0 ersetzt
werden kann, die Gleichung

sing cos (2ay— ¢ — @) = sing 24)

ergibt, in der wir die Gleichung der RAN-
KINE’schen ebenen Gleitflache er-
kennen.

Wenn ¢ = 0, so ist qp = 450 - (ZP die Nei-
gung der CouLoms’schen ebenen Gleitflache.

Dadurch erscheint einerseits bewiesen, daf
. die Gleitfldchen auch Ebenen sein
Zusammengefs:étgz'teSCleitﬂéiche. kfj nnen, an@ergrseits, daB diese Ebenen tat-
Surface de cession composée. sdachlichmit jenen des RANKINE’schen

Combined slip surfaces. Kontinuums iibereinstimmen.

2. Gekrimmte Gleitflachen.

Sind die Gleitflichen keine Ebenen, dann ist da =+ 0, folglich ist a ein

veranderlicher Wert. ap

Nachdem die ebenen Gleitfldchen an irgendeinem Punkt P, tangential,
d. h. ohne Bruch in die Kriimmungsflache iibergehen, gehdren die Winkel g,
und a, auch der gekriimmten Gleitfliche an, es muB sogar die Spannung ¢
die gleiche sein, gleichviel ob sie zur ebenen oder zur gekriimmten Gleit-
fliche gehdrend betrachtet wird. Die unter 18) fiir die Spannung ¢ ange-
fithrte allgemeine Gleichung kann aber nur in dem Falle mit der Gleichung 23)
gleichwertig sein, wenn irgendein Multiplikator des Ausdruckes g% zu Null
wird. Nachdem jedoch sin (« - f) == 0, bleibt als einzige Moglichkeit

cos (ay -+ o — @) = 0, mithin

a + Bo = 90° + ¢ 25)

d. h. die Gerade BP, ist im Punkte P,, wo die ebenen Gleit-
flichenihr Ende haben, ebenfalls eine Gleitfliche und fiir den Raum
BP,P, gilt die RANKINE’sche L.6sung als maBgebend.

Damit wire eine Randbedingung der Differentialgleichung zweiter Ord-
nung sichergestellt, und zwar fiir den Punkt P, der Gleitflache

o = q
20
8 = B, )

wo noch ay + fo = 90° 4 ¢ ist.

Mit Hilfe der Gleichung 24) 1aBt sich die L a g e der unter a« geneigten
Gleitebene bestimmen. Im Sinne der Gleichung ist Winkel «, eine
Funktion der Oberflachenneigung e. Fiir den praktischen Gebrauch empfiehlt
es sich, die mit den verschiedenen Reibungswinkeln ¢ bezw. Oberflichen-
neigungen & korrespondierenden a,-Werte zu berechnen und tabellarisch zu-
sammenzufassen. Diesem praktischen Zwecke dient die mitgeteilte Tabelle I,
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in welcher die ausgerechneten Werte «, fiir GroBen der Winkel ¢ und ¢, die
von 5 zu 5 Graden wechseln, enthalten sind. g, 148t sich hingegen aus dem
unter 26) angefiihrten Zusammenhang a, -+ g, = 90° - ¢ berechnen.

+ 0l ’
2

) 2 Fig. 9.
”l {a, Zeichnerisches Bild der Funktion « = f (f) -~ Représen-
; A 72 *# tation graphique de la fonction « = f (f) — Graphical re-

I S resentation of the function a = .
I eben I gekrimmt | P f (ﬁ )
' plan incurve
plamn curved

Bei der Ermittlung der anderen Konstante fiir die Integration muB zu-
nichst in Betracht gezogen werden, daB der gegen die Stiitzwand gerichtete -
Erddruck unter einem bestimmten Winkel & auftritt, und daB dieser Rich-
tungswinkel & eine Funktion der Wandneigung (f,) sowie der End-
tangentea, der Gleitflache ist. Der Richtungswinkel ¢ ist an jedem
einzelnen Punkte der Mauer der gleiche, denn (siehe Fig. 8)

steht nur mit «, und g, in funktionalem Zusammenhang; folglich wird nach
Einfiihrung der Gleichungen 15) die Richtung des Erddruckes sein: |

singpcos (2a;, + 28, — ¢)

€9 = =1 Sing sin e, + 25— @)

27)

, Bedient man sich des Richtungswinkels 6 des Erddruckes entsprechend
einer Annahme, wie sie fiir Konstruktionen des Erddruckes im Falle ebener
Gleitflachen bisher schon gemacht wurde, so 148t sich der Neigungswinkel «,
der Gleitfliche fiir eine unter gegebenem Winkel B, geneigten Mauerriick-
wand als Neigungswinkel der Endtangente berechnen. In diesem Fall wird
die zweite Konstante fiir die Integration durch das dem Punkte A ange-

. w . = . . .
horende, zusammengehorige Wertepaar {a — 5 bestimmt und auf diese Weise

- 1
die a = f (B)-Kurve durch die Punkte P,” und A’ vollstindig festgelegt (siehe
Fig. 9).

Vom rein mathematischen Standpunkt aus betrachtet erscheint das
Problem im Sinne des Vorgetragenen vollig geldst zu sein, die prak-
tischen Gesichtspunkte machen aber noch eingehendere Untersuchungen
erwiinscht.

"So ist als wichtige Frage in erster Linie zu untersuchen, ‘innerhalb
welcher Grenzen sich der Winkel 6 bewegt. Nachdem im Sinne der Glei-
chung 27) 6 im wesentlichen eine Funktion vom Winkel (« - g) ist, betrachten
wir zunichst diese Funktion. Ihre zeichnerische Darstellung ergibt eine
Wellenlinie nach Fig. 10, laut welcher der Winkel § nur zwischen den
Werten (4 @) — (— ¢) schwankt, d.h. der Erddruck bleibt seiner
Richtung nach innerhalb des mit dem Reibungswinkel
des Bodens gezeichneten Reibungskegels und ist unab-
hiangig von den Reibungsverhdltnissen an der Wand.
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Aus der Kurve ist unmittelbar ersichtlich, daB
1. 6 =0 wird, wenn a4+ 8 = 45° + (g oder 135° + %)
2, 5:*’(/ ” » a+18:900+99
3. d=-¢ , yw o+ pf =0 oder 180°

Diese Werte bilden die Grenzwerte der Erddruckrichtung. Diese Fest-
stellung der Grenzwerte 148t aber noch die Frage offen, ob sie in der Natur
auch wirklich auftreten. Die Tatsache, daB Winkel a und g zufolge der Diffe-

Anderung der Erddruckrichtung ot
Variation de lg direction de /a3 poussée des terres
Variatien of direckion of earth pressure
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Direction angle of earth pressure

b~ 3 p-cos (2e+20-9)

I+sing.sin(2a+208-9)
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Fig. 11.

Die partikuliren Losungen der Diffe-
: rentialgleichung (21) - Les solutions
ek S B e s e particulieres de 1’équation différen-
) tielle (21) — The Particular solutions

Fig. 10. to the differential equation (21).

Richtungswinke! des Erdaruckes
Angle de /g poussee des ferres

[
A

rentialgleichung zweiter Ordnung voneinander als Funktionen abhidngen,
148t es notwendig und erwiinscht erscheinen, eine ausfiihrliche Analyse der
Differentialgleichung zweiter Ordnung 21) vorzunehmen.

Die zeichnerische Darstellung der Differentialgleichung 21) im Koordi-
natensystem (a p) erfolgt in der Fig. 11. Im Rahmen der vorliegenden Studie
werden nur die durch unbelastete Oberfliche begrenzten Erdkorper
behandelt, d. h. es wird nur jener Fall besprochen, fiir welchen sich die Gleit-
fliche aus einer bis zur Oberfliche reichenden Ebene und einer an die-
selbe anschlieBenden Kriimmungsflache zusammensetzt. Zu den L&-
sungen der Differentialgleichung gehdéren auch jene Fille, fiir welche der
von der Oberfldche ausgehende Teil der Gleitflache ge-
krimmt ist und sich dann in einer Ebene fortsetzt, oder in ihrer
ganzen Lingeeine Krimmungsflache bildet. Diese Fille — die
bei belasteten Erdkérpern vorkommen — sollen in einem anderen
Aufsatz behandelt werden.

Die Koordinaten des Pols (Punkt 4) der Kurvenschar nach Fig. 11 sind
a = a, und g = f, und es kann bewiesen werden, daB in diesem Punkte die
Koeffizienten der Differentialgleichung 21)

A(e,8)y =0, C(e,f)g =0 und B(e,p) = —cos?¢sin(g,—q¢)
sind, folglich ergibt sich aus der Differentialgleichung 21)
() o
dp/a

d.h. daB sdmtliche Kurven im Punkte A waagerechte Tan-
genten besitzen.
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Es 148t sich ohne Schwierigkeit beweisen, dafl im Falle der sog. natiir-
lichen Boschung, d.h. wenn die Erdmasse ihren Ruhezustand auch
ohne irgendwelche Stiitzung bewahrt, wenn also

0!1 = (p

g, = 1800 — ¢
die Werte A (a,)s =0, B(a,p)p =0 und C (a,p)p = 0 sind, und daB dem-
gemalB der die natiirliche Boschung kennzeichnende Punkt B (Fig. 11) eine
Losung der Differentialgleichung bildet. Nachdem ferner in diesem Falle

jeder beliebige Wert der Tangentennelgung( die Diffe-

73
rentialgleichung erfiillt, ist B ein singuldarer Punkt.

Es bediirfte besonderer und sehr eingehender mathematischer Unter-
suchungen, wollte man Néheres iiber den Charakter der Kurvenschar in diesem
Punkte erfahren. Eines ist aber auch ohne diese Untersuchungen feststehend,
- daB es ndmlich Losungen gibt, die iiber Punkt B fiihren, und andere, die nicht
iiber diesen Punkt verlaufen.

Nachdem sich gemiB Winkel (a-+ ) der untere und obere Grenzwert
des Richtungswinkels des Erddruckes nur zwischen (90°--¢) und 180° be-
wegen kann, bleiben die als Losungen der Differentialgleichung geltenden
Kurven innerhalb des durch die Geraden (2) und (¥) begrenzten
Feldes (Fig. 11).

Da die Tangente im Punkt A waagerecht liegt, 148t sich eine sehr
gute Niherungslosung erzielen, wenn man die Kurve AB’ als eine Parabel
zweiter Ordnung annimmt.

Die Gleichung einer solchen Parabel lautet:

v = — (e — ) BB
— ¥0 (O 1) ([3 __{)))2 28)
de N (B — Bo)
und d,g == ( l)( ‘8)2 29)

Im Sinne des Ausgefiihrten werden sich die Gleitspannung (¢) aus der
Gleichung 18) und die an der Mauerriickwand auftretenden Spannungen 7,
und # mit Hilfe der Gleichung 15) bestimmen lassen.

d) Die Gr6Be des Erddruckes.

Die an der Riickseite der Stiitzmauer wirkende Normalspannung betragt
im Sinne der Gleichung 15)
1 +singsin (2o, + 28, — ¢)

sin ¢ Cos ¢

und nachdem sich die Spannungen mit der Stiitzmauerhohe % linear dndern,
wird der Gesamtwert der Normalkraft gleich dem Flicheninhalt des Span-
nungsdreieckes sein, d. h.

ng==1¢

N, — h%y [sin B, +singpcos (2a,+ 6, — )] [1 +sm<p sin(2e, +28, - (p)] 20
1
2 4 sin g sin («, + 3,) cos (a, + 3, — cp) dﬂ L+cos?e | )

und die tangentiale Komponente ist gleich
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wo Winkel 4 den angenommenen Richtungswinkel des Erddruckes bedeutet,
fir welchen die Gleichung 27) sowie die Tabelle II maBgebend sind.

Diese Ausfithrungen geben die Charakteristik der allgemeinen Losung
des Problems und besagen, daf3 die GroBe des Erddruckes als eine ein -
fach unendliche Menge anzusehen ist, kann doch der Richtung s-
winkel des Erddruckes innerhalb der Grenzen (-} ¢) und (— ¢) un-
endlich verschieden angenommen werden, wodurch auch N,
einfach unendlich viele Werte annehmen kann.

Sobald man aber beziiglich des Erddruckes oder einer mit ihm verbun-
denen Charakteristik gewisse besondere Voraussetzungen macht, so wird
die einfach unendliche Zahl der Losungen auf eine einzige und bestimmte
Losung beschriankt. So z. B. wenn man den gr6 8 ten der unendlich vielen

N,-Werte oder den Héchstwert von £ —=1V N2 + 7.2 sucht, oder aber jenen
Fall klaren will, in welchem die Gleitfliche zur Eb e n e wird usw.

Wenn die Gleitfliche zur Ebene wird und wenn man zunichst den
praktisch bedeutsamen Fall der waagerechten Oberfldache zur Vor-
aussetzung macht (¢ = 0), so ist

da
ip =0
woraus nach Substitution in die obigen Gleichungen
t = hytge(l--sing)sing
(1 - sing)(1 + sing cos 2p)

a, = 45° 4 % und

mo=hytgy sin ¢ cos ¢
somit
__h*y sing .
Nj = 3 T+sing (1 + sing cos 2p) 32)

sich als Normalkomponente des Erddruckes ergibt.
Der Richtungswinkel des Erddruckes ist

__ singsin2f
tgd = 1+ singpcos2p 32a)
Wird der Einfachheit halber der kiirzere Ausdruck
. sin“ﬂm~ .
ke = 1+sin¢(1+sm(pr2m | 33)
. ) . h2y vt .
eingefiihrt, so ist N, z—ifkf,, wo k, das Verhaltnis des Erddruckes zu dem

auf die gleiche Fliche entfallenden Wasserdruck angibt, weshalb %, mit Recht
als hydrostatischer Koeffizient bezeichnet werden kann.

Es 1aBt sich leicht beweisen, daB die Grenzen des 4, Wertes 1. bei g = 90°

1+ sing
6 sin ¢

und 2. bei sin g = liegen.

Im ersteren Fall handelt es sich um das Minimum, im zweiten um das
Maximum, und zwar wird sein
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. ) 1 + sm ne
. a— 0 = T a9
im Falle 1. ki = tg® (45 2) und im Falle 2. £,,, = 3 V 6 sin ¢

Beispielsweise wird bei ¢ = 30° (trockener, locker gelagerter Sand)
kmin = 0,33 und  kmsx = 0,47 betragen.

Seine mit ¢ schwankenden Zwischenwerte sind der Fig. 12 zu entnehmen.
Bemerkenswert ist, daB der hydrostatische Koeffizient bei kleinen Rei-
bungswinkeln (p<11,5° keinen Mindestwert, sondern nur ein Maxi-

mum hat und zwar tritt dasselbe auf im Falle einer lotrechten Wand

087k
ebene Gleitflsche

/) T— S surface plane de glissement (ke)
:Q‘ g ptain shding plene
'g gekrdmmte Gleitflache
s v/ 1 NG T e surface incurvée de glissement (k)
§ 06 / curved sliding plane
H
E 1=
S os ”k‘\";i N , 4 even - plan - plaine

=i -
i P-o\ \ (4 : 3
3 I / \ | » L 9v
ol LN 4 ;
D D [ A‘) \ ¢
% N k k4 \ %
L AN i)
§ a3 A A \‘: SR ‘\\‘— &
3 s \
1 o \:§ \
! AR \
Y R s )y B
§ Y \h\\i/! N, \s '{é., \
N N
% Nt Togso \\ \
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kS &’ 3 \ \ | Rickwandwinkel
s | \ \ \ ’ Inclinaison de le paror (13)
D QJ» \ \ \ Inchination of wall
g 20 “ &9 80 00 20 %0 %0 80
Fig. 12.

Anderung des hydr. Koeffizienten — Variation des coefficients hydr. —
Change in the hydraulic coefficient.

(f = 90°. Materialien mlt groBerem Reibungswinkel (Sand,
Getreide, Stein usw.) iiben den gr6B8ten Druck auf Wiande mit
Neigungen von f = 40°—45° aus. Beispiele fiir diesen Fall sind bei
den sog. GroBraumsilos anzutreffen, fiir welche aus der Fig. 12 die
fiir die Praxis wichtige Lehre gezogen werden kann, daB groBen Behéiltern
bedeutend wirtschaftlichere Form gegeben werden kann, wenn ihre
Wandungen mit § = 60°—70° Neigung ausgebildet werden.

Die in Fig. 12 punktiert eingezeichneten Kurven geben den Wert des
hydrostatischen Koeffizienten

ke __[sing, +singcos 2o, + 8, — qo)][1+sm<psm(2al+2ﬁ -l

34)

4 sin @ sin (o, + 8,) cos (e, + f, — (p)dﬂ +cos?e

an, bezogen auf eine gekriimmte Gleitfliche fiir den Fall, daB fiir die Funk-
tion a = f (B) eine iiber den Punkt B fithrende Parabel angenommen
wiirde.

Die Berechnung wurde auf Grund der Formeln 28) und 29) durch-
gefiihrt.
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Aus dem Vergleich der zusammengehorigen Kurven geht hervor, daB
der durch die Kurve AB dargestellten gekriimmten Gleitfliche ein klei-
nerer Erddruck entspricht, als einer ebenen Gleitflache, und man
gelangt leicht zur Erkenntnis, da mit abnehmendem Neigungswinkel «, der
Endtangente der krummen Gleitfliche eine Zunahme des hydrostatischen
Koeffizienten (%,) verbunden ist.

e) Die Richtung des Erddruckes.

Durch eine Reihe von Versuchen — MULLER-BRESLAU (1906), TERZAGHI
(1929) und andere — wurde unzweifelhaft bewiesen, dal der gemessene
Wert des Erddruckes nur unw esentllch vom COULOMB’
schen Wert (ebene Gleitfliche) abweicht, und rnur der Richtungs-
winkel ein anderer war.

Man wird daher mit Berechtigung die Annahme machen konnen, daB
die durch gekriimmte oder ebene Gleitflichen bedingten Erddruckwerte
vollig ibereinstimmend sind, in welchem Falle

k., = k; ist, d. h.
[sLn I +§irngvcos (2, + 8, —K@]V[lﬁtsinqnsin(Za +2p’ -¢)]

4 sin ¢ sin (e, + ;) cos (a, + B, qo)dﬁ +cos?¢g
__ sing (1+singcos2p3,) 35)
o 14 sing

Wenn diese Bedingungsgleichung mit der die allgemeine Losung dar-
stellenden Differentialgleichung zweiter Ordnung 21) verbunden wird, so
wird es klar, daB die unendlich groBe Zahl der Losungen sich auf eine end-
liche Zahl, niamlich auf eine, eventuell zwei Losungen reduziert.

Fin langwieriger Rechnungsvorgang (Substitutionen und Zusammen-
ziehungen), den wir hier {ibergehen, fiihrt zum Funktionszusammenhang
a; = f(py), der in dem fiir die spateren Ausfithrungen und fiir die Praxis
sehr wichtigen Sonderfall, daB es sich um eine lotrechte Wand handelt, d. h.
daB B, = 90° ist, in folgende Endform iibergeht: 36)

cos(2c,~¢) { [1-sing sin(2e,—¢)]*tg? (450 )+2[1 sing sin(2e,—¢)] -3cosg} = 0
Diese Gleichung besteht zu Recht, wenn 1. 24, — ¢ = 909, d. h. wenn

7

a, = 45° + o

ist, somit fiir den Fall der allgemein bekannten Couroms’schen Losung fiir
ebene Gleitflache, und wenn 2.

[1-singsin (2e,-¢)]2tg? (450 - )+2[1 ~singsin(2e;—-¢)] -3 cos?p = 0

ist, woraus

Sin(2e, gy = 271 sing) V14 3(1+sing)? 37)

sin ¢ (1 + sin ¢)

die Bestimmung der Endtangente (-7 «,) der gekriimmten Gleitfliche
und in der weiteren Folge die Ermittlung des Richtungswinkels des

Abhandlungen V 14
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Erddruckes gestattet, der im Falle B = 90°, gleich

tg 6, = _ sing cos(2a;, — )

1 —sing sin (2a; — ¢) 38)

ist.
So wird sich z. B. im Falle ¢ — 30° aus den Gleichungen 37) und 38)
ergeben: a; = 42°15 und 4§, = 26°30".

Dieser Wert des Neigungswinkels ist aber derselbe, den die Ver-
suche stets iibereinstimmend ergeben haben. Wie es in den angefiihrten
Werken von MULLER-BRESLAU (8), KrRey (13) und TerzacHi (14) zu lesen
ist, hat bei Versuchen mit lockerem Sand (p = 30°—34°) der Rich-
tungswinkel des gegen die lotrechte Wand wirkenden
Erddruckes in jedem Falle 6 = 26°—27° betragen.

Zusammenfassend lassen sich nun folgende grundlegende Sitze der Erd-
drucktheorie aufstellen: 1. Der Erddruck kann den gleichenWert
erreichen, gleichviel ob die Gleitfldche eine Ebene oder
eine gekriimmtc Fldache ist. 2. Der an einer senkrechten
Wand auftretende Erddruck ist im Falle einer ebenen
Gleitfldche waagerecht, wogegen bei gekriitmmter Gleit-
fliche auch Reibung an der Mauerriickwand auftritt, in
welchem Falle fiir die Gr68e des Richtungswinkels die
Gleichungen 37) und 38) maBlgebend sind. 3. GemaB un-
serer Untersuchungenbeziiglich dieses Richtungswinkels
trifftbei jedembeliebigen Reibungswinkel (p) mit groBer
Genauigkeit das Verhidltnis zu

0 =09 ¢ 38a)

woraus die Normalkomponente des an der senkrechten Wand auftretenden
Erddruckes

seine Tangentialkomponente

Tl pommy Nl tg 0,9(p

und der resultierende Erddruck selbst gleich
E=VN®+T

ist.

In diesem Falle verteilt sich der Erddruck iiber die- Mauerriickstinde
hydrostatisch, d.h. .der Erddruck greift im unteren Drittels-
punkt der Wand an; es kann aber immerhin vorkommen, da8 der Abstand

!,

no. . o .
3 iiberschreitet, was mit einer speziellen Be-

wegung der Wand zusammenhingt. Damit sind wir bei der Frage ange-
langt, welchen EinfluB auf die Gr6Be und Richtung des
Erddruckes eine etwaige Bewegung, Kippen oder Ver-
schiebung der Mauer auszuiiben vermag.

des Angriffspunktes
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l11. Beeinflussung des Erddruckes durch eine Bewegung der Wand.

Mit dieser sehr wichtigen Frage des Erddruckproblems hat sich in der
letzten Zeit Prof. K. v. TErRzacH! (26) befaBt und ist im Zuge seiner im
Mass. Institute of Technology, Cambridge (Mass), im Jahre
1029 gefiihrten Versuche zum Ergebnis gelangt, daB der Erddruck nach
GroBe, Richtung und Lage seines Angriffspunktes durch
Bewegungen der Wand in bedeutendem MaB beeinflufit wird.

Jede starre und unbewegliche Wand
wird von einem betrichtlichen (2= 0,4—0,5),

. waagerecht wirkenden Erddruck ange-
s griffen, der schon bei ganz geringen Bewe-
~ 05 *
Tt gungen der Wand erhebliche Abnahme
S erfahrt (¢ = 0,1—0,3), wogegen der Rich-
S5y tungswinkel des Druckes infolge der
EE & * lrschietuny '3 auftretenden bedeutenden Wandreibung
§§,§ oy |Déolocement  § o :
Displacement =< :§-§§ Al zunimm t.
FIS m
Wandausweichung
@ 1S Z Déviation de la paroi .
%" é n Giving way of wall F]g 13
3R 040 RN . . .n . ) )
§§n§w W > Die idealen Zusammenhidnge zwischen Erddruck
ggga 0% @ : usw. und Wandbewegung -— Les relations par-
§'§§§ . § M) faites entre la poussée des terres, etc. et le mouve-
2933 P o ment de la paroi de souténement — Ideal re-
8E kot 15 lationship between earth pressure etc. and wall
= Movement of wall movement,

In der Wirklichkeit gibt es keine starren Wiande, weil einerseits durch
den an der Grundfliche der Wand auftretenden Kantendruck, sowie
durch das Einsinken der Wand ein Kippen, andererseits durch mangel-
hafte Reibung zwischen Mauerfundament und Boden eine Verschie-
bung der Wand in waagerechter Richtung hervorgerufen wird. Dem-
entsprechend werden beziiglich Bewegungen der Wand zwei Grundfille
unterschieden und zwar: a) Kippender Wandumihren FuB8punkt,
und b) parallele Verschiebung der Wand. Die in der Natur vor-
kommenden Bewegungen setzen sich alle aus diesen Grundbewegungen zu-
sammen. '

Beide Bewegungsarten wurden im Zuge der erwihnten Versuche auf
ihre Wirkung untersucht. Die hiebei gefundenen Ergebnisse lassen sich
nach Fig. 13 zusammenfassen. Nach der Feststellung Prof. TeErzAGHI'S
kann sich der Erddruck auf zweierlei Arten verteilen, namlich: 1. hydro-
statisch und 2. unhydrostatisch. Im ersteren Falle wird der Erd-
druck im unteren Drittelpunkt dann auftreten, wenn die Wand um
ihren FuBpunkt 4 kippt; die zweite Verteilungsart tritt bei paralleler
Verschiebung der Wand ein, die Spannungsverteilung ist nicht linear

und der Hebelarm des ErddruckesistgroBer alsg. In beiden

Fillen der Wandbewegung nimmt die GroBe des Erddruckes rasch
ab, immerhin tritt diese Abnahme des hydrostatischen Koeffizienten im
Falle b) friiher ein als im Falle a) und erreicht seinen Kleinstwert
dort, wo der Angriffspunkt des Erddruckes am hochsten
liegt (siehe Fig. 13).

Den Grund der mit einer parallelen Verschiebung der Wand einher-
gehenden unhydrostatischen Spannungsverteilung erblickt Prof. TERzAGHI



212 J. Jaky

in der sog. Verspannung durch Silowirkung (26). Diese erklirt
sich daraus, dal der senkrechte Druck, der auf den unteren Teil des
durch die Wand gestiitzten Erdkeiles entfillt, infolge der durch die Ver-
schiebung erzeugten Reibung abnimmt, demzufolge im oberen Teil

pression

N
|

ng

Fig. 14.
Druckverteilung des Erddruckes bei paralleler
Wandverschiebung — Répartition de la poussée
des terres lors d’'un déplacement de la paroi
de souténement — Distribution of earth pres-
sure assuming parallel displacement of the wall.

hydrost.
tribulion of pression

ition de 1o,

Druckverteilu
Repart

e
Epar
S}

.

1unhydrost.- non hydrost.

Fig. 15.
Graphische Losung mittels d. stellvertr. Wand

m L 6 b — Solution graphique a ’aide de la paroi de
¢ R substitution — Graphical solution by means of
o |>2
3

: \ 2 substituted wal'.
£, ;ﬁ 8

der CouromB’sche Erddruck, im unteren Teil ein ver-
minderter Erddruck auftritt, der auf die ganze Wandflache ge-
richtete Erddruck bleibt unverindert, sein Angriffspunkt hebt
.sich iiber den Drittelspunkt.

stellvertr. Wand
paror de subskt
subskt wall
-
"
)
™

An Stelle dieser an sich logischen und wahrscheinlichen Erkliarung der
Verspannung durch Silowirkung, die aber der Berechnung unzuginglich ist,
wie auch fiir ihren EinfluBB auf die Hohenlage des Angriffs-
punktes gibt der Verfasser nachstehend eine wesentlich einfachere und
mathematisch belegte Erklarung.

a) Im Sinne der hydrostatischen Spannungsverteilung
sind die Spannungen proportional der von der oberen Kante der Wand
gemessenen Entfernung 4. Diese Bedingung wurde bereits am Anfang
gestellt, als der Pol 0 an der oberen Kante der Wand angenommen wurde
(siehe Fig. 7) und alle bisher erzielten Ergebnisse haben nur fiir den Fall
Giiltigkeit, als der Pol bei 0 liegt.

Im Sinne der Bedingungsgleichung 10) sind im Punkt 0 sdamtliche
Spannungen gleich Null. Nachdem dies aber fiir alle Punkte
der unbelasteten Bodenoberflache zutrifft, kann der Pol 0
nicht nur am oberen Ende der Wand, sondern auch vor der Wand an
beliebiger Stelle der Oberfliche angenommen werden, d.h. er kann auch
exzentrisch sein.

b) Angenommen sei ein Pol 0 nach Fig. 14 an der ebenen Oberfliche
des durch die Wand AB gestiitzten Erdkérpers vor dem Punkt B, also ex-
zentrisch liegend. Der aus diesem 0-Punkt ausgehende beliebige Radius wird
von den Gleitflichen unter den gleichen Winkeln geschnitten, folglich
hat man es lings der Linie OA mit hydrostatischer Spannungs-
verteilung zu tun. An der Riickwand der Stiitzmauer AB findet man in-
dessen nur im Abschnitt OB hydrostatische Spannungsverteilung — bis hier-
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her reichen die ebenen Gleitflachen — wogegen im Abschnitt OA
unhydrostatische Spannungsverteilung herrscht, weil die Gleitflachen
unter verschiedenem Winkel (a,) die Mauerriickwand durchqueren und
daher die Spannung 7, nicht mehr proportional der Entfernung / sein wird,
und die Spannungsfigur gekriimmte Form annimmt, womit der An-

griffspunkt zhodher als%liegen wird.

Mitder Bewegung des Poles 0 isteine dauernde Ande-
rung der Spannungsfigur und damit auch der Hohe des
Angriffspunktes zverbunden. Verlegt man den Pol nach B oder

O’ (siehe Fig. 14), dann wird z 2%, weil im ersteren Falle BA eine Isokline
ist — jede Gleitflache durchschneidet AB unter dem gleichen Winkel —
dagegen sind die Gleitflichen im zweiten Falle nur Ebenen, d. h. es herrscht

wieder hydrostatische Spannungsverteilung.

Die Bewegungen des Poles 0 sind durch die Wandver-
schiebungenbedingt. Je stirker die Wandverschiebung, desto weiter
entfernt sich der Pol von B; falls der Punkt 0 mit O’ zusammenfillt, so sinkt
der Hebelarm des Erddruckes auf das Minimum.

Der an einer Stiitzwand mit exzentrischem Pol auftretende Erddruck
kann einfach bestimmt werden, indem man zuerst den auf die Ersatz-
wand BO entfallenden, unter < é, neigenden hydrostatischen Erddruck E,
bestimmt, von welchem nachher das Gewicht G des Prismas OAB vektorial
abgezogen wird. Die Hohe des Angriffspunktes des solcherart erhaltenen
resultierenden Erddruckes E wird z>—’§

Zur vollkommenen Losung des Problems gelangt man, wenn man 1. die
Normalkomponente von E (N), 2.den Richtungswinkel des
Erddruckes (6) und schlieBlich 3. den Hebelarm (z) des Erd-

druckes bestimmt.

sein (siehe Fig. 15).

Aus dem Gleichgewicht der am Prisma OAB angreifenden Krifte kénnen
die Krifte N und T angeschrieben werden zu

_ N, S —0)
N = M cos d, 39)
s
7= n 08— 302)
cos d,
Der Richtungswinkel des Erddruckes ist gleich
T _ Nycos(f— ) — Gcosd;

€0="N =" Nsin@—0a) 0

Die Momentengleichung beziiglich Pol X ergibt
Z:_—NI—GCOSﬂl._’E. 41)

N sin 3 3

In den angeschriebenen Formeln haben wir es eigentlich mit zwei
Unbekannten zu tun, und zwar mit dem Richtungswinkel §, des
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stellvertretenden Erddruckes E, sowie mit dem Neigungs-
winkel g, der Ersatzwand, die eigentlich fiir die Exzentrizitit des
Polpunktes, d.h. fiir die Stiitzwandverschiebung kennzeich-
nend sind.

Das Problem des Erddruckes besitzt — unter dem EinfluB der Wand-
bewegung — im wesentlichen zweifach unendlich viele Ldsungen,
es wird daher zu einem zwe ifach unbestimmten Problem. Wendet
man aber die aus den Versuchen gewonnenen Sitze an, so wird die L6-
sung eine eindeutig b estimmte sein. Nach einem dieser Sitze, den
wir bei dem hydrostatischen Druck bereits angewendet haben, ist der
Erddruck sowohl bei gekriitmmter als auchbeiebener Gleit-
fliche der gleiche und der Winkel J, dndert sich beim Kippen der
Wand aus der Lage AB in die Grenzlage AO’ nur zwischen sehr engen
Grenzen 6 = 0,9 ¢ — ¢, so dal man mit sehr guter Annaherung

— | 42)

annehmen darf.

Die Normalkomponente des gegen die stellvertretende Wand wirkenden
Erddruckes betrigt laut Gl. 32)

/Z‘")}/ Sl'n,‘)’x . ;
=21 . 3
N, 3 Tt sing [1 + sin g cos 23]
wonach sich die Formeln 39)—41) zu den einfachen Ausdriicken
2 i ) i b, —
N = ™ 1+ -sm ¢ coswzmp’/]_)hswn*n.(/)’, — @) 43)
2 sin 3, cos ¢ (1 + sin ¢)
' , cos 3, cos ¢ (1 + sin )
) = ) — @) — . - < 44
g« cotg (7 — ) (1 + sin ¢ cos 2 3,) sin (3, — @) )
und
_m _ (1 - sin ¢) sin 2,
2= 3% % (¥, — @)(1 + sin ¢ cos 2,) 43)

zusammenziehen lassen.

Sehr interessant und deshalb beachtenswert ist auch, daf§ diese Losung
durch ein gleichbleibendes Drehmoment des Erddruckes gekenn-
zeichnet ist. Schreiben wir das Moment Nz auf, so wird

3. ;
M = Nz = ’7’361 tg? (450 Hg) — konstant 46)

und bedeutet, daB das Drehmoment des Erddruckes an der Wand konstant
ist und wenn der Hebelarm z durch die Verschiebung der Wand eine Zu-
nahme erfihrt, so nimmt der Erddruck in gleichem Verhidltnis
a b, das Produkt der beiden Werte M = Nz bleibt unveriandert.

Nicht weniger interessant ist es, daB dieses Moment, obwohl durch die
parallele Verschiebung der Wand erzeugt, sich doch nicht von jenem Moment
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unterscheidet, das durch ein Kippender Wandumihren FuBpunkt
hervorgerufen wird, denn es gilt fiir diesen Fall:

Y e (450 9{)
N="5"1g (45 5

und der Angriffspunkt des Erddruckes liegt zufolge der hydrostatischen

Verteilung bei z = ’—g—, so daB tatsichlich

M= *6” tg? (45 ;§) ist.

Es wire verfehlt, aus dieser Verwandtschaft der beiden Fille darauf
zu schlieffen, dafl es sich auch um 4hnliche statischeVerhidltnisse
handelt. Hinsichtlich der Stabilitdt sind die beiden Faille wirklich
gleich, aber schon die in der Wand auftretenden Spannungen sind
verschieden, was durch ein spiteres Zahlenbeispiel ndher erkldart werden wird.

Zuriickgekehrt zur Formelgruppe 43)—45), stehen wir noch immer
einer einfach unendlichen Zahl der Losungen gegeniiber, da doch
GroBe, Richtung und Angriffspunkt des Erddruckes in funktionaler Beziehung
zur Wandbewegung, oder unserer fritheren Formulierung entsprechend zum
Winkel g, steht, welch letzterer fiir die exzentrische Lage des Poles 0 maB-
gebend ist. GemidB den Versuchen des M.I.T. (26) tritt der maBgebende
Erddruck bei h6chster Lage des Angriffspunktes (z,,.) auf, somit wird
jener Winkel f,” entscheidend sein, fiir welchen

dz
a = 0 47)
ist. ' ‘

Aus Gleichung 45) 148t sich nach Durchfithrung der Rechnung fiar den
gesuchten Winkel g, der Zusammenhang

sin 2/ tg (45 ~2 g) =1 48)

anschreiben, aus welchem hervorgeht, daB jedem einzelnen Reibungswinkel ¢
ein spezieller Winkel " angehort, deren Werte in folgender Tabelle zu-
sammengestellt sind.

Tabelle III — Table III.
\ 100 200 300 ] 409 500 600

p’l i 75° 45’ t 770 40’ 79040’

81030’ | 83910’ | 85°(

Etwaige Zwischenwerte sind durch lineare Interpolation zu ermitteln.
Durch Einfithrung in die Formeln 43)—45) dieser f,/-Werte 148t sich der
Erddruck nach GroBe (N), Richtung (6) und Angriffspunkt-
hohe (z) eindeutig bestimmen.

Eine Versuchsreihe der M.I.T. (14) ergab fir dichtgelagerten
Sand einen Reibungswinkel ¢ == 58° und der gemessene Richtungswinkel
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des Erddruckes bei paralleler Verschiebung der Wand betrug

6 = 35040
Aus der Gleichung 47) ergibt sich fiir ¢ = 58°: " = 84°30" und dem-
gemiB wird laut Gleichung 44) tgé = 0,751, d. h. 6 = 37°0' sein, was mit
dem Versuchsergebnis sehr gute Ubereinstimmung zeigt und
somit die Richtigkeit der theore-

s ©  tischen Folgerungen bestatigt.
e ot [t lge(45°~ £ w333 In der Fig. 16 wird der
Coulom’s hydr coefFcient “'sx5  EinfluB der parallelen Ver-
“71535 schiebung der Wand im
“2158%  Falle ¢ = 30° veranschaulicht.
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Theoretische Zusammenhinge zwischen Wandver-
schiebung und Erddruckbeiwerte — Relations théo-
riques entre le déplacement de la paroi et les
coefficients de la poussée des terres — Theoretical

0,333) auf %, = 0318 herab.

Die strichpunktierte Kurve
gibt die Anderungen der Hohe

des

Angriffspunktes
die gestrichelte Kurve jenec
des Richtungswinkels d

. ; (2) an,
relations between wall displacement and earth

pressure coefficients.

des Erddruckes. Nach dem groBten Ordinatenwert der { = .%,—-Kurve ist

3

der Angriffspunkt im Vergleich zu %3 um 5 9 hoher geriickt, wo doch diese

Lageverinderung nach den Versuchen (14) etwa 15—200: betragen hat.
Dieser Unterschied erklirt sich einfach daraus, daB der Angriffspunkt
auf starre, d.h. unbewegliche Wand entfallenden sog. natiirlichen

m

Erddruckes k. iiberhaupt hoher als 3 liegt. Dies geht auch

aus den Versuchen (14) hervor (siehe Figur 489) und wird noch in einem
spateren Artikel des Verfassers mathematisch bewiesen. Dies vor Augen

haltend, ist die 5 prozentige Zunahme von z mit dem anfanglichen z, zu ver-
gleichen.

Zur Erleichterung der Berechnungen wurden fiir den praktischen Ge-
brauch die unter 43)—45) angefiithrten Formeln nach Substitution der maB-
gebenden Werte g, fiir die Fille ¢ + 0 — 60 ° ausgerechnet und die erhaltenen

Ergebnisse in Fig. 17 graphisch dargestellt. Mit Hilfe dieser Schaubilder
14Bt sich GroBe (#,), Richtung (tgd) und Angriffspunkt (z) des
Erddruckes durch einfache Ablesung des dem fraglichen Winkel ¢
angehorenden Ordinatenwertzs bestimmen.

Als Zusammenfassung und gleichzeitige Erlauterung unserer Ausfiih-
rungen diene nachstehendes Zahlenbeispiel. Es ist zu bestimmen der an der
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10,0 m hohen Wand nach Fig. 18 wirkende Erddruck. Bei der Losung der
Aufgabe miissen zwei voneinander vollig unabhingige Fille unterschieden
werden, nimlich:

a) Falls es sich um nachgiebigen Untergrund handelt und
wenn zwischen der Mauersohle und dem Boden eine starke
Reibung vorhanden ist, so kann keine parallele Verschiebung der
Wand eintreten, sie wird sich hingegen um ihren FuBpunkt (1) nach vorne
neigen, nachdem bei Punkt (2) infolge der erheblichen Bodenpressung eine
Senkung der Mauer eintritt. In diesem Falle ist bei der Bemessung der
Wand auf die hydrostatische Spannungsverteilung Riicksicht
zu nehmen.

- Beiwerte des Lrddruckes Kippen e 140-wi
~ (ber paralfeler Wandverschiebung) 8) Deversement
g Coefficients de la poussée des ferres Turning - over
s (pour un déplacement paraiiéle de /3 paroy) 29 Verschiebung
P r Earth -pressure coefticients ~ [ ' 6) Déplacement
3 @ (For parallel wall- displacement) 'g’ 08 Displacement
B - < ’ X .9!
] | © X .9
T8 Ew—N 1] y ;fgg{mé: 2l
S NI
Besl N L A1 350 335 &
SRR ! I | v | 285 S8
N : | 7 T NS E e §B8
S.S S SR =TT, QudWER ta £
£38 Nt - S8sl,, 838 aaffes b
) e N 1 U0 I B
DR . < 3 - |
S i S e mn B SRR T 3 il
St R i | \ $gsl €S5S © el
S8y, i Sesipr ol S
= £ b 1 T R3[4 28R 3
o BT €88, S
7 ‘ e ! \pe30°
. 7 l 4W0° s0° 50° Rerty kel § A
‘ n° 2° N/ erbungswin S . -
a 0 Angle de froltement () & g o 442{3
Friclion angle S 88 1
. SaeF - i
Fig. 17 Siiask B
5% ¢
Im Falle: E?’;% fg
& h‘\m\
=300 »=16tm? m=100m <888
. Fig. 18.
wird . o
5 Numerisches Beispiel.
N=""7is2(450 _ P} __ 266t Exemple numérique.
= —ltg =) = 26, |
2 : 2 — Numerical example.

der Richtungswinkel des Erddruckes: 6 = 0,9 ¢ == 279 (Gl. 38a),

die Tangentialkomponente: 7 = Ntgd = 13,6 t,

der resultierende Erddruck: E = V’ T~ N2 = 299 t,

l:'l——

3
Bei den in Fig. 18 angegebenen Wandabmessungen wird die Resul-

tierende R, der Krafte E und G iiber den in & = 2,26 m entfernten Drittel-

punkt verlaufen.

Im Punkt (2) ist die Hochstspannung
2V _ 2.712t
F = 340-10
im FuBpunkt (1) ist o, = 0.

und die Hohenlage des Angriffspunktes: z = 3,33 m.

6,7 =

= 4,23 kgjcm?

b) Wenn der Untergrund widerstandsfihig genug ist
bezw. wenn sich die Bodenpressungen so verteilen, daB
die groBen Kantendriicke entfallen und kein einseitiges
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Einsinken der Wand eintritt, die Reibung hingegen zwi-
schen Boden und Wandsohle gering ist (z. B. zwischen Beton
und Ton), so wird eine parallele Verschlebung der Wand
eintreten. In diesem Falle ist die Spannungsverteilung eine unhydro-
statische und die den Erddruck kennzeichnenden Werte
lassen sich aus den Schaubildern der Fig. 17 entnehmen.

Die vorigen Wandabmessungen beibehaltend, erhalten wir fiir die Nor-
malkomponente:

m’y my _
N="55 k, == 0318 " - = 2541

fiir den Richtungswinkel des Erddruckes — tgd = 0,27 an der Kurve abge-
lesen — d = 15°10’, d. h. der Druck greift unter bedeutend kleinerem
Winkel als im Falle a) an.

Die Tangentialkomponente ist: 7 = Ntgd = 6,85t

der resultierende Erddruck: E=1VT?4+ N = 264t
und schlieBlich der Angrlffspunkt des Erddruckes z={¢ ’; = 1,05 X 3,33 =
3 3,49 m.

Die Resultierende R, schneidet das Fundament in einem Abstand von
& = 2,2 m und tritt aus dem Kerndrittel heraus, folglich entsteht im
Punkte (1) Zugspannung. Wird diese vernachlissigt, bezw. wird nur mit
Druck gerechnet, so erhilt man als Bodenpressung fiir den Punkt (2)

0, = 5,25 kg/cm?.

DaB der unter b) behandelte Fall der gefahrlichere ist, geht aus der Rech-
nung hervor, denn der Zusammenhang o, = 1,25 0, sagt nicht weniger, als

daB die parallele Verschiebung der Wand um 259 hdhere
Mauerbeanspruchungen erzeugt, als es bei der Drehung
der Fall war. Die Ergebnisse des Zahlenbeispiels wurden der besseren
Ubersicht halber in der Tabelle IV zusammengestellt.

Tabelle IV — Table IV.
Angaben — Data: ¢ = 30° ysgg = 1,06 t{m?, yspein = 2,4 tfm3, m = 100 m
Rechnungsvorgang N | T é E :‘
‘Mode of Calculatlon t |

s | z ]zm[ v
— O Tm | tm |t

|

L °
| | : |
| |

|

a) Hydrostatische Span- | z
nungsverteilung

Hydrostatic 126,6 13,6/29,9| 27° '333 163,2/ 71,2 2,26{ 0 4,23
Stress distribution i
b) Unhydrostatische Span- {

nungsverteilun , )
Non%lydrostaticg {\ 254 6,85 26,4 14930
]

Stress distribution

\
L
|
3491 163,2| 64,5 2,53i 0 (5,25
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Zusammenfassung.

Die gekriimmte Gleitflache bildet die einzig richtige Lésung
der Erddrucktheorie, weil sich die Bedingungen desGleichgewich-
tes der Krifte nur in diesem Falle restlos erfiillen lassen. Die Diffe-
rentialgleichung zweiter Ordnung 21) ist als Grundglei-
chung jedes Erddruckproblems (Stiitzwand, Silo, Griindung) anzusprechen.
Bei der Bewegung der Wand sind zwei Grundfialle zu unterscheiden,
namlich Drehung und parallele Verschiebung. Von den zwei-
fach unendlich vielen Lésungsmoéglichkeiten wird die maBgebende
einzige Loésung durch Annahmen bestimmt, die sich aus Beobach-
tungenbeiden Versuchen ergeben haben. Entscheidend fiir die ein-
tretende Wandbewegung, ob a) Drehung oder b) parallele Ver-
schiebung, sind die Reibungsverhidltnisse und die Art der
Verteilung der Bodenpressungen, gemidB welchen die Wand fiir
den Fall a) oder b) zu bemessen ist. Im allgemeinen ist der letztere Fall
der gefahrlichere, weshalb die Wand zweckméBig diesem entsprechend
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zu bemessen ist. Die hierbei in Betracht kommenden kennzeichnenden Werte
des Erddruckes lassen sich mit Hilfe der Kurven der Fig. 17 durch ganz
einfache Berechnungen bestimmen.

Résumaé.

La surface de cession incurvée est la seule solution exacte de la théorie
de la poussée des terres car ce n’est que dans ce cas que les conditions
d’équilibre des forces sont entierement satisfaites. L’équation différentielle
de 2¢ ordre 21) est a considérer comme l’équation fondamentale de tout
probleme de poussée des terres (murs de soutenement, silos, fondations). Dans
le mouvement de la paroi de souténement il y a deux cas fondamentaux a
distinguer: la rotation et la translation. Des deux infinités de solutions pos-
sibles la seule solution exacte est celle que on peut tirer de "observation
des essais. Les conditions de frottement et le type de répartition de la poussé
déterminent s’il y a a) rotation ou b) translation. On partira de la pour le
calcul suivant a) ou b). En général le dernier cas est le plus dangereux
c’est pourquoi il est bon de dimensionner le mur pour ce cas. Les caracté-
ristiques de la poussée des terres qui entrent en ligne de compte peuvent étre
déterminées par un calcul tres simple a 'aide des courbes de la fig. 17.

Summary.

The assumption of a curved slip surface is the only one compatible with
a correct solution of the earth-pressure theory since no other will completely
satisfy the conditions for equilibrium of the forces involved. The differential
equation of the second order (21) ist to be regarded as the fundamental
equation for every problem of earth pressures (retaining walls, silos and
foundations). In regard to the movement of the wall a distinction must be
drawn between two basic conditions — rotation, and parallel displacement —
and there are, therefore, two infinite numbers of possible solutions, the only
valid solution being that determined in accordance with the assumptions
which resulted out of experiments. The criterion as between the two types
of wall movement, a) rotation and b) parallel displacement, is supplied by
the condition of friction and the manner of distribution of pressure over the
ground, and the walls must be designed to suit case a) or b) accordingly.
As a rule the latter case is the more dangerous and is, therefore, the one
for which the wall should be designed. The appropriate values for the earth
pressure to be considered may be determined by simple calculations from
the curves in Fig. 17.
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