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DIE KLASSISCHE ERDDRUCKTHEORIE MIT BESONDERER
RÜCKSICHT AUF DIE STÜTZWANDBEWEGUNG.

LA THEORIE CLASSIQUE DE LA POUSSEE DES TERRES, COMPTE
TENU DU DEPLACEMENT DE LA PAROI DE SOUTENEMENT.

THE CLASSICAL THEORY OF EARTH PRESSURES WITH SPECIAL
REFERENCE TO THE MOVEMENTS OF RETAINING WALLS.

Prof. Dr. Ing. J. JÄKY, Budapest.

Einleitung.
a) Geschichtlicher Rückblick.

Das Problem des gestützten Erdkörpers und der mit diesem
Problem eng verbundene Begriff der Stützwand reicht in die Urzeit des
Menschen zurück. Die Stützwand war — wie wir es aus der Bibel wissen —
schon den Völkern des Altertums, so besonders den Chaldäern, diesen
berühmten Meistern der Naturwissenschaften, bekannt. In den hängenden
Gärten Babyloniens standen viele dieser Bauwerke, was auch durch die
Ausgrabungen bestätigt wird.

Diese Mauern wurden aller Wahrscheinlichkeit nach nicht nach Plänen
und Berechnungen, sondern lediglich auf Grund empirischer Erfahrungen
erbaut, was auch für die Stützwände der altertümlichen Befestigungsbauten

gilt.
Dies ändert aber nichts an der Tatsache, daß diese Festungsmauern sehr

standsicher ausgeführt waren und eben deshalb nach dem Sturz des römischen
Kaisertums von den Festungsbaumeistern des Mittelalters zum Vorbild
genommen wurden.

Die älteste Vorschrift für Mauerbemessungen stammt von dem berühmten
französischen Festungstechniker General Vauban (1687), der etwa 3
Millionen m3 Stütz- und Futtermauern verschiedener Abmessungen nach festen
Regeln erbaut hat. Vauban gibt die Stärkeabmessungen der Mauern als
lineare Funktionen der Wandhöhe (h) an (1). Die Stichhaltigkeit
und Vollkommenheit dieser empirischen Regeln ist derart auffallend, daß
Poncelet in einem seiner Werke die Vermutung ausspricht, daß es sich bei
diesen Regeln um die Ergebnisse irgendeiner uns unbekannt gebliebenen
Erddrucktheorie handeln müsse (2).

Die nahe Beziehung, in welcher das Problem der Stützmauern zufolge
ihrer hauptsächlichen Verwendung für militärische Bauten zu den
Kriegswissenschaften stand, hat das Problem des Erddruckes bis zur Mitte des
XIX. Jahrhunderts zu einem Problem der Militäringenieure gemacht, die die
Lösung in verschiedener Weise gesucht haben. Von den bekannten Forschern
sollen hier nur die Namen Belidor, Coulomb, Francais, Mayniel, Audoy
und Poncelet genannt werden.
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Aus dieser Reihe hebt sich besonders der weltberühmte französische
Physiker Charles Coulomb hervor, der mit seiner im Jahre 1773 veröffentlichten

Studie die Grundlagen der klassischen Erddrucktheorie

niedergelegt hat (3). Die zweite Hälfte des XVIII.
Jahrhunderts war eine Periode der klassischen Mechanik. Aus dieser Wissenschaft

heraus haben sich die technischen Bau Wissenschaften
entwickelt, so unter anderem auch die Theorie des Erddruckes, die
im XVIII. und XIX. Jahrhundert zu den meistbehandelten Problemen
gehört hat.

Die klassische Erddrucktheorie behandelt die Frage des Erddruckes als
ein statisch bestimmtes Problem, etwaige im Erdkörper
auftretende Deformationen finden daher keine Berücksichtigung. Als Ausgangspunkt

der Theorie dient ein E r d p r i s m a, das sich i rn Moment der
Gleichgewichtsstörung loslöst und an der sog.
Gleitfläche ins Rutschen geraten, seitlichen Druck auf die
Stützwand ausübt. Dieser Druck wird Erddruck genannt.

Glei'mache
Surface de glissemgnt
Slidinn nlanpSlidmg plane

b) Die CouLOMß'sche Theorie des maximalen Druckes.
Coulomb stellt sich folgendes Problem: Wenn die Wand A — B nach

Fig. 1 um ihren Fußpunkt A sich etwas nach vorne neigt, so wird sich er¬
fahrungsgemäß das bisher gestützte
Erdprisma ABC längs einer ebenen Bruchfläche
von dem Erdkörper lostrennen und an der
Fläche AC abgleiten. Im Sinne der Coulomb-
schen Reibungstheorie kann aber ein
Abgleiten an einer beliebigen Fläche AC nur
eintreten, wenn die Schubkomponente (T)
der resultierenden Kraft R größer ist als das
Produkt der Normalkomponente (N) und
f=tgcp, wo
winkel des
tet. Hieraus
des Gleitens:
T 2> Af • tg cp

Gemäß der wichtigsten Voraussetzung Coulombs wird von den unendlich
vielen Ebenen, die durch A gelegt werden können,

jene die gefährliche sein, für welche der Erddruck E zum
Maximum wird, weil die Wand auch dem größten Erddruck
widerstehen muß. i

Auf analytischem Weg läßt sich beweisen, daß das Maximum des
Erddruckes eintritt, wenn

1)

Fig. 1.

Coulomb'sche Problemstellung.
Le probleme de Coulomb.

Coulomb's statement of the problem.

den inneren Reibungs-
gestützten Erdkörpers bedeu-
ergibt sich als Voraussetzung

45° +

ist, und daß dann der maximale Erddruck beträgt:

Emax ^tg2[45» 2)
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Der Angriffspunkt des Erddruckes liegt an der Rückseite der
Stützmauer an ihrem unteren Drittelpunkt, denn die Differentiation
nach h der Gleichung 2) führt zu einer dreieckförmigen
Spannungsfigur (e), deren Schwerpunktlinie durch den besagten Punkt geht.

Nochmals zusammengefaßt, bedient sich die CouLOMß'sche Theorie
nachstehender Voraussetzungen:

1. Die Gleitflächen sind Ebenen,
2. bei beginnendem Gleiten ist an der Gleitfläche

T N-tgcp,
3. von den unzähligen Erddrücken wird der seinem

Werte nach größte der maßgebende sein.
Von diesen Voraussetzungen scheint nur die zweite der Wirklichkeit zu

entsprechen, wogegen sich die erste und dritte Voraussetzung durch keinerlei
physikalische Beweisführung unterstützen läßt. Letztere dienen lediglich

dazu, die Lösung des Problems zu vereinfachen und zu erleichtern.
Die Annahme, daß die Trennfläche eine Ebene ist, wird von Coulomb

nicht bewiesen, und was den maximalen Erddruck anbelangt, kann
dieser nicht als Voraussetzung gelten, er tritt vielmehr als Folge ein, was
bereits durch Winkler (4) betont wurde, und was auch aus den folgenden
Ausführungen erhellen wird.

Zu Gunsten der CouLOMß'schen Theorie sei noch erwähnt, daß sie sich
auch mit jenem der Wirklichkeit unzweifelhaft näherliegenden Fall befaßt
hat, in welchem im Erdkörper außer der inneren Reibung auch K o h ä s i o n
zur Geltung kommt. In diesem allgemeineren Fall erscheint auch das
Druckproblem der bindigen Böden (Tonböden) inbegriffen zu sein, wogegen
die späteren Forscher lediglich die Reibung berücksichtigen, weshalb ihre
Theorien nur für trockenen Sand Gültigkeit besitzen können. Ein Außer-
achtlassen der Kohäsion führt unvermeidlich zu überdimensionierten
Mauern, und wenn sich dabei auch einfachere theoretische Ergebnisse
erzielen lassen, so entfernt man sich doch zu weit von der Wirklichkeit.

Die nach Coulomb folgenden französischen Forscher wie: Francais,
Audoy, Poncelet und andere haben sich mit Stützwänden beliebiger

Form, sowie mit durch geneigteOberfläche begrenzte
Erdkörper befaßt. Sie haben jenen allgemeineren Fall des Erddruckes
untersucht, in welchem der Druck nicht mehr horizontal, sondern innerhalb
des Reibungskegels (d<cp) unter beliebigem Winkel d wirkt (Fig. 2).

Von Poncelet stammt die auch heutzutage gebräuchliche einfache
geometrische Konstruktion des Erddruckes, die auf der mit Zirkel und
Lineal durchführbaren zeichnerischen Ermittlung der mittleren
Proportionale beruht.

Culmann(5), der Vater der Statik, hat den Beweis erbracht, daß die
dem Erddruck proportionalen Längen e für verschiedene Gleitflächen sich
als Ordinaten einer Hyperbel ändern, und daß diese an der Gleitfläche
(^4C) ihr Maximum erreichen.

Rebhann (6) hat bewiesen, daß die Gleitfläche das Viereck, gebildet
durch die Wandfläche, die Terrainoberfläche, die natürliche Böschungslinie
(<X<p), sowie durch die Stellungslinie (CD) in zwei gleiche Teile zerlegt,
d. h. daß

aveaABCA ~ 2xczACDA 3)
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pqE

ist und daß die Größe des Erddruckes gleich ist dem Flächeninhalt des
schraffierten Dreieckes, d. h.

4)

Neben der Kenntnis der Größe ist aber auch die Kenntnis der Richtung
des Erddruckes von höchster Wichtigkeit. Über die Richtung des

Druckes wußten die auf der Annahme ebener Gleitflächen beruhenden
Theorien nichts auszusagen. Betreffend den Winkel d stehen uns nur aus

nach - dapres according to - Rebhann £= tu
Flache Flache
Aire ABC. Aire ACDÜ
Area Area

e Kurve
e courbe
e curve//

/*JJ
LUimanns nyperoei
Hyperbole de Cu/mann
Culmanns hyperbo/d

y/^v;//?

Fig. 2.

Die Ponceletsche Konstruktion und die Culmannsche Hyperbel — L'epure de Poncelet
et Phyperbole de Culmann — Poncelefs construction and Culmann's^hyperbola.

Erddruckrichtung beliebig bei: Poncelet, Scheffler, Culman, Rebhann (XIX. Jahrhundert)
— Direction quelconque de la poussee des terres d'apres: Poncelet, Scheffler, Culman,
Rebhann (XlXeme siecle) — Free direction of earth pression according to: Poncelet,

Scheffler, Culman, Rebhann (XIXth Century).

Versuchen gewonnene Erfahrungen zur Verfügung. Eines der ältesten
Ergebnisse auf diesem Gebiet stammt von Prof. Möller, der den Neigungswinkel

des Erddruckes zwischen den Grenzen

\cp < <J< %cp 5)

anzunehmen empfiehlt (7).
Spätere Forschungen haben für den Neigungswinkel größere Werte

ergeben, als von Möller ermittelt; so haben z.B. äußerst genaue Messungen
von Müller-Breslau (1906) bei unbelastetem Boden

d %cp 6)

bezw. bei belasteter Hinterfüllung den verminderten Wert von d \cp
ergeben (8).

Die Versuche, die zur Klärung dieser Frage bisher unternommen wurden,
sind aber so gering an der Zahl, daß aus ihnen keine feste Regel betreffend
die Richtung des Erddruckes abgeleitet werden kann und deshalb wird die
Frage des Erddruckes auch heute noch für ein ungelöstes Problem gehalten.

Die Bestimmung des durch belastete Erdkörper verursachten
Druckes unter Zugrundelegung ebener Gleitflächen ist ein Verdienst der
ungarischen Forschungsarbeit.

Prof. Dr. K. v. Szily (Budapest) gab, gestützt auf die CouLOMß'sche
Theorie, im Jahre 1912 die graphische Lösung des Druckproblems von unter
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der Einwirkung von Einzellasten und von gleichmäßig verteilten
Kräften befindlichen Erdkörpern (9) und im Jahre 1928 eine gleiche
Lösung für haftende Bodenkörper (10).

c) Gleichgewichtsbedingungen für Kräfte.
Die Bedingungen des Gleichgewichtes der Kräfte E, G und R waren

in der CouLOMß'schen Theorie durch die Annahme eines senkrecht auf die
Wand wirkenden Druckes restlos erfüllt. Durch das Einführen der
Wandreibung durch spätere Forscher konnte der Druck unter
beliebigem Winkel d wirkend angenommen werden, was aber zu Gegensätzen
zu den Gesetzen der Mechanik geführt hat.

Die Kräfte E und R greifen nämlich durch die Dreieckform ihrer Span-
nungsverteilungsfigur bedingt im unteren Drittelpunkt an;
demgemäß treffen sich die Kräfte G und R an der Gleitfläche (Fig. 1 und 2)
und folglich muß auch der Erddruck E durch diesen Punkt verlaufen, woraus
sich eine zur Bodenoberfläche parallele Druckrichtung ergibt, d. h. die
Möglichkeit eines unter beliebigem Winkel d auftretenden Druckes entfällt.
Die Annahme des parallel zur Oberfläche wirkenden Erddruckes erscheint
demnach als ein Schönheitsfehler der ganzen Erddrucktheorie, welcher der
Annahme ebener Gleitflächen entspringt. Durch die Voraussetzung

gekrümmter Gleitflächen kann dieser Fehler ausgeschaltet werden.

d) Die RANKiNE'sche Erddrucktheorie.
In der Theorie Coulombs und seiner Anhänger hat es sich bei der

Untersuchung des Gleichgewichtszustandes um die Gleichgewichtsverhältnisse von
Kräften gehandelt, die auf räumlich begrenzte Körper wirken.
Rankine (1857) hat das Problem auf Grund der Spannungen für
unendliche Erdkörper gelöst, und zwar in theoretisch völlig
einwandfreier Weise (11).

Der Gedankengang Rankines läßt sich kurz wie folgt schildern:
Angenommen sei im Erdinnern — das seiner waagerechten und lotrechten
Ausdehnung nach als unbegrenzt angesehen werden kann — ein unendlich
kleiner Erdkeil (Fig. 3), an dessen Seiten die Spannungen oy, ax und r wirken,
die Funktionen der die Lage des Punktes P bestimmenden Koordinaten x
und y sind. Die an der unter beliebigem Winkel a geneigten Hypothenuse
auftretenden Spannungen t und n sind nicht nur Funktionen der Koordinaten

x und y, sondern auch des Winkels a.

Die Voraussetzungen des Gleichgewichtes lauten nach Cauchy für den
Fall nach Fig. 3 wie folgt:

dx dy
do~v d tUy + ¦

dy dx

Aus der Erwägung heraus, daß im unbegrenzten Erdkörper die Span-
u Ö Q X

nungen nur Funktionen der Tiefe y sein können, d. h. - - 0 und -— =0
sind, kann abgeleitet werden, daß die Gleitflächenneigung a0 bei unter «<e
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geneigter Terrainoberfläche durch das Gesetz

cos (2aQ — e — cp)
sin e

sin cp
7)

bestimmt ist. Bei horizontaler Oberfläche^ wenn also
e 0

ist, beträgt der Neigungswinkel der Gleitfläche gleich der
CouLOMB'schen Theorie

a0 45° +
cp

8)

In der RANKiNE'schen Theorie wird außer dem Reibungsgesetz
(t ntgcp) nur die Annahme einer unendlichen Ausdehnung in
waagerechter Richtung gemacht. Die Theorie beruht daher auf der
Annahme, daß es für die im Erdinnern herrschenden Spannungsverhältnisse

Su^e

dx dy
d6j t fr
dy dx

Terra*

ivir Gleichgewtchlsbedingungen
Conditions d equilibre
Conditions oF equilibrium

Gleichgewichtsbedingungen
Conditions dequilibre
Conditions ot equilibrium

Cauchy

-Gleitflache
Surface de glissement
Sl/d/ng plane

G,i

Fig. 4.Fig. 3.

Rankine'sche Theorie
La theorie de Rankine

Rankine's theory.

völlig belanglos ist, wenn man sich an Stelle der Hinterfüllung eine Wand,
eine Ersatzwand denkt. Gegen diese Auffassung können allerdings
Einwendungen erhoben werden, doch muß zugegeben werden, daß unter dieser
Voraussetzung die Theorie absolut einwandfrei ist, weil sie den drei
Bedingungen des Gleichgewichtes gerecht wird und die
Gleitflächen nicht nur hypothetisch, sondern bewie-
senermaßen Ebenen sind.

In dem RANKiNE'schen Kontinuum handelt es sich um ebene
Gleitflächen, die parallel zueinander verlaufen, bezw. sich in
jedem Fall unter dem gleichen Winkel (90°— cp) schneiden.

Das beachtlichste Ergebnis der RANKiNE'schen Theorie liegt im
Erkennen des Umstände s, daß die Oberflächen neigung und
die lotrechte Richtung einander konjugierte sind. Die
Theorie liefert nämlich den Beweis, daß der Druck wirkend auf das
zur Oberfläche parallel liegende Element lotrecht
auftritt, bezw. daß am lotrechten Element eine zur
Oberfläche gleichgerichtete Spannung auftritt.

Aus dieser Regel ergibt sich für den RANKiNE'schen Fall als Gesetz,
daß der Erddruck auf eine senkrechte Mauerrückwand mit
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der Oberfläche gleichgerichtet ist und daß der an einer Mauer
mit beliebiger Rückwandfläche AB auftretende Erddruck E2 sich durch
Zusammensetzung der Kräfte E^ auf die lotrechte Wand in A und G2 ermitteln
läßt (Fig. 4).

Nach der RANKiNE'schen Theorie ist, — im Gegensatz zu der Coulomb-,
PoNCELFT-REBHANN'schen Theorie, — eine willkürliche Annahme
des Neigungswinkels des Erddruckes weder notwendig
noch zulässig, weil die Richtung des auf eine senkrechte Wand
wirkenden Erddruckes mathematisch parallel zur Erdoberfläche liegend
festgelegt ist. Der auf geneigte Wandflächen gerichtete Erddruck läßt
sich durch Vereinigung der Einzelkräfte bestimmen, wie aus Fig. 4
ersichtlich ist.

Aus alle dem müßte der Schluß gezogen werden, daß wir in der Rankine-
schen Theorie eine endgültige und einwandfreie Lösung des
Erddruckproblems besitzen, denn sie scheint einesteils den Grundgesetzen
der Mechanik zu entsprechen, und andererseits gestattet sie eine eindeutige
Bestimmung des Erddruckes nach seiner Richtung und Größe, wie
auch die Bestimmung des Angriffspunktes (im unteren Drittelpunkt
der Wand). Der wunde Punkt dieser vom mathematischen Standpunkt durchaus

einwandfreien Theorie liegt lediglich in der Einführung des durch
eine Wand getrennten halben Kontinuums und damit in der Annahme
ebener Gleitflächen.

Es fragt sich nun, wie es sich mit den Versuchen verhält. Von den
zahlreichen Versuchen auf diesem Gebiet aus dem Anfang des XX. Jahrhunderts
verdienen insbesondere die mit peinlichster Genauigkeit durchgeführten
Versuche von Müller-Breslau (8) hervorgehoben zu werden, durch welche die
RANKiNE'sche Theorie, namentlich ihre Ergebnisse betreffend die Richtung
des Erddruckes im ganzen widerlegt worden sind. Diese Versuche haben
vielmehr bewiesen, daß ganz bedeutende Änderungen der Oberfläch

e n n e igu n g von keiner nennenswerten Richtungsänderung
des Erddruckes begleitet sind, d. h. daß die

Druckrichtung nicht dem R ankine ' s ch e n Gesetz
unterworfen ist, nach welchem der Erddruck stets mit der Terrainoberfläche
gleichgerichtet auftreten müßte. Auch hat Müller-Breslau größere
Druckwerte (um 10—15 <y0 größere) gemessen, als man sie auf Grund der
RANKiNE-CouLOMß'schen Theorie auf dem Wege der Rechnung
erhalten hätte.

Die Versuchsergebnisse von Müller-Breslau haben durch die späteren
Versuche von J. Feld (12), H. Krey (13) und K. v. Terzaohi (14) völlige
Bestätigung gefunden, so daß als feststehend angenommen werden muß,
daß

1. der Erddruck nicht parallel zur Oberfläche auftritt
und

2. daß er seiner Größe nach die Rechnungsergebnisse
nach der Coulomb-Rankine ' schen Theorie
überschreitet.

Dies muß zur Überzeugung führen, daß die Fehlerquelle einzig und
allein in der Annahme der ebenen Gleitfläche liegt, bezw. in
der willkürlichen Einführung einer Ersatzwand an Stelle
des Kontinuums, woraus sich die ersterwähnte Annahme ergeben hat.

Abhandlungen V 13
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Schon Müller-Breslau hat an Hand zahlreicher Beispiele dargelegt, daß
gekrümmte, z. B. kreisförmige Gleitflächen tatsächlich höhere
Erddruckwerte ergeben und daß der Druck in diesem Falle unter beliebigem
Winkel auftreten kann. Aus praktischen Erfahrungen heraus, wie auch auf
Grund der Lichtbilder über die Versuche sind die Forscher zu der
gleichlautenden Feststellung gelangt, daß die Gleitfläche — zumindest in
ihrem unteren Teil — irgendwelche sanft gebogene Fläche ist,
keinesfalls aber in ihrer ganzen Länge eben sein kann.

Abgesehen von ein bis zwei Studien aus dem vorigen Jahrhundert wirkte
besonders das dem Weltkriege folgende letzte Jahrzehnt sehr befruchtend
auf die Bereinigung dieser Fragen. In der neuesten Zeit haben die besonderen
Plastizitätsuntersuchungen von Prof. Prandtl (15) die
Aufmerksamkeit der Forscher auf die gekrümmte Gleitfläche gelenkt. Die
folgenden Untersuchungen von Hencky, Kärmän und NAdai konnten dann auf
eine Anzahl von Problemen hinweisen, die auch ohne Kenntnis der
Deformation, auf rein statischer Grundlage, gelöst werden können. Zu
diesen Problemen gehört auch die Theorie des Erddruckes.

Im folgenden soll die andere Richtung der Erddruckerforschung
behandelt werden, namentlich die Theorie der gekrümmten Gleitflächen.

*)

Kreiszylinder (Fe//enius(l927)
Cylindre c/rcu/airel Krey (1928)
Circular cylinder {Terzaghi (1929)

b)

Auf theoretischer Grundlage
D'apres la theorie
On the theory oF

Kolter (1903)
Reissner(1924)
Kärmän (1927)
\jäky(l934)

Fig. 5.

Gekrümmte Gleitflächen — Surfaces de cession incurvees — Curved slip surfaces.

Erddruck bei Voraussetzung gekrümmter Gleitflächen.
a) Allgemeines.

In den letzten zehn Jahren sind auf dem Gebiet der Erddruckerforschung
gewaltige Fortschritte gemacht worden. Die hierbei vorgenommenen
Versuche lassen sich ihrer Natur und ihrer Methoden nach in zwei Gruppen
einteilen.

I. Zur ersten Gruppe gehören jene Untersuchungen, die auf möglichst
einfache Art praktisch brauchbare Ergebnisse zu geben wünschen,
ohne auf eine mathematisch einwandfreie Lösung des Problems
Gewicht zu legen. Sie liefern Näherungswerte, denen es zwar an der
theoretischen Unterlage fehlt, die jedoch mit der Wirklichkeit gute
Übereinstimmung zeigen. Begründer dieser Schule war Prof.
W. Fellenius (Stockholm) (17), der den Vorschlägen Sven Hultins und
Pettersons folgend, kreisförmige Gleitfläche annimmt.
Jahrzehntelanges Arbeiten und Beobachtungen der Kommission für
Bodenmechanik in Schweden haben zur Erkenntnis geführt, daß die Gleitflächen
bei Rutschungen von Eisenbahndämmen, bei Kaimauereinstürzen usw. nahezu

kreisförmige Form besitzen.

Diesen Spuren folgen Prof. Krey (13) und Prof. Terzaghi (17), die
die Gleitfläche in ihrer vollen Länge für eine Kreislinie halten. Die graphischen
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t-ntgc?
-^-2nlgcf^.-~pin«x-?))

Verfahren dieser Forscher behandeln das Problem in sehr übersichtlicher
Weise, nur sind diese Verfahren gegenüber den analytischen 'Methoden
äußerst schwerfällig und langwierig. Die Untersuchung einzelner
Probleme erfordert zuweilen zeichnerische Konstruktionsarbeit von mehreren
Tagen. Vom theoretischen Standpunkt aus sind diese Methoden — wie
gesagt — nicht einwandfrei, weil sie den Gleichgewichtsbedingungen
nur teilweise und nicht restlos entsprechen.

II. Die zweite Richtung, die durchaus
wissenschaftlich ist und auf rein theoretischer
Grundlage steht, paßt sich den Gesetzen der
Mechanik genauest an und nimmt die Form
der Gleitfläche deshalb nicht als bekannt
an, sondern sucht sie auf mathematischem

Weg zu bestimmen.
An der Spitze dieser Schule steht der deutsche

Mathematiker Fr. Kötter (18), der schon im Jahre
1903 die Differentialgleichung für die auf beliebiger
Gleitfläche entstehende resultierende Spannung
abgeleitet hat.

^G/e/IF/ache
Surface de glissemenl
Slidmg slope v+Y

Fig. 6.

Die Kötter'sche Gleichung.
L'equation de Kötter.

Kötter's equation.

Nach Kötter ist

dadq
y Sin (a — cp)-2q tg cp

dsds
9)

In dieser Gleichung bedeuten q die resultierende Spannung, <£#> den
Reibungswinkel der körnigen Erdmasse, y t/m3 ihr Raumgewicht, ds den
unendlich kleinen Bogenteil der gekrümmten Gleitfläche und a den Winkel
zwischen der Bogenlinie und der Waagerechten (Fig. 6). Die KörrER'sche
Gleichung gibt aber noch keine Lösung des Problems, nachdem sie eigent-

dct
lieh zwei Unbekannte, nämlich — und q, enthält. Einer dieser Werte muß

ds

angenommen werden, um den anderen berechnen zu können. Wäre z. B. die
Form der krummen Gleitfläche bekannt, so könnte die auf
derselben entstehende Spannung q berechnet werden. Dies ist aber nicht
der Fall und ihre Form kann ohne Verletzung des Gleichgewichtsgesetzes
auch nicht angenommen werden. Alle Hypothesen, welche die krumme
Gleitfläche, z.B. als einen Kreisbogen (Fellenius, Krey, Terzaghi), oder als
eine logarithmische Spirale (Pihera) annehmen, führen nur zu

Näherungsergebnissen, geben aber keine restlosen Lösungen, weil
sie den Bedingungen des Gleichgewichtes nicht Rechnung tragen. Die
KÖTTER'sche Gleichung gehört zur Lösung der Frage, ohne eine
vollkommene Lösung geben zu können.

Prof. M. Ritter (1910) gibt eine sehr elegante und einfache Ableitung
der KÖTTER'schen Gleichung und hat in seinem neuerlich (1936) erschienenen

Werk (19) in analoger Weise dieTrajektions-Differential-
gleichung der Hauptspannung abgeleitet. Damit wurden neue
Wege erschlossen und es darf angenommen werden, daß für die
Hauptspannungsflächen geschlossene Formeln gefunden werden.
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Surft^

TTr^F""

mal"

Fig. 7.
Gleichgewichtsbedingungen

Conditions d'equilibre.
Conditions of equilibrium.

In den vor kurzer Zeit erschienenen Studien von H. Reissner (20) und
Th. v. Kärmän (21) wurde auf die Tatsache hingewiesen, daß die
Gleitflächen keine fortlaufenden Kr ü m m u n g s f 1 ä ch e n sind,
sondern sich aus den Rank ine ' s ch en Ebenen und aus
krummen Flächen zusammensetzen, wie dies der Fig. 5 zu
entnehmen ist.

Von Prof. Reissner (1924) wurde nachgewiesen, daß die Gleitflächen
kohäsionsloser schwerer Erdmassen Charakteristiken der partiellen
Differentialgleichung zweiter Ordnung der AiRY'schen Spannungsfunktion
sind und da die Differentialgleichung zweiter Ordnung hyperbolischen

Charakter aufweist, lassen sich die Gleitflächen
aus mehreren Integralflächen zusammensetzen.

Die Rankin e' sehen Gleitflächen
sind dementsprechend nur bis zur
Geraden ,4C Ebenen und setzen sich
von da ab in gekrümmten Flächen
fort. Lage und Form der gekrümmten
Gleitflächen innerhalb des Prismas ABC sowie der
herrschende Spannungszustand werden bestimmt
1. durch die Gleichgewichtsbedingungen,

2. durch die Reibungsverhältnisse
an der Wand und 3. durch

den glatten Übergang der ebenen
Gleitflächen in die gekrümmte
Fortsetzung.

Reissner rückt der Lösung des Problems von Schritt zu Schritt näher,
Prof. Kärmän (1927) gibt eine Lösung für den Sonderfall, daß die
Mauerrückwand ebenfalls zur Gleitfläche wird und beweist,
daß der — unter Voraussetzung einer gekrümmten Gleitfläche — ermittelte
Erddruck nicht um vieles von dem CouLOMß'schen Wert
abweicht.

Eine kurzgefaßte Darstellung und die allgemeine Lösung des Problems,
wie auch die Differentialgleichung der Gleitflächen hat als
erster der Verfasser dieser Studie anläßlich des IV. Internationalen
Kongresses für Mathematik und angewandte Mechanik
im Jahre 1934 in Cambridge gegeben. Im folgenden wird die ausführliche

mathematische Behandlung der Frage gezeigt (22) und (23).

b) Gleichgewichtsbedingungen.
Stellt man sich einen Erdkörper vor, der durch eine unter dem Winkel e

geneigte unbelastete Fläche begrenzt ist (Fig. 7), so kann man nach
Boussinesq (24) annehmen, daß sämtliche Spannungen (tu nY und oh) in
linearem Verhältnis zu der vom Punkte 0 gemessenen Entfernung h stehen
und nur Funktionen des Polwinkels ß sind, d. h.

10)

Die Gleichgewichtsbedingungen des unendlich kleinen Kreissektors OAB
sind in den wohlbekannten partiellen Differentialgleichungen nach Cauchy
ausgedrückt, nach welchen

nx hf1(ß)
tx hft[ß)
dh hf5(ß)
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1 dt,dGhOh
— y sin ß+ dh dß

2 t, 1 dn,dt,
y cos ß

dh dß

H)

Nach Einführung der Ausdrücke unter 10), wo z. B

dt, d d (t,

ist, kommt man zu den Gleichungen

2ah
y sindß \h

3 t, f-(*) rcosßdß

12)

Wenn nun das unendlich kleine Dreieck ABC nach Fig. 7, dessen Hypo-
thenuse AC ein Differentialbogenelement ds der durch den Punkt A gehenden
Gleitfläche ist, in welchem ferner die Spannungen t und n Komponenten der
an der Gleitfläche wirkenden Spannung sind, an die Fläche AB gelegt wird,
so lassen sich aus dem Gleichgewicht der an den Seiten des Dreieckes ABC
wirkenden Kräfte folgende Gleichungen aufschreiben:

t °h nism2X + t,cos2X

öh 4- n, Oh — n, _. _.JL-^—1 + -^-^r1 cos 2 X — t, sin 2 X

13)

Nachdem für das Gleiten dasjenige Bogenelement in Betracht kommt, für
welches die Bedingung

ol\n) 0 dh- n ^^Jl
erfüllt erscheint, wird aus der Gleichung 13) die Gleitspannung- sein:

(i=^Lnlcotg{2l_(p) 14)

Andererseits ist im Sinne des CouLOMß'schen Gleitgesetzes t= n-tgtp,
so daß sich nach Zusammenziehen der Gleichungen 13) und 14) die
Spannungen er/,, n, und t, als Funktionen der Veränderlichen t und l ausdrücken
lassen, woraus

Gh t

nx t

t, t

1 + s'mcp sin (2X — cp)

sin cp cos <p

1 — s'mcp sin (2/1 — cp)

sin cp cos cp

cos (2X — cp)

cos cp

15)
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Der in diesen Gleichungen vorkommende Winkel l läßt sich mit dem
Neigungswinkel a der Gleitfläche ausdrücken (Fig. 7), d.h.

X a + (i— 90° 16)

Fig. 7 läßt weiters leicht erkennen, daß der in der Differentialgleichung

12) enthaltene Ausdruck

dh
dß

—h cotg (a + ß) 17)

ist.
Durch Einführung in die Gleichungen 12) der unter 15) gegebenen

Formeln mit zwrei Veränderlichen gelangt man nach längeren Zwischenrechnungen

bei gleichzeitiger Berücksichtigung der unter 16) und 17) enthaltenen
Vereinfachungen zu nachstehenden Gleichungen:

J [ cos cp sin (a + ß - cp) _ da ,_ _ At\ — 4- 2—r sin cn sin (2a -f 2p- cp)\
L sm(a + ß) dß * v ' r/I

— —- sin cp cos (2 a + 2 /? -- cp) h y sin ß sin 9? cos 99

A \ COS 09 COS (a + ß — cp) da 1

+ - — [1 + sin cp sin (2 « + 2 0 — 99)] /? y cos ß sin 99 cos cp

aus welchen sich für / und -7- folgende Auflösungen ergeben:

t hy sin cp cos cp
sin ß + sin cp cos (2 a + /? — 99)

4 sin 99 sin (« + ß) cos (« + ß — (p)j^ + cos2 99

~dß "
0 • • /o ,1 x da sin (a — 9?)
2 sin 99 sin (2 a + /* — 99) -^ + -^-7—7--^ cos 99r v ' ^' dß s\n (a-\-ß) ^

— iL y 0111 ip KsKJzi ip
4 sin 99 sin (a + ß) cos (a + ß — <p) -r» + cos2 99

18)

19)

Die in einem beliebigen Punkt des Erdkörpers herrschende Spannung
läßt sich in Kenntnis der Koordinaten h und des Winkels ß aus der obigen
Gleichung 18) bestimmen, vorausgesetzt, daß der Zusammenhang zwischen
den Winkeln a und ß geklärt ist. Zur Aufklärung dieses Zusammenhanges
wird die Differentialgleichung der Gleitfläche Handhabe bieten.

Durch zweckmäßige Behandlung der Gleichungen 18) und 19) läßt sich
ein äußerst einfacher Funktionszusammenhang herstellen. Man bildet den
Ausdruck

dt
\dß

woraus sich nach entsprechenden Substitutionen und Zusammenziehungen die
Formel
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dt _v, da f sm(a — 99)

dß ^^ dß ' ^ sin(a + /i)
20)

ergibt, die eigentlich mit der unter 9) bereits angeführten KÖTTER'schen
Gleichung identisch ist, wenn man bedenkt, daß

q A Ids ht — ~A~~ und- 4— -^— ist,
sin 99

J [dß sin (a + ß)

woraus sich nach Einführung in die Gleichung 20) tatsächlich die Gleichung

dq da

d. h. die KÖTTER'sche Originalgleichung ergibt. Damit erscheint also
bewiesen, daß die KÖTTER'sche Gleichung lediglich eine Folge der Gleichungen
18) und 19) darstellt und darum ihrem Inhalte nach wesentlich
beschränkter ist als obige Gleichungen. Während nämlich in

der KÖTTER'schen Gleichung das Krümrnungsmaß der Gleitfläche (-7-)
unbekannt ist, sind durch die Gleichungen 18) und 19) außer dem Letzteren
auch die Gleitspannung t und die Form der Gleitfläche
bestimmt, es ist somit eine vollkommene und restlose Lösung
gegeben. Durch entsprechende Behandlung der Zusammenhänge 18) und 19)
läßt sich auch noch eine andere, der KÖTTER'schen Gleichung ähnliche, von
ihr aber völlig unabhängige Gleichung ableiten, nämlich

ri-t

-r, [sin(2a + 2/?-99)-f-sina9] + tcos cp hy sin 99 cos 99 sin (2a + /?-r/>) 20a)

welche zufolge ihrer Eignung zur Bestimmung der Gleitspannung (t) der
KÖTTER'schen Gleichung an Bedeutung nicht zurücksteht.

Ein anderer wichtiger Umstand, der nicht unerwähnt bleiben darf, ist
darin zu erblicken, daß die ursprüngliche KÖTTER'sche Ableitung nicht aus
den unter 10) angeführten BoussiNESQ'schen Voraussetzungen hervorgeht,
sondern auf ganz eigenen Wegen zur Gleichung 9) gelangte. Dadurch aber,
daß die BoussiNESQ'schen Annahmen letzten Endes in der KÖTTER'schen
Gleichung auslaufen, erscheint ihre Richtigkeit völlig bewiesen
zu sein.

Die anfangs unserer Ableitung gemachten Annahmen haben nun
aufgehört, Hypothesen zu sein, sie haben sich vielmehr als Folgen der
KÖTTER'schen Gleichungen und mithin als durch die allgemeine Natur des
Problems bedingte Gegebenheiten enthüllt.

Nach diesen Ausführungen können wir nun dem Gesetze der bisher
unbekannten Gleitfläche nähertreten.

c) Differentialgleichung der gekrümmten Gleitfläche.
Die obigen Ableitungen haben uns zu den Gleichungen der Gleitspannung
t und zu ihrem Differentialquotienten nach <<C ß geführt. Differentiieren

wir nun die Gleichung 18) nach <r ß und bringen wir sie mit jener unter 19)
in Verbindung, so läßt sich angesichts des Zusammenhanges
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dh_

cTß
h cotg (a -f- ß)

der Wert h ausschalten und wir gelangen zu einer Differentialgleichung
zweiter Ordnung, in welcher nurmehr a und ß erscheinen. Sie lautet nach
entsprechenden Vereinfachungen:

A
d2a _ ^ (da

A^dj* + ß{a'ß)\-dß !+C(a,ß)^ 0 21)

wo
A (a,ß) |[sin ß + sin99 cos (2a + ß -cp)\ sin (a 4- ß) cos (a 4- ß- cp)\

B (a, /?) J4 sin 99 cos (a + ß-cp) sin (a + ß) sin (2 « 4- ß - cp)

+ cos (2 a 4- /? - 99) [sin /? 4- sin 99 cos (2 a + ß - 99] |

C(a,ß) {sin(2«+^-9?)cos299 + cos(2«+2^-99)[sin^+sin99COs(2a+/^-99)]{ 21a)

Funktionszusammenhänge / (a, ß) sind.
Durch die Gleichung 21) erscheint die Gleitflächenform vollkommen

festgelegt zu sein, sowie die Möglichkeit geboten, die zum Aufschreiben
des totalen Integrals der Differentialgleichung zweiter Ordnung erforderlichen

zwei Randbedingungen anzugeben.
Das Integral selbst konnte ich in keine geschlossene Form bringen

und es scheint auch wenig Aussicht zu bestehen, daß dies jemals möglich
sein wird, sind doch die Versuche einer geschlossenen Lösung viel
einfacherer Differentialgleichungen zweiter Ordnung bis jetzt erfolglos
geblieben. Dies bedeutet aber kein Hindernis für die restlose Lösung des
Problems, wie es später noch dargetan wird. Fast gleichzeitig mit dem
Verfasser trat Prof. A. Caquot (25) mit einer Studie vor die Öffentlichkeit, in
welcher er die Differentialgleichung der Gleitfläche auf völlig anderer Grundlage

nach eigenen Methoden aufgestellt hat und in einer recht geistreichen
Weise der Näherungslösung heranrückt.

1. Die ebene Gleitfläche.
Zurückgekehrt zur Gleichung 21), läßt sich diese unzweifelhaft zu

da
~dß

0 22)

auflösen, woraus sich a als Konstante ergibt, d.h. die Möglichkeit
ebener Gleitflächen bewiesen erscheint.

Suchen wir nun die an der ebenen Gleitfläche auftretende Spannung t.
d aSetzt man zu diesem Zwecke den Ausdruck — 0 in die Gleichung 18), so

erhält man als gesuchte Funktion der Spannung

t hyXgcp [sinß 4- sin 99 cos (2a 4- ß — cp)] 23)

Nachdem dieser Zusammenhang für jeden einzelnen Punkt der
ebenen Gleitfläche zu Recht besteht, muß er auch für den
Punkt P, der Oberfläche zutreffen (Fig. 8), woraus sich unter Berücksich-
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tigung, daß bei unbelasteter Bodenoberfläche e

werden kann, die Gleichung
¦ß durch t 0 ersetzt

sin 99 cos (2 a0 - cp) sin« 24)

ergibt, in der wir die Gleichung der Ran-
KiNE'schen ebenen üleitfläche
erkennen.

Wenn 0, so ist a0 45 ° 99 die Nei-

Fig. 8.
Zusammengesetzte Gleitfläche.
Surface de cession composee.

Combined slip surfaces.

gung der CouLOMß'schen ebenen Gleitfläche.
Dadurch erscheint einerseits bewiesen, daß

die Gleitflächen auch Ebenen sein
können, andererseits, daß diese Ebenen
tatsächlich mit jenen des Rankin e's che n
Kontinuums übereinstimmen.

2. Gekrümmte Gleitflächen.
einSind die Gleitflächen keine Ebenen, dann ist — -+- 0, folglich ist a

veränderlicher Wert. '

Nachdem die ebenen Gleitflächen an irgendeinem Punkte tan g e n t i a 1,

d. h. ohne Bruch in die Krümmungsfläche übergehen, gehören die Winkel ßQ

und a0 auch der gekrümmten Gleitfläche an, es muß sogar die Spannung t
die gleiche sein, gleichviel ob sie zur ebenen oder zur gekrümmten Gleitfläche

gehörend betrachtet wird. Die unter 18) für die Spannung t
angeführte allgemeine Gleichung kann aber nur in dem Falle mit der Gleichung 23)

d a
gleichwertig sein, wenn irgendein Multiplikator des Ausdruckes -j- zu Null
wird. Nachdem jedoch sin (a -\-ß) -^ 0, bleibt als einzige Möglichkeit

cos (a0 -j- ß0 — cp) 0, mithin

«0 + ßo 90° + 25)

d. h. die Gerade BP2 ist im Punkte P2, wo die ebenen
Gleitflächen ihr Ende haben, ebenfalls eine Gleitfläche und für den Raum
BP±P2 gilt die RANKiNE'sche Lösung als maßgebend.

Damit wäre eine Randbedingung der Differentialgleichung zweiter
Ordnung sichergestellt, und zwar für den Punkt P2 der Gleitfläche

a aQ

ß ßo
26)

wo noch a0 + ßo 90° + cp ist.

Mit Hilfe der Gleichung 24) läßt sich die Lage der unter a geneigten
Gleitebene bestimmen. Im Sinne der Gleichung ist Winkel a0 eine
Funktion der Oberflächenneigung e. Für den praktischen Gebrauch empfiehlt
es sich, die mit den verschiedenen Reibungswinkeln cp bezw. Oberflächenneigungen

e korrespondierenden a0-Werte zu berechnen und tabellarisch
zusammenzufassen. Diesem praktischen Zwecke dient die mitgeteilte Tabelle I,
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in welcher die ausgerechneten Werte a0 für Größen der Winkel s und cp, die
von 5 zu 5 Graden wechseln, enthalten sind. ßQ läßt sich hingegen aus dem
unter 26) angeführten Zusammenhang a0 -f- ß0 -= 90° -f cp berechnen.

Fig. 9.

Zeichnerisches Bild der Funktion u / (ß) - Representation

graphique de la fonetion a f (ß) — Graphical re-
presentation of the function u f(ß).

r
1 ^^s\^
I >-
SA» Ä

eben [ gekrümmt
plan meurve
plam curved

Bei der Ermittlung der anderen Konstante für die Integration muß
zunächst in Betracht gezogen werden, daß der gegen die Stützwand gerichtete
Erddruck unter einem bestimmten Winkel d auftritt, und daß dieser
Richtungswinkel ö eine Funktion der Wandneigung (ß,) sowie der
Endtangente a, derGleitfläche ist. Der Richtungswinkel 6 ist an jedem
einzelnen Punkte der Mauer der gleiche, denn (siehe Fig. 8)

tgd ^
steht nur mit a, und ß± in funktionalem Zusammenhang; folglich wird nach
Einführung der Gleichungen 15) die Richtung des Erddruckes sein:

_ _
sin 99 cos (2 a, 4-2 ß, — cp)

g ~~ ~~
1 + sin99 sin (2Ö7+~2ß, — cp)

27)

Bedient man sich des Richtungswinkels d des Erddruckes entsprechend
einer Annahme, wie sie für Konstruktionen des Erddruckes im Falle ebener
Gleitflächen bisher schon gemacht wurde, so läßt sich der Neigungswinkel a,
der Gleitfläche für eine unter gegebenem Winkel ß, geneigten Mauerrückwand

als Neigungswinkel der Endtangente berechnen. In diesem Fall wird
die zweite Konstante für die Integration durch das dem Punkte A

angehörende, zusammengehörige Wertepaar \n_ o bestimmt und auf diese Weise

die a f (ß)-Kurve durch die Punkte P2 und Ä vollständig festgelegt (siehe
Fig. 9).

Vom rein mathematischen Standpunkt aus betrachtet erscheint das
Problem im Sinne des Vorgetragenen völlig gelöst zu sein, die
praktischen Gesichtspunkte machen aber noch eingehendere Untersuchungen
erwünscht.

'So ist als wichtige Frage in erster Linie zu untersuchen, innerhalb
welcher Grenzen sich der Winkel ö bewegt. Nachdem im Sinne der
Gleichung 27) 6 im wesentlichen eine Funktion vom Winkel (a Jr ß) ist, betrachten
wir zunächst diese Funktion. Ihre zeichnerische Darstellung ergibt eine
Wellenlinie nach Fig. 10, laut welcher der Winkel d nur zwischen den
Werten (+<p) — (—99) schwankt, d.h. der Erddruck bleibt seiner
Richtung nach innerhalb des mit dem R e i b un g s w in k e 1

des Bodens gezeichneten Reibungskegels und ist
unabhängig von den Reibungsverhältnissen an der Wand.
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Aus der Kurve ist unmittelbar ersichtlich, daß

1. d 0 wird, wenn « + ß 45° + \ oder 135° + %-

2. 3 k? V a 4- ß 90° + cp

3. d -Cf V V a + ß 0 oder 180°

Diese Werte bilden die Grenzwerte der Erddruckrichtung. Diese
Feststellung der Grenzwerte läßt aber noch die Frage offen, ob sie in der Natur
auch wirklich auftreten. Die Tatsache, daß Winkel a und ß zufolge der Diffe-

+*<

Änderung der Erddruckrichtung
Variation de la direction de la poussee des terres
Variati9n oF direction oF earfh pressure

6- + f>

tgS.- sin?cos(2cL+20-9)
hsinf.sin(2cL*2ß-9)*tin %^\20'II! >z

ä» <
f<

*4» *i a+j0'/35'+f '?cc+/3A45 ct+ß

120 ° (*+ß)<% S *¦5 S-S.
1-5 §
&* 5$*.§
$ -8» 'S

$<*«§
-30-S4

Fig. 10.

Fig. IL
Die partikulären Lösungen der
Differentialgleichung (21) - Les Solutions
particulieres de l'equation differentielle

(21) - The Particular Solutions
to the differential equation (21).

rentialgleichung zweiter Ordnung voneinander als Funktionen abhängen,
läßt es notwendig und erwünscht erscheinen, eine ausführliche Analyse der
Differentialgleichung zweiter Ordnung 21) vorzunehmen.

Die zeichnerische Darstellung der Differentialgleichung 21) im
Koordinatensystem (aß) erfolgt in der Fig. 11. Im Rahmen der vorliegenden Studie
werden nur die durch unbelastete Oberfläche begrenzten Erdkörper
behandelt, d. h. es wird nur jener Fall besprochen, für welchen sich die
Gleitfläche aus einer bis zur Oberfläche reichenden Ebene und einer an
dieselbe anschließenden Krümmungsfläche zusammensetzt. Zu den
Lösungen der Differentialgleichung gehören auch jene Fälle, für welche der
von der Oberfläche ausgehende Teil der Gleitfläche
gekrümmt ist und sich dann in einer Ebene fortsetzt, oder in ihrer
ganzen Länge eine Krümmungsfläche bildet. Diese Fälle — die
bei belasteten Erdkörpern vorkommen — sollen in einem anderen
Aufsatz behandelt werden.

Die Koordinaten des Pols (Punkt A) der Kurvenschar nach Fig. 11 sind
a =-- a0 und ß ==- ß0 und es kann bewiesen werden, daß in diesem Punkte die
Koeffizienten der Differentialgleichung 21)

A («, ß)0 0, C(a,ß)0 0 und B(«,ß) — — cos2 cp sin (ß0 — q)

sind, folglich ergibt sich aus der Differentialgleichung 21)

\dß)A 0

d. h. daß sämtliche Kurven im Punkte
genten besitzen.

A waagerechte Tan
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Es läßt sich ohne Schwierigkeit beweisen, daß im Falle der sog.
natürlichen Böschung, d. h. wenn die Erdmasse ihren Ruhezustand auch
ohne irgendwelche Stützung bewahrt, wenn also

a, — 99

ßx 180° —99
die Werte A (a, ß)B 0, B (a, ß)B =0undC (a, ß)B 0 sind, und daß
demgemäß der die natürliche Böschung kennzeichnende Punkt B (Fig. 11) eine
Lösung der Differentialgleichung bildet. Nachdem ferner in diesem Falle

jeder beliebige Wert der Tangentenneigung —1 die

Differentialgleichung erfüllt, ist B ein s i n g u 1 ä r e r Punkt.
Es bedürfte besonderer und sehr eingehender mathematischer

Untersuchungen, wollte man Näheres über den Charakter der Kurvenschar in diesem
Punkte erfahren. Eines ist aber auch ohne diese Untersuchungen feststehend,
daß es nämlich Lösungen gibt, die über Punkt B führen, und andere, die nicht
über diesen Punkt verlaufen.

Nachdem sich gemäß Winkel (a + ß) der untere und obere Grenzwert
des Richtungswinkels des Erddruckes nur zwischen (90°-{-cp) und 180°
bewegen kann, bleiben die als Lösungen der Differentialgleichung geltenden
Kurven innerhalb des durch die Geraden (a) und (b) begrenzten
Feldes (Fig. 11).

Da die Tangente im Punkt A waagerecht liegt, läßt sich eine sehr
gute Näherungslösung erzielen, wenn man die Kurve AB' als eine Parabel
zweiter Ordnung annimmt.

Die Gleichung einer solchen Parabel lautet:

" "-^-^W=W 28)

und jl,-^-.,,^«, a,
Im Sinne des Ausgeführten werden sich die Gleitspannung (t) aus der

Gleichung 18) und die an der Mauerrückwand auftretenden Spannungen n,
und t, mit Hilfe der Gleichung 15) bestimmen lassen.

d) Die Größe des Erddruckes.
Die an der Rückseite der Stützmauer wirkende Normalspannung beträgt

im Sinne der Gleichung 15)

__
1 + sin 99 sin (2 a, + 2 ß, — 99)

1 ~~ sin 99 cos 99

und nachdem sich die Spannungen mit der Stützmauerhöhe h linear ändern,
wird der Gesamtwert der Normalkraft gleich dem Flächeninhalt des
Spannungsdreieckes sein, d. h.

h2 y [sin ß, + sin 99 cos (2 a, 4- ß, - cp)] [1 + sin 99 sin (2a1 + 2ß1- cp)]

2 4 sin 99 sin (a, 4- ß,) cos (a, + ß,-cp) -^~ 4- cos2 99

30)

und die tangentiale Komponente ist gleich

T, N, tg ö I 31)
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wo Winkel d den angenommenen Richtungswinkel des Erddruckes bedeutet,
für welchen die Gleichung 27) sowie die Tabelle II maßgebend sind.

Diese Ausführungen geben die Charakteristik der allgemeinen Lösung
des Problems und besagen, daß die Größe des Erddruckes als eine
einfach unendliche Menge anzusehen ist, kann doch der Richtungswinkel

des Erddruckes innerhalb der Grenzen (f 99) und (— cp) u n-
endlich verschieden angenommen werden, wodurch auch N,
einfach unendlich viele Werte annehmen kann.

Sobald man aber bezüglich des Erddruckes oder einer mit ihm verbundenen

Charakteristik gewisse besondere Voraussetzungen macht, so wird
die einfach unendliche Zahl der Lösungen auf eine einzige und bestimmte
Lösung beschränkt. So z. B. wenn man den größten der unendlich vielen
AVWerte oder den Höchstwert von E =]/Nt2 + T,2 sucht, oder aber jenen
Fall klären will, in welchem die Gleitfläche zur Ebene wird usw.

Wenn die Gleitfläche zur Ebene wird und wenn man zunächst den
praktisch bedeutsamen Fall der waagerechten Oberfläche zur
Voraussetzung macht (e ==- 0), so ist

ax 45° 4- ~ und ^ 0
z d ß,

woraus nach Substitution in die obigen Gleichungen
t hytg(p(l sin 99) sin ß

(1 - sin cp) (1 4- sin <p cos 2 ß)
*i hytgcp

sin cp cos 99

somit

N,= h2y sin^
2 1 4- sin cp

(1 4- sin cp cos 2ß) 32)

sich als Normalkomponente des Erddruckes ergibt.
Der Richtungswinkel des Erddruckes ist

tgcJ
sin 99 sin 2 ß

1 4- sin cp cos 2 ß

Wird der Einfachheit halber der kürzere Ausdruck
sin /

1 4- sin^
(1 + sin cp cos 2/^)

32 a)

33)

h27leingeführt, so ist N1 -~-ke, wo ke das Verhältnis des Erddruckes zu dem

auf die gleiche Fläche entfallenden Wasserdruck angibt, weshalb ke mit Recht
als hydrostatischer Koeffizient bezeichnet werden kann.

Es läßt sich leicht beweisen, daß die Grenzen des ^Wertes 1. bei ß 90°

und 2. bei sin ß -f- 4- sin 99

6 sin cp
liegen.

Im ersteren Fall handelt es sich um das Minimum, im zweiten um das
Maximum, und zwar wird sein
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im Falle 1. k„ tg2(45°- und im Falle 2. k„
\ 6 sin

sin 99

cp

Beispielsweise wird bei 99 30 ° (trockener, locker gelagerter Sand)
kmin 0,33 und kmax 0,47 betragen.

Seine mit 99 schwankenden Zwischenwerte sind der Fig. 12 zu entnehmen.
Bemerkenswert ist, daß der hydrostatische Koeffizient bei kleinen
Reibungswinkeln (9? < 11,5°) keinen Mindestwert, sondern nur ein Maximum

hat und zwar tritt dasselbe auf im Falle einer lotrechten Wand
0öTk

G 06 Vjfe

A—l
•fc OU

fc 03

*fe

* 01

ebene G/eitf/ache
surface plane de gltsserrert (he)
piain shding plane

gekrümmte Gleittlache
surface incurvee de g/tssement (kh)
curved shding plane

«^ eben - plan plaine

\ Ruckwandwinkel
\ Inclmaison de la paroi (ß)
\ I Inclination ot wall

0 20 40 60 80 100 120 140 160 180

Fig. 12.

Änderung des hydr. Koeffizienten — Variation des coefficients hydr. —
Change in the hydraulic coefficient.

(ß 90°). Materialien mit größerem Reibungswinkel (Sand,
Getreide, Stein usw.) üben den größten Druck auf Wände mit
Neigungen von ß 40°—45° aus. Beispiele für diesen Fall sind bei
den sog. Großraumsilos anzutreffen, für welche aus der Fig. 12 die
für die Praxis wichtige Lehre gezogen werden kann, daß großen Behältern
bedeutend wirtschaftlichere Form gegeben werden kann, wenn ihre
Wandungen mit ß 60°—70° Neigung ausgebildet werden.

Die in Fig. 12 punktiert eingezeichneten Kurven geben den Wert des
hydrostatischen Koeffizienten

kk __ [sin ß, 4- sin 99 cos (2 a, + ß,- cp)] [1 + sin 99 sin (2 a, 4- 2 ß, - 99)]

4 sin 99 sin (a, 4- ß,) cos (a, +ß,-cp) -r~ 4- cos2 99

34)

an, bezogen auf eine gekrümmte Gleitfläche für den Fall, daß für die Funktion

a f (ß) eine über den Punkt B führende Parabel angenommen
würde.

Die Berechnung wurde auf Grund der Formeln 28) und 29)
durchgeführt.
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Aus dem Vergleich der zusammengehörigen Kurven geht hervor, daß
der durch die Kurve AB dargestellten gekrümmten Gleitfläche ein
kleinerer Erddruck entspricht, als einer ebenen Gleitfläche, und man
gelangt leicht zur Erkenntnis, daß mit abnehmendem Neigungswinkel a± der
Endtangente der krummen Gleitfläche eine Zunahme des hydrostatischen
Koeffizienten (kk) verbunden ist.

e) Die Richtung des Erddruckes.
Durch eine Reihe von Versuchen — Müller-Breslau (1906), Terzaghi

(1929) und andere — wurde unzweifelhaft bewiesen, daß der gemessene
Wert des Erddruckes nur unwesentlich vom Coulomb'
sehen Wert (ebene Gleitfläche) abweicht, und nur der Richtungswinkel

ein anderer war.
Man wird daher mit Berechtigung die Annahme machen können, daß

die durch gekrümmte oder ebene Gleitflächen bedingten Erddruckwerte
völlig übereinstimmend sind, in welchem Falle

ke kk ist, d. h.

[sin ß, + sin cp cos (2 a, \ ßx - cp)] [1 + sin cp sin (2 a, 4- 2 ß, - cp)]

4 sin 99 sin (a, 4- ß,) cos (a{ + ß,-<p) -^ 4- cos2 9^

_ sin ^(1-f sin 99COs2/:?3)
1 4 sin 9^

Wenn diese Bedingungsgleichung mit der die allgemeine Lösung
darstellenden Differentialgleichung zweiter Ordnung 21) verbunden wird, so
wird es klar, daß die unendlich große Zahl der Lösungen sich auf eine
endliche Zahl, nämlich auf eine, eventuell zwei Lösungen reduziert.

Ein langwieriger Rechnungsvorgang (Substitutionen und Zusammenziehungen),

den wir hier übergehen, führt zum Funktionszusammenhang
ax f (ß±), der in dem für die späteren Ausführungen und für die Praxis
sehr wichtigen Sonderfall, daß es sich um eine lotrechte Wand handelt, d. h.
daß ßx 90° ist, in folgende Endform übergeht: 36)

cos(2«, ^{[l-sin^sin^-^^ 0

Diese Gleichung besteht zu Recht, wenn 1. 2^—99—90°, d.h. wenn

450+ ^

ist, somit für den Fall der allgemein bekannten CouLOMB'schen Lösung für
ebene Gleitfläche, und wenn 2.

[l-sin^sin(2a1-9?)]2tg2(45°- \)+Hx sin ^ sin (2 «x cp)] - 3 cos2 cp 0

ist, woraus

2-(l- sin?)y 1 + 3(1 +sin 7>)s
v 'y sm<p(l + sin 99)

37)

die Bestimmung der Endtangente a,) der gekrümmten Gleitfläche
und in der weiteren Folge die Ermittlung des Richtungswinkels des

Abhandlungen V
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Erddruckes gestattet, der im Falle ß, 90 °, gleich

ted
sin 99 cos (2 a1 —99)

1 — sin cp sin (2 a, — cp)
38)

ist.
So wird sich z. B. im Falle 99 30 ° aus den Gleichungen 37) und 38)

ergeben: a, 42° 15' und d1 =- 26° 30'.

Dieser Wert des Neigungswinkels ist aber derselbe, den die
Versuche stets übereinstimmend ergeben haben. Wie es in den angeführten
Werken von Müller-Breslau (8), Krey (13) und Terzaghi (14) zu lesen
ist, hat bei Versuchen mit lockerem Sand (99 30°—34°) der
Richtungswinkel des gegen die lotrechte Wand wirkenden
Erddruckes in jedem Falle d 26 °—27 ° betragen.

Zusammenfassend lassen sich nun folgende grundlegende Sätze der
Erddrucktheorie aufstellen: 1. Der Erddruck kann den gleichenWert
erreichen, gleichviel ob die Gleitfläche eine Ebene oder
eine gekrümmte Fläche ist. 2. Der an einer senkrechten
Wand auftretende Erddruck ist im Falle einer ebenen
Gleitfläche waagerecht, wogegen bei gekrümmter
Gleitfläche auch Reibung an der Mauerrückwand auftritt, in
welchem Falle für die Größe des Richtungswinkels die
Gleichungen 37) und 38) maßgebend sind. 3. Gemäß
unserer Untersuchungen bezüglich dieses Richtungswinkelstrifft bei jedem beliebigen Reibungswinkel (99) mit großer
Genauigkeit das Verhältnis zu

0,9 cp 38 a)

woraus die Normalkomponente des an der senkrechten Wand auftretenden
Erddruckes

N,
h2y cp

2 tg'(45o—£

seine Tangentialkomponente

T, =N1tgO,9cP

und der resultierende Erddruck selbst gleich

ist.
In diesem Falle verteilt sich der Erddruck über die'Mauerrückstände

hydrostatisch, d.h. ,der Erddruck greift im unteren Drittelspunkt
der Wand an; es kann aber immerhin vorkommen, daß der Abstand

des Angriffspunktes überschreitet, was mit einer speziellen
Bewegung der Wand zusammenhängt. Damit sind wir bei der Frage
angelangt, welchen Einfluß auf die Größe und Richtung des
Erddruckes eine etwaige Bewegung, Kippen oder
Verschiebung der Mauer auszuüben vermag.
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///. Beeinflussung des Erddruckes durch eine Bewegung der Wand.

Mit dieser sehr wichtigen Frage des Erddruckproblems hat sich in der
letzten Zeit Prof. K. v. Terzaghi (26) befaßt und ist im Zuge seiner im
Mass. Institute of Technology, Cambridge (Mass), im Jahre
1929 geführten Versuche zum Ergebnis gelangt, daß der Erddruck nach
Größe, Richtung und Lage seines Angriffspunktes durch
Bewegungen der Wand in bedeutendem Maß beeinflußt wird.

Jede starre und unbewegliche Wand
wird von einem beträchtlichen (k= 0,4—0,5),
waagerecht wirkenden Erddruck
angegriffen, der schon bei ganz geringen
Bewegungen der Wand erhebliche Abnahme
erfährt (k 0,1—0,3), wogegen der
Richtungswinkel des Druckes infolge der
auftretenden bedeutenden Wandreibung
zunimmt.

Sil
Oppen • Deversement • turning-over

Tr

Z\S£ Verschiebung
Deplacement
Displacement

,^"(l)s-5

1KfPl OiO

£VS

Wandausweichung
Deviation de la paroi
Giving way olwall

Wandbewegung
Mouvemenl de la p
Movement ol wall

Fig. 13.

Die idealen Zusammenhänge zwischen Erddruck
usw. und Wandbewegung — Les relations par-
faites entre la poussee des terres, etc. et le mouve-
ment de la paroi de soutenement — Ideal re-
lationship between earth pressure etc. and wall

movement.

In der Wirklichkeit gibt es keine starren Wände, weil einerseits durch
den an der Grundfläche der Wand auftretenden Kantendruck, sowie
durch das Einsinken der Wand ein Kippen, andererseits durch mangels
hafte Reibung zwischen Mauerfundament und Boden eine Verschiebung

der Wand in waagerechter Richtung hervorgerufen wird.
Dementsprechend werden bezüglich Bewegungen der Wand zwei Grundfälle
unterschieden und zwar :a) KippenderWandumihren Fußpunkt,
und b) parallele Verschiebung der Wand. Die in der Natur
vorkommenden Bewegungen setzen sich alle aus diesen Grundbewegungen
zusammen.

Beide Bewegungsarten wurden im Zuge der erwähnten Versuche auf
ihre Wirkung untersucht. Die hiebei gefundenen Ergebnisse lassen sich
nach Fig. 13 zusammenfassen. Nach der Feststellung Prof. Terzaghi's
kann sich der Erddruck auf zweierlei Arten verteilen, nämlich: 1.

hydrostatisch und 2. unhydrostatisch. Im ersteren Falle wird der
Erddruck im unteren Drittelpunkt dann auftreten, wenn die Wand um
ihren Fußpunkt A kippt; die zweite Verteilungsart tritt bei paralleler
Verschiebung der Wand ein, die Spannungsverteilung ist nicht linear

und der Hebelarm des Erddruckes ist größer als -^ In beiden

Fällen der Wandbewegung nimmt die Größe des Erddruckes rasch
ab, immerhin tritt diese Abnahme des hydrostatischen Koeffizienten im
Falle b) früher ein als im Falle a) und erreicht seinen Kleinstwert
dort, wo der Angriffspunkt des Erddruckes am höchsten
liegt (siehe Fig. 13).

Den Grund der mit einer parallelen Verschiebung der Wand
einhergehenden unhydrostatischen Spannungsverteilung erblickt Prof. Terzaghi
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in der sog. Verspannung durch Silo Wirkung (26). Diese erklärt
sich daraus, daß der senkrechte Druqk, der auf den unteren Teil des
durch die Wand gestützten Erdkeiles entfällt, infolge der durch die
Verschiebung erzeugten Reibung abnimmt, demzufolge im oberen Teil

Fig. 14.

Druckverteilung des Erddruckes bei paralleler
Wandverschiebung — Repartition de la poussee
des terres lors d'un deplacement de la paroi
de soutenement — Distribution of earth pressure

assuming parallel displacement of the wall.

Fig. 15.

Graphische Lösung mittels d. stellvertr. Wand
— Solution graphique ä Paide de la paroi de
Substitution — Graphical Solution by means of

substituted wal1.
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der CouLOMß'sche Erddruck, im unteren Teil ein
verminderter Erddruck auftritt, der auf die ganze Wandfläche
gerichtete Erddruck bleibt unverändert, sein Angriffspunkt hebt
sich über den Drittelspunkt.

An Stelle dieser an sich logischen und wahrscheinlichen Erklärung der
Verspannung durch Silowirkung, die aber der Berechnung unzugänglich ist,
wie auch für ihren Einfluß auf die Höhenlage des Angriffspunktes

gibt der Verfasser nachstehend eine wesentlich einfachere und
mathematisch belegte Erklärung.

a) Im Sinne der hydrostatischen Spannungsverteilung
sind die Spannungen proportional der von der oberen Kante der Wand
gemessenen Entfernung h. Diese Bedingung wurde bereits am Anfang
gestellt, als der P o 1 0 an der oberen Kante der Wand angenommen wurde
(siehe Fig. 7) und alle bisher erzielten Ergebnisse haben nur für den Fall
Gültigkeit, als der Pol bei 0 liegt.

Im Sinne der Bedingungsgleichung 10) sind im Punkt 0 sämtliche
Spannungen gleich Null. Nachdem dies aber für alle Punkte
der unbelasteten Bodenoberfläche zutrifft, kann der Pol 0
nicht nur am oberen Ende der Wand, sondern auch vor der Wand an
beliebiger Stelle der Oberfläche angenommen werden, d. h. er kann auch
exzentrisch sein.

b) Angenommen sei ein Pol 0 nach Fig. 14 an der ebenen Oberfläche
des durch die Wand AB gestützten Erdkörpers vor dem Punkt B, also
exzentrisch liegend. Der aus diesem Ö-Punkt ausgehende beliebige Radius wird
von den Gleitflächen unter den gleichen Winkeln geschnitten, folglich
hat man es längs der Linie OA mit hydrostatischer Spannungsverteilung

zu tun. An der Rückwand der Stützmauer AB findet man
indessen nur im Abschnitt OB hydrostatische Spannungsverteilung — bis hier-
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her reichen die ebenen Gleitflächen — wogegen im Abschnitt OA
unhydrostatische Spannungsverteilung herrscht, weil die Gleitflächen
unter verschiedenem Winkel (a,) die Mauerrückwand durchqueren und
daher die Spannung n, nicht mehr proportional der Entfernung h sein wird,
und die Spannungsfigur gekrümmte Form annimmt, womit der A n -

h
griffspunkt z höher als — liegen wird.

Mit der Bewegung des Poles 0 ist eine dauernde Änderung

der Sp a n n un g s f i gu r und damit auch der Höhe des
Angriffspunktes z verbunden. Verlegt man den Pol nach B oder

tn
O' (siehe Fig. 14), dann wird z -~-, weil im ersteren Falle BA eine Isokline

ist — jede Gleitfläche durchschneidet AB unter dem gleichen Winkel —
dagegen sind die Gleitflächen im zweiten Falle nur E b e n e n, d. h. es herrscht
wieder hydrostatische Spannungsverteilung.

Die Bewegungen des Poles 0 sind durch die
Wandverschiebungen bedingt. Je stärker die Wandverschiebung, desto weiter
entfernt sich der Pol von B; falls der Punkt 0 mit O' zusammenfällt, so sinkt
der Hebelarm des Erddruckes auf das Minimum.

Der an einer Stützwand mit exzentrischem Pol auftretende Erddruck
kann einfach bestimmt werden, indem man zuerst den auf die Ersatzwand

BO entfallenden, unter <^t neigenden hydrostatischen Erddruck E,
bestimmt, von welchem nachher das Gewicht G des Prismas OAB vektorial
abgezogen wird. Die Höhe des Angriffspunktes des solcherart erhaltenen

resultierenden Erddruckes E wird z>^- sein (siehe Fig. 15).

Zur vollkommenen Lösung des Problems gelangt man, wenn man 1. die
Normalkomponente von E (N), 2. den Richtungswinkel des
Erddruckes (d) und schließlich 3. den Hebelarm (z) des
Erddruckes bestimmt.

Aus dem Gleichgewicht der am Prisma OAB angreifenden Kräfte können
die Kräfte N und T angeschrieben werden zu

N=Nl^^=^. 39)
COS d, '

T= Mcos(/>1-j1)_Q 3
COS C),

Der Richtungswinkel des Erddruckes ist gleich

?„ A __ JL - ^i COS (ft -<*,)- G COS <?,

18 ° - N - N,sm(ß,-6l) ™>

Die Momentengleichung bezüglich Pol X ergibt

__ N, — G cos ßx tn
Z ~ Äfsinft T '

In den angeschriebenen Formeln haben wir es eigentlich mit zwei
Unbekannten zu tun, und zwar mit dem Richtungswinkel d, des
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stellvertretenden Erddruckes E, sowie mit dem Neigungswinkel
ft der Ersatzwand, die eigentlich für die Exzentrizität des

Polpunktes, d.h. für die Stützwandverschiebung kennzeichnend
sind.

Das Problem des Erddruckes besitzt — unter dem Einfluß der
Wandbewegung — im wesentlichen zweifach unendlich viele Lösungen,
es wird daher zu einem zwe ifach unbestimmten Problem. Wendet
man aber die aus den Versuchen gewonnenen Sätze an, so wird die
Lösung eine eindeutig b estimmte sein. Nach einem dieser Sätze, den
wir bei dem hydrostatischen Druck bereits angewendet haben, ist der
Erddruck sowohl bei gekrümmter als auch bei ebener
Gleitfläche der gleiche und der Winkel d, ändert sich beim Kippen der
Wand aus der Lage AB in die Grenzlage AO' nur zwischen sehr engen
Grenzen d 0,9 99 — 99, so daß man mit sehr guter Annäherung

d, 99 42)

annehmen darf.
Die Normalkomponente des gegen die stellvertretende Wand wirkenden

Erddruckes beträgt laut Gl. 32)

Afi
h2y sin,*,

[1 4- sin 99 cos 2ß,]2 1 4- sin q

wonach sich die Formeln 39)—41) zu den einfachen Ausdrücken

m2y (1 + sin ^ cos 2ß,) sin (ß, — 99)

~ 2 sin ß, cos 99 (1 4- sin 99)

tgd A 71 x cos ft cos cp (1 -j- sin w)
— roter 1 7 m\- LOlg {iJ, Cp) ^ + sjn ^ CQS 2^j sjn ^ _ ^

tn (1 sin 99) sin ß,
Z — COS cp

3 sin (ft — cp)(\ 4- sin cp cos 2ft)

und

zusammenziehen lassen.

43)

44)

45)

Sehr interessant und deshalb beachtenswert ist auch, daß diese Lösung
durch ein gleichbleibendes Drehmoment des Erddruckes
gekennzeichnet ist. Schreiben wir das Moment Nz auf, so wird

M Nz /U^- tg2 (450 — -j) konstant 46)

und bedeutet, daß das Drehmoment des Erddruckes an der Wand konstant
ist und wenn der Hebelarm z durch die Verschiebung der Wand eine
Zunahme erfährt, so nimmt der Erddruck in gleichem Verhältnis
ab, das Produkt der beiden Werte M =- Nz bleibt unverändert.

Nicht weniger interessant ist es, daß dieses Moment, obwohl durch die
parallele Verschiebung der Wand erzeugt, sich doch nicht von jenem Moment
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unterscheidet, das durch ein Kippen derWand um ihren Fußpunkt
hervorgerufen wird, denn es gilt für diesen Fall:

7V= ^tg2(45°-
und der Angriffspunkt des Erddruckes liegt zufolge der hydrostatischen

tn
Verteilung bei z — so daß tatsächlich

^ ^^.(45-1-1 ist.

Es wäre verfehlt, aus dieser Verwandtschaft der beiden Fälle darauf
zu schließen, daß es sich auch um ähnliche statisch eVerhältnisse
handelt. Hinsichtlich der Stabilität sind die beiden Fälle wirklich
gleich, aber schon die in der Wand auftretenden Spannungen sind
verschieden, was durch ein späteres Zahlenbeispiel näher erklärt werden wird.

Zurückgekehrt zur Formelgruppe 43)—45), stehen wir noch immer
einer einfach unendlichen Zahl der Lösungen gegenüber, da doch
Größe, Richtung und Angriffspunkt des Erddruckes in funktionaler Beziehung
zur Wandbewegung, oder unserer früheren Formulierung entsprechend zum
Winkel ft steht, welch letzterer für die exzentrische Lage des Poles 0
maßgebend ist. Gemäß den Versuchen des M. LT. (26) tritt der maßgebende
Erddruck bei höchster Lage des Angriffspunktes (zmav) auf, somit wird
jener Winkel ft' entscheidend sein, für welchen

dz

^ft 0 47)

ist.
Aus Gleichung 45) läßt sich nach Durchführung der Rechnung für den

gesuchten Winkel ft' der Zusammenhang

sin2fttg 45-^ + ft 1 48)

anschreiben, aus welchem hervorgeht, daß jedem einzelnen Reibungswinkel cp

ein spezieller Winkel ft' angehört, deren Werte in folgender Tabelle
zusammengestellt sind.

Tabelle III — Table III.
<p° 10° | 20° 30° 40° S 50° 60°

ß[ 75°45' 77° 40' 79° 40' 81° 30' 83° 10' 85° 0'

Etwaige Zwischenwerte sind durch lineare Interpolation zu ermitteln.
Durch Einführung in die Formeln 43)—45) dieser ft'-Werte läßt sich der
Erddruck nach Größe (N), Richtung (ö) und Angriffspunkthöhe

(z) eindeutig bestimmen.
Eine Versuchsreihe der M. I. T. (14) ergab für dichtgelagerten

Sand einen Reibungswinkel 99 - 58° und der gemessene Richtungswinkel
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bei paralleler Verschiebung der Wand betrug

Aus der Gleichung 47) ergibt sich für 99 58°: ft' 84° 30' und dem-

des Erddruckes
d 35 0 40'.

gemäß wird laut Gleichung 44) tgd =¦ 0,751, d. h

dem Versuchsergebnis sehr gute
37 °0' sein, was mit

Übereinstimmung zeigt und

Coulomb scher hydr KoeFfizient
Coefficient hydr de Coulomb [kc -lp2{45°-

I Coulombs hydr coefficient
4)]

1^

106

l
^104

103

Reibungswmkel
Angle de Frottement f - 30°
Friction angle

035-

034-

033

032

031

111

\ 3

^<$^ 100

_U9^

-\

8j ^

5|§

80° 85° 90°

Stellvertr Wandwinkel
Inclmaison de laparoi de Substitution (ßfj
Subsistuhonal inclination of wall

65° 70° 75°

Wandverschiebung
Deplacement de la paroi
Displacement of wall

Fig. 16.
Theoretische Zusammenhange zwischen
Wandverschiebung und Erddruckbeiwerte — Relations
theoriques entre le deplacement de la paroi et les
coefficients de la poussee des terres — Theoretical
relations between wall displacement and earth

pressure coefficients.

des Erddruckes. Nach dem größten Ordinatenwert der

somit die Richtigkeit der
theoretischen Folgerungen bestätigt.

In der Fig. 16 wird der
Einfluß der parallelen
Verschiebung der Wand im
Falle cp 30° veranschaulicht.

Die volle Linie bezeichnet
den hydrostatischen
Koeffizienten der
Normalkomponente N. Der Tiefpunkt
der trogförmigen Kurve bei

ft' 80° entspricht der höchsten

Lage des Angriffspunktes.
Der hydrostatische Koeffizient
des Erddruckes sinkt vom
CouLOMß'schen Wert (kc

0,333) auf kp 0,318 herab.
Die strichpunktierte Kurve

gibt die Änderungen der Höhe
des Angriffspunktes (z) an,
die gestrichelte Kurve jene
des Richtungswinkels ö

-Kurve ist

der Angriffspunkt im Vergleich zu -^- um 5 °o höher gerückt, wo doch diesem

T
Lageveränderung nach den Versuchen (14) etwa 15—20 °o betragen hat.
Dieser Unterschied erklärt sich einfach daraus, daß der Angriffspunkt
auf starre, d.h. unbewegliche Wand entfallenden sog. natürlichen
Erddruckes k0 überhaupt höher als -^- liegt. Dies geht auch

aus den Versuchen (14) hervor (siehe Figur 489) und wird noch in einem
späteren Artikel des Verfassers mathematisch bewiesen. Dies vor Augen
haltend, ist die 5 prozentige Zunahme von z mit dem anfänglichen z0 zu
vergleichen.

Zur Erleichterung der Berechnungen wurden für den praktischen
Gebrauch die unter 43)—45) angeführten Formeln nach Substitution der
maßgebenden Werte ft' für die Fälle cp -f- 0 — 60 ° ausgerechnet und die erhaltenen
Ergebnisse in Fig. 17 graphisch dargestellt. Mit Hilfe dieser Schaubilder
läßt sich Größe (kp), Richtung (tgd) und Angriffspunkt (z) des
Erddruckes durch einfache Ablesung des dem fraglichen Winkel99
angehörenden Ordinatenwertes bestimmen.

Als Zusammenfassung und gleichzeitige Erläuterung unserer Ausführungen

diene nachstehendes Zahlenbeispiel. Es ist zu bestimmen der an der



Die klassische Erddrucktheorie 217

10,0 m hohen Wand nach Fig. 18 wirkende Erddruck. Bei der Lösung der
Aufgabe müssen zwei voneinander völlig unabhängige Fälle unterschieden
werden, nämlich:

a) Falls es sich um nachgiebigen Untergrund handelt und
wenn zwischen der Mauersohle und dem Boden eine starke
Reibung vorhanden ist, so kann keine parallele Verschiebung der
Wand eintreten, sie wird sich hingegen um ihren Fußpunkt (1) nach vorne
neigen, nachdem bei Punkt (2) infolge der erheblichen Bodenpressung eine
Senkung der Mauer eintritt. In diesem Falle ist bei der Bemessung der
Wand auf die hydrostatische Spannungsverteilung Rücksicht
zu nehmen.

Beiwerfe des Erddruckes
(bei paralleler Wandverschieiung)
Coefficients de la poussee des lerres

(pour un deplacement parallele de la paroi) qq
Eartti -pressure coefficients ^(for parallel wall- displacement) ^ ^

07 „1§£ II!?^

05 l"|^
5 45 55

^"5 $ iS -S" <
9» S^

3> &•"§«
Ok -S<s-m

^ -äs t»
&s •§ ß

10 <»» -?>^-ö 5^
£££

«e«s
L3<

50° Reibungswmkel
hngle de frottement (<p)

Fnclion angle

Im Falle:
cp 30°;

Fig. 17.

y 1,6 t/m3, m 10,0 m
wird

nippen
a) Ueversement

Turning-over
Verschiebung

b) Deplacement
Displacement

t&ff'*

i-
¦d

§g«fe 5-5*5
S>>

§< S-^
^ S5

11H«Q^ 5.^

Fig

Af
m* y
~2T tg2 45° 99

26,6 t
Numerisches Beispiel.
Exemple numerique.
Numerical example.

der Richtungswinkel des Erddruckes: d =- 0,9 99 ^27° (Gl. 38a),
die Tangentialkomponente: T =¦ yvtgd 13,6 t,
der resultierende Erddruck: E V T* + N1 29,9 t,

m
3

E y T* + *

und die Höhenlage des Angriffspunktes: z 3,33 m.

Bei den in Fig. 18 angegebenen Wandabmessungen wird die
Resultierende Rü der Kräfte E und G über den in f 2,26 m entfernten Drittelpunkt

verlaufen.
Im Punkt (2) ist die Höchstspannung

a - 2yL —
2- 7l>2 *

a*a ~~~F~~ 3W-~U)
im Fußpunkt (1) ist o± 0.

b) Wenn der Untergrund widerstandsfähig genug ist
bezw. wenn sich die Bodenpressungen so verteilen, daß
die großen Kantendrücke entfallen und kein einseitiges

4,23 kg/cm2
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Einsinken der Wand eintritt, die Reibung hingegen
zwischen Boden und Wandsohle gering ist (z. B. zwischen Beton
und Ton), so wird eine parallele Verschiebung der Wand
eintreten. In diesem Falle ist die Spannungsverteilung eine un
hydrostatische und die den Erddruck kennzeichnenden Werte
lassen sich aus den Schaubildern der Fig. 17 entnehmen.

Die vorigen Wandabmessungen beibehaltend, erhalten wir für die
Normalkomponente :

7V
m' Lkn -= 0,318

mzy
25,4 t

für den Richtungswinkel des Erddruckes — tgd 0,27 an der Kurve abgelesen

— d 15° 10', d. h. der Druck greift unter bedeutend kleinerem
Winkel als im Falle a) an.

Die Tangentialkomponente ist:
der resultierende Erddruck:

T= Nigd 6,85 t

E yT^+^V2 26,4 t

und schließlich der Angriffspunkt des Erddruckes z £

3,49 m.

tn
1,05 X 3,33

Die Resultierende Rb schneidet das Fundament in einem Abstand von
£ 2,53 m und tritt aus dem Kerndrittel heraus, folglich entsteht im
Punkte (1) Zugspannung. Wird diese vernachlässigt, bezw. wird nur mit
Druck gerechnet, so erhält man als Bodenpressung für den Punkt (2)

nb 5,25 kg/cm2.

Daß der unter b) behandelte Fall der gefährlichere ist, geht aus der Rechnung

hervor, denn der Zusammenhang o2b 1,25 o2a sagt nicht weniger, als
daß die parallele Verschiebung der Wand um 25 «o höhere
Mauerbeanspruchungen erzeugt, als es bei der Drehung
der Fall war. Die Ergebnisse des Zahlenbeispiels wurden der besseren
Übersicht halber in der Tabelle IV zusammengestellt.

Tabelle IV — Table IV.

Angaben — Data: 99 30°, ySand 1,6 t/m3, ystein 2,4 t/m3, m 10,0 m

Rechnungsvorgang
Mode of Calculation

Af T E ö z ZM V ffi <*2

t 0 m tm t 1 m kff/cm2

a) Hydrostatische
Spannungsverteilung
Hydrostatic
Stress distribution

b) Unhydrostatische
Spannungsverteilung
Nonhydrostatic
Stress distribution

26,6

25,4

13,6

6,85

29,9

26,4

270

14°30'

3,33

3,49

163,2

163,2

71,2

64,5

2,26

2,53

0

0

4,23

5,25
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Zusammenfassung.
Die gekrümmte Gleitfläche bildet die einzig richtige Lösung

der Erddrucktheorie, weil sich die Bedingungen desGleichgewichtes
der Kräfte nur in diesem Falle restlos erfüllen lassen. Die

Differentialgleichung zweiter Ordnung 21) ist als Grundgleichung
jedes Erddruckproblems (Stützwand, Silo, Gründung) anzusprechen.

Bei der Bewegung der Wand sind zwei Grundfälle zu unterscheiden,
nämlich Drehung und parallele Verschiebung. Von den zweifach

unendlich vielen Lösungsmöglichkeiten wird die maßgebende
einzige Lösung durch Annahmen bestimmt, die sich aus Beobachtungen

bei den Versuchen ergeben haben. Entscheidend für die
eintretende Wandbewegung, ob a) Drehung oder b) parallele
Verschiebung, sind die Reibungs Verhältnisse und die Art der
Verteilung der Bodenpressungen, gemäß welchen die Wand für
den Fall a) oder b) zu bemessen ist. Im allgemeinen ist der letztere Fall
der gefährlichere, weshalb die Wand zweckmäßig diesem entsprechend
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zu bemessen ist. Die hierbei in Betracht kommenden kennzeichnenden Werte
des Erddruckes lassen sich mit Hilfe der Kurven der Fig. 17 durch ganz
einfache Berechnungen bestimmen.

Resume.

La surface de cession incurvee est la seule Solution exacte de la theorie
de la poussee des terres car ce n'est que dans ce cas que les conditions
d'equilibre des forces sont entierement satisfaites. L'equation differentielle
de 2^ ordre 21) est ä considerer comme l'equation fundamentale de tout
probleme de poussee des terres (murs de soutenement, silos, fondations). Dans
le mouvement de la paroi de soutenement il y a deux cas fondamentaux ä

distinguer: la rotation et la translation. Des deux infinites de Solutions
possibles la seule Solution exacte est celle que l'on peut tirer de l'observation
des essais. Les conditions de frottement et le type de repartition de la pousse
determinent s'il yaa) rotation ou b) translation. On partira de lä pour le
calcul suivant a) ou b). En general le dernier cas est le plus dangereux
c'est pourquoi il est bon de dimensionner le mur pour ce cas. Les
caracteristiques de la poussee des terres qui entrent en ligne de compte peuvent etre
determinees par un calcul tres simple ä l'aide des courbes de la fig. 17.

Summary.
The assumption of a curved slip surface is the only one compatible with

a correct Solution of the earth-pressure theory since no other will completely
satisfy the conditions for equilibrium of the forces involved. The differential
equation of the second order (21) ist to be regarded as the fundamental
equation for every problem of earth pressures (retaining walls, silos and
foundations). In regard to the movement of the wall a distinction must be
drawn between two basic conditions — rotation, and parallel displacement —
and there are, therefore, two infinite numbers of possible Solutions, the only
valid Solution being that determined in accordance with the assumptions
which resulted out of experiments. The criterion as between the two types
of wall movement, a) rotation and b) parallel displacement, is supplied by
the condition of friction and the manner of distribution of pressure over the
ground, and the walls must be designed to suit case a) or b) accordingly.
As a rule the latter case is the more dangerous and is, therefore, the one
for which the wall should be designed. The appropriate values for the earth
pressure to be considered may be determined by simple calculations from
the curves in Fig. 17.
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