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SPHERICAL SHELLS SUBJECTED TO AXIAL
SYMMETRICAL BENDING.

KUGELSCHALEN, AUF AXIAL-SYMMETRISCHE BIEGUNG
BEANSPRUCHT.

COUPOLES MINCES SPHERIQUES SOUMISES A UNE FLEXION
AXIALE SYMMETRIQUE.

Dr. M. HETENYI, Westinghcuse Research Laboratories East Pittsburgh, Pa., U.S. A.

Introduction.

The exact solution of the differential equations for this problem is known
and it implies the application of hypergeometric series®). Since this exact
solution is not well fitted for practical computations, an attempt has been
made in this paper to obtain approximate solutions, adaptable to design.

The first of these suggestions was to retain only the highest (second)
derivative of the unknown quantities on the left side of the differential
equations (A). This simplification is permissible for very thin shells with
large angle of opening and gives very simple formulas for the computation
of stresses (Approx. I)2).

A more accurate approximation (Approx. IlI) can be obtained by taking
into account also the first derivatives (in addition to the second derivatives)
and neglecting only the functions themselves on the left side of the diffe-
rential equations (A)3). This Approx. II found application so far only in
computing the displacements of the edge of the shell due to edge loads (in-
fluence coefficients) *).

This paper presents for the first time complete formulas for all the
unknown quantities in Approx. II in addition to the already known Approx. L.

Derivation of the Differential Equations for the Problem.

Let us suppose that a segment of a spherical shell is subjected to forces
and bending moments uniformly distributed along a hoop circle, notably
around the edge of the shell (fig. 1a). The forces and moments so applied
will produce an axial symmetrical bending of the shell.

1) a) Reissner, H.: Spannungen in Kugelschalen, Miiller - Breslau, Festschrift, -S.
181, Leipzig, 1912. b) MEIssNER, E.: Das Elastizititsprob’em fiir diinne Schalen, Physik
Bd. 14 (1913), S. 343. c) MeissneRr, E.: Uber Elastizitit und Festigkeit diinner Schalen,
Vjschr. naturforsch. Ges. Ziirich. Bd. 60 (1915); S. 23.

2) GECKELER, J. W.: Uber die Festigkeit achsen-symmetrischer Schalen, Forsch.-
Arb. Ingwes. H. 276, Berlin, 1926.

3) BrLumentHaL, O.: Uber ‘die asymptotische Integration, etc. Zeitschr. f. Math.
Physik, Bd. 62 (1914), S. 343.

4) a) PasterNak, P.: Formeln zur raschen Berechnung der Biegebeanspruchung
in kreisrunden Behiltern, Schweiz. Bauzeit., Bd. 86 (1925), S. 120. b) Pasternak, P.:
Die praktische Berechnung biegefester Kugelschalen etc., Zeitschr. f. ang. Math. u.
Mech., Bd. 6 '(1926), S. 1. ¢) GECKeLER, J. W.: Zur Theorie der Elastizitit flacher rota-
tionssymmetrischer Schalen, Ing. Archiv., Bd. 1 (1930), S. 255. ‘
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Considering the equilibrium of a small rectangular element of this shell,
enclosed between two neighboring meridians and two neighboring hoop-
circles (fig. 1b), we find that on the sides of this element normal forces
N,, N, bending moments M,, M,, and shearing force @ will be acting. In
fig. 1 c the positive directions of these forces and moments are shown. Sub-
scripts 1 and 2 refer to the arcs of the hoop and meridional circle respectively
and the above forces and moments will be assumed to act on a unit length
of arc of the corresponding circle. Other force components will vanish in
consequence of the axial symmetry of the loading.

(/fa%)arsmy (/»«#)M,rsm ®

(/*(-/d,—,)lv,rs/hy C}

Fig. 1.

The complete solution of the problem is obtained if, besides the above
mentioned five quantities, also two displacement components are known.
From these two additional unknowns will be chosen the change in slope of
the meridional circle due to bending: @& (positive when accompanied by an
increase in the radius of curvature) and the horizontal displacement of any
point of the meridian: « (positive when accompanied by an increase in the
radius of the corresponding hoop circle).

In order to determine these seven unknown quantities we shall have at
our disposal three equations of equilibrium, while four additional equations
will be furnished by the existing conditions between stresses and deformations.
The first equation for equilibrium can be obtained from the consideration
that, since the shell is subjected only to the self-balancing edge forces shown
in fig. 1a, along each hoop circle, the vertical resultant of the N, and Q
forces must vanish, that is:

Nysing + Qcosp =0 or N, =— Qcotg (1)

Considering now the element in fig. 1c¢ and projecting the forces in the
direction of the normal to the element, and neglecting small quantities of
second order, we have the next condition as

5) See also the book by Dr. W. FrtUgae: Statik und Dynamik der Schalen, Berlin,
1934, Verlag J. Springer.
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d . .

Carrying out the assigned differentiation and substituting the result into
eq. (1) we get
Ne= Q) @)

The third equation of equilibrium will be obtained by projecting the mo-
ments on the plane of the meridian (plane of bending); thus getting

d_(; (M, sing) — M, cosp — Qrsinjp = 0
or M+ (My— M) cotp = Qr (3)

Proceeding now to the relations between stresses and deformations, we can
write

My = Do + 1 0,) (a)
My = D(oy + u 91) (b)
Enr®
where L= mﬁﬁ;

denotes the flexural rigidity of the element under consideration (u is Pois-
son’s ratio) and ¢, and o, designate the decrease in the principal curvatures
due to bending.

Since the change in curvature along the meridian will be the difference
between the slopes of two neighboring normals (at 4 and & in fig. 1b) we
have

_d6 @
&= rdeo  r

(c)

A similar expression can be obtained in the other direction, by considering
that on the hoop circle the two neighboring normals (at points ¢ and & on
fig. 1b) will change in consequence of the bending of their angle of inter-
section from

sin g to sin (¢ + )

rsin g rsing

This gives a change of curvature of the hoop circle:

_sin(g+0)—sing _  coty d
— rsing o r )

2

where the assumption was made that & being small we can put sin® ~ @
and cos ©® ~ 1.

Substituting the above expressions for ¢, und g, into equations (a) and
(b), we get:

M, :D%(@’%—‘u@cot(p) (4)
and M, =D 1; (@ coty + u@®) (5)

) The symbols for derivatives will be understood with respect to the variable ¢
(measured in radians).
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Two additional equations can be obtained by making use of the correlations
between normal forces and the corresponding strain components:

Eh

Nl - 1—‘ 9 (61 + R 82) (e)
—u
Eh

N, = 1.2 (¢ + wey) (f)

The above strain components ¢ and & can be expressed in terms of the v
tangential and w radial displacements. In order to find this relationship let
us consider first an infinitesimal AB portion of the meridional circle with an
arclength ds, (fig. 2). Assuming v and w displacements for point A, also
(v + vde) and (w 4 w'd @) displacements for point B, we find that the
change of ds; is

& dsy = (ds, + v'd o) ’f_tﬂ’ — ds,

and omitting, as before, small quantities of second order this gives

vV +w
o =" (@)
From the same fig. 2 we can see that due to the same v and w displace-
ments the radius of the hoop circle through A4 will increase from 7 sin¢ to
rsing -+ (v cosep - w sing) and the corresponding unit strain &, in the
hoop circle be therefore

"= veote + w (h)

7

With the aid of v and w we can express also the formerly introduced ©, the
change in slope of the meridian due to bending; namely, during the displace-

ment of point A to A” the slope changes from ¢ to ¢ - YAt point A’ it
wd e r
r

will be modified again by so that the total change in slope at point A,

while it displaces to A’, will be
G —= (i)

The fact that © as well as ¢; and ¢, can be expressed as functions of the
u and v displacements, offers a possibility to eliminate the latter quantities,
getting thus

6O = ¢ cotop + &) (%)

Expressing now ¢; and ¢, in terms of N, and N, from equations (e) and (f)
we have a new correlation between ® and the normal forces as

1
£ (e —u Ny + (Ny — Ni) (1 + ) cot g} ©)

When deriving the above expression we made only partial use of the cor-
relations implied in equations (e) to (h). One more independent equation
can be obtained from the connection between the horizontal displacement u«

G =
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and the normal forces; namely, on the basis of eq. (h) we can write directly
that:
7 sin
b= Eh(p (NZ'__:“NI) (7)
In equations (1) to (7) we have at our disposal all the necessary data
for solving the problem 7). It is seen that all the unknown quantities can be
expressed by two variables ® and Q. By doing this we get two simultaneous
differential equations:

2
0"+ @ cotp — O(cotie + u) = %Q

Q"'+ Qcotp—Q(cot?’¢p —u) = —Eh 6

which express in concise form the problem of axial-symmetrical bending of
spherical shells.

(A)

wsing v cosp

|
|
!
!

Fig. 2. Fig. 3.

It has been shown by E. Meissner that equations (A) can be transformed
into such form that their exact solution is obtainable by means of hyper-
geometric series (see references 1 and 5). But the use of these non-tabulated
power series involves considerable computing work and on the other hand
the thickness (h) appearing as negative exponent makes the series less con-
vergent, more particularly for thin walled shells which are most important
in practice. These points made it necessary to establish some useable ap-
proximate method for analysing the problem.

In the following two approximate solutions will be discussed. The first
one was established by J. W. Geckeler (reference 2) and is submitted here

™) The v and w displacements can be determined also from equations (e) to (%),
getting
ro. r
v= gz sine -/ and w :H(Ng—;aNl——cosw-j)

?1
where J= '[o si—rfl—: (Ni —Ny)dy

In these formulas the vertex (¢ = 0) is considered as the immovable origin to which
the displacements are referred.

Abhandlungen V 12
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only for the sake of comparison with the second one which is here presented
in complete form for the first time to the writer’s knowledge.

Both of these approximate solutions are based on the fact that in thin
shells the effect of bending by edge loads is rapidly diminishing when pro-
gressing from the edge toward the vertex of the shell.

The consequence of this fact is that on the left side of equations (A) the
higher derivatives will be of much greater magnitude than the lower ones
and so it is to be expected that in some cases even the entire omission of
the latter ones may furnish approximate results not differing appreciably
from the exact solution.

Approximation I.

For very thin shells, with a large angle of opening (¢,) it is permissible
to retain only the second derivatives on the left side of equations (A) and
neglect all the other terms. The range of this approximation and the amount
of the involved errors will be discussed later; first we shall present the
formulas through this simplification.

Equations (A) will now reduce to

G = %Q and Q= —EhL® (A))
from which eliminating ® we get
QV+444Q =0 (8)
2
where M= 3(1 — u2) (—2)

The general solution of eq. (8) is
Q= Cie*?coshy + Cye*?sinhy + Cse*?coshg + Cue*?sindg  (9)

From the existing conditions at the vertex (namely that at ¢ = 0; Q = 0
1 .
and ® = —F ” = 0) we find that C;, = — C; and C, = C.?®).
In determining the two remaining integration constants it is of con-
venience to introduce in the place of ¢ a new variable w (see fig. 1a) such
that ¢ = @y — w. Thus, after some trigonometrical transformation the so-

lution of (8) can be put in the form
Q = Ce?@sin(Aw + y) (la)

where C and vy are constants of integration. The above equation represents
a damped wave with the period 4w and this is the reason why 1 is often
called characteristic or damping factor. This 4, as well as 1-w, represents
absolute numbers, o being measured in radians.
In a similar way we can obtain also ® from the simplified equations (A).
2 A2

G = ﬂ—Ce*“’ cos (Ao + y) "~ (Ib)

8) If the shell is open at the top we must deal with four different integration
constants. The result'of it will be that we shall get, also, for the upper edge, expres-
sions similar to the ones derived here for the lower edge of the shell. The same pro-
cedure holds also for Approx. II.
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Substituting the above expressions of Q and © into equations (1) to (7),
and considering at every place only the highest derivatives, we get the for-
mulas for the other unknowns as:

N; = —cot (g, — w) Ce??sin (Aw 4 y)
N, :—),]/fCe"“"sin (l(u—}-y)—%)
e 7€
My = uM
o rsin(go—0), 5o ( __7_6)
u = Eh LY2 Ce*osin|lo+ g i

When designing such shells it is convenient to know the rotation and dis-
placement of the edge due to the unity of the respective edge loading (see
fig. 1a). These displacement components are easily obtained from the above
equations. Denoting by

a;, = rotation of the edge due to M = 1 in. 1b./in.,
a,, = horizontal displacement of the edge due to M =
a,, = rotation of the edge due to # = 1 1b./in. and
a,, = horizontal displacement of the edge due to H = 1,
we find that:
4 13 2 A% sin 2 L rsin?
au:m; a12:a21:—*5h %§ 322:‘—“5/1 s (Ih)

The present approximation is based on eq. (8) which is in turn the
exact differential equation for the axial-symmetrical bending of cylin-
drical shells. From this we find the physical interpretation of Approx. I;
namely, that here the original spherical shell was replaced by a cylmdrlcal
one. As a consequence of this, the angle of opening of the spherical shell
(o) has no effect on the stress distribution calculated on the basis of this
approximation.

Approximation II.

This approximation, which can be considered as an improved form of
the former one, takes into account not only ®” and Q” but also & cot ¢
and @ cot ¢, on the left side of equations (A) This can be done by sub-
stituting :

L (‘; and Q = L

Vsing Vsin ¢
into equations (A). As a result of this substitution the terms containing &’
and Q' will cancel out; now we will have to neglect only the terms of ®
and Q in order to bring equations (A) in the simplified form:

O =

D ¢ | (An)
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The solution of the above equations can be obtained in the same manner in
which it was done in Approx. I. Returning then to the original Q and ®
quantities and using w as variable we get now:

—/ @
Q=Cr—rsin(lo+ y) (I1a)
ysin (g, — o)
2 A2 e-/ [0)
and O ="— C ————— oS (Aw + p) (11b)
\/Sln (po — w)

Substituting these expressions into equations (1) to (7), and taking into
account not only the derivatives as before, but also the functions themselves,
we shall have the formulas for the remaining unknowns as:

N, = -cot (g, —w) C - gi; ——— sin (/v w + y)
V sin (¢q — o)
Ny =C—— 2 [2cos(hw+y) —(ky + ky)sin(ho + )]

) wsin (g0 — @)

—A®
M, =L A - [kl cos (hw + y) + sin(dw + )] le—g)
\/sm (@0 — w)
My, = " c- _,_e:_,ff{[(lJru Y(kt ky)—2 ky) cos (Aw +y)+2Psin(Aw+y)}
4ok sin (¢, — w)
rsin (g, — o) he e
u = ———Jcos(Aw + )=k, sin(Low + v
Fh ‘/Sin ((PO — w) [ ( l/) 2 ( 11/)]
1—2u "
where: By=1_— TT cot (g — w)
and by =1 — 1——*2—% cot (p — o)

The previously discussed influence coefficients will take, now, the modified
form9):

a1 2ksing, 1
"= Erh R, 12 = Q31 = Eh k,
4 rsin? 1 (Ith)
and 6122 == E/Z (pO (kz + ’E‘)
1

Since in Approx. I the original sphere was substituted by a cylindrical
one, in an analogous way it can be expected that Approx. II will be useable
for analysing conical shells, the geometrical similarity between sphere and

9) P. PasterNaK, in his quoted publication (ref. 4a and 4b) derives formulas for
the influence factors using this Approx. II, but his expression for a,, contains an error,
namely the second term in the parentheals should be multiplied by s.

The correct formula (with his notations) will be

¥
Eay,, = ks
which differs only by a small quantity of higher order from the expression of a,,
given here by equation (IIh).

i @, .,
Sina { — sina — S COS a
@y
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cone being even greater than the one between sphere and cylinder. It is only
necessary to put w :% (fig. 3) into formulas [l a—h and they can be used

for approximate calculation of conical shells. (See also ref. 4 a.)

Example.

Let us consider a spherical shell, fixed along the edge, having the di-
mensions »r =90in.; 2z =3in,; ¢, =— 35° and assume that this shell is sub-
jected to a p = 1 lb./sq. in. uniformly distributed radial pressure (fig. 4 a).
For the material we shall take reinforced concrete with Poisson’s ratlo

w = 1/6.
400 4 —-
{
; g =,/nc 2
¢ / h-3"
300 AN . ’
4 \\ ‘i /
AN
\\A b [/‘\/ paﬂﬂ'
Y 35 )
N
\

200 <

Meridionale Bregungsmomente M, PFd -Zoll/Zol!
Moments de Flexion dans le meridien M, livres -pouce /pouce

00 Meridional bending moments M, wch s /inch
70 4 '

5
20°

o
0

Annaherung genau —= e p————
Approximation exacfernen/ - -

A/maﬁerung I
Approximalion

—— -

Fig. 4.
If the edge were free, then only constant Ny = N, = %f = 45 1b./in.
membrane forces would be produced over the entire surface of the shell,
and this would result at the edge in a — Eu = LS—I—IL% (N; —uN,) = 645.03

1b./in. horizontal displacement.

Due to the restraint of the edge any rotation or displacement is prevented
there and, as a consequence of this, bending will be set up.

This bendmg can be calculated by the presented approximate methods
using the edge conditions ® = 0 and Eu = 645.03 for determining the
constants of integration.

The computation has been carried out by Approximations I and Il and
also, for sake of comparison, by the exact method with hypergeometric series.
The amount of the computing work, when using these three different me-
thods, was, roughly, of the ratio 1:2:20. With the exact method 10 terms
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of the series had to be considered to obtain sufficient accuracy. The obtained
values for M, and N, are given in the tables below and also shown in
figures 4 and 5.

Meridional Moments M, in. 1b./in.

@° Approx. | Approx. 11 Exact
35 -32.924 ~37.978 -37.675
30 - 3.992 - 5,958 - 5.756
25 5.973 6.826 6.687
20 6.333 8.538 8.135
15 3.789 6.022 5.451
10 1.476 3.079 2.364

5 0.195 1.273 0.377

0 - 0.254 oo 10) 0.294

0.0 (
B r/('fe’mbran - Ringhraft N, = 450 PFg/Zol

\EfFort annulaire de la membrane N, =450 livres/jpouce
00 Membrane hoop Fforce N, = 450 1bs/inch

N N
700 - - -
N Ringkraft infolge Biegung N, Frg/Zol
EFfort annulaire dd & /a3 flexion N, livres/pouce
Hoop forces due to bending N, lbs/inch

|

genau

- AN
20 5;3??7’”"”’ "\
Anné'ﬁe/-z/ﬂg/\- \\
Approximation ) " \\ Annidherung
00 SR N X Approximation
N
(+ '~
e} QQI Q") & \\\ QQ N 3
0 B S R R 3 ['_?-j_-_".;—":-'-——lz':: P
Fig. 5.
Hoop Forces due to Bending N, Ib./in.
¢° Approx. 1 Approx. 11 Exact
35 37.486 38.926 38.920
30 28.021 32.184 31.900
25 13.592 17.582 17.258
20 3.774 6.131 5.950
15 - 0.618 0.043 - 0021
10 - 1.619 ~ 2.024 - 2.166
5 - 1.229 - 1.922 - 2.497
0 - 0.600 oo 10) - 2.456

The selected example has a relatively small angle of opening (¢, =35°)

and with a 7’;—= 30 ratio it represents the thickest type of shell which occurs

at modern reinforced concrete domes or containers. From the good accuracy
obtained even in this case through Approx. II, we can conclude that this
method can be adapted for the design of any reinforced concrete shell possibly
encountered in the present structural practice.

10) The vertex (p = 0) is a singular point in Approx. Il but its local character
does not affect the accuracy of the results at other points.



Spherical Shells Subjected to Axial Symmetrical Bending 183

Range of Applicability of the Approximate Solutions.
From Approx. I (eq. (8)) we find that the ratio between @ and its

derivatives in ——ﬁ—:a = 4} 2. Assuming that the same ratios will hold

also for the exact solution we have means with which to estimate the
magnitude of errors involved in the approximate solutions.

200
-
Anwendungsbererch der Néherungslosungen
Domaine d'application des solutions approximafives 150
Range of applicability of the spproximate solutions %r
100

7

AL
0 ] > z
a50 100 150 200
& | L
a20 ¢ -050 -
075 Anna“he'/‘ung '
Approximation ~
S
010 gh
005 AOg LL_—L:./
L___/ Ay =005
g t ) cot g
7 7 92 425 430 z- 2L
005AI=40500 ars 120 T A5
-005
-a10 3
le A, Ay = z(/-z)
-a% ] N ar = z —Z_
Annéherung 7+z

- 020-¢ Approximation
Fig. 6.

Investigating first the ratio of the omitted terms to the ones which were
taken into account we get (from equations (A), neglecting u) for Approx. I:

@ (14 &t QL) — gua 4 4y

and for Approx. II:

" ’ f Q COtZ ¥ — 7 ’
(Q + Q COt @)i(l - Q// + Qr COf 99) — (Q + Q COt (p)(l - A][)

Here — A4, and -~ 4,, represent, in percentage, the error involved in Approxi-
mations I and II, respectively.
Putting now in the above equations

Q' =Q.Y2 =021

we have:

A = -—z(1—2)
z (11)
14 z

-and A”: z
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__cotg

AY2

A graphical representation of these 4 error-functions is given in fig. 6.

If we take 4,,,; = 5 per cent as permissible deviation from the exact results,

we find, from equations (11), that the corresponding limit of apphcatlon

will be z; = 0.052 and z;;, = 0.250 for Approximations I and II respectively.
Using the results of the previously presented numerical example, we

have, also, an opportunity to compare the actual errors with the ones pre-

dicted from eq. (11).
Such comparison is shown in the following table.

Meridional Moments M,.

where

Approximation I Approximation Ii
Actual Estimated Actual Estimated

(pO error error error error

% 41 % % An %
35 -12.60 -12.10 0.81 1.74
30 -30.6011) -14.20 35111 2.50
25 -10.70 -16.70 2.08 3.70
20 -22.20 -19.75 4.96 5.78
15 -30.50 -2320 10.50 9.90
10 -37.50 -24.70 30.10 20.10

For the N, values the approximations were more accurate than could be
predicted though the ratio between the results of I and II remained about
the same.

It is seen from fig. 6 that for large z values both approximate solutions
fail equally. Large z values may occur either on account of the smallness of 4
(thick or flat shells) or on account of the smallness of ¢ (at points close to
the top of the shell). But such cases are rare in the structural practice and
they do not detract from the usefulness of these approximate solutions.

Summary.

This paper presents two approximate solutions, both of which are based
on neglecting certain terms in the exact differential equations for the problem.
The first of these approximations (Approx. I) was already known and is
presented here only for comparison with the second one (Approx. II) which
in complete form has not been discussed in the literature so far.

The accuracy of both of these approximations is shown in an example
of comparison with results obtained by the exact method. Finally the range
of applicability is discussed and a scheme given to estimate the probable
errors involved in the approximate solutions.

Zusammenfassung.

In dieser Arbeit werden zwei Niherungslésungen gezeigt, beide auf der
Weglasssung gewisser Ausdriicke fuBend, die sonst in den exakten Diffe-
rentialgleichungen des Problems zu finden sind. Die erste der Niherungs-
losungen ist allgemein bekannt und wird hier nur zum Vergleich mit der

11) No mistake could be detected in the computation of these ordinates. Possibly
the approximate solutions, consisting of simple functions, could not follow so well the
exact curve at these pomts where, on account of the small ordinates and large tangents,
a little deviation can produce great percentual deviation in the results.
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zweiten Niherungsmethode, die bis jetzt in der Literatur nie in vollstindiger
Form gebracht wurde, beigezogen.

Die Genauigkeit der beiden Niaherungslosungen wird an einem Beispiel
gezeigt und ihre Resultate werden mit der genauen Losung verglichen. Ferner
wird noch der Anwendungsbereich der Naherungslosungen diskutiert. SchlieB-
lich ist ein Schema der zu erwartenden wahrscheinlichen Fehler dieser Nihe-
rungsmethoden beigefiigt.

Résumaé.

Dans ce travail "auteur présente deux solutions approximatives basées
sur ’abandon de certaines expressions qui se trouvent dans les équations
différentielles exactes du probléeme. La premiére de ces solutions approxi-
matives est connue et n’est introduite ici que pour la comparer avec la seconde
qui n’a jamais été publiée au complet.

L’exactitude de ces deux solutions approximatives est montrée par un
exemple et les résultats acquis sont comparés aux résultats fournis par la
solution exacte. L’auteur discute ensuite les possibilités d’application des
solutions approximatives et pour terminer il donne un schéma de D’erreur
vraisemblable de ces deux méthodes approximatives.
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