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THEORIE EXACTE DES ENVELOPPES CYLINDRIQUES
EPAISSES.

GENAUE BERECHNUNG VON DICKWANDIGEN ROHREN.

EXACT THEORY OF THICK CYLINDRICAL SHELLS.

Prof. Dr. ZD. BAZANT, Prague.

Pour le calcul des enveloppes cylindriques e p a i s s e s, les methodes
approximatives de la resistance des materiaux sont parfois insuffisantes. On doit
alors appliquer la theorie de l'elasticite. Les Solutions exactes pour quelques
cas simples sont connues.

La theorie exacte est basee sur les equations d'equilibre et de deformation
d'un element infiniment petit (fig. 1), pris dans I'e n v e 1 o p p e cylindrique
circulaireet limite par: deux plans radiaux formant un angle dcp, deux plans
perpendiculaires ä l'axe du cylindre X et distantes de dx, et deux surfaces
cylindriques ä axe X, avec des rayons r et r + dr. Les dimensions de l'element
sont dx, dr et ds rdcp. Les points dans l'interieur de l'enveloppe sont de-
termines par des coordonnees cylindriques x, r, cp; l'angle cp est
mesure de l'axe Y dans un plan perpendiculaire ä l'axe X. L'element est sollicite

par des forces interieures, positives dans la direction de l'axe parallele
positif (negatif), si elles remplacent la matiere situee au cöte positif (negatif)
de l'axe perpendiculaire ä la surface envisagee de l'element.

Le plan radial add'a' est sollicite par un effort normal ns et deux efforts
tangentiels tsr, tsx. Le plan bcc" b' est sollicite par des efforts qui different des
precedents par les differentielles partielles par rapport ä l'angle cp; ce sont les
efforts

ns ns + -ir— dcp, tSr tsr + -t— dcp, tsx tsx + —— dcp.
dcp dcp dcp

Le plan abcd est sollicite par l'effort normal nx et les efforts tangentiels txr,
txs; pour le plan db'dd' on a les efforts

nx nx+ ^— dx, txr txr + —- dx, txs txs + — dx.
ox öx ox

La surface cylindrique abb' a' de rayon r est sollicitee par l'effort normal nr
et les efforts tangentiels trs, trx; pour la surface cdd' c' de rayon r + dr on a les
efforts

/ dnr dtr$ otrx
nr nr + —— dr, trs trs + -^— dr, trx trx + —- dr.

or or or
Au centre de gravite de l'element on a en general trois composantes de

la force exterieure (poids propre de l'element): idrdsdx dans la direction X,
r dr ds dx dans la direction du rayon et § dr ds dx perpendiculairement au rayon;
E, r, § sont les forces exterieures pour unite de volume.

Les efforts n, t sont egaux aux tensions v, x multipliees par l'aire de la
surface de l'element d'apres les equations:
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nx= vxdrds vxrdrdcp, nr vrdsdx vrrdcpdx, ns=vsdrdx;
txs txs dr ds %xs rdrdcp, txr — txr dr ds ixr rdrdcp, trx rrx ds dx xrx r dcp dx,
Us Trsdsdx xrsrdcpdx, tsx Tsxdrdx, tsr Tsrdrdx.
Les derivees partielles ont alors des valeurs:

dnx dvx dnr d(rvr) dns dvs
-t— -r— rdr dcp, —— \ ' dcpdx, —± ~drdx;dx dx T' dr dr r ' dcp dcp

dtxs d%xs dtxr d%xr dtrx d(r%rx)
Jx--c^rdrd(p> Jx- -Jx-rdrd(p' d7 ~dTd(pdx>

^=e-^dcpdx, 6^ d^drdx, d-±=8-^drdx.
dr dr T dcp dcp ' dcp dcp

Appliquons d'abord les equations des moments provenant de l'equilibre
des forces sollicitant l'element. Par rapport ä l'axe parallele ä X et passant
par le centre de gravite de l'element, c'est-ä-dire par la ligne d'action des
forces nx, i, n'x, seulement les efforts tsr, t'sr, trs, t'rs provoquent des moments
et l'on a

trs dr — tsr ds 0,

en negligeant les moments des forces —- dr et -r^dcp, qui sont par rapport auxdr dcp
precedentes infiniment petites d'ordre superieur. En substituant pour trs, tsr
leurs valeurs, on obtient

Trs r dcp dx • dr — %sr drdx - rdcp 0,
d'oü

D'une maniere analogue les deux autres equations des moments (par rapport
aux axes passant par les lignes d'action §, r) donnent

txr —— ^rx, txs ^r Tsx •

Les tensions tangentielles suivent alors les memes relations que dans le cas
de coordonnees rectangulaires.

Les trois autres conditions d'equilibre concernent les sommes des
composantes dans les directions de trois axes *). Les composantes dans la direction
X donnent la somme

n'x — nx + t'rx — trx + tsX — tsx + i drds dx 0

ou

^dx + ^dr+^d<p + idrdsdx 0.
dx dr dcp T c

Substituant les valeurs des derivees partielles de n et t, on a

~rdrdcpdx+ ^xlrÄ drdcpdx+~ drdwdx + xrdrdcpdx 0
dx dr dcp T c T

ou
Sv, 1 ö(rr„) 1 dr„
dx+ r dr +T"ä^ + (1)

V. A. E. H. Love, "A Treatise on the Mathematical Theory of
Elasticity" (4. ed., Cambridge 1927), p. 90.
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La somme des composantes dans la direction de l'axe perpendiculaire ä X
et bissectrice de l'angle dcp est

n'r —nr+txr — tXr+(t'sr —tSr) cos^- — (n's + ns)sm~~ + xdrdsdx 0.

Pour l'angle dcp infiniment petit on a cos ~- 1, sin -y- -y-. En negligeant

la valeur infiniment petite d'ordre superieur, on obtient ns + n's — 2ns. La
derniere equation donne alors

„ dr + —^ dx -\—r^ dcp — ns dcp + r dr ds dx 0.
dr ^ dx ^ dcp ^ s Y-r

Substituons les valeurs dejä citees des derivees partielles et de ns; nous par-
venons ä l'equation

——— drdcpdxA — rdrdmdx + -—^ drdcpdx — vsdrdwdx + xrdrdcpdx 0
dr dx dcp

ou
1 d(rvr) d%xr J_^Jsr _K
r dr dx r dcp r+ 1^L + — z^ — — + r 0. (2)

dr

*V

¦-~^dtp
/C et

tsx/ts \e?/ LkS rfrytr<\T
"t

dr

_ \-4 "--^ n

Fig. 1. Fig. 2.

La somme des composantes dans la direction perpendiculaire aux deux
directions precedentes donne enfin

(n's—ns) cos ~y + (t'sr + tsr) sin -y + 4 — t^ + 4 — Us + § drdsdx 0.

On en deduit comme auparavant

^dcp + tSrdcp + d4^dx + ^idr+§drdsdx 0
dcp dx dr

et de lä
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—- drdcpdx + xsrdrdcpdx + ——rdrdcpdx -\—„ drdwdx+ §rdrdcpdx 0.
dcp dx dr

Parce que l'on a

T -T et d(/r„) _ dtrs
trs — *sr Cl — r— f- Trs,dr or

on obtient l'equation

±^» + 2^ + ^ + ^ + 8 0. (3)r dcp r dr dx v '
Considerons maintenant la deformation de l'element. On obtient les dila-

tations et les glissements dans les coordonnees cylindriques, en considerant les
sommets a (x, r, cp) et d (x + dx, r + dr, cp + dcp) de l'element (fig. 2).
Pour la diagonale ad du on a

du2 dr2 + (r dcp)- + dx2.

La deformation change toutes les valeurs des quantites tres petites. La relation
pour les variations des valeurs se deduit de la derniere equation, en differenciant
et substituant le signe A ä d:

du- Adu dr • A dr + rdq> (Ar -dcp + r - A dcp) + dx- Adx.
Designons Ax |, Ar o et par o le changement de l'arc s rcp; alors

Acp — On a
r

Adx dAx d% —dr\ — dcp+—dx, Adr dAr=dg —-dr+ -ydw+~r^dx,
dr dcp dx dr dcp dx

da
dcp dx

La Variation A du peut etre exprimee ä l'aide de la dilatation relative l dans la
direction ad:

Adu X du.
En substituant dans l'equation du. Adu on obtient:

Xdu2 drdq + rdcp (gdcp + da dr] + dx d£,

d'oü
dr dg dcp2 v_dcp l\ da a dr\ dx d£
du du du2 du\r du r2 du) du du'

La droite ac' forme avec les normales aux surfaces, donnees par les
equations .r=const. (plan perpendiculaire aX), /"=const. (surface cylindrique)
et cp const. (plan radial), les angles a, ß, y, pour lesquels on a

dx dr n ds
^- cosa, — costf, — cosy.du du du '

En remplacant dg, da, d£ par leurs valeurs, developpees par rapport aux
derivees des coordonnees, dans l'equation de 1, on trouve

i_<fr(^dx dj^fr.djdcp\ dqy\ _i_

du\dx du^ dr du^ dcp du) * du2
"1"

2
d<p [" 1_ !Ba_ dx ,<^df £^ dfP\ £_ dr\ dx ldj_ dx ,^J_dr d£ dcp

Adcp dAcp d\ — 5-dr, da — dr + — dcp + ^dx.r r \r) r r2 dr dw T

drdu dcp du
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On en deduit facilement

l ^cos2a+^coS2ß + Uo + d^)cos2y+(d-i + ^)cosacosß +dx dr r r V dcp] \Qr dx!

/l BS 6a\ l\ dg da a\
+ I—-T- + T- cosacosy+ I— tt + -, cosßcosy.\r dcp dx/ \ r dcp dr rl

Le coefficient2) de cos2a (cos2/?, cos2y) represente la dilatation relative
Ä* (h, h) et le coefficient de cos a cos ß (cos a cos y, cos ß cos y) le glissement
Vxriyxs, Yrs)- On a alors:

lx dl
dx'

i — 8e
Kr-Tr' ^(e + ä;dcpr

_d£ dg _
1 es .So __\ dg da

7xr — i "r n » 7xs — » T" -, > 7rs — ~ —^~dr dx r dcp dx r dcp er
a

r

(4)

II s'agit ici du probleme general d'elasticite en espace, pour lequel on a les
relations

1 / J>, + VS\ 1 / Vs + Vx\ 1 / Vx+Vr\l* i:\v*—nr-)' ** -£{*'—urh 1* t(v*—üH-
E est le module d'elasticite, m le coefficient de Poisson. De lä on deduit les
equations:

Em Em
¦[(m-l)lx+lr+A*h 'V=, n, 0A*x+(m-l)*r+J-s],vx

(m + l)(m-2)'
Em

(m+\)(m-2)]

[lx+lr+(m-\)Xs]-
(5)

s~ (m + \)(m-2y
Les tensions t et les glissements y sont lies simplement par les relations

cxr Gyxr, txs Gyxs, Trs Gyrs. (6)

En substituant 1, y des equations (4) par leur valeur dans les relations (5), (6),
on obtient

Em \. 1X^
dx(m+\)(m-2)Lv'~ ''dx ' dr+ r K9^ dcp/}'

Em \dS,, ^dQ \ do\\(^l)(^2)b + (OT-1)^+yl? + ^)J'
Em

s (m+\)(m-2)

Z=G(d-r + dx!' r**=°(7dlp + dx)>

\dS ^_dg ,m — \( doX\
^2)hx + dr + ~7~(^dip)l'dcp!

0^ + '° (8)
dcp dr

Introduisons les valeurs des tensions dans les equations d'equilibre (1),
(2), (3). Deduisons d'abord des relations (7), (8) les derivees

dvx _ Em \ d2S d2g 1 (dg d2

dx ~~
(m + \)(m-2)Vm '' dx2 + drdx+ r\dx + dcpdx.

dTxr dTrx „ (d2 £ d2q\ dt *' '1 ^8* ^2

dr

~dx)\'

d
^-ol^l + Jli.)
r \er2^erexr _ dtxs _ c /}_ dH_ _ß

dcp ~ dcp ~ \r dq>2 dcpdx.dx)'

2) V. le livre cite sous 1, p. 54.
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dvr Em \e2S _U§2Q 1/öe _d*°) W da
dr (m + \)(m-2)ldrdx+K"1 ' dr2 + r \dr+ drdcp) r2 \Q + dcpJl'

ßx \drdx+ dx2)' dcp dcp ~ \r dcp2 drdcp r dcp.

dvs _ Em \J_^ J_Q_ m-1 / 6>e d2aY|
^99 (ot + 1)(/«-2)L^öa:+ <9/"<3<p

•" r \d(p d(p2)\'

dTrs G(l ß2Q l dg d2o_ldo a\ dTxs= (\ o2S ö'a
dr \r drdcp r2 dcp +dr2 rdr+r2)' dx ~ [r dcpdx+ dx2

En substituant ces valeurs et le module de glissement G E n m—r- dans
2 (in + 1)

les equations (1), (2), (3), on parvient pour les deformations g, a, f aux
equations differentielles

o\i nÖSf e*Q
i

] (de i öSffYI

Vor- 5/-e'x /• #/" r dx r*cicp2 r dcp dxl Em

»\ d2£ ..d2g m-\ dg m-\ t da\ 1 S2a ]

+ (^2)(ff +^4f| + l±!f4^) + 2^)(-2)r 0, (10)\drdx dx2 r2 dcp2 r drdcp r2 öcpl Em
2 r d2S d2g m-\tdg d2o\~\

r {.dcp dx
+

drdcp r \ecp +d(p2)\ +

Lr\r dcp dr rl rdrdcp dr2 r dcpdx dx2\ Em
Les equations (9), (10), (11) determinent en general les composantes de

la deformation g, a, £ desquelles on calcule les tensions v, x d'apres les
equations (5), (6). Pour six composantes des tensions on a seulement trois
composantes de deformation comme inconnues.

La Solution consisterait maintenant dans Integration des equations
differentielles (9), (10), (11). Les constantes et les fonctions d'integration sont
determinees par les conditions de surface et les conditions aux appuis.

Appliquons cette methode generale dans quelques cas particuliers.

1. Enveloppe cylindrique circulaire epaisse,
illimitee dans le sens de l'axe et sollicitee par des pressions radiales uniformes
ä l'interieur et ä l'exterieur (fig. 3). Elle subit une deformation d'apres la loi
de similitude. Chaque plan perpendiculaire ä l'axe X de l'enveloppe est un
plan de symetrie de l'enveloppe et des forces exterieures; c'est donc un plan
principal. De meme, chaque plan radial est aussi un plan principal. Enfin les
surfaces cylindriques ä axe X sont des surfaces principales. Dans les trois, il
n'y a ni glissement ni tension tangentielle, par consequent

yrx z= n/rs ==r "/sx O, Trs Trx Tsx U

Si l'on prend en un endroit quelconque une partie de la meme longueur,
entre deux plans perpendiculaires ä l'axe X, cette partie se trouve partout
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dans les memes conditions par rapport ä l'enveloppe illimitee. Alors toutes
les composantes des deformations et des tensions sont independantes de x.
Ceci est vrai aussi pour cp, car il n'y a pas de difference entre divers plans
radiaux, en ce qui concerne les tensions et les deformations. Par suite, toutes
les derivees partielles par rapport ä x et cp disparaissent et il reste dans les
equations seulement les derivees par rapport ä r.

Des equations (7), on obtient ici

Em [". .dg gl Em \dg ..gl .._.vr= 1 7V~, ™ (m-l)^ + — Vs -. -TT-. -pA-r- + (m-1) — (12)
(m + \)(m-2)V 'dr ri' (m + \)(m~2)ld r v 'r\ y '

En negligeant le poids propre (r 0), l'equation (10) se simplifie en

d2g 1 d(

dr' + r dr
_Q_

r2
0.

Les equations (9), (11) se reduisent en relations semblables pour |, a, dont
on n'a pas besoin.

iI ¦
-11

Oh

Fig. 3. Fig. 4.

La derniere equation s'integre facilement et donne la fonction

Q Cxr+—.
En substituant dans l'equation (12), on obtient

»=(^.^["•c^'-2>% "^vm^2kCMm-2)^\(,3)
Pour determiner les constantes d'integration d, C2, appliquons les

conditions de surface. A la surface interieure, il y a une pression radiale uniforme
px et alors pour r rx la tension v, —px- A la surface exterieure, oü

r r2, la tension devient vr — p2, parce qu'il y a ici une pression radiale
uniforme p2. Pour r rx on obtient

Em
(m + \)(m-y [/» Cx — (m-2)-ßj — Pl,
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et pour r r2

Em r _ Co]
vr ?—TTw öv \mCx — (m-2)-^\ — —p2.(m + \)(m-2)l v ' r\\

En resolvant les deux dernieres equations par rapport ä Cx et C2, on trouve

_ (m + \)(m-2) Pxr\ — p2r\ _ m + \ (px—p2)r\r\
1_ Em2

'
r\ — r\ ' 2 ~ Em r\ — r\

Les formules (13) donnent maintenant, en y substituant Ct et C2,

P\r\—p2r\ (Px-p2)r\r\ ^ __ Pxr\—p2r\ (px-Pi)r\r\
"T" /„2 „n »2 ' \ /V,

r\ — r\ (ri-r])r2 ' * rj — rf ' (r2 — rf)/
On est parvenu aux resultats connus, que l'on obtient usuellement de deux

equations differentielles pour les tensions vr, v$. La deformation devient ici

g C1r+^ E™+llrd[(m-2)(p1r2-p2rl)r + m(px-p2)^]. (15)

2. Enveloppe cylindrique circulaire epaisse d'un reservoir
ä axe vertical X (fig. 4), sollicitee par des pressions radiales uniformement
reparties sur le pourtour ä l'interieur et ä l'exterieur et variables dans le seng
de l'axe X. Elle se deforme de la meme maniere dans le sens de tous les

rayons. Le profil horizontal circulaire du reservoir reste le meme apres la
deformation. Chaque plan radial est un plan de symetrie de l'enveloppe et des
forces exterieures; il est donc plan principal, oü il n'y a pas de tensions
tangentielles: xsr xsx 0. Ensuite, il n'y a pas de glissements dans les plans
radiaux: ysr yst 0. Tous les plans radiaux se comportent de la meme facon;
il n'y a donc pas de dependance de l'angle cp et toutes les derivees partielles
par rapport ä cp disparaissent. En negligeant aussi le poids propre, on obtient
des equations (9) et (10)

o/ i\d2£ / o\d2£ m-2eS d2g mdg n ,1ft.2(m-\)-— + (m-2) —--\ — + m—-i- + — -r5- 0, (16)
dx2 dr2 r dr drdx r dx

m r. „ +2(m-\) -—^ + (m-2) —-^ + 2 —- — 2 —5— g 0. (17)
drdx K 'dr2^K ' dx2 r dr r2 v K '

L'equation (11) fut deduite de l'equation (3) dont tous les membres disparaissent

ici.
En determinant g et |, on aurait une Solution complete pour le cas donne,

car les tensions normales viennent des relations (7), en supprimant les derivees
par rapport ä <p:

Em \, 1.SS c>e gl Em \d£ ..£?, g]
(mA)(m^m-^e-X + Tr+-r\' "" JmlW^ß~x+^ d~r+7\>

Em \dS dg ..gl
Vs=(m + \)(m-2)[dx+d-r+{m-X)~7\'

(18)

et l'unique tension tangentielle est donnee par l'equation (8)
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dg mvr — »'s — Vx

dr Em >

Q — v,¦ + mvs — vx
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Des equations (18) on peut calculer
BS _-vr-Vs+mvx (2Qa)

(20b)

- P ¦ (20c)
r Em

Ces formules donnent, comme il resulte des equations (4), les dilatations
relatives

1 _ SS _ dg _ g

dx dr r
On obtient les memes valeurs des dilatations en partant directement des tensions.

II y a plusieurs methodes pour resoudre le cas donne.

a) En partant des deformations g, f, on peut deduire de (16),
(17) deux equations dont chacune contient seulement une inconnue3).

Eliminons d'abord des deux equations |. Derivons la premiere par rapport
ä r et x:

•>/ nJ±,/ ov dH 0J1 d3S 1 S2S\, d*g

+ ™ -1 d3g

^r drdx2

L'equation (17) donne

y^=°- «i
d2S ~m-\ d2g m-2 d2g nm-l dg nm-\ g~ — 2.——-—z — ^—^ — 2. ——- — + l -

drdx m dr2 m dx2 mr dr m r2'
en derivant par rapport ä r, on obtient

dsS _ 2m~\d3g m-2 dsg 2m-l /l d2g 1 dg\ 2^zl±^_l 1

dr2dx~ m dr3 m drdx2 tn \r dr2 r2 drr m \r2 dr rsQ)'

SH _ m-\eig m-2 d4g ,w-Wl c>3e 2 d2g 2 dg)
dr3^ m dr4, m dr2dx2 m \r dr3 r2 dr2 r3 Sri

w-1/1 d2g 4 dg 6
+ m V2c9a-2 r3ß/- A"4

et en derivant deux fois par rapport ä x

d*S _ nm-\ d*g m-2dig m~\ S_g „m-\ d2_g

<9/-<9.*:3 m dr2dx2 m dx" mr drdx2 mr2 dx2'

En introduisant toutes les derivees de S dans (16'), on peut calculer

d*g d*g e*g 2 d3g 2 e3g 3 e2g 2 e2g 3 dg 3p
<5r4

+ öa-2c!x2 d*4 r ör3 r drdx2 r2 dr2 r2 dx2 r3 dr r"" ' y '
Pour eliminer g de (16) et (17), derivons (17) par rapport ä x et multi-

phons par —:

s) V. aussi A. Föppl-L. Föppl, „Drang und Zwang, II" (1920), p. 167.
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m2 e3S (m-l)m d3g (m-2)md3g (m-\)m d2g (m-l)mdg _»
r drdx2 r dr2 dx r dx3 r2 drdx r3 dx

Derivons ensuite (17) par rapport ä x et r et multiplions par m, pour obtenir

2 ö*f „, 1X d"g _, d"g Am-\)m dsgm2 „ „ 9 + 2(m-i)m ^
* +(m-2)m „ „„ + 2- '—

„
* -dr2 dx2 v ' dr3dx K ' drdx3 r dr2 dx

4(/b-1)/h d2g [<l("-1)"^g==0j
r2 dA-d* a-3 d#

En derivant (16) deux fois par rapport ä x et en multipliant par (m — 2), on a

o/ iw n\s**,t ov2 ^ (m-2)2 c>3f d"g m(m-2)d3g _2(m-\)(m-2)-r—y(m-2)2 „ „ „ ,-H — „ v + m(m-2) „ ^ „ + — -r-^ 0.v /v 'oa;4 v ' er2ex2 r drdx2 v 'drdx3 r dx3

Retranchons de la derniere equation les deux precedentes et divisons par
2 (m — 1); nous aurons

2)d^ 2 d^ 2 8^ ßiQ 2m S3g m 82g mSg _(m ' dx" Sr2Sx2 r erex2
m

er3 Bx r dr2 ex r2 erex r3 ex "

Derivons (16) par rapport ä r et divisons par r:
m-\ d3S m-2d3S !^fiS^S_l_8S\ m d3g mt\ d2g 1 Sg\ _ Q

r drdx2+ r dr3+ r \r dr2 r2 dr)+r dr2 dx+r\r drdx~r2d7x) ~ '

Derivons enfin (16) deux fois par rapport ä r:

2(m-1)c7^^ + ^-2^ + (m-2H767^^VrJ + w^^ +

(l d3g 2 d2g 2M_\r Sr2dx r2 drdx
+ r3 dx) ~

Faisant la somme des trois dernieres equations, nous pouvons calculer:

e"s
2

e"s s"s 2 d3s 2 d3s i d2s i es
n (22,

On peut simplifier les equations (21), (22), en utilisant l'operateur de
Laplace dont la valeur en coordonnees cylindriques est

V2 —+ -- + —-v dr2^ r dr^ dx2

Alors

V4 V2 V2 _ te2 l s e2\te2 \ e e2\
~ \er2+ r er+ ex2)\er2+ r dr dx2)

e"
~ dr" + 2

d" d" 2 d3 2 d3 1 d2

dr2 d:x2 ex"
]

r er3 '
r erex2 r2er2 TA-3ÖA"

La comparaison montre que l'on peut ecrire l'equation (21) plus simplement

V' a*2 s r6 Sr r" (21')

et 1 'equation (22)

v*f o. (22')
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En derivant l'equation (22) par rapport ä r, on obtient pour — une

equation de la meme forme que l'equation (21) pour o, Parce que la derniere
d2g d"g A, * ß£
—-4- et ——7, alors g peut etre egal a —dx2 dx" v l B dr

fonction lineaire de x.
Les equations (21') et (22') deterrninent en general g et S en fonctions

de r et x. Les membres des expressions generales pour g, | qui ne conviennent
pas au cas donne, s'eliminent par les equations (16) et (17) qui representent
des conditions plus speciales. Les relations (18) et (19) donnent alors les
tensions vr, vs, vx, x. Les conditions de surface deterrninent les constantes et
les fonctions d'integration. S'il n'y a pas de tensions au plan superieur
horizontal de l'enveloppe, on doit pour x 0 avoir vr vs vx x 0. La
surface cylindrique interieure (exterieure) etant sollicitee par une pression
radiale, en general variable par rapport ä la hauteur, px (p2), on a vr —pY,
x 0 (vr — p2, x 0) pour r rt (r r2).

b) On peut partir des tensions. Les equations d'equilibre (1)
et (2) prennent ici la forme

*p< + L*M o, (23)
dx r dr

LSjrv)_rs d1=Q
r dr r ^ dx v '

De l'equation (20 c) on calcule

dg 1 [ d(rvr) mS(rvs) d(rvx)l
dr Eml dr ^ dr dr J'

en comparant cette valeur avec (20 b), on deduit

Svr Svs \ dvx
mvr—vs — vx —r- vr + m\r—-+vs\ — r~ vxdr \ Sr I dr

ou
dvs dvr d vx

(m+\)(vr—vs) r\.

L'equation (24) donne

dr dr dr

dvr St
vr — vs —r- /¦ —Sr ex

et l'introduction de cette valeur dans l'equation precedente

evr dvs Svx dx „ inK.m-. \-m- — + (m+\)— 0. (25)dr dr or dx

On peut eliminer vs, vx des equations (23), (24), (25). En derivant la derniere
par rapport ä x, on obtient

S2vr d2vs d2Vx S2T
m ~ ¦. + m ^r^ n ^ + (in + 1) -r-^ 0.drdx^ drdx drdx v ^ ' Sx2

De l'equation (23) on calcule, en derivant par rapport ä r,
d2vx t 1 dr. S2%

drdx r2 r dr dr2
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et l'equation (24) donne, en derivant par rapport ä x et r,
d2vs _ d3vr _ d2vr d3% i92t

drdx ~ r Sr2Sx + drdx+ r~drdx2 + Jx2'
L'introduction des deux dernieres valeurs dans l'equation precedente mene ä
la relation:

e3vr _ e2vr eäx e2T ._ ,,.s2t i s% t _ .„.^^7^ + 3OT^ + m^67cV+o72- + (2m+1)o72 + 7o7-72- 0- <26>

En choisissant par ex. la tension x, on peut calculer vx de l'equation (23),
vr de (26) et vs de (24). Pour determiner les constantes et les fonctions
d'integration, on a les conditions de surface. On ne peut pas choisir t tout-ä-
fait arbitrairement, car x doit satisfaire l'equation (19), si l'on y introduit, apres
avoir determine toutes les tensions, les deformations g et S donnees par les
relations (20).

On peut deduire une equation contenant la tension t seule, en eliminant
les autres inconnues des equations (19), (20), (23), (25) et (26). En derivant
par rapport ä r et x, l'equation (19) donne

s2t t e3s e3g
+SrSx \Sr2dx erex2

De l'equation (20 a) on calcule, en derivant deux fois par rapport ä r,
e3s _ i / s2vr s2vs e_2v.

dr2dx~ Em \ er2 Sr2 + m
S

e2vx\
er2)

et de l'equation (20 b), en derivant deux fois par rapport ä x,
33« 1 / r)2„ J2,e3g 1 / S2vr d2vs

— \m
drdx2 Em \ dx2 dx

_dW\
dx2)'

En introduisant les valeurs des deux dernieres relations dans l'equation prece-

dente et en substituant —— — —, on obtient
Em 2(m + 1)

o/ i\ ^% S2vr ß2vs ß2vx S2vr c2vs d2vx

drdx dr2 dr2 dr2 dx2 dx2 Sx2'
En derivant cette equation par rapport ä r et x, on a

2(m\U SH 6iVr 6il's 8iVx 8iVr £'iVs 6iVx
— 0 ta\1 'er2 ex2 er3 ex dr3dx " dr3ex erdx3 drdx3 drdx3 w

L'equation (25) peut s'ecrire

Svr dvs ]_^x m+\ Bt _er er m er m dx
En derivant par rapport ä x et deux fois par rapport ä r, on obtient

d"vr d"vs 1_ d"vx m + \ d"x _dr3 Sx Sr3 Sx m Sr3 Sx m Sr2 Sx2

et en derivant la meme equation trois fois par rapport ä x,
S"vr 8ivs 1 S*vx m+\ d"T _SrSx3 drdx3 m drdx3 m dx"
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La somme des equations (a), (b) et (c) donne apres une transformation facile

(OT-1)ä^-(2m-1)o727^ + mä7o73--ß7^ + ^ 0- (d)

On peut ecrire l'equation (23)
Svx dt t
dx dr r

et l'on obtient, en derivant,

S"vx d"T 1 e3T 3 S2t 6 dr 6
> 75 n „2 7ä TZ +8r38x er" r er3 ' /-2 öV2 /-3<3a- r4

e"vx e"T 1 d3r 1 <32r

ÖVc?*3 8r28x2 r 8r8x2 r2 Bx2'
En substituant ces derivees de vx dans (d), on trouve

B"vr _, _nf^£ g4r d4r m-1 g3r 1 gaT

'"oröV-^ l'8r"+Z(m l)Br2Bx2 B~x~" + ~T dT3 ~ 7 sTßx1 ~
m-\ B2t \ B2t m-\ Bt c.m~^~ rrB~r2 + 728~x2+ ~r*~8~r~Ö~7^Z

et en derivant par rapport ä r,
85vr ^S"t 8bT 86t (l 8"t 1 83t\

m n „-r (a«-1)—-r + 2(/rc-l) „ „ ^^r — 4- (aaz-1) T J^58r28x3 K 'Srb v 'Sr3dx2 drdx" '\rdr" r2Br3)
1 d4r 1 B3t \ _i\(}_§2l 2 3*T\ l 8St

r dr2 Sx2 r2 BrBx2) ^ ' \r2 Br3~ r3 8r2) r2 BrBx2

2 S2t ../l B2t 3 8t\ (\ Bt 4

-^^ + 6(a«-1)^^-^-J-6(a«-1)^----^
L'equation (26), derivee deux fois par rapport ä x, donne

S'°Vr „ <34»V (36T c?4t ._ .^ö4* 1 dZT 1 c92t
AASA" - „ + 3 AB o + A«A-. 4+n2^ 2 + (2 ^+1) V^ + ~ V~^T^ ~ ~ä T~5 °-

dr2dx3 drdx3 drdx" dr2 dx2 dx" r drdx2 rl dx2

d" Vr 8b Vr
En introduisant ici les valeurs determinees de m „ ^ „ et aaz -t-s-t-s» on parvient

drcbr or2 Bx3
ä une equation contenant seulement x que l'on peut modifier en:

SbT B'°t 8bT 4 8"t 6 8"t 2 8"t 1 83t
~dr1+ dr3dx2 drSx" + 7 87* + 7~8r2dx2 + ~r Bx" 728r3 +

3 o2t 6 dx 6
+ 73^-^^+^T 0- (2?)

La valeur la plus simple de x, satisfaisant cette equation, est x 0. De-
duisons une Solution du probleme de cette valeur.

L'equation (23) donne alors -~ 0, ce qui prouve que vx est inde-

pendant de x. Parce que pour x 0 on doit avoir vx 0, on a partout vx 0.

L'equation (26) se simplifie en

d3vr „ d2vr
mr + 3m^ 0.

dr2 dx dr Bx
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En posant y, on a —^- =¦ — et l'on peut ecrire la derniere equation1 SrSx J 8r2 Bx dr ' ^

sous la forme

dr r
L'integrale generale de cette equation est

y r3

/i (x) etant une fonction de x, cependant inconnue. On a alors

S2Vr M^
dr (9a; a"3

En integrant par rapport ä r, on obtient

Öje-'sW 2a-2

et en integrant de nouveau par rapport ä x,

vr jf2(x)dx — j^j fx(x)dx.

vr — X2

On devrait ajouter encore une fonction de r inconnue. Mais pour x 0 on a

vr 0; alors cette fonction disparait et

J /i (x) dx Xx, J /2 (x) <& X,
sont des fonctions de x qui ne contiennent pas de membres absolus. Avec cette
notation, on peut ecrire

±L
2a-2'

Les fonctions Xx, X2 sont determinees par les conditions ä la surface
interieure et exterieure de l'enveloppe. Supposons ä l'interieur du reservoir un
liquide du poids specifique y, dont le niveau coi'ncide avec le plan superieur de
l'enveloppe, ce qui donne ä la profondeur x (fig. 4) une pression

px yx.
Pour r r± on doit avoir vr — Px', cela mene ä la condition

2r\
Si la surface exterieure est sans pression, on a alors v, 0 pour r — r2 et il
s'ensuit que:

La resolution des deux dernieres equations donne

v 2/*i Ki v A-]

Xl=Ji ->YX, X2r=- -yx.

X2-w\=-yx.

On a alors la tension

Äi1-^)- <28>
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L'equation (24) donne

dvr dT
vs r- \- vr + r—.dr dx

En introduisant x 0, v, de la formule (28) et sa derivee
Svr _ yr\x

_
2_r|

Sr r\ — r\ r3 '

on obtient

* Ä> + 2)- <29)

De l'equation (20 c) on calcule la deformation

^ ^-^+^'-^äes^[^-1)''+^+,)t]- <30)

En derivant cette equation par rapport ä r, on parvient au meme resultat que
celui de l'equation (20b). Enfin la relation (20a) donne d'abord

es \ 2yr\x—-(—Vr—vs+mvx) —
dx Emx r " ' *' Em(rl — r\)

et ensuite par integration

S -P Vi** * + Hr),
Em(rf2 — rj)

si l'on designe par / (r) une fonction de la variable r seule. Pour la determiner,
on peut appliquer la condition donnee pour x par l'equation (19). Elle donne ici

dr^ dx
et en substituant |:

En integrant, on obtient

^ -^ff-rnh-1)T + <w+1^lny] + fl»

a est une constante d'integration. Alors

S ^^[x2 + (AAZ-l)^ + (A« + l)r2.nr] + a. (31)

II reste une seule constante a que l'on peut determiner de teile sorte qu'une
seule condition ä l'appui de l'enveloppe soit satisfaite: en un point du plan
inferieur, entre l'enveloppe et le fond du reservoir, la deformation | peut etre
nulle. Autrement, ce cas n'est possible que si l'enveloppe est librement appuyee
sur le fond et peut glisser dans la direction transversale. Les tensions tangentielles

dans l'enveloppe sont alors eliminees et la sollicitation de l'enveloppe
est la meme que pour une enveloppe cylindrique epaisse illimitee, sollicitee par
une pression radiale interieure qui croit ici proportionnellement ä la profondeur
x. La Solution de ce cas fut donnee pour la premiere fois par M. N i c h o 1 a s4).

4) V. l'article „Equilibre d'une couche cy 1 i n d ri que ..." aux
Annales des Ponts et Chaussees 1932—11, p. 411.

Abhandlungen IV 10
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c) Enfin on peut exprimer toutes les inconnues par une
seule fonction 0. Pour les tensions normales on a6) les relations:

8/1 d2 Q>\"=^(»v!a>-y- <32a>

* f,0»-!4?). <32b>

On tire de la formule (32 a)

8vr j__n V10_§2*\
Sr SrBx\m v dr2)

et de (32 a) et (32 b)
d (\ do s2a>

Vr Vss dx\r dr Sr2

L'equation (24) donne

v Sr2)'1' r dx\dr2 r dr)'
dx _ dvr vr-vs d2 l\
dx~~ Sr r Brdx\m

en integrant par rapport ä x, on determine
1 d2Q 1 SOSil S2Q\

—y -V2®- yf +Br\m Sr21 r Sr2 r2 dr
En derivant la valeur connue de l'operateur \]2, on a

Ay72(0 —±(— IfL? g80^ —
8 i820) 8 (S2®) 1 82<D 1 gg)

^7^ ~~ drlcV2 + r dr + Bx2) ~ 8r\ dr2)^ 8 r\8x2)+ r dr2 r2dr
La formule de la tension x peut etre ecrite simplement

*=M'-±)v»-?|]- <->

En introduisant vx, x des relations (32 c), (33) dans l'equation (23), on
obtient pour <P la condition

^[(>4)v-^4f,[(-i)v-^^[(*4)v-^]=-
ou

Parce qu'il y a

cV2^ r dr^ dx2) dx2 dx2KV >'

la condition pour <P se reduit a

V4© 0. (43)
La Substitution des valeurs de v„ vs, vx des relations (32) dans l'equation

(20 c) donne

6) V. le livre cite sous 1, p. 276.
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zr Q 8 (\ ^„^ d2Q\ d /%-,.„, m BWEm^-=-Vr + mvs-vx=:- — [ — SJ2®-^r)+--[X72Q —r dx\m cir21 dx\ r dr

-M(*4)v-m
d'oü l'on tire

p 8 /vi*** i
8 82°

i
^2(p d<D\^e -r-(V^)+^(r^ + r^F-AA?-).

En derivant par rapport ä r, on peut se persuader que la relation (20 b) donne

le meme resultat pour -~- ce qui confirme la justesse du choix des expressions

pour .toutes les tensions v. En remplacant ^2<P dans la derniere equation par
sa valeur explicite, on obtient

=¦ / ,iv 82° m + \ d2<D
Emg — (m + \)—— ou g= (35)* y ' drdx v Em drdx K '

L'equation (20 a) donne

dx dx\m Sr-j 8x\m r Sri BxV Bx2\

=ÄN-4)v-(-+»0|=(-+»Ä(^v--g

EmS (a« + 1)(2-—-U2® —
V m

e

L'integration par rapport ä x donne
82<t>

m v Bx2

ou

* '^(2~V--f!). (36,

La relation (19) pour x est un contröle de l'exactitude de notre Solution.
En portant dans (19) les valeurs de g et S donnees par les equations (35),

Em
(36) et G -f—. —f^, on transforme aisement le resultat ä la forme (33),v 2(m + \) \ ii
ce qui est une nouvelle preuve de l'exactitude des relations (32) pour toutes
les tensions v.

L'equation (34) determine en general la fonction 0. Pour les composantes
g et | de la deformation, donnees par les relations (35), (36), on a aussi les
equations (21), (22) qui representent des conditions plus speciales. Les
equations (16), (17) qui sont les conditions les plus speciales, peuvent servir
ä eliminer des membres de la fonction $ qui ne conviennent pas au cas donne.

Cherchons une Solution de la fonction (p, donnee par l'equation (34), de
la forme

Q Rx + Xx + R2X2, (37)
oü Rx, R2 (Xx, X2) est une fonction de la variable r (x) seule. On a ensuite

j^f — td + R2 A2, — — Xx + R2Xh
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ß3® „ 6"0 „ „¦^2 X1 > \,_o -,T~5 ^2 -^S
drcU2 w " <3r2<3x2

En substituant les derivees dans l'expression explicite de V4 @> °n obtient apres
une transformation

+ (^4)+-/?.2"-/^/?2+P^)x2 + /?2a'24)+2(/?;+-^)a'; o. (38)

La derniere equation peut etre satisfaite, si l'on pose X$ 0, X"2 const.

2a[, x[^ const. 24aj,, Rl-i Ri const. 4as' "En derivant la

derniere equation, nous aurons successivement

Ri -) /?2 ?Ri 0.
r r2

/?24) + -/?;"-4/?s + 4^ 0-
r /•- r

Ajoutons la derniere equation ä l'equation precedente, multipliee par —:

R^ + -R7--.RI + -SR', 0.
r r r

En introduisant les valeurs determinees dans l'equation (38), nous trouvons

Ri} + -Rx'-^Rl + -3R[ + 24a, + \oa\ai 0.
r r r

Par l'integration de cette equation, on parvient ä l'integrale generale

R1=- 3a>+2<hA r4 + flg|.S + fl3/-2 ,n r+ ßJn r>

L'integrale de l'equation X{^ — 24 a2' est

Xx aj*4 + ß(>*3 + aix' + a8x-
On peut supprimer les membres absolus en Ru Xx parce que 0 parait dans
toutes les formules seulement en derivations. De l'equation X'i 2 ai il s'en-
suit par integration

X2 a[ x2 + a\ x

et l'integration de l'equation Ri -\ Ri 4 ai donne en general

R2 d3r2 + aj In r.
Encore ici on peut supprimer les membres absolus, car ils donneraient les
membres dejä contenus en Ru Xx.

En introduisant toutes les fonctions determinees dans la formule (37), on
obtient une Solution de l'equation (34) sous forme de la fonction

Wx —5—— r" + a2r2 + a3 r2 In r + a4 In r + a'2x" + a&x3 + a1x2+ aBx +
o

+ (a3 r2 + a'b In r) (a[ x2 + ai x)
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ou
01 ax r" + a2 r2 + a3 r2Inr+ a4 In r+ a5x" + aex3 + a7x2 + asx + agr2x2 +

+ a10r2x + ßuA;2lnA--(-a12A;lnr. (39)
On peut satisfaire l'equation (38) aussi, en posant

X{* const. 24 ai, R? + jRT-y2R'i +ysRi + x{4) 0,

ce qui donne la valeur ci-dessus de Xx et de Rlt sans le membre aia'z. II reste
alors dans l'equation (38) seulement les membres contenant R2, X2 et leurs
derivations. En divisant par X2, on obtient

Rii} + ^Rt+^R'i + ~R\ + R^ + 2(Rl + -*;) ~ 0. (40)r r r a2 \ r i a2
On peut satisfaire cette derniere equation, en posant

X
-rr- const. (na)2;
X2

l'integrale generale est

X2 bnenax + cne-nax,
n designant un nombre entier positif et a une constante. Ensuite on a

(na)"
X2

et l'equation (40) donne

Rii] + jR'n—pRl + ysR, + 2(rI + jRi)(na)2 + R2(na)" 0. (41)

L'integrale de cette equation est la fonction cylindrique de Bessel de l'espece 1

et de l'ordre 0G)

d _ r i \ _i (nar)2 (nar)" (nar)6
/<2 —Jo(nur) — l 1- ~2^7p 227p^62~ '

determinee par l'equation differentielle

^ + 7T + NV. o. (42)

La derivation successive de cette equation donne

dr3 r dr- r dr dr

dr" ~l~

r dr3 r2 dr2 ~r r3 dr ~r v ' dr2

En ajoutant ä la derniere, l'equation precedente multipliee par -- et (42)

multipliee par (na)2, on arrive ä une equation de la forme (41).
L'equation (41) est satisfaite aussi, comme on peut se persuader facilement

de l'equation (42), par la fonction

dj0(nar)
__

(nar)2 _(nar)2 (nar)" _ (nar)6
Ki r dr 2 \ 2-4 + 2-42-6 2-42-62-8"t"

ce qui est une fonction de Bessel de l'espece 1 et de l'ordre 1.

6) V. S. Timoshenko, „Theory of Elasticity" (1934), p. 353.
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La fonction
X2 =fnxenax+gnxe-nax

satisfait aussi l'equation (40). En derivant X2 et en introduisant dans
l'equation (40), on obtient apres une transformation l'equation

[rP + j Ri' -1 Ri + y3Ri + 2 (rü + i /?;) (az a)2 + tf2 (az a)4] x (/„ «««* + #, e~"ax) +

+ 4 n «[/?; + - Ri + /?2 (n «)2J (/„ e"a* — ftr««) 0.

Pour que cette equation soit satisfaite pour toutes les valeurs de x, on doit
avoir separement

Ri + ~Ri + R2(na)2 0,

R(2) + -Ri'--2Ri + -sRi + 2(Ri+]-R'Mna)2+R2(na)" 0.
r r r \ r I

Les deux equations ont pour integrale la fonction de Bessel

Ri h (nar).
Les membres Rx, Xx sont contenus dejä dans la fonction <&t. A part cela,

0 est donne par R2X2, oü l'on peut prendre pour n un nombre entier positif
quelconque. L'equation (34) est satisfaite aussi par la serie

®2 S (bn enax + cn e-"ax)J0 (nar) + 'Z(dnenax + en e~nax) r dJ«^ar>> +

+ S (Ue"ax + gne~nax)x/0 (nar). (43)

Enfin, les fonctions des deux variables') de la forme

(D3 (r2 + x2)"+* • ±^ (r2 + x2)-i, Oa (r2 + x2) O, (44)

satisfont aussi l'equation (34), pourvu que n soit un nombre entier positif
quelconque. Les fonctions <P3 pour n 1 ä 4 et <Z>4 pour n 1, 2 sont
contenues dejä dans 0X-

Si l'on posait precedemment

Y — (na)2,

on aurait l'integrale
X2 bn sin (nax) + cn cos (n ax)

et la fonction
R2 J<s (inar)

comme fonction de Bessel d'argument imaginaire. Les autres membres de <P2

seraient transformes de la meme facon.
En choisissant pour <P les diverses valeurs obtenues, on arrive aux Solutions

pour divers cas.
La fonction 0X, donnee par la relation (39), mene ä une Solution que l'on

trouve ainsi: Calculons d'abord

') V. le livre cite sous 1, p. 153.
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S ®X « r. o> 1 #4 „ o „ X2 X
—— 4atr3 + 2 a2r+2asr In r+asr+ — + 2a9rx2 + 2a10rx + au — + a,. —,dr r r r
ß21> a x2 x
-jJT 12a1r2 + 2a2 + 2a3Inr+3a3--^ + 2a9x2 + 2a,0x-ß11 —-als —,

d2Ox
-y-g- 12a6x2 + 6a8x + 2a7 + 2a9r2 + 2an lnr.

En substituant ces valeurs, on obtient
(92ÖA 1 r) Ö) (92Q)

V2^=-^ + 7^7i + ^2i 16a1r2 + 4a2 + 4a3lnr+4a3 + 4a9x2 +

+ 4 a]0x +12 a5 x2 + 6ae x + 2 a7 + 2 a9 r2 + 2 au In r.
Des equations (32) et (33) on tire les tensions

^ 4[(2-l)* + |„], + 2(2-l).„ + l«. + 2.11i+fif,

"^C-^+^+^-'K+s"-2«"?-^''
"* —[(2/w — l)a94-3(A« — l)a6]x-f 4 • — ai0 + o-m~ ae,

m mm4 2 1

t —[8(aaz — 1)«! — a9]rH [2(aaz — l)a3 — an] —.

Appliquons maintenant les conditions aux surfaces. Pour x — 0 on doit
avoir x 0, d'oü il resulte que:

8(a?z — l)aj — a9 0 (a)
et en meme temps

2(m — \)a3 — a11 0. (ß)
Donc il y a partout

t 0.
Pour x 0 on doit avoir aussi j>, vs vx 0; cela exige

2 \ 3
l)a10-j—-oo 0, al2 0, 2(2a«—l)a10-f-3(aaz—l)a6 0.

> ni * nx

On en deduit •
a6 0, a10 0.

On a d'autres conditions ä la surface interieure et exterieure de l'enveloppe.

Envisageons une pression radiale interieure et exterieure, uniformement
repartie au pourtour, mais proportionnelle ä la profondeur x (fig. 4), c'est-ä-
dire la pression d'un liquide (ä l'interieur) ou de terre (ä l'exterieur). Pour1

r rt on doit avoir ja, — p? — yt x, ce qui donne la condition

\m im rx
A la surface exterieure, on a r r2 et vr — p2 — y2 x, d'oü l'on trouve

Des deux dernieres equations on obtient
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„ _72 — fi r\r\
11 ~ 2 rl-r['

--l)a9+24a5=2^1^. (y)
i m rs — r{

Par les valeurs determinees on trouve dejä

^[^('-i^l'-lrä (45)

* M» + £)-»4 + 0)];ä^3- <46>

On peut deduire une autre condition pour les coefficients a de l'equation
(34) qui donne ici

V 4 ©i (Ä + - 4- + Ä) V2 Ö»i 64 öl + 24 a5 + 16a9 0
Vor'1 r or dx"1/

ou

8ai + 3aB + 2a9 0. (6)
On trouve de (<5) et (a)

3(m — x)a& + (2m — l)a9 0
et l'on a par consequent partout

vx 0.

L'equation (ß) donne

— an _ 72 —n /•?/•!

ß3-2(A«-l)~4(m-l)'^ — ri
et de (a), (y), (6) on calcule

— _ ri/"i~ 72r\ _ 2/w-l 7xr\-7*r\
1_ 32(/7i + l)(r;-r;)' 5_12(a« + 1)' r22-r2 '

— _ *"-! 71 /*'-72r2
09"" 4(m + l)' r\-r\ '

En determinant encore

4asrx + 2al0r+2an — +

4a9rx + 2a]0r+ 2au f- —)

clröx a ' IU ' ~" r r
on trouve par Substitution dans la relation (35)

m + \
?=—E7T

^^-^\(mA)(yir\-y2^r+(m + \)(yx-7,)^~\- (47)

Enfin l'equation (36) donne ici

S ^[2^(16a1r2 + 4a2 + 4a3lnr + 4a3 + 4a9x2 + 4a10x)-|-
E in L m

+ m-2,n 2 + 6a x + 2a7 + 2a9r2 + 2an\nr)1

AM J

-^^^[/^(yI^-y2r^)r2+(/«+l)(j'i-y2)r?r22In/-+(y1r?-y2rD^]+fl, (48)

en resumant les membres absolus dans la notation a.
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Si l'on pose y2 0, yt y, on obtient les relations (45) ä (48) pour les
tensions vr, vs et pour les deformations g, S les equations (28) ä (31)
determinees precedemment.

Resume.
Pour le calcul des enveloppes cylindriques epaisses, les methodes approximatives

de la resistance des materiaux sont parfois insuffisantes. C'est pour
cette raison que l'auteur de ce rapport applique ä ce calcul la theorie de l'elasti-
cite basee sur les equations d'equilibre et de deformation d'un element infiniment

petit.
Apres avoir effectue tout le developpement de la theorie generale, l'auteur

l'applique ä quelques cas particuliers: 1° Cas d'une enveloppe cylindrique
circulaire epaisse illimitee dans les sens de l'axe et sollicitee par des pressions
radiales uniformes ä l'interieur et ä l'exterieur. 2° Cas d'une enveloppe
cylindrique circulaire epaisse d'un reservoir ä axe vertical X, sollicitee par des
pressions radiales uniformement reparties sur le pourtour, ä l'interieur et ä

l'exterieur, et variables dans le sens de l'axe X. Ce dernier cas est traite a) en
partant des deformations, b) en partant des tensions et c) en exprimant toutes
les inconnues par une seule fonction.

Zusammenfassung.
Die Näherungsmethoden der Festigkeitslehre sind für die Berechnung von

dicken zylindrischen Schalen oft ungenügend. Deshalb wendet der Verfasser
dieses Berichtes darauf die Elastizitätstheorie an, die auf den Gleichgewichtsbedingungen

und Verformungen eines unendlich kleinen Teiles beruht.
Nach Entwicklung der allgemeinen Theorie wendet sie der Verfasser auf

einige besondere Fälle an:
1. Dicke Kreiszylinderschale, in der Achsenrichtung unbegrenzt, durch innere

und äußere radiale und gleichmäßig verteilte Drucke beansprucht.
2. Dicke Kreiszylinderschale eines Behälters mit senkrechter Achse X, durch

innere und äußere radiale und gleichmäßig verteilte Drucke beansprucht^
die in der Richtung X veränderlich sind. Dieser Fall wird behandelt
a) von den Verformungen aus,
b) von den Spannungen aus und
c) indem alle Unbekannten durch eine einzige Funktion dargestellt werden.

Summary.
The approximative methods based on the theory of the strength of materials

are insufficient for the calculation of thick cylindrical shells. The author therefore

applies the theory of elasticity, using as basis the deformations and equi-
librium conditions of an infinitely small particle.

After developing the general theory the author applies it to some special
cases:

1. Thick circular cylindrical shells, unlimited in the direction of the axis,
subjected to radial, uniformly distributed pressure forces, both internal and
external.



154 Z. Bazant — Theorie exacte des enveloppes cylindriques epaisses

2. Thick circular cylindrical shells of a Container with vertical axis X,
subjected to internal and external, radial, uniformly distributed pressure forces,
but variable in the direction X of the axis. This case ist treated from the
point of view of:
a) the deformations,
b) the stresses,
c) expressing all unknowns in one Single function.


	Théorie exacte des enveloppes cylindriques épaisses

