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THEORIE EXACTE DES ENVELOPPES CYLINDRIQUES
EPAISSES.

GENAUE BERECHNUNG VON DICKWANDIGEN ROHREN.

EXACT THEORY OF THICK CYLINDRICAL SHELLS.
Prof. Dr. ZD. BAZANT, Prague.

Pour le calcul des enveloppes cylindriques é paisses, les méthodes ap-
proximatives de la résistance des matériaux sont parfois insuffisantes. On doit
alors appliquer la théorie de ’élasticité. Les solutions exactes pour quelques
cas simples sont connues.

La théorie exacte est basée sur les équations d’équilibre et de déformation
d’un élément infiniment petit (fig. 1), prisdans 'enveloppe cylindrique
circulaire et limité par: deux plans radiaux formant un angle dg, deux plans
perpendiculaires a ’axe du cylindre X et distantes de dx, et deux surfaces cy-
lindriques a axe X, avec des rayons 7 et r +dr. Les dimensions de I'élément
sont dx, dr et ds = rdp. Les points dans l'intérieur de I’enveloppe sont dé-
terminés par des coordonnées cylindriques x, 7, ¢; 'angle ¢ est
mesuré de ’axe Y dans un plan perpendiculaire a 'axe X. L’élément est solli-
cité par des forces intérieures, positives dans la direction de Paxe parallele
positif (négatif), si elles remplacent la matiere située au c6té positif (négatif) .
de P’axe perpendiculaire a la surface envisagée de I’élément.

Le plan radial add’ @’ est sollicité par un effort normal #; et deux efforts
tangentiels Z,,, £.. Le plan bee’ &' est sollicité par des efforts qui different des
précédents par les différentielles partielles par rapport 4 ’angle ¢; ce sont les
efforts

an , ot ot
ns_ﬂs+—?’fd99, tsrﬁ%?sr"l‘_ﬁ% a;t . |
Le plan abced est sollicité par Peffort normal 7, et les efforts tangentiels £,,,
f.s; pour le plan & &' c’d’ on a les efforts |
_“’-1 7 ﬂ‘txr , atx
J Sodr, fe=tet 57

0—; dx, t.;r =ty +
La surface cylindrique ab®’ o’ de rayon r est sollicitée par 1’effort normal 7,
et les efforts tangentiels /., ¢,.; pour la surface cdd’ ¢’ de rayon r-{-dr on a les
efforts

d(]j’ bog 5= Uy +

de

ny = n,+ dx.

af , Oty
rs — trs + rs , tl’x = t’x + 6—;—

Au centre de gravité de ’élément on a en général trois composantes de
la force extérieure (poids propre de I’élément) : ¢ drds dx dans la direction X,
tdr ds dx dans la direction du rayon et 3 dr ds dx perpendiculairement au rayon;
I, t, 3 sont les forces extérieures pour unité de volume.

Les efforts n, £ sont égaux aux tensions v, ¢ multipliées par l’alre de la
surface de Pélément d’apres les équations: - .-

ar.

ny=un,
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Ny = v, drds = v,rdrdyp, n,= v,dédx =vrdpdx, n;=vsdrdx;
lis = Tusdrds = tysrdrdep, ty="1,drds =ty rdrdp, tw=tmdsdx =1, rdpdx,

z‘,s_:‘ Trs d; dx :”Tr_si’dqf? dx, ts{c = Tox t{rdx, o f‘_" — ?sr drdx._
Les dérivées partielles ont alors dgs valeurs: o
%%:Q%nggdx, gl;xz%drdx, g—f;f:%i;drdx.

Appliquons d’abord les équations des moments provenant de I’équilibre
des forces sollicitant I’élément. Par rapport a ’axe paralléle 3 X et passant
par le centre de gravité de I’élément, c’est-d-dire par la ligne d’action des
forces n,, r, #’y, seulement les efforts &, ¢, ¢, ¢, provoquent des moments
et Pon a

Lsdr — &, ds = 0,

en négligeant les moments des forces Obrs 4, ot Or
ar o

précédentes infiniment petites d’ordre supérieur. En substituant pour £, £,
leurs valeurs, on obtient

de, qui sont par rapport aux

Tsrdp dx » dr — tg.drdx - rdp — 0,
d’olt
Trs = Tspe
D’une maniére analogue les deux autres équations des moments (par rapport
aux axes passant par les lignes d’action 3, r) donnent

Txr = Trx, sz e Tsx.

Les tensions tangentielles suivent alors les mémes relations que dans le cas
de coordonnées rectangulaires. '

Les trois autres conditions d’équilibre concernent les sommes des com-
posantes dans les directions de trois axes'). Les composantes dans la direction
X donnent la somme

”;—”x'i‘t;x—trx"}‘t;x__tsx‘l“gdrdex =0

ou _
6/1;; Olry atsx -
Substituant les valeurs des dérivées partielles de n et £, on a
S rardyde+ X0 drapds + S drdpas + yrdrdpds = 0
ou
Ove 1 O(ree) , 1 Ot _
v r ey Troap TESO ®

1) V. A. E. H. Love, “A Treatise onthe Mathematical Theory of
Elasticity” (4. éd., Cambridge 1927), p. 90.
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La somme des composantes dans la direction de 'axe perpendiculaire & X
et bissectrice de l’angle dp est

d. ; . d
Be— iy by — top 4 (tr—to) COS - — (nd + n) sin F + vdrdsds = 0.

dyp d(p _de T
5 =1, sin - 5 5 . En négligeant

Ia valeur infiniment petite d’ordre supérieur, on obtient n, + n’, = 2n,. La
derniére équation donne alors

Pour I’angle do infiniment petit on a cos

aﬂr Otxr OtSi‘

L dr 4 S e+ 5

Substituons les valeurs déja c1tees des dérivées partielles et de n,; nous par-
venons a l’equatnon

(ar:r) drde dx + a;’rdrdqo dx + aaT(';r dr dp dx — vedrdp dx + v rdrdpdx = 0

ou

d99 nsdp +vdrdasde = 0.

1 a(rvy) Brx, 1 ory s . .
il _f_-T i —;—{-r_O. ‘ (2)

ryr or

Fig. 1. Fig. 2.

La somme des composantes dans la direction perpendiculaire aux deux di-
rections précédentes donne enfin

d
(] — 1) cos—z"'Z 4 (#y +1) sin 2 ‘p e txg tis + tis — los + Bdrdsde = 0.

On en déduit comme auparavant

0 txs 0 bis

?da%dwwvdw—d +3 df+§d’d3d”—0

et de 1a
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% drdgdx + 74.d O(”’S) drdpds + 8rdrdpdx = 0.
Parce que l'on a .
P - o(re,s) 01,5 +
. . rs — ©“sr or -7 Trs)
on obtient I’équation
: 1 &, z,s 6'[,5 6sz
r o +2 . T (3)

Considérons maintenant la deformatlon de I’élément. On obtient les dila-
tations et les glissements dans les coordonnées cylindriques, en considérant les
sommets a (x, 7, ¢) et ¢ (x 4 dx, r + dr, ¢ + do) de PPélément (fig. 2)
Pour la diagonale ac” = du on a

du? = dr? - (rde)? + dx2.
La déformation change toutes les valeurs des quantités tres petites. La relation
pour les variations des valeurs se deduxt de la derniere équation, en différenciant
et substituant le signe 4 a d:

du-Adu = dr- ddr + ra’qn(d‘r d(p+ r-dde) + dx - Adx.
Désignons Ax == £, Ar == ¢ et par ¢ le changement de P'arc s = rp; alors

A(pz%. On a

Ads=ddx=ds =" ar +¥d + 2 ax, Adr—dAr_dg_gedr+ged +88,

do ¢ do

" ﬁdr, dﬂ'-——a—rdr"'-'and(p-’-a—xdx.

La variation 4 du peut étre exprimée a 1’aide de la dilatation relative £ dans la
direction ac’:

Adgv—ddq)-—d( )

ddu = idu.
En substituant dans ’équation du. 4du on obtient:
/1du2—_—drdg+rd<p(gdqo+da—%dr)+dxd§,
d’oi
v e At L dp() de o dy s ot
=wa Tt w\s m Y a g
La droite ac’ forme avec les normales aux surfaces, données par les

équations x = const. (plan perpendiculaire a X), = const. (surface cylindrique)
et ¢ == const. (plan radial), les angles a, g, y, pour lesquels on a

ﬂC—COSoe ir—cos;f? —S—cos
du odu " du T 7

En remplacant dg, do, df par leurs valeurs, développées ‘par rapport aux dé-
rivées des coordonnées, dans I’équation de 2, on trouve

d 0 0 ;
g;( de_l__gg_!_ edy dy’

oxdu ' ordu 6tpdu)+ Qdu2+

de[ 1 (00ds  dodr | Godv)| o dr) | du(0ds | 2tdr , 02dv)
du oxdn * ordu  Jpdu du\dxduy  drdu  op du

E r’du
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On en déduit facilement

9¢ . (ae
/1_0 cos2a+ cos 4+ — (g+ )cos ¥ -+ o +a)cosacosﬂ+

1 0& ) 190 a)
+(7——+ COSaCOS;/-I-(ra(p—I-g;—? cosfcosy.
Le coefficient?) de costa (cos?f, cos?y) représente la dilatation relative
A (45 A5) et le coefficient de cosa cos f (cosa cosy, cos B cosy) le glissement
Yer (Vasy 7rs). On a alors:

0 & do 1 ( aa)
l = U— },,. = — = —1;

* T oy’ o e+ 5l @)
0t o 1 o0& 1o 00 o '

erza—r‘}'g;c; 7xs——r‘6(p+ax 7’3:707,5-{'?77—7'

Il s’agit ici du probléme général d’élasticité en espace, pour lequel on a les
relations
1 ¥ ¥y 1 y + Yy l Ve vV,
b= g = 20) =g () =gl

E est le module d’élasticité, m le coefficient de Poisson. De 12 on déduit les
équations:

Em Em
= D) )[(m a2t hly 3= o et (1) 2,4, ] o
Em
N . IS 1 . % | 1)1
= ma)mog L=t Hm-1 k). J
Les tensions 7 et les glissements y sont liés simplement par les relations
y ny,, Txs — G}’xS, Trs — G}'rs- (6)

En substituant 4, y des équations (4) par leur valeur dans les relations (5), (6),
on obtient

_Em B te 1, 00

rzw’f—;’;:ﬁ +n-% 1(e+j;)] o
5:(7;71531—2) gi T ]("Jréa_;)]’
_”" G(gi*'ax) ’“:G(T%“’"ax) T’szc(%%"’"_*) ®)

Introduisons les valeurs des tensions dans les équations d’équilibre (1),
(2), (3). Déduisons d’abord des relations (7), (8) les dérivées

vy Em [ ot&  d%e (cg d%o )]

ox ~ (m+1)(m-2) (m—1)8x2+0r6x+ +c7<p6x

0Ty _ OTrx . (695 0* ) OTsy _ O Tys _ (l_ao_g ola ).
or ~ or = ar2+arax’ dp ~ 0o = Uiz a<p2+a<pax !

2} V. le livre cité sous 1, p. 54.
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v, Em [& £ %0 1 ( 0o 1 ( 80)]
F T ma)m-lara T VRt S +a_rﬁq$)“ﬁ ¢t el

aTxr__ : (625 ) a'rsr__ OT;'S-_ (1 62 820- . 1 60‘)
8xh00rax+ax2’ ﬁqoﬂacp_G r 0¢? +m$__7@ |

d_  Em [0 e - 1( +£)]

dp  (m+1y(m-2)Lépox ' orop r

_&r,s__G(l 6%¢ 1 99 &% 1 4¢ o), 8’5;3__0(1 ¢*& | &F U)

ar — “\rérég rlop sl reér ) ox r O ox

En substituant ces valeurs et le module de glissement G = F — XCTEE m 1) dans
les équations (1), (2), (3), on parvient pour les deformatlons 0, o £ aux
équations différentielles

[( gxé ar8x+ ] ( T _o—(p—d_x):l ™

§ 0% 108 1dg 10 1 &% ) 2(m+1)(m-2) _
+{m= 2)(ar~ orox  r or rox r?dg? 7 @ ox Em =0, @
o2& 0’¢ m-1d¢ m— 1( oa ) a%'l
2[0rax+(m 1)ar2+ r or re r or o
0%¢ 8% 1 é% 1 o0%*c 1 60) 2(m+1)(m- 2)
-2 Tl l ——
+ (m )(6r6x oxt e 6¢2+ Férop r*oe Em =0, [0

2 [ o%¢ 6% m-—1 (69 : 626)]
r [oqaax+0raqo * r 8rp+6rp‘" +
1/1 ag do 0) 1 6% d% 1 ¢%¢ 026] 2(m+1)(m-2) _
+(m 2)[ ( 699 or r/ rordp or rawax+ax2, Em =0 {11)
Les équations (9), (10), (11) déterminent en général les composantes de
la déformation g, o, & desquelles on calcule les tensions v, v d’aprés les
équations (5), (6). Pour six composantes des tensions on a seulement trois
composantes de déformation comme inconnues.

' La solution consisterait maintenant dans U'intégration des équations diffé-
rentielles (9), (10), (11). Les constantes et les fonctions d’intégration sont
déterminées par les conditions de surface et les conditions aux appuis.

Appliquons cette méthode générale dans quelques cas particuliers.

1. Enveloppe cylindrique circulaire épaisse,

illimitée dans le sens de ’axe et sollicitée par des pressions radiales uniformes
a l'intérieur et & 'extérieur (fig. 3). Elle subit une déformation d’apreés la loi
de similitude. Chaque plan perpendiculaire i ’axe X de ’enveloppe est un
plan de symétrie de ’enveloppe et des forces extérieures; c’est donc un plan
principal. De méme, chaque plan radial est aussi un plan principal. Enfin les
surfaces cylindriques a axe X sont des surfaces principales. Dans les trois, il
n’y a ni glissement ni tension tangentielle, par conséquent

Vex = Prs = yse = 0, Tps = Tpy = Tse = 0.

Si Yon prend en un endroit quelconque une partie de la méme longueur,
entre deux plans perpendiculaires a 'axe X, cette partie se trouve partout



Théorie exacte des enveloppes cylindriques épaisses 137

dans les mémes conditions par rapport & 'enveloppe illimitée. Alors toutes
les composantes des déformations et des tensions sont indépendantes de ..
Ceci est vrai aussi pour ¢, car il n’y a pas de différence entre divers plans
radiaux, en ce qui concerne les tensions et les déformations. Par suite, toutes
les dérivées partielles par rapport a x et ¢ disparaissent et il reste dans les
équations seulement les dérivées par rapport a r.

Des équations (7), on obtient ici
. Em [ de 3] . Em [69 9]
"= i@l " Ve T T iy moyle, T ] (12
En négligeant le poids propre (r = 0), ’équation (10) se simplifie en
‘ 6% 1 60 o _
ar T ror

Les équations (9), (11) se réduisent en relations semblables pour &, o, dont
on n’a pas besoin.

En substituant dans ’équation (12), on obtient
_.__ Em [ - 9] _ _E_”i_[ _. 9] |
V, = W-—-—m mCl (m'—2) 72 y Ve &= (m+1)(m_2) mC1+(m 2) 72 3 (13)

Pour déterminer les constantes d’intégration C,, C,, appliquons les con-
ditions de surface. A la surface intérieure, il y a une pression radiale uniforme

p, et alors pour r = r, la tension v, = — p,. A la surface extérieure, oit
¢ = rs, la tension devient v, = — p,, parce qu’il y a ici une pression radiale
uniforme p,. Pour » = r, on obtient

Em

vy = (_m(—m——Z)[mCl_h(m_z)%] = —Pu
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et pour r = r,
Em [ CZ] _
= ) w2 = =
En résolvant les deux derniéres équations par rapport 2 C, et C,, on trouve

C, = (m+1) (m— 2) Prri—Pari C _m+1 (pr—pa)rirs
- Em? ri=—r: ¥ = Em ri—r?

Les formules (13) donnent maintenant, en y substituant C, et C,,

(Pl“l’z)"f"g

_ pxﬁ“ﬂz”%___(ﬁx“lh)"f’% v — plr,z——p2r2+ (14)
ri—ri (ri-ryrr > 7° ri—r} (ri—rire’

v, =

On est parvenu aux résultats connus, que 'on obtient usuellement de deux
équations différentielles pour les tensions v,, v,, La déformation devient ici

1
Q—Clr+ ‘F”?”:“(j;_T)[(m 2)(pyri—periyr+m(p,—ps)

rir;

) )

2. Enveloppe cylindrique circulaire épaisse d'un réservoir

A axe vertical X (fig. 4), sollicitée par des pressions radiales uniformément ré-
parties sur le pourtour & lintérieur et a 'extérieur et variables dans le sens
de I'axe X. Elle se déforme de la méme maniére dans le sens de tous les
rayons. Le profil horizontal circulaire du réservoir reste le méme apres la dé- .
formation. Chaque plan radial est un plan de symétrie de Penveloppe et des
forces extérieures; il est donc plan principal, oit il n’y a pas de tensions tan-
gentielles: ¢, = 1,, = 0. Ensuite, il n’y a pas de glissements dans les plans
radiaux: y,, = y,. = 0. Tous les plans radiaux se comportent de la méme fagon;
il n’y a donc pas de dépendance de I'angle ¢ et toutes les dérivées partielles
par rapport & ¢ disparaissent. En négligeant aussi le poids propre, on obtient
des équations (9) et (10)

0%p +mc79

2(m- 1) +( _2) ordx | r dx

2 0& _
Sm =0,  (16)

8r~ ¥

62& m-1dp m-1

%0 o%e _

are m—-Z)a—E—l—fl e *a—r'— PO Q—O. (17)
L’équation (11) fut déduite de I’équation (3) dont tous les membres disparais-
sent ici.

En déterminant o et £, on aurait une solution compléte pour le cas donné,
car les tensions normales viennent des relations (7), en supprimant les dérivées
par rapport a ¢:

___Em [, ok 0e.0)  __Em Jo& . poe.e
1’x—(erl)(m—Z)[(”z ])6x+ar+r] 1r_(m+1)(m—2)[0x+(m ])ar+r]’]

_ Em [65 _g] J
s = i) =) lax T ar Pt (=) )
et 'unique tension tangentielle est donnee par l’equatlon (8)

- . ~[9f

(18)



Théorie exacte des enveloppes cylindriques épaisses 1390

Des équations (18) on peut calculer

85 — ¥, — Vs Yy

= Em (202)

0 My, — vg— vy

o mun, oo
— VMg — v,

) (20¢)

Ces formules donnent, comme il résulte des équations (4), les dilatations re-
latives

0¢ 9¢ _ 0

5‘;; Z’r 67 l.s' = T

On obtient les mémes valeurs des dilatations en partant directement des tensions.
Il y a plusieurs méthodes pour résoudre le cas donné,

a) Enpartant des déformations g, £ on peut déduire de (16),
(17) deux équations dont chacune contient seulement une inconnue 3%).

Eliminons d’abord des deux équations £ Dérivons la premiére par rapport
aretux:

T s

0L& (1 o3¢ 1 625) d'e
2(m—1)6rc7x3 + (- )6 0x + (m-2) r ortox  riorox T mar2 0x2 +

1 ¢% 1 &29) _ .
+’"(? raet riget) = O ()

L’équation (17) donne
0%¢ ____zm—l 0’¢  m-2 0%
oréx m 6r2 m 0x®
en dérivant par rapport a 7, on obtient
3 3 3 o 2 2
0°¢ 2ml&g m-2 3¢ o 1(1_69 169)+2m 1(1 oe 9)

m—1 gp m-1 ¢
—4 mr —8—1'-{_2 m re’

2

Py

orfox m or* m 6r6x2 m \r ort rior m \rtgr rd
0tE _gm- -1 o*¢ m-2 o%¢ m-—l(l 0%e 2 d%¢ g_gg)_!_
ortax m ort m oértéx: T m \r or® r2or: rior
m~ 1(1029 4 do g)

| t 2 et Y
et en dérivant deux fois par rapport a x

0*6 _ ,m-1 d*¢ m-20%% ,m-1 &% +2m—1£7_2_g

oréx® T m ortex® m oxt mr dréxt’ T omrt 9x*
En introduisant toutes les dérivées de & dans (16’), on peut calculer
4 4 3 3 o2 3 .
dto og+09 2 0% 2 8% 3 o% _;2_09+§_o_g_~§o:0. 1)

ér“ ortax? axt  r ar® r drox? r2ar: r2éxt r3or rtv |
Pour éliminer o de (16) et (17), dérivons (17) par rapport a ¢ et multi-

plions par % t

3) V. aussi A. Féppl-L. Fippl, ,Drang und Zwang, II (1920), p. 167.
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2 3 Y ')3 _ 3 — 2 —
m? &3¢ +2(m Dm ¢ (m 2)m8_g+2(£ ym & Q__z(m )m do

= =0.
r orox® ro ortdx ro ox® 2 orox ri  ox
Dérivons ensuite (17) par rapport a x et » et multiplions par 7, pour obtenir
o4& oto dte (m=1}m &%
2 ey
™ et 2m =) mas Dt Gy
(m 1)m o%e 4(’"“1)’”@_0
o or 6x rioox
En dérivant ( 16) deux fois par rapport 4 x et en multipliant par (m —2),on a
(m-2): 9% m(m~2) 0%
2 (m-1)(m~ 2) ( 2)2A ‘6x2+ T aragE T m{m—2) — =

a ax3 rooox®
Retranchons de la derniere équation les deux précédentes et divisons par
2 (m —'1); nous aurons
o gtE 2 9% dte .m % m 8¢ moe
(m=2) c’)x‘*_2 ortoxt r orox® " ardox 2 ortdx rtorox r3ox
Dérivons (16).par rapport a » et divisons par r:
2m—l 03¢ L m=2 203§+m 2(1§2_§_,Lf)_5) m &% _(1 0% 1 89)_
r orox: r or® r \rort r2o r oriéx r
Dérivons enfin (16) deux fois par rapport a r:

o1& 04 (1 0% 2 %% 2 a&) oo
2(m-1) 3 oangr( 2)ar4+(m—2) rar rrart ror T e ox
1 ¢% 2 @29 2 69)
+m(7 ortéx rorox rdox s

Faisant la somme des trois derniéres équations, nous pouvons calculer:

o0& i3 gt 2 6% @2 @% 1 028 1 ¢é
8r4+ or2ax2+

roréx rtéx

+

it rar T T e Ran T =0 @2

On peut simplifier les équations (21), (22), en utilisant "opérateur de
Laplace dont la valeur en coordonnées cylindriques est

ok 1 ¢ 02
2 [p— -
Vi= 8r2+ ror ' gxt’

Alors ‘ :
1 ¢ 02)(62 1 ¢ 62)
4. T72V\72 — 2 L . T g
Vi=VEV (6r2+ 7 ar+6x2 &r2+ r 6r+ax2
ot - ot 2 g3 2 03 1 92 1 0
_8r4+26r‘36x2+6x4+rm+76rax-—ﬁar2+r~_36—r'

La comparaison montre que ’on peut écrire I’équation (21) plus simplement

.2 4 0o 3 _ /
T 2 ks, P p—

Vie— 5 Viet o o— 20 =0. 1)

et Péquation (22)

T4E = 0. (22")
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=

En dérivant I’équation (22) par rapport a r, on obtient pour j—i une

équation de la méme forme que I’équation (21) pour ¢. Parce que la dernicre
"2 N4

contient seulement a;xg et % alors g peut étre égal a %f_ multiplié par une

fonction linéaire de x.

Les équations (21’) et (22) déterminent en général o et ¢ en fonctions
de » et x. Les membres des expressions générales pour g, & qui ne conviennent
pas au cas donné, s’éliminent par les équations (16) et (17) qui représentent
des conditions plus spéciales. Les relations (18) et (19) donnent alors les
tensions v,, vy, vy, . Les conditions de surface déterminent les constantes et
les fonctions d’intégration. S’il n’y a pas de tensions au plan supérieur hori-
zontal de ’enveloppe, on doit pour x = 0 avoir v, = v, = v, = 7 = 0, La
surface cylindrique intérieure (extérieure) étant sollicitée par une pression ra-
diale, en général variable par rapport a la hauteur, p, (p;), on a v, = — py,
T =0(,=—py1=0) pourr = r, (r =ry).

b) On peut partir des tensions. Les équations d’équilibre (1)
et (2) prennent ici la forme

0v 1 0lrr) _
dx ' r oér (23)
1 o(rvy) v OT
7 or —rtm=0 (24)
De 'équation (20c¢) on calcule
de _ 1 [ o(ren) | ,, 00v9) 0(%)].
or  Em ar or or I’
en comparant cette valeur avec (20b), on déduit
myp— Vg — Vx = L +m(r%+”5)_"l’aqyx‘—1’x
or ar ) aor
ou
— B 8% _ 0_)
(m+1) (r—29) = ’("’ gr ar  ar)
L’équation (24) donne
R, i, SR .
Ve s — or ax
et Pintroduction de cette valeur dans I’équation précédente
vy Gvs OV ot
— =0. 25
or Y T Trt g =0 (23)

On peut éliminer v,, v, des équations (23), (24), (25). En dérivant la dernicre
par rapport 3 x, on obtient

a2yr 021’3 021&
m—— ~
or0x orcéx Orox

ab]
+(m+1)g—x§:0

De I’équation (23) on calcule, en dérivant par rappdrt ar,
%y, ¥ 1 ér 0%

orox ~ r? rér ord
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et I’équation (24) donne, en dérivant par rapport & x et s,
A*vs 3 0%v, 3t 0%t
grox " oree T 2 or éx + " oroxt T oxt’

L’introduction des deux derniéres valeurs dans I’équation précédente mene a
la relation:

3 ng 3 9 2
63y, 0% v, 9’7 & ixz.l_—l—a;[—i—o- (20)
G

a-
FrEEPiR L A P U F G rar i

En choisissant par ex. la tension t, on peut calculer v, de I’équation (23),
v, de (26) et v; de (24). Pour déterminer les constantes et les fonctions
d’intégration, on a les conditions de surface. On ne peut pas choisir ¢ tout-a-
fait arbitrairement, car v doit satisfaire ’équation (19), si ’on y introduit, apres
avoir déterminé toutes les tensions, les déformations o et &£ données par les re-
lations (20).

On peut déduire une équation contenant la tension z seule, en éliminant
les autres inconnues des équations (19), (20), (23), (25) et (26). En dérivant
par rapport a r et x, ’équation (19) donne

d*r ( o%¢ 83 )

orox ~ T \orféx ' orox®/’

De I’équation (20a) on calcule, en dérivant deux fois par rapport i »,
08¢ 1 ( 0%y, 3% 62vx)

mr

orfox  Em\  @rr _ orr " "ap

et de "équation (20b), en dérivant deux fois par rapport a x,
e 1 ( v, s 62vx)
orox®:  Em 0x? ox® ox2/’

En introduisant les valeurs des deux derniéres relations dans 1’équation précé-

. G 1 .
= bt
dente et en substituant Em ACEDR on obtient |
o't 0*v,  8%ws 0%, v, % ERTR
2 T T ar T an Ten TMer Tar T o
En dérivant cette équation par rapport a r et x, on a
pd oty oty oty oty oty oty
) 0T _ r _ s x r s _ -y
(m+1)6r2 ox: oriox  ord ox Mot orox3 orox® orox® @)
L’équation (25) peut s’écrire
Cev 9w Law mtlor
. . or or m or m ox
En dérivant par rapport 2 x et deux fois par rapport & , on obtient
otv, 0t _l otv, m+1 o'r (b)
or3ox © ortdx  m Ordox m  or2ox®
et en dérivant la méme équation trois fois par rapport a x,
o, 04w 1 o0tw, m41 f?i?j —o0. ©)

0rox® T orox® m orox® m  Oxt
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La somme des équations (a), (b) et (c) donne aprés une transformation facile

N4 ~4 4 o § 4
(m 1) a(;;gx_ (@m=1) ard2 gxg T aia’;crs - aorav;?' * 31; =0. (@
On peut écrire I’équation (23) |
OV 0T T
ox  _ar r
et on obtient, en dérivant,
otv, = 6*t 1 9%¢z 3 6%r 6or 6
rex . or rer TR T pRe T A
Ot ot _l ot 1 9%z
orox® — ortex®  r arax® | ptax?®
En substituant ces dérivées de v, dans (d), on trouve
otv, ottt m-1¢3¢c 1 @3«
dram = (-3 +2e- ) g — T P R L —
m=-1¢6*t 1 0% m—l ot m-1
—3 = ort r26x3+ rs 5_6775
et en dérivant par rapport a r,
5vr 5’5 5 5 ir 3
g = 3+ 2 g e (4 5~ 5 )

1 ¢*z 1 o3z ) (1 o3t 2 0% ) 1 6%t
(F 5t — 7 aems) 305 55 — 5 ) + 7o s —
2 0%t "1 0%z 3 61) (1 ot 4 )
l‘3 ox 2+6( 1)(ﬁﬁ_?i_a_; —6(m—1) 46" r5’[ .

L’équation (26), dérivée deux fois par rapport a x, donne

0% v, oty | 0%t ott 04'5 1 é%¢. 1 027
mr o T3 gt M e Y e TP ) Rt e e T

, : 5 , . 64v, 0%, .
En introduisant ici les valeurs déterminées de m et m — , on parvient

: , or ox?® or? gx3’
A une équation contenant seulement = que ’on peut modifier en:
ot 0%t 4 ¢tz 6 O0*t 2¢0tt 1 4%
B R PP ar8x4+ reR T raree T o e

p A0 Bie U 6 (27)

La valeur la plus simple de 7, satisfaisant cette équation, est = = 0. Dé-
duisons une solution du probleme de cette valeur. : . :

L!
6x
pendant de x. Parce que pour x = 0 on doit avoir v, = 0, on a partout 2= 0L
L’équation (26) se simplifie en : '
0%, otv,

or? éx orox

~

= 0, ce qui prouve que v, est indé-

mr
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2 ~8 -
jr ;; =.y, on a aorg ’é’ g—-]; et 'on peut écrire la derniére équation

sous la forme

En posant

9y 3 _
ar+ ry_O.

L’intégrale générale de cette équation est

fl (x)

r3’

fi (x) étant une fonction de x, cependant inconnue. On a alors
02 Yy . fl (x)
orox
En intégrant par rapport a », on obtient
av,

fo( )_ fl()

et en intégrant de nouveau par rapport a x,

=1 )dx—;—jfl(x)dx

On devrait ajouter encore une fonction de r inconnue, Mais pour x = 0 on a
= 0; alors cette fonction disparait et

Jhix)dx = Xy, Thx)de = X,

sont des fonctions de x qui ne contiennent pas de membres absolus. Avec cette
notation, on peut écrire
: X

278

Les fonctions X,, X, sont déterminées par les conditions a la surface inté-
rieure et extérieure de ’enveloppe. Supposons a l’intérieur du réservoir un
liquide du poids spécifique y, dont le niveau coincide avec le plan supérieur de
’enveloppe, ce qui donne a la profondeur x (fig. 4) une pression

-yr == X2 —

D=y X
Pour » = », on doit avoir v, = — p,; cela mene a la condition
Xy
9 — = —YX
2 r1 4

Si la surface extérieure est sans pressxon on a alors v, = 0 pour r=r, et il
s’ensuit que:

¢ AL
g g —
273

La résolution des deux dernieres équations donne

2rirs r}

X, = 5— 7% Ky = %.
! ri—rfy ’ 2 r”—rfy
On a alors la tension
_ rrix 7
Vr—rg_r;, l—r,_, . (28)
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L’équation (24) donne

Vo = F

o, ot
ar Tt oy

En introduisant « = 0, v, de la formule (28) et sa dérivée
0ve _ yFix 273
or  ri—rk 3’

';; _ _yrix (1-+ ’3). | (29)

ri—r} r?

on obtient

De I’équation (20c) on calcule la déformation
r Y

= m[(m—l)r-{—(m—}-l)—?]. (30)

En dérivant cette équation par rapport a #, on parvient au méme résultat que
celui de 'équation (20b). Enfin la relation (20a) donne d’abord

(—vr+mys—w) =

0tk 1 . 2yrix
ax Ez(_ vr—‘vs tmr) =— Em(ri—r?)
et ensuite par intégration

yrix

5:—m+ﬂr):

si ’on désigne par f (r) une fonction de la variable » seule. Pour la déterminer,
on peut appliquer la condition donnée pour ¢ par 'équation (19). Elle donne ici .
0§  do _
or ' ax 0
et en substituant &:

T FY T S S A
) === Fmta = Ln—Dr+ (1 2.
En intégrant, on obtient

f() :_E#Tg)[(m—l)%-#(m—l-l)r%lnr]+a;

a est une constante d’intégration. Alors

Y (| LAy R | PP PR €))
Em(ri—r}) 2 g ’

I1 reste une seule constante ¢ que 1’on peut déterminer de telle sorte qu’une
seule condition i 'appui de Uenveloppe soit satisfaite: en un point du plan
inférieur, entre ’enveloppe et le fond du réservoir, la déformation & peut &tre
nulle. Autrement, ce cas n’est possible que si Penveloppe est librement appuyée
sur le fond et peut glisser dans la direction transversale. Les tensions tangen-
tielles dans I'enveloppe sont alors éliminées et la sollicitation de ’enveloppe
est la méme que pour une enveloppe cylindrique épaisse illimitée, sollicitée par
une pression radiale intérieure qui croit ici proportionnellement a la profondeur
x. La solution de ce cas fut donnée pour la premiére fois par M. Nicholas®).

&=

) V. larticle ,Equilibre d’une couche cylindrique ... aux An-
nales des Ponts et Chaussées 1932—II, p. 411.

Abhandlungen IV 10
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c) Enfin on peut exprimer toutes les inconnues par une
seule fonction @. Pour les tensions normales on a?®) les relations:

a1, a‘lcb)
Cr=gleve=%5), om

o (1 .- 1 ¢0
”S"aTc(E'V_ (D, r 8r)’ (32b)

Jo-2)o-22
= 8x[ 2 vEe 0 x2
On tire de la formule (32a)

av, . o (1. ro— 29
Zv ®?— or

" (32¢)

; . 8r  érox
et de (32a) et (32b)

_ a(l oW aﬂ«p)

ox\r or ore
L’équation (24) donne
or _ _ 9w wows & ( Vex') 6__)+li(<92_‘1’ _la_"’).
ox or ¥ or dx ort] 1 rox\ar? ror)’
en intégrant par rapport a x, on détermine
oK) 1 o2 1 00
 emi(ime-gfne L
En dérivant la valeur cormue'de Popérateur /2 on a -
ivzq)___i(a?“’ 10 & a( 2«1») é (wa)) 1820 1380
or or\ert ' r or oxt) = ort) Tor\ext) T r or? rEor
La formule de la tension z peut étre écrite simplement
‘ . e ,
S (T e

En introduisant v,, = des relations (32c¢), (33) dans l’equatlon (23), on
obtient pour @ la condition

[( “ —)W %zxc;')]Jr i aar[(l‘“)vzm‘ %zxm] aa;z[(z”)vmﬂ :x(‘f] =0

ou.

1 ) . ( 2 19 62)62(1) _
| (1—m) Vet o —(5 tra T e T
Parce qu’il y a
0,14 ) 8t O \
' _ (ﬁr-+75—r+ (‘)x2 axz(v ),
la condition pour @ se réduit a
o Vi = 0. » (43)

. La substitution des valeurs de v,, v, v, des relations (32) dans ’équation
(20c) donne

5) V. le livre cité sous 1, p. 276.
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e __, - ___( 2 @2‘1’) i( : _ﬁa_“j)
Emr »1 +’n1’3 'Vx— v +ax v ('D r ar

-l Lo,

_ i A am)
Eme=—r (V0 Ll + e —n G

En dérivant par rapport a 7, on peut se persuader que la relation (20 b) donne

d’oit Pon tire
c

s . co . . . . :
e méme résultat pour 5, o€ qui confirme la justesse du choix des expressions

pour.toutes les tensions v. En remplacant {72 @ dans la dermere équation par
sa valeur explicite, on obtient
)62’(1) . TTm+1 0%

arex M 0T T TEm erex (35)

L’équation (20a) donne

ok _ a(l \ am) a(l . 1~am) a[ LY
Eme=—vrtmr=—r (720~ o ) 0SS @m-) Y Cl)—max

i o

_6x[(2m1 v®+3"2+r6r YL —a 2 1-——va)+
= s i( 82 )
_8x[2(m ) ] (m +l a T

L’intégration par rapport a x donne

e = (etd (25 *ﬁ
ou
=T ww~§d o

La relation (19) pour = est un contréle de I’exactitude de notre solution.
En portant dans (19) les valeurs de o et & données par les équations (33),

Em

(30) et G T4 1)
ce qui est une nouvelle preuve de I'exactitude des relations (32) pour toutes
les tensions v.

L’équation (34) détermine en général la fonction @. Pour les composantes
o et £ de la déformation, données par les relations (35), (36), on a aussi les
équations (21), (22) qui représentent des conditions plus spéciales. Les
équations (16), (17) qui sont les conditions les plus spéciales, peuvent servir
a éliminer des membres de la fonction @ qui ne conviennent pas au cas donné,

Cherchons une solution de Ia fonction @, donnée par I’équation (34), de

on transforme aisément le résultat a la forme (33),

la forme
O = Ry 4 X + Ry X,, : (37)
oit Ry, R, (Xl, X,) est une fonction de la variable r (x) seule. On a ensulte
[ 5 G D n "
TO—RPLRPX, LD =X L R X,

I
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03 ¢ g oL
or ox? Ry X2, ore ox?

En substituant les dérivées dans I’expression explicite de 7+ @, on obtient apres
une transformation

= R; X;.

Jto = RP+ —R'{' R,+ R1+X“’

2 .. . , TN o

+ (R‘24’+7R2 —;R2+;R2) X, + Ry X§4’+2(R2+7R=) X;=0. (38)

La dernitre équation peut étre satisfaite, si ’on pose X = 0, X} = const.

= 2ay, X = const. = 24 a,, R, + %R,f = const. = 4a, . 'En dérivant la
derniere équation, nous aurons successivement '

RY + L Ri— 3R = 0.
r r

1 it 2 " 2 ’
R+ —RY—SRi+ SR =0.
r Fe ot
Ajoutons la derniére équation & ’équation précédente, multipliée par%;

2 . 1 ., 1,

R+ SRV — —Ri+ R = 0.

| r r r
En introduisant les valeurs déterminées dans I’équation (38), nous trouvons

2 . 1 ., 1, . 5

R + 2R — —Ri + Ry + 244+ 164,¢; = 0.
Par l’intégration de cette équation, on parvient 4 I’intégrale générale
3a2 + 2a1
T8

L’intégrale de I’équation X{? = 24 a, est

X, = @px* + agx® + a; x* + agx

On peut supprimer les membres absolus en R;, X; parce que D paralt dans
toutes les formules seulement en dérivations. De I’équation X; = 24, il s’en-
suit par intégration

a.
Srt g rttariinr4-agnr.

R1:

X, =a,x*+a,x
et'l’intégration de l’équafibn R, + L R; = 44, donne en général

Rz._a3r~+aslnr :
Encore ici on peut supprimer les membres absolus, car ils donneraient les
membres déja contenus en R;, X,. :
En introduisant toutes les fonctions déterminées dans la formule (37), on
obtient une solution de I’équation (34) sous forme de la fonction

3a,+2a,a

a; : .
O, =- 5 ‘rira,rttasrtinr+a,Inrtapxtagx®+a; x +agx +

+(e;r® +a;Inr) (e, x? + agx)
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ou
O, = al ryarita,rrlar+adnr+a,xt+agx® +a;x® +agx+a,rP xt +
tagr’x+apx2inr+ag,xine, (39)
On peut satisfaire I’équation (38) aussi, en posant :

| 2 .01, 1.,
X = const. = 24q;, R+ TRU—GR +FR1—|-X§4):

ce qui donne la valeur ci-dessus de X, et de R,, sans le membre a, a;. Il reste
alors dans ’équation (38) seulement les membres contenant R,, X, et leurs
dérivations. En divisant par Xz, on obtient

2 X X
Ré"+7R2 + = R2+ LR+ R, X, +2(R2+ Rz) =0. (40)

On peut satisfaire cette dermere équation, en posant

X
ﬁ = const. = (110:)2»;‘

Pintégrale générale est )
X2 — b ener L g, e nex,
n désignant un nombre entier positif et a une constante. Ensulte on a

X(4)
& = (o)t

et Péquation (40) donne
@) 2 m ) U B g 1 : -
R3 +_‘R2 __9R2+—“R2+2 Rz‘l“—Rz (rza)2+R2(fza)4:0. (4])

L’intégrale de cette equatlon est la fonction cylmdrlque de Bessel de ’espece 1
et de Vordre 0¢)
(2cer)? (11 o r)t (nar)®

Ry =Jo(ner)=1— 22 92,42 —-22-'42-62+""’

déterminée par I’équation différentielle

il lhywa=0. @

2 _f- —
La dérivation successive de cette équation donne
&, Va2, 1 d]o gdjo _
drs rodrr T g + (na) =0
df 1 &) 228

drt V oy drt 2 dr +

2‘U‘)+( )dj"—

En ajoutant a la derniére, ’équation précédente multipliée par :; et (42)

multipliée par (7 a)?, on arrive 3 une équation de la forme (41).
L’équation (41) est satisfaite aussi, comme on peut se persuader facilement
de 'équation (42), par la fonction

dfy(ner)  (nar)? (ner)?  (nar)t (nanr)t . '
Re=r— —=—"""> (1“ 2.1 +2-42-6—2-42-62-8+"")’

ce qui est une fonction de Bessel de ’espéce 1 et de 'ordre 1.
§) V. S. Timoshenko, ,Theory of Elasticity“ (1934), p. 353.




150 o T Z. BaZant
La fonction
) W B X2 — fnx enax + gnx e—nax’

satisfait aussi 1’équation (40). En dérivant X, et en introduisant dans
I’équation (40), on obtient apres une transformation 1’équation :

RO+ 2 Re- LR L Rev2(Rin LR (0 4 R npt e erov s genony «

+4HG[R; +l R2' +R2 (Il a)?.] (fﬂ endx__gne-—nai) = 0.

Pour que cette équation soit sahsfalte pour toutes les valeurs de x, on doit
avoir séparément

R, + —;Ré + Re(na)t =0,

: w11 L1, _
RY +2 Ry — SR+ 5 Ri+2(Ri+ - R) (1 + Ry na) = 0.
Les deux équations ont pour intégrale la fonction de Bessel

Ry = Jy(nar).

Les membres Ry, X, sont contenus déja dans la fonction @,. A part cela,
@ est donné par R, X,, ot Pon peut prendre pour 2 un nombre entier positif
quelconque, L’équation (34) est satisfaite aussi par la série

(Dz = 2 (b,-zg’mx + _crz g—llax)jo (fl ar) + 2 (dn erir L og, e—-nax) fiJO_‘(i’:‘a_r) o

+ 2 (fae" + g ) xJo (nar).  (43)

Enfin, les fonctions des deux variables?) de la forme 7
®; = (r* + xz),,+%_%(r2 )R 0 = (2 4 x?) (44)

satisfont aussi I’équation (34), pourvu que » soit un nombre entier positif
quelconque. Les fonctions @; pour n =1 a 4 et &, pour n =1, 2 sont
contenues déja dans @,.
Si 'on posait précédemment
X"
)Tz = — (na)?,
2
on aurait 'intégrale
’ Xy = bysin(nax) + ¢, cos(nax)
et la fonction
Rg = .,0 (illal’)
comme fonction de Bessel d’argument imaginaire. Les autres membres de @,
seraient transformés de la méme fagon. 7
En choisissant pour @ les diverses valeurs obtenues, on arrive aux solutions
pour divers cas.

La fonction @,, donnée par la relation (39), méne a une solulion que ]’on
trouve ainsi: Calculons d’abord

) V. le livre cité sous 1, p. 153,
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&(Dl 3 l ’ 04 P 3 x2 X

7 =4a,r +2a2r+2a3r nr+a3r+7—+2a9rx +2a10rx+a,17+a1,—;

O, ¥° x

oy —1201r2+2a2+2a3lnr+3a3——+2a9x2+2a,0x Ay — — 03—,
7’ r’

62(1)1 9

o =12a,x*+0agx+2a,+2a,r* +2a,, Inr

En substituant ces valeurs, on obtient
PR 1 o, &*@
2 — 1 o 1 1
+4a,0x+12a3x2 + 6agx+2a;+2a,72 +2a,, Inr.

- Des équations (32) et (33) on tire les tensions

2 2 6
YV, = 4[(77;——1)(19+ '_‘as]x+2(_“‘—])a10+';’;a6+2a11’;x2 + %2_2’ .

= 10a,* +4a, +4a;Inrt+da;, +4a,x2 +

2 2 6 X a
5_4[( 1) ] (____1) — e — R N
Vs = a9+ma5x+2 G0+ — 2aur2 P
Ve E[(Zm—l)a9+3(m——1)a5]x+4 Am— L pand

Qo+ 60

Gr

4 2 1
7 == ’E[S(m_l)al'—%]’"“F ‘E[z(m“‘”as—‘au]7-

Appliquons maintenant les conditions aux surfaces. Pour x = 0 on doit
avoir * = 0, d’ot1 il résulte que:

S(m‘-l)al'—ag :0 (a)
et en méme temps
2(m—1)a; —a,; = 0. (8)
Donc il y a partout »
T =0,

Pour x = 0 on doit avoir aussi v, = v, = v, = 0; cela exige

(;‘l—wl>am+—-—ar-—0 a,, =0, 2(2m—1)ay, + 3(m—1)a; = 0.

On en déduit _ : .
a = 0, a,=0.

On a d’autres conditions a la surface intérieure et extérieure de Penve-
loppe. Envisageons une pression radiale intérieure et extérieure, uniformément
repartie au pourtour, mais proportionnelle a la profondeur x (fig. 4), c’est-a-
dire la pression d’un liguide (a l'intérieur) ou de terre (a 'extérieur). Pour

r == r on doit avoir v, = — py= —y, x, ce qui donne la condition
2 a
4(—’;“‘—‘1)09-'——“(15"]‘ “——-'—"—y].
A la surface extérieure, on a r = 12 et v, = — p, = — 9, x, d’olt 'on trouve
2 a
4(—»~1)a —a 2 =,
= 9+ 5+ o Y2

Des deux derniéres équations on obtlent
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Yo— 7Y  Fifs

S R g
1
2 24 P — o ri
4(_—1)a9+_a5_&’;—/§.£. ,- )
m m Ye—F:
Par les valeurs déterminées on trouve déja
] r; ri x “
= R | (]| 45
v l/l rl( =) —nr prmt (45)
r2 r2 X
vs = [71 7 (1 + r—;) — 7 rZ(l + r—;)] prat (40)

On peut déduire une autre condition pour les coefficients a de I’équation
(34) qui donne ici

4 82

Vi = (i

-+

02
+ aoxz) vzd)l - 6401 + 24(15 + 16a9 = 0

1 e
r o

ou
8a1+3a5+2a9_—0 . (9)
On trouve de (8) et (a) ‘ : '
3(m—1N1Yas + Cm—1)a; = 0
et on a par conséquent partout |
P == (),

L’équation () donne A

a4y V2 h rir:
2(m-1)  4(m-1) ri—r
et de (a), (y) (6) on calcule

nri-yeri o 2m=1  prioysrs
32(m+1)(ri-ri)’ T 12(m+1)  A-rt
m-1_ yri-yti

as —=

a, = -

“ETLmi) | A-r
En déterminant encore ,
oty X | Gy
o or ox _4a9rx+2alor+2all7+7)
on trouve par substitution dans la relation (35)
+1 ¥ oLa
—mEm (4(19 rx 4 2a,,r+ 2au7 4 %) =
x ¥ ' ri r§]
—_— - + — 9 ; 47
| = Eapr | DG AR ) o TR @)
'Enfin‘l’équahon (36) donne ici s .
IZ__;; [ ——(lﬁalr +4a2 +4a; lnr+4a3 +4a'9.x2 +4a,,x) +
e —(12a-x‘-’+6a6x+ 2a7+2a9r2+2a“lnr)] =

1
__Em(rhrz)[m 1(711’1 7o#2) PP+ (mA1) (ri—ye) rirzInr+ (o ri- /2r2)x]+a (48)

en résumant les membres absolus dans la notation a.
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Si I’on pose y, = 0, y, = 7, on obtient les relations (45) a (48) pour les
tensions v,, v; et pour les déformations , & les équations (28) a (31) dé-
terminées précédemment.

Résumé.

Pour le calcul des enveloppes cylindriques épaisses, les méthodes approxi-
matives de Ia résistance des matériaux sont parfois insuffisantes, C’est pour
cette raison que auteur de ce rapport applique a ce calcul la théorie de I’élasti-
cité basée sur les équations d’équilibre et de déformation d’un élément infini-
ment petit.

Aprés avoir effectué tout le développement de la théorie générale, 'auteur
Papplique a quelques cas particuliers: 1¢ Cas d’une enveloppe cylindrique cir-
culaire épaisse illimitée dans les sens de l’axe et sollicitée par des pressions
radiales uniformes a Vintérieur et 4 'extérieur. 2° Cas d’une enveloppe cy-
lindrique circulaire épaisse d’un réservoir a axe vertical X, sollicitée par des
pressions radiales uniformément réparties sur le pourtour, & Pintérieur et a
Pextérieur, et variables dans le sens de ’axe X. Ce dernier cas est traité a) en
partant des déformations, b) en partant des tensions et ¢) en exprimant toutes
les inconnues par une seule fonction.

Zusammenfassung.

Die Niherungsmethoden der Festigkeitslehre sind fiir die Berechnung von
dicken zylindrischen Schalen oft ungeniigend. Deshalb wendet der Verfasser
dieses Berichtes darauf die Elastizititstheorie an, die auf den Gleichgewichts-
bedingungen und Verformungen eines unendlich kleinen Teiles beruht.

Nach Entwicklung der allgemeinen Theorie wendet sie der Verfasser auf
einige besondere Fille an:

1. Dicke Kreiszylinderschale, in der Achsenrichtung unbegrenzt, durch innere
und AduBere radiale und gleichmiBig verteilte Drucke beansprucht.

2. Dicke Kreiszylinderschale eines Behilters mit senkrechter Achse X, durch
innere und AuBere radiale und gleichmafBig verteilte Drucke beansprucht,
die in der Richtung X veranderlich sind. Dieser Fall wird behandelt
a) von den Verformungen aus,

b) von den Spannungen aus und

¢) indem alle Unbekannten durch eine einzige Funktion dargestellt werden.

Summary.

The approximative methods based on the theory of the strength of materials
are insufficient for the calculation of thick cylindrical shells. The author there-
fore applies the theory of elasticity, using as basis the deformations and equi-
librium conditions of an infinitely small particle.

After developing the general theory the author applies it to some special
cases:

1. Thick circular cylindrical shells, unlimited in the direction of the axis, sub-
jected to radial, uniformly distributed pressure forces, both internal and
external.
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-2, Thick circular cylindrical shells of a container with vertical axis X, sub-
jected to internal and external, radial, uniformly distributed pressure forces,
but variable in the direction X of the axis. This case ist treated from the
point of view of:

a) the deformations,
b) the stresses,
c) expressing all unknowns in one single function.
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