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DE L'APPLICATION
DES EQUATIONS SIMULTANEES Ä DIFFERENCES FINIES

EN STATIQUE DES CONSTRUCTIONS.

ANWENDUNG DER DIFFERENZENRECHNUNG IN DER BAUSTATIK.

THE APPLICATION OF SIMULTANEOUS EQUATIONS
OF DIFFERENCES IN STATICS.

Prof. Dr. WITOLD WIERZBICKI, Varsovie.

Durant les vingt dernieres annees on peut constater une large application
des equations ä differences finies ä la Solution de nombreux problemes de la
Statique des Constructions. Les equations ä differences finies etaient dejä
etudiees systematiquement par Lagrange et Laplace, mais un developpement
plus fertile de la theorie de ces equations ne se rapporte qu'ä la fin du XIX«me
et au commencement du XX{™ siede. Les publications qui ont paru ä cette
epoque sur les equations ä differences finies considerent ces equations non
seulement au point de vue formel, mais egalement au point de vue de la theorie
generale des fonctions.

A mesure que la theorie des equations ä differences finies se developpe,
les ingenieurs s'y Interessent de plus en plus et appliquent ce nouveau moyen
d'etudes ä de nombreuses questions techniques.

Dans la Statique des Constructions les equations ä differences finies
trouvent leur application pour l'etude de deux groupes de problemes:

Le premier groupe est celui des phenomenes au caractere discontinu, dont
nous tächons de trouver la Solution en formules fermees, pouvant servir ä un
usage immediat.

Le second groupe contient les phenomenes qui en realite sont Continus,
mais que nous considerons comme discontinus, pour pouvoir les resoudre au
moyen d'equations ä differences finies au lieu d'equations differentielles.

Au point de vue formel nous distinguons dans la Statique des Constructions

les cas d'application des equations ä differences finies simples, des
equations ä differences finies partielles et des equations simultanees.

Les publications concernant le premier groupe des problemes mentionnes
ci-dessus sont consacrees pour la plupart ä la theorie des poutres continues,
ä la theorie du flambage, ä la theorie des portiques etc. Tels sont p. ex. les
ouvrages du Prof. Müller-Breslau, du Prof. Bleich, du Prof. Melan etc. Ces
publications sont basees pour la plupart sur la theorie des equations ä

differences finies simples.
Les problemes du second groupe sont etudies principalement dans les

publications du Dr. H. Marcus et du Prof. J. Nielsen, concernant la theorie
de la plaque elastique. Les Solutions approximatives du probleme de la plaque
elastique sont basees dans ces ouvrages sur les equations ä differences finies
partielles.
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Nous appelons equations simultanees ä differences finies un Systeme
d'equations:

®x(x,yx, Ayx, A2yx zx, Azx, A*-zx 0

<M*, Jx, dyx, d2yx zx, Azx, Älzx 0 (1)

oü yx, zx designent des fonctions de la meme variable independante x et A yx,
A zx, A2 yx, A2 zx des differences finies du premier ou du second ordre de
ces fonctions.

Les equations simultanees ä differences finies trouvent quelquefois
application ä certaines solutions des equations simples ou partielles de la Statique
des Constructions.

Dans le present ouvrage nous traiterons plusieurs problemes pratiques
d'application directe des equations simultanees ä differences finies. Nous allons
etudier notamment les poutres ä axe brise, dont l'angle de brisure est constant
ou variable et les poutres continues ä axe brise.

On appelle poutre ä axe brise une poutre dont l'axe longitudinal est une
ligne brisee plane qui est chargee dans la direction perpendiculaire au plan de
cet axe.

Le Schema d'une poutre ä axe brise est represente sur la figure 1.

La poutre On encastree ä l'extremite O est chargee ä l'autre extremite
du poids P. '

i

Soient: [ i

(px l'angle d'inclinaison du plan de la section transversale mene par le noeud x
et normal ä l'axe du panneau x — 1, x par rapport au plan vertical, c'est
ä dire perpendiculaire au plan de l'axe de la poutre.

cpx l'angle d'inclinaison de la section transversale x du panneau x — 1, x par
rapport au plan de la section x — 1 du meme panneau.

cp/ l'angle d'inclinaison du plan de la section transversale x — 1, normal ä l'axe
du panneau x— 1, x par rapport au plan vertical.

0V l'angle de rotation du plan de la section transversale x normal ä l'axe du

panneau x— 1, x par rapport ä cet axe.
©x l'angle de torsion du panneau x — \, x.
vx le deplacement vertical du noeud x par rapport au plan de l'axe de la

poutre.
y°x le deplacement vertical du noeud x par rapport au noeud x — 1.

ß l'angle de brisure de la poutre.

Dans la suite nous allons considerer les angles <px, cpx, cp\, 0V et Qx comme
vecteurs Entre ces vecteurs existent des relations suivantes x):

<px <px-i cos ßx_1 — @x-x sin /Vi + <px (2)

Ox <?,_! sin &_! + ©*_, cos^_i + 9X (3)

cp'x (pK-x cos ,Vi — &x-x sin ,Vi (4)

oü les points x— 1, x, x-\-\ etc. sont des points congruents.
Pour le deplacement vertical d'un noeud nous pouvons donc ecrire la

formule suivante:
in in

vm vx Syj2 + 2 4 <?« (5)

*) W. Wierzbicki: „Sur le calcul des poutres ä axe brise". Memoires et Comptes
Rendus des Travaux de la Societe des Ingenieurs Civils de France 1927, p. 1012.
W. Wierzbicki: „Teorja diwigarövv zafarnan}ch vv planie". Varsovie 1926.
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Supposons d'abord que l'angle de brisure ßx et la longueur lx d'un panneau
de la poutre soient d'une grandeur constante; on a alors:

ßx — ß — const lx l const.

Ceci pose, nous devons considerer les angles <px et Qx comme des fonctions
de la meme variable independante x et les deux equations (2) et (3), comme des
equations simultanees ä differences finies.

Nous tächerons maintenant de remplacer les deux equations (2) et (3)
par une seule equation ä differences finies d'ordre superieur.

n<>

x-l
•»»T Sei

90°i x+l

X*l

,TX-f

nx-1 n-l
--.*

*„,
\30:
XZl't-

\.S0\ ^t~

(6)

(7)

(8)

(9)

7 s'oV ~.%, 7 w?
'% I

Fig. 1. Fig. 2.

II resulte de la premiere des equations mentionnees:

(px+x <px cos ß — ©x sin ß + ^+1
En portant l'expression (3) de 0* dans (6) on a:

<px+1 q>xcosß — <px-x sin2/?— ©*-i cos/?sin/?— 0,sin/? + cpx+1

D'autre part nous resolvons l'equation (2) par rapport ä 6X^1:

0X+1 sin ß — cpx — <px-x cos ß + tpx

En substituant dans l'equation (7) l'expression (8), nous obtiendrons:

<Px+x — 2 fx COS ß + (px-x Qx

oü Qx designe la somme suivante:

Qx q>x+1 — tpx cos ß— 6xsmß (10)

Pour determiner les angles cpx et 0, il est necessaire de considerer chaque

panneau de la poutre ä axe brise, comme une poutre (x — 1), x de portee /,
encastree au point (x — 1) et chargee au point x de la force T Z3 du moment
de flexion /Wx et du moment de torsion 90c*.

D'apres la figure 2 on a:

Mx Phx l [cos ß+ cos 2ß+ + cos (n — \)ß]
Mx — Pkx l[smß + sin 2^+ + sin(n — \) ß]

En introduisant des notations:

/ moment d'inertie de la section transversale de la poutre,
J0 moment d'inertie plane de la meme section,
E module d'elasticite longitudinale,
G module d'elasticite transversale,

(H)

PI
EJ

2f
PI

Wo
2e (12)

Abhandlungen IV 41
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nous exprimons les angles cpx et &x provenant de la deformation du panneau
(x— 1), x par les formules suivantes:

<px fl + 2fhx (13)

Qx -2ekx (14)
Pour simplifier les formules qui suivent, posons: / e, ce qui ne diminue

en rien la generalite du procede concernant les equations simultanees ä
differences finies des poutres ä axe brise. Ceci pose, nous substituons les valeurs
(13) et (14) des angles cpx et ©x dans l'expression (10) et nous obtenons alors:

Qx — a cos x ß + b sin x ß -f c (15)
oü2)

2 // sin ß cos ß

* r^— 06)
sin —

2

2fls\nßsm2n + l
ß

ö -^-2— (17)
sin —

2

c 2//cos2-|- (18)

Ainsi l'equation (9) prend la forme:

<Px+x — 2<pxcosß + <px_1 — acosß + b sinß + c (IQ)
L'equation (19) est donc une equation ä differences finies du second ordre ä
coefficients constants. La Solution de cette equation peut etre representee sous
la forme d'une somme:

95, zl 4- zx (20)

oü z°x designe une certaine Solution singuliere de l'equation (19) et zx la Solution
generale de l'equation:

cpx+l — 2 <px cos ß + g>x+1 =0 (21)
c'est ä dire, de l'equation (19) sans second membre.

Nous allons chercher la Solution z°x sous la forme:

zx Axsinxß + Bxcosxß + C (22)
A, B, C designant des coefficients inconnus.

En substituant dans l'equation (19) la Solution (22), on obtient:

2As\rxßcosxß — 2Bs\nßsmxß-\-ACs\ni^-— acosxß + bsinxß + c (23)

Afin que les deux membres de l'equation (23) soient identiques, il est

necessaire que les coefficients de cosx/? et de sinx/J et le terme 4C sin2— dans

le premier membre de cette equation soient respectivement egaux aux coefficients

de cos x ß et de sin x ß et au terme c dans le second membre. Ainsi on a:

2) W. Wierzbicki: „Zastosowanie röznic skoriczonych do obliczenia diwigaröw zafa-
manych w planie". Warszawa 1930.



De l'application des equations simultanees ä differences finies 643

2/z + 1 2n + 1

flcos—^-ß ßS]n—J^ß
A= -j B

2
C —1LT (24)

sin^- sin-L 2tg2|-
Nous allons maintenant chercher la Solution zx de l'equation (21). On a donc
l'equation caracteristique:

ä2-2äCOs/* + l =0 (25)
Les racines de l'equation precedente ont la forme: •

l cosy + /siny (26)
oü dans le cas considere cos ip cos ß.

On peut alors exprimer la Solution de l'equation (21) sous la forme:

zx A (cos y> + i sin xp)x + B (cos tp - / sin rp)x (27)

ou bien sous la forme:

zx Dj sin x ß + D2 cos x ß (28)

Di et £>2 designant deux constantes arbitraires.
D'apres ce qui precede, on parviendra ä la Solution suivante de l'equation

(19):
_ „ ~ axs'mxß bxcosxb c ,„„.^ Dlsmxß+D%cosxß+^^-^^r + —-j (29)

4sin2J-
2

Pour determiner les constantes D± et D2 nous considererons le panneau 0,1 de
la poutre ä axe brise comme une poutre droite, encastree au point 0 et chargee
au point 1 de la force T P et du moment Mx Phx. On obtiendra alors:

(px (ri 2EJ + -Ej- }

D'autre part, il resulte de la condition meme de l'encastrement de la poutre
0,1, que cpx <p0 0.

Des lors, en faisant dans l'equation (29) successivement x 0 et x — 1

nous aurons:

^=--lLJ D* S" (31)

2tg|- 2tg2|-
Pour n 10 et ß 9° on trouve d'apres les formules (24) et (31):

A fl B 12,70 // C 80,84 // D1=- 6,44 // ß2 - 80,84 //
et cpx — 6,44 flsmxß-- 80,84 // cos * /S 4- //x sin xß -\-

+ 12,70 //x cos xß + 80,84//
d'oü: <pn (pl0 84,40//.

D'apres la formule (29) nous pouvons aussi determiner l'angle <p„ dans
le cas d'une poutre en forme d'arc de cercle dont l'angle au centre est co. Nous

posons alors dans l'expression (29) / r ß et x —- et nous cherchons les

limites des termes particuliers de cette expression.
Apres avoir calcule les angles cpx on calcule les angles cp'x par la formule:

<Px <px — (px (32)
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ce qui resulte de la definition meme des angles <px, cp'x et <px. En tenant compte
de la formule qui precede, nous mettons l'expression (5) sous la forme:

m m m

vm Si'* + 'S«?* — l'Slfx (33)111oü dans le cas considere:

,_P^MxP (34)y*~3EJ + 2EJ (J4)

Le calcul des termes particuliers de la formule (33) se ramene ä l'addition de
series trigonometriques.

Les angles <px et les deplacements vm determines, nous pouvons les ap-
pliquer au calcul des poutres ä axe brise appuyees d'une maniere quelconque,
ce qui a ete demontre dans les ouvrages cites plus haut.

Si l'angle de brisure de la poutre ä axe brise est une fonction de x, nous
aurons de nouveau affaire ä des equations simultanees ä differences finies (2)
et (3).

En procedant de la meme maniere pour une poutre dont l'angle de brisure
est constant, nous remplacons le Systeme de deux equations (2) et (3) du
premier ordre par une seule equation du second ordre. La dite equation prend
la formes):

cpx+x sin'&-i — cpx sin (ßx + ßx_t) + cpx^ sin ßx
(px+x sin /?,_! — <px sin ßx cos ßx^ — 6X sin ßx sin &_i

L'equation (35) est donc une equation ä differences finies dont les coefficients
variables entre les angles cp; sont des fonctions de x.

Pour mettre les coefficients de l'equation (35) sous la forme de fonctions
explicites de x, nous supposons que les angles de brisure ßx soient soumis ä la
regle suivante:

oü q est une constante et oü les valeurs des angles ßx sont assez petites pour
qu'on puisse faire cos/L. 1. Les sin/?A changent donc d'apres une progression
geometrique, c. ä d.:

sin ßx qx sin ß0 (37)
oü ß0 designe l'angle d'inclinaison d'un cöte de l'axe horizontal de la poutre
par rapport ä un certain axe.

En tenant compte de la relation (36), mettons l'equation (35) sous la forme:
(<Px+x -9x-(Px+x) sinßx_t -(<px-cpx_x -cpx) sinßx -Qxsinßxsinßx_x (38)

En designant

on trouve:

oü

yx <px — (px-x — (px (39)

yx+1 sin ßx_Y —yx sin ßx — Öx sin ßx sin &_, (40)

yx+1 — qyx — ©, qx sin ß0 (41)
Supposons que la fonction:

yx F (x)
soit une Solution de l'equation (41).

3) W. Wierzbicki: „Dzwigary za^amane w planie o zmiennym kacie zafamania".
Varsovie, „Przeglad Techniczny", 1931.
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D'apres la relation (39), nous aurons l'equation:
(px — (px-x Vx + F(x) (42)

d'oü on trouvera une expression pour l'angle <px.

Ainsi on a reussi ä remplacer la Solution de l'equation (35) ä differences
finies du second ordre ä coefficients variables par une Solution de deux equations
differentes (41) et (42) du premier ordre ä coefficients constants. Les Solutions
generales de ces equations prennent la forme:

yx 4 + zx (43)

dejä utilisees plus haut (expression 20).
Les Solutions zx des equations privees de seconds membres seront obtenues

respectivement pour (41) et (42) sous la forme:

Zx Cx qx (44)

z2 C2 (45)

d et C2 designant des constantes.
Pour trouver les Solutions particulieres z°x nous devons nous servir dans

ce cas d'approximations, la Solution precise etant la cause de grandes
difficultes. Ces approximations concernent les expressions pour kx et hx qui ont
ici la forme de series suivantes:

kx /[sin ßx + sin (ßx + ßx+1) + + sin (ßx + ßx+1 +.... + ßn-x)\ (46)

hx l [COS ßx + COS (ßx+ßx+i) +.-.. + COS (ßx + ßx+1 + ¦ ¦ ¦ + ßn-x)] (47)

Nous remplacons alors les series (46) et (47), dont l'addition est

impossible, par des courbes d'interpolation:

kx j}Alxi hx j}AiXl (48)
o o

Pour determiner les coefficients At des equations (48) nous construisons
d'abord des diagrammes des fonctions (46) et (47) et nous y trouvons les

points caracteristiques. En egalanf les ordonnees de ces diagrammes aux
ordonnees des courbes (48) on trouvera donc les coefficients cherches. Les

fonctions (46) et (47) ayant la forme rapprochee d'une parabole, on peut se

servir dans ce cas des courbes (48) du second ou du troisieme degre.
On obtiendra alors pour l'angle cpx une Solution du type:

<?x C + Zgxr* (49)

C et r designant des constantes et gx une certaine fonction de x. On calcule
les constantes de l'expression (49) de la meme maniere que dans le cas d'une

poutre dont l'angle de brisure est constant, mais nous ne developperons pas
ici ces calculs.

Une poutre continue ä axe brise est representee sur les figures 3 a et 3 b.

Les appuis de 1 ä n — 1 sont mobiles dans un plan parallele au plan de l'axe
de la poutre, l'appui n est mobile dans une certaine direction parallele au plan
de l'axe, l'appui 0 est immobile.

Par les appuis x — 1 et x menons des sections verticales planes ax _ t et

ax normales aux axes non deformes des travees x— 1, x ou x, x+1 de la

poutre.
Introduisons les notations suivantes:

cpx l'angle d'inclinaison du plan de la section transversale ax par rapport ä

un axe passant par les points x et normal ä la droite x — 1, x.
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cp°, l'angle d'inclinaison de la section transversale ax par rapport ä un axe
passant par le point x et normal ä la droite x, x-j- 1.

cp'x l'angle d'inclinaison de la section ax _ x par rapport ä un axe passant
par le point x — 1 et normal ä la droite x — 1, x.

ipx la partie de l'angle cpx produite par la charge immediate de la travee
x — 1, x.

ip'x la partie de l'angle cp'x produite par la charge immediate de la travee
x — 1, x.

&x l'angle de torsion de la travee x — 1, x.
6°x _! l'angle de rotation de la section ax _ t par rapport ä l'axe de la travee

x — 1, x.
&'x l'angle de rotation de la section ax par rapport ä l'axe de la travee

x — 1, x.
Nous considerons les differents angles cp et 0 comme des vecteurs repre-

sentes sur la figure 4.

b)

n-l nx-1

*if
p i n-l

<**.!

r-f

Fig. 4Fig. 3.

La poutre continue ä axe brise n'etant pas reellement coupee au point x,
on peut egaler ä 0 l'angle entre la section ax de la travee x— 1, x et de la
section ax de la travee x, x-\-\, provenant de la deformation de ces travees,
considerees comme des poutres ä deux appuis. On a alors:

(P°x + <P'*+i 0 (50)
Les angles q>'x, cpx et 6X de la travee x — 1, x de la poutre continue proviennent
d'une part, des charges immediates de cette travee et d'autre part, des moments
agissant sur les appuis x — 1 et x. Sur la fig. 5 nous representons ces
moments comme des vecteurs et nous les decomposons en moments de flexion et
moments de torsion. Savoir:

Mx la composante normale ä la droite x—1, x
,«*,_, du moment exprimant l'influence de la

/ travee x, x + 1 sur la section ax de la
travee x — 1, je.

Ttx la composante du meme moment suivant
la direction de Taxe longitudinal de la
travee x — 1, x.

M'x la composante normale ä la droite x — 1, x
du moment exprimant l'influence de la
travee x — 2, x — 1 sur la section ax de
la travee x — 1, x.

En projetant les vecteurs cpx et Q'x sur les directions cp°x et 0°x, on parvient
ä des equations suivantes4):

4) W. Wierzbicki: „Belki ciagie zaJamane w planie". Lvvöw, Czasopismo Tech-
niczne, 1931.

so

VC,

Fig. 5
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<p» (pxcosßx— 0isin& (51)

0» cpx sin ßx + qx cos & (52)

D'autre part, les conditions de l'equilibre du noeud x, considere comme un
corps rigide, nous donnent des relations:

Mx ÜK,+1 sin ßx + Mx+1 cos ßx (53)

Wx 3RX+1 cos ßx — M'x+1 sin ßx ¦ (54)

Suivant les definitions donnees plus haut, on obtiendra:

&x &x-x + ©* (55)

En tenant compte des relations (55) et (50) nous mettons les equations
(51) et (52) sous la forme:

<px cos ßx —- (&% + Qx) sin ßx — ipx+1 (56)

0» <px sin ßx + (©»_! + 0,) cos ßx (57)

Les angles cp et 0 etant des fonctions de x, nous devons considerer les
equations (56) et (57) comme un Systeme de deux equations simultanees ä

differences finies. Nous tächerons de remplacer ces equations par une seule
equation de l'ordre superieur.

Dans le cas ßx ß const on ramene les equations (56) et (57) ä

l'equation suivante:
cpx cosß — <px-x ~ (px cosß—0x sinß — cp'x+1 (58)

Nous posons plus loin (pour lx / const):

3lj=V <59)

wy2' m
ce qui ne change en rien la forme de l'equation generale ä differences finies de
la poutre continue ä axe brise.

En tenant compte des rotations (59) et (60) on obtiendra:

<Px MX'2f + M'xf + y>x (61)

tPx Mx-2f + Mxf + tpx (62)

e. f£ (63,

Les equations (53) et (54) nous donnent un autre Systeme d'equations
simultanees ä differences finies. En resolvant ces equations par rapport ä Mx et M'x
nous aurons:

^ aK«+i-ij^-3KxCtg/J (64)

M^WxCtgß-Wx-fJ^ (65)

En introduisant les expressions (64) et (65) dans les expressions (61)
et (62) on a:

Vx ^+l " sUß~m*- 2fctSß-Wx-x J^+ wx (66)
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/ + Wlxfctgß-Wlx 2/
sin/? + Wx (67)*' »*'« sinß

En substituant les expressions (66) et (67) dans l'equation (58), nous
parvenons ä l'equation suivante ä differences finies par rapport au moment de
torsion Wlx:

mx+2 + 2 cosß ¦ mx+l — 6 mx 4- 2 cos ß ¦ mx^ + tix_2 qx (68)

sin/?
ou

Qx
f

[— yx COS ß + y>x_t + xpx COS ß — y>'x+1] (69)

Pour trouver la Solution:
mx zx + zx (70)

de l'equation (68) nous resolvons d'abord l'equation sans second membre:

Wx+2 + 2 cos ß mx+t — 6 Wx + 2 cos ß - aKx_, + 2Jc,+2 0 (71)

L'equation caracteristique prend alors la forme:
2 Ch 2a+ 4 Ch acosß— 6 0

d'oü

Cha cos/? ^COS2/?

« 01 Of! a a2 / 71 or — (or2 — / it)

etant un nombre entier arbitraire.

(72)

(73)

(74)
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>» p
L..J»...J „ ia-;i 6 a i

jiiiiiiiiiiiiiiiii jiiiiiiiiiiiiiui' i

*-/

Fig. 6.

*?/

Fig. 7.

Comme

_ ga2 (75)

(76)

nous trouverons les racines suivantes de l'equation (72):
or ctj or — «! or or2 a — or2

On obtiendra donc la Solution generale de l'equation (71) sous la forme:

zx Cx c*°' + C2 e-*^ + C3 e*0* + C4 e-xa^ (77)

Cj C2 C3 C4 designant des constantes arbitraires.
La forme du membre Qx depend de la charge des travees particulieres de

la poutre ä axe brise.
Quand toutes les travees de la poutre continue sont chargees de la meme

maniere et quand la charge de chaque travee est symetrique par rapport au
milieu de cette travee, ona: ipx rpx_ 1 y>'x y/x+1 et alors Qx 0 (fig. 6).

Si dans le cas precedent la charge n'est pas symetrique au milieu d'une
travee, on a: Qx a, a etant independant de x.

Dans le cas d'une charge continue, variant d'apres la loi d'une droite,
nous avons aussi Qx a.
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Quand la charge change d'apres la loi

Sx-u, %x + 9l<^ (78)

on trouve:

a et b designant des constantes.
Qx a x + b

x-1

Fig. 8

Nous mettons alors l'equation (68) sous la forme:

SOcx+2 +2coS|»-ÜWJ+i—6 3R,+ 2cos/? • mx^ + ÜR,_2 ax + b (79)

Pour trouver une certaine Solution particuliere z°x de cette equation, nous
posons:

9Jc, z,° A x + B (80)
A et B etant des constantes inconnues.

En introduisant l'expression (80) dans l'equation (79) on obtiendra:

A(x + 2) -f B + A(x-\-\) -2 cos/? + B ¦ 2 cos/? — bAx — 6 5 +
+ 4(jt—1) • 2 cos/? -f-ß-2cos^ + ^4 (jc — 2) + ß ajc + b (81)

«•»/

Fig. 9

On determine les constantes A et B en egalant les coefficients de x dans
le premier membre de l'equation (81) au coefficient de x dans le second membre
de la meme equation. On trouve donc:

a + "
(82)Z°x=-

8 sin2 4
La Solution generale (70) de l'equation (68) contient quatre constantes

arbitraires. Nous determinons ces constantes en tenant compte des conditions
de l'appui des extremites de la poutre continue.

Apres avoir determine les moments de torsion SJc* nous pouvons calculer
les moments de flexion Mx et M'x en faisant usage des formules (64) et (65).
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Resume.

Nous appelons equations simultanees ä differences finies un Systeme
d'equation (1). Dans le present ouvrage nous etudions l'application de ces
equations ä la Solution du probleme des poutres ä axe brise.

On appelle poutre ä axe brise une poutre dont l'axe longitudinal est une
ligne brisee plane et qui est chargee dans la direction perpendiculaire au plan
de cet axe (fig. 1). Les relations (2)—(3) represente les equations
fondamentaux du probleme. En les considerant comme equations simultanees ä

differences finies, nous parvenons ä l'equation (19), oü <pt designe l'angle
d'inclinaison du plan de la section transversale mene par le noeud x et normal ä

l'axe du panneau x—1, x par rapport au plan vertical. Les angles g>t de-
termines: nous pouvons les appliquer au calcul des deplacements v de la poutre.

Si l'angle de brisure ß de la poutre est une fonction de x, nous avons
affaire ä des equations ä differences finies ä coefficients variables. Cela nous
amene ä des equations (38), (41) et (42).

Une poutre continue ä axe brise est representee sur les figures 3 a et 3 b.
Les equations fondamentaux de cette poutre ont la forme des relations (51) —
(55). Ces equations simultanees ä differences finies nous amene ä l'equation
(68), oü Ttx designe le moment de torsion de la travee x — /, x. Apres avoir
determine' les moments Wx nous pouvons calculer les moments de flexion de la
poutre continue en faisant usage des formules (64) et (65).

Zusammenfassung.
Wir nennen ein Gleichungssystem (1) simultane Differenzen-Gleichungen.
Im vorliegenden Aufsatz untersuchen wir die Anwendung dieser

Gleichungen auf das Problem des Balkens mit geknickter Achse.
Als Balken mit geknickter Achse wird ein Balken bezeichnet, dessen Längsachse

eine gebrochene ebene Linie ist und der senkrecht zu seiner Achsenebene
belastet ist (Fig. 1). Die Gleichungen (2) und (3) stellen die Grundgleichungen
des Problems dar. Wenn sie als simultane Differenzengleichungen betrachtet
werden, erhalten wir die Gleichung (19); <px bedeutet den Neigungswinkel der
Querschnittebene durch den Knoten x, die senkrecht zur Vertikalebene durch den
Abschnitt x— 1, x steht. Nachdem diese Winkel bestimmt sind, können sie auf
die Verschiebungen v des Balkens angewendet werden. Wenn die Brechwinkel ß
des Balkens von x abhängen, haben wir es mit Differenzengleichungen mit
veränderlichen Beiwerten zu tun. Das ergibt die Gleichungen (38), (41) und (42).

Ein durchlaufender geknickter Balken ist in den Fig. 3 a und 3 b dargestellt.
Die Grundgleichungen dieses Trägers haben die Form der Beziehungen (51) —
(55). Dadurch erhalten wir die Gleichung (68), wo Wlx das Torsionsmoment
der Öffnung x— \,x bedeutet. Nach Bestimmung der letztern können wir die
Biegemomente des Durchlaufbalkens mit Hilfe der Formeln (64) und (65)
berechnen.

Summary.
A System of equation of the form (1) is called an equation System of si-

multaneous finite differences.
The report shows an application of these equations to the problem of a

beam with a broken line axis.
A beam with broken axis is one in which the axis follows a broken line

and which is subjected to loads acting in the plane of the axis (Figi 1). The
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equations (2) and (3) form the basic equations of the problem. If these
equations are applied as equations of differences they take the form of the
equations (19). The angle <px represents the angle of inclination of the cross
sectional plane through x, which stands at right angles to the perpendicular
plane passing through the section x— 1, x. After these angles are determined
they can be used to calculate the displacements v of the beam. If the angle at
the breaking point ß is dependent on x, then the equations of differences contain
coefficients of variable value. This is expressed by the equations (38), (41)
and (42).

A continuous beam with broken axis is shown in Figs. 3 a and 3 b. The
fundamental equations for this beam have the same form as equations (51) to
(55), from which we derive equation (68) where W.x represents a torsion
moment for opening x— 1, x. After determination of fflx the bending moments
of the continuous beam can be calculated by employing the equations (64)
and (65).
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