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DE L'APPLICATION
DES EQUATIONS SIMULTANEES A DIFFERENCES FINIES
EN STATIQUE DES CONSTRUCTIONS.

ANWENDUNG DER DIFFERENZENRECHNUNG IN DER BAUSTATIK.

THE APPLICATION OF SIMULTANEOUS EQUATIONS
OF DIFFERENCES IN STATICS.

Prof. Dr. WITOLD WIERZBICKI, Varsovie.

Durant les vingt dernieres années on peut constater une large application
des équations & différences finies 4 la solution de nombreux problemes de la
Statique des Constructions. Les équations a différences finies étaient déja
étudiées systématiquement par Lagrange et Laplace, mais un développement
plus fertile de la théorie de ces équations ne se rapporte qu’a la fin du XIXéme
et au commencement du XXéme siecle. Les publications qui ont paru a cette
époque sur les équations a différences finies considérent ces équations non
seulement au point de vue formel, mais également au point de vue de la théorie
générale des fonctions,

A mesure que la théorie des €quations a différences finies se développe,
les ingénieurs s’y intéressent de plus en plus et appliquent ce nouveau moyen
d’études a de nombreuses questions techniques.

Dans la Statique des Constructions les équations a différences finies
trouvent leur application pour I’étude de deux groupes de probleémes:

Le premier groupe est celui des phénomeénes au caractere discontinu, dont
nous tachons de trouver la solution en formules fermées, pouvant servir a un
usage immédiat.

Le second groupe contient les phénomeénes qui en réalité sont continus,
mais que nous considérons comme discontinus, pour pouvoir les résoudre au
moyen d’équations a différences finies au lieu d’équations différentielles.

Au point de vue formel nous distinguons dans la Statique des Construc-
tions les cas d’application des équations A différences finies simples, des
équations a différences finies partielles et des équations simultanées.

Les publications concernant le premier groupe des problemes mentionnés
ci-dessus sont consacrées pour la plupart a la théorie des poutres continues,
a la théorie du flambage, a la théorie des portiques etc. Tels sont p. ex. les
ouvrages du Prof. Miiller-Breslau, du Prof. Bleich, du Prof. Melan cte. Ces
publications sont basé€es pour la plupart sur la theorle des équations a diffé-
rences finies simples.

Les probléemes du second groupe sont étudiés principalement dans les
publications du Dr. H. Marcus et du Prof. J. Nielsen, concernant la théorie
de la plaque élastique. Les solutions approximatives du probléme de la plaque
élastique sont basées dans ces ouvrages sur les équations a différences finies
partielles. :
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Nous appelons équations simultanées a différences finies un systeme
d’équations:
Dy (x, px, Ay, A%y oo 2o, dzgy, 4?2 ...) = 0
Doy Vs AVer B2Ys o0 Buy A2ge A2 =1 (1)

ol y,, z, désignent des fonctions de la méme variable indépendante x et 4 y,,
Az, A2y, A%z, ... des différences finies du premier ou du second ordre de
ces fonctions,

Les équations simultanées a différences finies trouvent quelquefois appli-
cation a certaines solutions des équations simples ou partielles de la Statique
des Constructions. '

Dans le présent ouvrage nous traiterons plusieurs problémes pratiques
d’application directe des équations simultanées a différences finies. Nous allons
étudier notamment les poutres a axe brisé, dont ’angle de brisure est constant
ou variable et les poutres continues a axe brisé.

On appelle poutre a axe brisé une poutre dont ’axe longitudinal est une
ligne brisée plane qui est chargée dans la direction perpendiculaire au plan de
cet axe.

Le schéma d’une poutre 4 axe brisé est représenté sur la figure 1.

La poutre On encastrée a Pextrémité O est chargée a Pautre extrémité
du poids P, Ty

Soient: BT A
¢, I'angle d’inclinaison du plan de la section transversale mené par le noeud x

et normal & Vaxe du panneau x — 1, x par rapport au plan vertical, c’est

a dire perpendiculaire au plan de Paxe de la poutre.

@, Vangle d’inclinaison de la section transversale x du pannean x — 1, x par
rapport au plan de la section ¥ — 1 du méme panneau.

@, I'angle d’inclinaison du plan de la section transversale x — 1, normal a I’axe
du panneau x — 1, x par rapport au plan vertical.

O, langle de rotation du plan de la section transversale x normal a I’aXe du
panneau x — 1, x par rapport a cet axe.

6, Pangle de torsion du panneau v — 1, x.

v, le déplacement vertical du noeud x par rapport au plan de Paxe de la
potitre.

y¢, le déplacement vertical du noeud x par rapport au noeud x — 1.

p Dangle de brisure de [a poutre. ,

Dans la suite nous allons considérer les angles ¢, @, ¢, @, et O, comme
vecteurs. Entre ces vecteurs existent des relations suivantest):

@Px = Px-q COS ﬂx—l - éx—l sin {5)x-1 -+ Px (2)
O = @p_y SIN ey + Oxy COSPey + O (3)
Pe = (o1 COS By — Oy SiNFey (4)

oi1 les points x — 1, x, x4 1 etc. sont des points congruents,
Pour le déplacement vertical d’un noeud nous pouvons donc écrire la
formule suivante:

n mn

Vig === Vy = ;yﬂ A 2131x (P; E (5)

1) W. Wierzbicki: ,,Sur le calcul des poutres a axe brisé“. Mémoires et Comptes
Rendus des Travaux de la Société des Ingénieurs Civils de France 1927, p. 1012.
W. Wierzbicki: ,, Teorja diwigaréw zatamanych w planie‘. Varsovie 1920.
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Supposons d’abord que I’angle de brisure g, et la longueur /, d’un panneau
de la poutre soient d’une grandeur constante; on a alors:

By = B = const I, = [ = const.

Ceci posé, nous devons considérer les angles ¢, et ©, comme des fonctions
de la méme variable indépendante x et les deux équations (2) et (3), comme des
équations simultanées a différences finies.
~ Nous ticherons maintenant de remplacer les deux équations (2) et (3)
par une seule équation a différences finies d’ordre supérieur.

Fig. 1. Fig. 2.

Il résulte de la premiére des équations mentionnées:
Prt1 = Gbxfosﬁ — O, sin B 4+ ey 6)
En portant ’expression (3) de ©, dans (6) on a: ’
| Prpr = @4 COS B — @e_y sin? f — O,_, cos fsinf— @j sinB+ @ (1)
D’autre part nous résolvons ’équation (2) par rappott 3 @, _,:

@x+1 Sin ﬁ = — (px'_@x—-l Ccos 18 + Px (8)
En substituant dans I’équation (7) expression (8), nous obtiendrons:
Pra1 — 2 PxCOS B + Puy = Ox 9)
oli @, désigne la somme suivante: '
Qx = @Px41 — PxCOSB — O, sinf : (10)

Pour déterminer les angles ¢, et O, il est nécessaire de considérer chaque
panneau de la poutre & axe brisé, comme une poutre (x — 1), x de portée /,
‘encastrée au point (x — 1) et chargée au point x de la force 7" = P du moment
de flexion M, et du moment de torsion I,.

D’apres la figure 2 on a: _

M, = Ph, = I[cosf+cos2f8+ .... +cos(n—1) ]

. % ; 11
9th=ka=l[smp’+sm2[3+....,—i—sm(n—l)ﬁ] (L1)
En introduisant des notations:
J/ moment d’inertie de la section transversale de la poutre,
J, moment d’inertie plane de la méme section,
E module d’élasticité longitudinale,
G module d’élasticité transversale,
Pl Pl
- =2 — = 2¢ 12
7 o’ -

Abhandlungen 1V - 41
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nous exprimons les angles ¢, et 6, provenant de la déformation du panneau
(x — 1), x par les formules suivantes:

@ = fl+ 2 hy (13)
0, = —2ek, (14)

Pour simplifier les formules qui suivent, posons: f = ¢, ce qui ne diminue
en rien la généralité du procédé concernant les équations simultanées a diffé-
rences finies des poutres a axe brisé. Ceci posé, nous substituons les valeurs
(13) et (14) des angles ¢, et ©, dans ’expression {(10) et nous obtenons alors:

Q: =acosxp + bsinxp + ¢ (15)
oi12) '
2flsinﬁc052n+1{)’
o : (16)
e
Sln? '
2flsin{>’sin2”2+1ﬁ
b= — 5 (17)
Sm—2—
_ 2 B
e=2flcos? (18)

Ainsi P’équation (9) prend la forme:

Prpg — 29xCOSPE + @y —acosP 4+ bsinf ¢ (19)
L’équation (19) est donc une équation a différences finies du second ordre a
coefficients constants. La solution de cette équation peut étre représentée sous
la forme d’une somme:

Pr = 2z + 2z (20)

ol 2%, désigne une certaine solution singuliére de I’équation (19) et z, la solution
générale de ’équation: _
Pry1 —— 2 P COS P + Pry1 = 0 (21)
c’est a dire, de I’équation (19) sans second membre.

Nous allons chercher la solution z°, sous la forme:

zy = Axsinxg 4 Bxcosxp + C (2

A, B, C désignant des coefficients inconnus.
En substituant dans ’équation (19) la solution (22), on obtient:

2Asingcosxp— 2Bsingsinxf + 4 Csin? % =acosxfB+bsinxf + ¢ (23)
Afin que les deux membres de P’équation (23) soient identiques, il est né-

cessaire que les coefficients de cosx § et de sinx § et le terme 4 C sin2% dans

le premier membre de cette équation soient respectivement égaux aux coeffi-
cients de cos x § et de sin x § et au terme ¢ dans le second membre. Ainsi on a:

) W. Wierzbicki: ,,Zastosowanie réznic skoriczonych do obliczenia diwigaréw zala-
manych w planie’. Warszawa 1930. '
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flc052”+1/f _ flsin2”2+]/>’ "
A=— 3 B=——5— C=—"¢ (24)
sifl - sin'? 21g* - |

Nous allons maintenant chercher la solution z, de I’équation (21). On a donc
I’équation caractéristique:

32 —~23cos84+1=0 (25)
Les racines de I’équation précédente ont la forme:
§ = cosy =+ isiny (26)

oft dans le cas considéré cosy = cos f.
On peut alors exprimer la solution de I’équation (21) sous la forme:

zy = A(cosy + isiny)* + B(cosy — isiny) (27)
ou bien sous la forme: :
zy = Dysinx$ 4+ D, cosxp (28)

D, et D, designant deux constantes arbitraires.
D’apres ce qui précéde, on parviendra a la solution suivante de I’equatlon

(19):

axsinxp  bxcosxd c
2sinp 2sing

@ = Dy sinx g+ D, cosxp -+ (29)

L.
2
Pour déterminer les constantes D, et D, nous considérerons le panneau 0,1 de
la poutre & axe brisé comme une poutre droite, encastrée au point 0 et chargée
au point 1 de la force 7 = P et du moment /VI1 = Ph,. On obtiendra alors:
P Ml
V== 5pr v Ry j (30)

D’autre part, il résulte de la condition méme de 'encastrement de la poutre
0,1, que @, = @, = 0.

Deés lors, en faisant dans ’équation (29) successivement x = 0 et x == 1
nous aurons:

4 sin?

D, =— 1" D, — — 1! (31)

Jit o]
e 2 2.
2tg 5 tg 2

Pour n = 10 et § = 9° on trouve d’apres les formules (24) et (31):
A=jf B=12]10fi C=8084f D, =-644f D, =-8084}l

et ¢y — — 0,44 flsinx g - 80,84 flcosxf + flxsinxp +
4- 12,70 fix cos x 8 -+ 80,84 fI
d’Ole (Pn == (plo = 84,40 fl.

D’apreés la formule (29) nous pouvons aussi déterminer 'angle ¢, dans
le cas d’une poutre en forme d’arc de cercle dont 'angle au centre est w. Nous

posons alors dans "expression (29) [ =rf et x = % et nous cherchoas les

limites des termes particuliers de cette expression,
Apres avoir calculé les angles ¢, on calcule les angles ¢', par la formule

(px = @x— (32)
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ce qui résulte de la définition méme des angles ¢,, ¢’, et .. En tenant compte
de la formule qui précéde, nous mettons I'expression (5) sous la forme:

m . m m
v = 2y H AN e — 15 (33)
oit dans le cas considéré: ‘
o PP M, 2
= 3E] T 2E)
Le calcul des termes particuliers de la formule (33) se rameéne a ’addition de
séries trigonométriques. -

Les angles ¢, et les déplacements », déterminés, nous pouvons les ap-
pliquer au calcul des poutres a axe brisé appuyées d’une maniére quelconque,
ce qui a été démontré dans les ouvrages cités plus haut.

Si Vangle de brisure de la poutre a axe brisé est une fonction de ¥, nous

aurons de nouveau affaire a4 des équations simultanées a différences finies (2)
et (3).

(34)

En procédant de la méme maniére pour une poutre dont ’angle de brisure
est constant, nous remplacons le systéme de deux équations (2) et (3) du
premier ordre par une seule équation du second ordre. La dite équation prend
la forme3):

Prpr SIMPy_y — @uSi (B + Bxy) + Pry SINPx = (35)
= Qr41 SIN By — @ SiN P, cOS By, — O, sinf,sin By,
L’équation (35) est donc une équation a différences finies dont les coefficients
variables entre les angles ¢, sont des fonctions de x.
Pour mettre les coefficients de ’équation (35) sous la forme de fonctions
explicites de x, nous supposons que les angles de brisure g, soient soumis 4 la
régle suivante;

sin
e ; 6
g, 7 (36)
oit ¢ est une constante et o1 les valeurs des angles g, sont assez petites pour
qu’on puisse faire cos g, = 1. Les sin 8, changent donc d’aprés une progression
géométrique, c. a d.:

sin 8, = ¢*sin f3, (37)

ot f, désigne V'angle d’inclinaison d’un c6té de I’axe horizontal de la poutre
par rapport a un certain axe, _
En tenant compte de la relation (36), mettons I’équation (35) sous la forme:

(Prar = Pr— Prar) SN Br_y — (Px— @roy — ) SING, = — O, sinP,sinB,_;  (38)
En désignant

Ve = Py — Px_y — @y ' (39)
on trouve:
Yeg1 SINByy — e 8in B, = — @, sin B, sinB,_; (40)
olt
Vrpr — gy = — Og*sin g, (41)
Supposons que la fonction:
Ve = F(x)

soit une solution de I’équation (41).

3) W. Wierzbicki: ,,Diwigary zalamane w planie o zmiennym kacie zalamania®.
Varsovie, ,Przeglad Techniczny‘, 1931.
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D’aprés la relation (39), nous aurons I’équation:
Pr— Px1 = Pz + FX) (42)
d’oi1 on trouvera une expression pour Vangle ¢,.
~Ainsi on a réussi a remplacer la solution de I’équation (35) a différences
finies du second ordre a coefficients variables par une solution de deux équations

différentes (41) et (42) du premier ordre a coefficients constants. Les solutions
générales de ces équations prennent la forme:

V= 2z: + 2z (43)
déja utilisées plus haut (expression 20).
Les solutions z, des équations privées de seconds membres seront obtenues
respectivement pour (41) et (42) sous la forme:

z;, = C, ¢* (44)
z, = C, (45)
C, et C, désignant des constantes. _
Pour trouver les solutions particuliéres z°, nous devons nous servir dans
ce cas d’approximations, la solution précise étant la cause de grandes diffi-

cultés. Ces approximations concernent les expressions pour &, et 4, qui ont
ici la forme de séries suivantes:

ke = I[5in s + in (Be + Besa) + oo+ SINBe+ Prar + -0+ Basa)] (46)
by = 1[€OS B + €OS (B4 Beya) + - oo + €COS(Bet frgr + -- oo+ Bua)] (A7)

Nous remplacons alors les séries (46) et (47), dont Paddition est im-
possible, par des courbes d’interpolation:

n n
by =D, A, X he = 23 A X (48)
0 0

Pour déterminer les coefficients A, des équations (48) nous construisons
d’abord des diagrammes des fonctions (46) et (47) et nous y trouvons les
points caractéristiques. En égalant les ordonnées de ces diagrammes aux or-
données des courbes (48) on {irouvera donc les coefficients cherchés. Les
fonctions (46) et (47) ayant la forme rapprochée d’une parabole, on peut se
servir dans ce cas des courbes (48) du second ou du troisieme degré.

On obtiendra alors potir ’angle ¢, une solution du type:

. @ = C + D g 1" A (49)
C et r désignant des constantes et g, une certaine fonction de x. On calcule
les constantes de I’expression (49) de la méme maniére que dans le cas d’une
poutre dont I’angle de brisure est constant, mais nous ne développerons pas
ici ces calculs.

Une poutre continue 2 axe brisé est représentée sur les figures 3a et 3b.
Les appuis de 1 2 # — 1 sont mobiles dans un plan paralléle au plan de I'axe
de la poutre, Pappui 7 est mobile dans une certaine direction paralltle au plan
de P’axe, "appui 0 est immobile.

Par les appuis x — 1 et x menons des sections verticales planes a, _, et
a, normales aux axes non déformés des travées x —1, x ou x, x4 1 de la
poutre.

Introduisons les notations suivantes:
@ Pangle d’inclinaison du plan de la section transversale a, par rapport a

un axe passant par les points x et normal a la droite x — 1, x.
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9, I’angle d’inclinaison de la section transversale a, par rapport a un axe
passant par le point x et normal & la droite x, x4 1.

@' I’angle d’inclinaison de la section a, _, par rapport & un axe passant
par le point x — 1 et normal a la droite x — 1, x.

Y, la partie de l'angle @, produite par la charge immédiate de la travée
x—1, x.

Wy la partie de I’angle ¢, produite par la charge immédiate de la travée
x—1, x.

6, l’angle de torsion de la travée x — 1, x.

69, _., I’angle de rotation de la section a, _; par rapport a 'axe de la travée
x—1, x.

&'y l’angle de rotation de la section a, par rapport & Paxe de la travée
x—1, x.

Nous con51derons les dlfferents angles ¢ et ©® comme des vecteurs repré-
sentés sur la figure 4.

o
8)
A a A A A LY A
0 7 Z x-f X n-f n
ﬁ_{_'_f__
B - Bx
b) p 2 xL
! L~ n-f

0 n

Fig. 3.

La poutre continue & axe brisé n’étant pas réellement coupée au point x,
on peut égaler a 0 P’angle entre la section a, de la travée x — 1, x et de la
section a, de la travée x, x -1, provenant de la déformation de ces travées,
considérées comme des poutres 4 deux appuis. On a alors:

Pi+ Py =0 (50)

Les angles ¢',, ¢, et @, de la travée ¥ — 1, x de la poutre continue proviennent

d’une part, des charges immédiates de cette travée et d’autre part, des moments

agissant sur les appuis x — 1 et x. Sur la fig. 5 nous représentons ces mo-
ments comme des vecteurs et nous les décomposons en moments de flexion et

moments de torsion. Savoir: .

M, la composante normale i la droite x—1, x
du moment exprimant linfluence de la
travée x, x 4 1 sur la section «, de la
travée x —1, x,

M, la composante du méme moment suivant
la direction de I'axe longitudinal de la
travée x —1, x.
< la composante normale 4 la droite x —1,x
du moment exprimant l'influence de la
travée x — 2, x—1 sur la section «, de
la travée x—1, x.

En projetant les vecteurs ¢, et @, sur les directions ¢°, et ©°,, on parvient

a des équations suivantes 4):

H W, Wierzbicki : »Belki ciagle zalamane w planie. Lwow, Czasopismo Tech-
niczne, 1931. ‘ :
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®" = @ COS fy — Oy sin f, (51)
O = @, sin e + @x COS Py (52)

D’autre part, les conditions de I'équilibre du noeud x, considéré comme un
corps rigide, nous donnent des relations:

My = M,y sin g + My, €OS e (53)
Me = Myyy COS Be— My, SIS, : (54)

Suivant les définitions données plus haut, on obtiendra:
Gy = Oz, + O (55)

En tenant compte des relations (55) et (50) nous mettons les équations
(51) et (52) sous la forme:

@x COS p)x - (@-8 + @x) sin f}x — T @;-H : (56)
O = Px sin g, + (Og-l + Gx) COS fix (57)

Les angles ¢ et © étant des fonctions de x, nous devons considérer les
équations (56) et (57) comme un systeme de deux équations simultanées a
différences finies. Nous ticherons de remplacer ces équations par une seule
équation de Vordre supérieur.

Dans le cas 8, = f = const on ramene les équations (50) et (57) a
I’équation suivante:
PxCOSF — @x_y —— @z COS B— Oy sing = — pyyy (38)
Nous posons plus loin (pour I, = ! = const):
l
3E] 2f (59)
l 3
e 2 60
£ =21 (©0)

ce qui ne change en rien la forme de I’équation générale a différences finies de
la poutre continue i axe brisé,
En tenant compte des rotations (59) et (60) on obtiendra:

(Px:Mx'zf'l'M.éi‘FWx (61)

Pr = Mz - 2f + M f + s (62)
Myl

9, — o=t 3

G/ (63)

Les équations (53) et (54) nous donnent un autre systéme d’équations simul-
tanées a différences finies. En résolvant ces équations par rapport 3 M, et M,
nous aurons: '

1 ,
M, = S)thﬂ 'Ein_ﬁ_mxdgﬁ (64)
' 1
My =M. ctgg—M,_, - ] (65)

En introduisant les expressions (64) et (65) dans les expressions (61)
et (062) on a:
A

@x = My - sin @ — M« 2fCtgﬁ_9ﬁx—1

sin T ¥ (00)
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Lap— R f f ’
pr = Myyy sin g + M fetgf— Mo, - sn—in + s (67)

En substituant les expressions (66) et (67) dans I’équation (58), nous
parvenons a I’équation suivante a différences finies par rapport au moment de
torsion M2

Meyo +2C088 My —OM, + 2c0o88 - Moy, + My = Q. (68)

Q. = S'?ﬁ [~ ¥ COS 8 + ary + i 08—l (69)

Pour trouver la solution:
M = 23 + 2z (70)
de Péqnation (68) nous résolvons d’abord I’équation sans second membre:
Meyo + 2cos My —O0Me + 2c0sB - My + Wy =0 (71)

L’équation caractéristique prend alors la forme:

2Ch2ac+4Chacosp—6=0 (72)
d’oit
COs 2
Cha:—-z—ﬁﬁ: 30:5.;_2 (73)

e=a,—in a=—(az—ia) = (74)

Comme
_ BT — ¢% (75)
nous trouverons les racines suivantes de 1’équation (72):
a =0 o=-—0 a =y 0= -t (76)
On obtlendra donc la solution générale de I’équation (71) sous la forme
ze = C e¥m 4+ Coe*% + Cyet® f C e *® (77)

C, C; Cy C, désignant des constantes arbitraires.

La forme du membre @Q, dépend de la charge des travées particulieres de
la poutre a axe brisé,

Quand toutes les travées de la poutre continue sont chargées de la méme
maniére et quand la charge de chaque travée est symétrique par rapport au
milieu de cette travée, ona: y, =y, ., =y, = ¢, 4, et alors Q, = 0 (fig. 6).

Si dans le cas précédent la charge n’est pas symétrique au milieu d’une
travée, on a: Q. = a, a étant indépendant de wx.

Dans le cas d’une charge continue, variant d’aprés la loi d’une droite,
nous avons aussi @, = a.
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Quand la charge change d’aprés la loi
Sx—1,x = %lx + gl (x—l);x

3 (78)

on trouve:

Q.=ax+ b

a et b désignant des constantes.
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Fig. 8.

Nous mettons alors I’équation (68) sous la forme:
Mepo +2cosf Meyy —O6Me 4 2cosp - M, + My, =ax -+ b6 (79)

Pour trouver une certaine solution particuliére 20, de cette équation, nous
posons:
; M = 2z = Ax + B (80)
A et B étant des constantes inconnues.
En introduisant "expression (80) dans I’équation (79) on obtiendra:

A(x+2) 4+ B+ A(x+1)-2cosp+ B-2cosf—6Ax—6B-|

+A(x—-1)-2cosp’+B-2cosp’+A(x—2)'-|-B:ax+b . (81)
| g
&
q -
. I
g g
il |
£ A X x x
a 7 x=7 x xef

Fig. 9.

On détermine les constantes A et B en égalant les coefficients de x dans
le premier membre de I’équation (81) au coefficient de x dans le second membre
de la méme équation. On trouve donc:

2= —“i%- (82)

8 sin? —

La solution générale (70) de P’équation (68) contient quatre constantes
arbitraires. Nous déterminons ces constantes en tenant compte des conditions
de Pappui des extrémités de la poutre continue.

: ‘Apres avoir déterminé les moments de torsion I?, nous pouvons calculer
~ les moments de flexion M, et M’, en faisant usage des formules (64) et (65).



650 W. Wierzbicki

Résumé.

Nous appelons équations simultanées a différences finies un systéme
d’équation (1). Dans le présent ouvrage nous étudions 1’application de ces
équations a la solution du probleme des poutres a axe brisé,

On appelle poutre a axe brisé une poutre dont ’axe longitudinal est une
ligne brisée plane et qui est chargée dans la direction perpendiculaire au plan
de cet axe (fig. 1). Les relations (2)—(3) représente les équations fonda-
mentaux du probleme. En les considérant comme équations simultanées a diffé-
rences finies, nous parvenons a ’équation (19), ot ¢, désigne ’angle d’in-
clinaison du plan de la section transversale mené par le noeud x et normal &
I’'axe du panneau x — 1, x par rapport au plan vertical. Les angles ¢, dé-
terminés: nous pouvons les appliquer au calcul des déplacements » de la poutre.

Si 'angle de brisure f de la poutre est une fonction de x, nous avous
affaire a des équations a différences finies a coefficients variables. Cela nous
ameéne a des équations (38), (41) et (42).

Une poutre continue a axe brisé est représentée sur les figures 3a et 3b.
Les équations fondamentaux de cette poutre ont la forme des relations (51)—
(55). Ces équations simultanées a différences finies nous ameéne i I’équation
(68), olt M, désigne le moment de torsion de la travée x — I, x. Apres avoir
déterminé les moments M, nous pouvons calculer les moments de flexion de la
poutre continue en faisant usage des formules (64) et (65).

Zusammenfassung.

Wir nennen ein Gleichungssystem (1) simultane Differenzen-Gleichungen.

Im vorliegenden Aufsatz untersuchen wir die Anwendung dieser Glei-
chungen auf das Problem des Balkens mit geknickter Achse.

Als Balken mit geknickter Achse wird ein Balken bezeichnet, dessen Lings-
achse eine gebrochene ebene Linie ist und der senkrecht zu seiner Achsenebené
belastet ist (Fig. 1). Die Gleichungen (2) und (3) stellen die Grundgleichungen
des Problems dar. Wenn sie als simultane Differenzengleichungen betrachtet
werden, erhalten wir die Gleichung (19); ¢, bedeutet den Neigungswinkel der
Querschnittebene durch den Knoten x, die senkrecht zur Vertikalebene durch den
Abschnitt x — 1, x steht. Nachdem diese Winkel bestimmt sind, kbnnen sie auf
die Verschiebungen » des Balkens angewendet werden. Wenn die Brechwinkel g
des Balkens von x abhingen, haben wir es mit Differenzengleichungen mit ver-
inderlichen Beiwerten zu tun. Das ergibt die Gleichungen (38), (41) und (42).

Ein durchlaufender geknickter Balken ist in den Fig, 3 a und 3 b dargestellt.
Die Grundgleichungen dieses Trigers haben die Form der Beziehungen (51) —
(55). Dadurch erhalten wir die Gleichung (68), wo M, das Torsionsmoment
der Offnung x — 1, x bedeutet. Nach Bestimmung der letztern konnen wir die
Biegemomente des Durchlaufbalkens mit Hilfe der Formeln (64) und {65)
berechnen.

Summary.

A system of equation of the form (1) is called an equation system of si-
multaneous finite differences.

The report shows an application of these equations to the problem of a
beam with a broken line axis.

A beam with broken axis is one in which the axis follows a broken line
and which is subjected to loads acting in the plane of the axis (Fig. 1). The
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équations (2) and (3) form the basic equations of the problem. If these
equations are applied as equations of differences they take the form of the
equations (19). The angle ¢, represents the angle of inclination of the cross
sectional plane through x, which stands at right angles to the perpendicular
plane passing through the section x — 1, x. After these angles are determined
they can be used to calculate the displacements » of the beam. If the angle at
the breaking point § is dependent on x, then the equations of differences contain
coefficients of variable value, This is expressed by the equations (38), (41)
and (42).

A continuous beam with broken axis is shown in Figs. 3a and 3b. The
fundamental equations for this beam have the same form as equations (51) to
(55), from which we derive equation (68) where I, represents a torsion mo-
ment for opening x — 1, x. After determination of M, the bending moments
of the continuous beam can be calculated by employing the equations (64)
and (65).
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