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ZUR BERECHNUNG VERANKERTER HÄNGEBRÜCKEN.

CONTRIBUTION AU CALCUL DES PONTS SUSPENDUS ANCRES.

THE CALCULATION OF ANCHORED SUSPENSION BRIDGES.

Dr. sc. techn. FRITZ STÜSSI, Privatdozent an der E. T. H., Zürich.

1. Das Tragverhalten verankerter Hängebrücken ist besonders in den
letzten Jahren durch eine Reihe von Veröffentlichungen, die bekanntlich von
einer Arbeit J. Melans x) ihren Ausgang nehmen, weitgehend abgeklärt worden.
So wertvoll die meisten dieser Untersuchungen für die Förderung unserer
Erkenntnisse über die Formänderungseinflüsse bei solchen Tragwerken sind, so
können sie doch als praktische Bemessungsverfahren, vom Konstruktionstisch
aus beurteilt, nicht voll befriedigen. Die in den bisher bekannten Veröffentlichungen

bevorzugte mathematische Darstellung des Problems ist normalerweise
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Fig. 1.

für den Konstrukteur ein ungewohntes und deshalb auch unbequemes Mittel,
das ihm direkte Vergleiche und Analogien mit seiner baustatisch orientierten
Denkweise und mit den bei andern Tragwerksformen gebräuchlichen und
zweckmäßigen Methoden nur schwer gestattet.

Nachfolgend wird versucht, die Berechnung verankerter Hängebrücken mit
Berücksichtigung der elastischen Formänderungen der üblichen Berechnung
statisch unbestimmter Tragwerke nach der Elastizitätslehre und damit der
baustatischen Denkweise des Konstrukteurs anzugleichen. Dabei wird sich zeigen,
daß eine solche baustatische Darstellungsweise des Problems für den Konstrukteur

nicht nur die allgemeine Forderung ökonomischen Denkens befriedigt,

J. Melan: Theorie der eisernen Bogenbrücken und Hängebrücken. 2. Aufl., 1888.
L. S. Moisseif: The deflection theory as applied to Suspension bridges with

suspended trusses. (The bridge over the Delaware river connecting
Philadelphia Pa. and Camden N. J., Final report of the Board of engineers.) 1927.

S. Timoshenko und S. Way: Suspension bridges with a continuous stiffening
truss. Abhandlungen I. V. B. H., 2. Band, 1933/34.

D. B. Steinmann: Deflection theory for continuous Suspension bridges. Abhand¬
lungen I.V. B. H., 2. Band, 1933/34.
Ähnliche Arbeit in Proc. Am. Soc. C. E. 1934, mit aufschlußreicher
anschließender Diskussion.

Hans H. Bleich: Die Berechnung verankerter Hängebrücken. Wien, Springer, 1935.



532 F. Stüssi

sondern daß sie auch eine einfache Berücksichtigung einer beliebigeil Veränderlichkeit

der Querschnitte des Versteifungsträgers ermöglicht. Auch wird so
eine Überprüfung der zur Vereinfachung der Berechnung nach der
Formänderungstheorie üblicherweise getroffenen Voraussetzungen verhältnismäßig
einfach durchführbar.

2. In Fig. 1 ist der einfachste Fall einer einfeldrigen verankerten Hängebrücke

skizziert. Als statisch bestimmtes Grundsystem führen wir den
einfachen Balken A — B (Versteifungsträger) ein. Damit wird die
Horizontalkomponente FI des Kabelzuges zur überzähligen Größe Xx. Bezeichnen wir die
Momente infolge der äußern Belastungen im Grundsystem mit M0, so ergeben
sich die Versteifungsträgermomente im wirklichen Tragwerk zu

M M0- rI.(y+ilK).
Es ist üblich, die Verlängerung der Hängestangen zu vernachlässigen.

(1)

Damit
werden die Durchbiegungen von Kabel, i]K, und Versteifungsträger, r\, gleich
groß und die Differentialgleichung der elastischen Linie liefert die Beziehung

M0-H-(y-y,l)=-EJ-il". (2)

Diese Gleichung ist identisch mit der Differentialgleichung eines Versteifungsträgers,

der außer den Momenten M0 und — H ¦ y durch eine (gedachte)
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Fig. 2.

axiale Zugkraft N H belastet ist, wobei N nur die Momente N ¦ ?;, aber
keine Längsspannungen N:F erzeugt. Nehmen wir nun für die Untersuchung
eines bestimmten Belastungsfalles einen bestimmten Festwert von N an, so
gilt dafür wieder das Superpositionsgesetz, das für Gleichung (2) sonst nicht
zutrifft. Wir können somit in der statt Gl. (2) angeschriebenen Beziehung

Mn M-y — N-y EJ- if.
-Ff:y vornehmen:

(3)

eine Trennung in die Einzeleinflüsse M0 und

'/ '/o — H • iih=x - (4)

Für jeden der Einzeleinflüsse Mk gilt nun statt Gl. (3) die Beziehung

Mk—N ¦¦>* —EJ-tf. (5)

Die Durchbiegungen i-\h des Grundsystems infolge Mk bei gleichzeitiger
Wirkung von N ergeben sich aus der Auflösung der nun linearen inhomogenen
Differentialgleichung zweiter Ordnung Gl. (5). In der Baustatik ist der
Zusammenhang zwischen einer Funktion t] und ihrer zweiten Ableitung y" durch
das Seilpolygon dargestellt. Nach Fig. 2 ist bei Unterteilung der Spannweite /
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in n gleiche Teile A x
Vm-x — 2ilm -f- 1im+X __ j, /Q\

Ax
wobei Km die Knotenlast in m der Belastungsfläche if bedeutet. Nehmen wir
wie üblich, trapezförmigen Verlauf der Belastungsfunktion

'/* — -£j(Mk — N- »,*) — — ¦ Mk (5a)

an, und setzen wir ferner feldweise konstantes Trägheitsmoment voraus, so
erhalten wir mit

*¦= m te{Mk^ + 2 **«>+jtx{2^ + Mk^ (7)

und mit den Abkürzungen

U- AX* ' lm~ Jm

für jeden Zwischenknotenpunkt die Gleichung

— (U— im ¦ N) ¦ rlm_x + 2(l7+ (/„ + im+x)N) • i]m — (U— im+1 • N) • i]m+x

im (Mm_i + 2 Mm) + 4+i (2 Mm + Af„+1) (8)

Für die Auflagerpunkte /l und 5 fallen wegen rjA 0, ??B 0 die Gleichungen
weg. Die Auflösung des dreigliedrigen Gleichungssystems Gl. (8), die ja jedem
Statiker geläufig ist und mit minimalem Zeitaufwand durchgeführt werden
kann, liefert somit die Teildurchbiegungen r\k des Grundsystems infolge der
Teilmomente Mk. Die Momente

Mk Mk — N-Vk (9)

besitzen für die Berechnung des Tragwerks nach der Formänderungstheorie
dieselbe Bedeutung wie die yW0-Momente In der Elastizitätstheorie, in dem
Sinne nämlich, daß sich nun die Momente im wirklichen Tragwerk aus der
einfachen Superposition ergeben:

M M0 — H-MH=i (10)

Wir haben nun die Elastizitätsbedingung zur Bestimmung des überzähligen
Horizontalschubes Ff einzuführen. Diese hat auszusagen, daß sich die Summe
der HorizontalProjektionen der Kabelverlängerungen von Verankerung zu
Verankerung nicht ändern darf. Nach H. Bleich2) stellt sich diese Bedingung in
der Form dar:

H--±-ö±at.t-Lt+\y'-irdx 0. (11)
Ek- Fi J

Dabei bedeuten: Fk" einen beliebigen Festwert des Kabel- oder Kettenquerschnittes

Fk,
-0

[ Sk d\ (Abkürzung)
J Fk ¦ cos3a

-I- dx
Lt cos2«

Die Längen L und Lt erstrecken sich von Verankerung zu Verankerung, während

2) Hans H. Bleich: a.a.O.
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das Integral in Gleichung (11) nur für die am Kabel aufgehängten Teile des
Versteifungsträgers zu bilden ist.

Wir formen die Elastizitätsbedingung Gleichung (11) nun noch um. Das
Kabel mit den Ordinaten y stellt das Seilpolygon zu Belastungen y" dar. Das
Integral \y" --q- dx bedeutet somit die virtuelle Arbeit der Belastungen y"
während der Durchbiegungen ij. Bei Vernachlässigung der Hängestangenverlängerungen

ist diese Arbeit gleich der virtuellen Formänderungsarbeit des
Versteifungsträgers, sodaß sich mit

MH=i — \ -y
und mit

M0 — H.MH=i — EJif
die Beziehung ergibt

f » j [ » j [ Mn=x ¦ (M0 — FI- Mn=1)\y.irdx= y ¦ it • dx \ —— dx (12)

Führen wir diese Werte in die Elastizitätsbedingung Gleichung (11) ein, so
erhalten wir

/ L f MH=i ¦ MH=1 \ [MH=i-M0M^7* + J EJ dx)±at.t.Lt + )—EJ—.dx 0 (13)

Mit den abkürzenden Bezeichnungen

'MH=i-MH=i& + 1-- at- t • Lt— axt\
\Ek.F°k

' J EJ

ergibt sich somit die Elastizitätsbedingung in der bei der Berechnung statisch
unbestimmter Tragwerke üblichen Form:

Xx - au -y ß10 + axt 0. (13a)

Die Berechnung der verankerten Hängebrücke nach Fig. 1 für einen bestimmten
Belastungsfall ist somit auf das in der technischen Elastizitätslehre übliche
Rechnungsverfahren zurückgeführt mit dem einzigen Unterschied, daß bei der
Superposition nach Gleichung (10) und bei der Berechnung der Verschiebungsgrößen

alk für den Belastungs- oder den Verschiebungszustand die Momente Mk
nach Gleichung (9) einzuführen sind, wobei N einen zunächst geschätzten Wert
des Horizontalschubes Ff bedeutet und die Durchbiegungen i]k durch Auflösung
des dreigliedrigen Gleichungssystems Gl. (8) gewonnen werden. Da die
Formänderungen und Schnittkräfte nicht mehr proportional zur Belastung, sondern
weniger stark wachsen, ist die Superposition von Einzelwirkungen nur dann
zulässig, wenn für N der der Gesamtwirkung entsprechende Wert von Ii
eingeführt wird. Es empfiehlt sich deshalb, alle Wirkungen (ständige Last,
Verkehrslast, Temperaturänderungen) gleichzeitig wirkend zu untersuchen. Stimmen
der geschätzte Wert N und der berechnete Wert H nicht miteinander überein,
so ist eine weitere Rechnung mit N H durchzuführen. Wenn eine Reihe von
verschiedenen Belastungsfällen zu untersuchen ist, was ja gewöhnlich der Fall
sein wird, so ist es einfacher, die Rechnung mit zwei verschiedenen Werten von
N, etwa mit N Hmn. und N Mmax., durchzuführen und die Schnittkräfte
und Formänderungen durch Interpolation aus der Bedingung /V H zu
bestimmen. Bei der Auflösung des Gleichungssystems Gl. (8) kann durch Auf-
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teilen der Belastungen in symmetrische und gegensymmetrische Anteile der
Arbeitsaufwand merklich gekürzt werden. Bei dicht ausgeteilten Hängestangen
dürfen ohne wesentliche Beeinträchtigung der Genauigkeit die Feldweiten Ax
für die Berechnung größer als die Hängestangenabstände eingeführt werden,
um die Zahl der aufzulösenden »^-Gleichungen nicht zu groß werden zu lassen.

/>«,25,0.0m ;;- som
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' seca,=1,132
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Fig. 3.

Das angegebene Rechnungsverfahren deckt den ganzen Bereich der
möglichen Steifigkeitsverhältnisse: setzen wir in Gleichung (8) U 0, so erhalten
wir die Berechnung der unversteiften Hängebrücke (Montagezustände); während

mit /V 0 die Resultate der Elastizitätstheorie mit am unverformten
System angreifenden Kräften erhalten werden. Dieser letztere Umstand zeigt,
daß für alle zwischen O und H liegenden Werte von N die Berechnung genauer
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ist als nach der Elastizitätstheorie, sodaß man sich mit praktisch genügender
Genauigkeit auch mit einer nur angenäherten Übereinstimmung von N und H
begnügen kann.

Die Hängestangenkräfte q, je Längeneinheit, ergeben sich zu

q H-y"+N->f (14)

wobei die Werte r\" am einfachsten aus der Beziehung i]" —M:EJ ermittelt
werden. Damit können die Versteifungsträgerbelastungen p — q bestimmt
werden, aus denen sich die Querkräfte Q ergeben, sofern man nicht die
einfachere Beziehung

Ax
verwenden will.

In Fig. 33) sind die Momente und Durchbiegungen einer einfeldrigen
Hängebrücke nach Fig. 1 für den Fall halbseitiger Nutzlast skizziert. Dabei
wurde angenommen, daß die ständige Last vom Kabel allein getragen werde,
was ja dem Normalfall entsprechen dürfte. Hierbei äußert sich die ständige
Last g nur im Wert von N Hg A~ Hp + t, während keine /W0-Momente
infolge g einzuführen sind. Es dürfte aber auch die Ausnahme von diesem Normal¬

em MmtV Fiel

VEJ=S,2S-106fm*

Ve/

M. V

15 20 ioerrn'lEJ

®

©

/
Fig. 4. Fig. 5.

fall vorkommen, indem man durch stärkeres Anziehen der Hängestangen dem
Versteifungsträger eine Vorspannung durch negative Momente zu geben sucht,
um dadurch die minimalen und maximalen Momentengrenzwerte auszugleichen.
Hier hätte die Berechnung von diesem Vorspannungszustand auszugehen.

In Fig. 4 ist für das gleiche Tragwerk der Unterschied in den größten
Momenten und Durchbiegungen zwischen Elastizitätstheorie und genauerer
Berechnung ebenfalls für halbseitige Nutzlast bei veränderlicher Steifigkeit des
Versteifungsträgers dargestellt.

3. Zur Bestimmung der maßgebenden Laststellungen hat H. Bleich das
Verfahren der quasilinearen Einflußlinien entwickelt. Nach der hier skizzierten
Berechnungsweise ergeben sich diese Einflußlinien äußerst einfach durch
Einführung von N HR. Durch die Einführung des Festwertes N wird nicht nur
die Gültigkeit des Superpositionsgesetzes, sondern auch des Maxwell'schen
Reziprozitätsgesetzes wieder hergestellt, sodaß sich die Verschiebungsgrößen
«io infolge einer wandernden Einzellast P 1 auch als Ordinaten der
lotrechten Biegungslinie infolge Mxl x berechnen lassen. Damit ist auch für
die Bestimmung der Einflußlinien die Analogie zur Elastizitätslehre hergestellt.

In Fig. 5 ist der Verlauf einer Schnittgröße bei wachsender Belastung nach
der Elastizitätslehre, dem quasilinearen Verfahren (N Hg) und der genaueren

3) Die Abmessungen der Anwendungsbeispiele Fig. 3 und Fig. 6 sind dem erwähnten
Buche von Hans H. Bleich entnommen.
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Berechnung in der von H. Bleich skizzierten Form dargestellt. Es liegt nun
nahe, zur Berechnung der quasilinearen Einflußlinien nicht N Hg, sondern

W /4*ä,o m

7*= ' -*%
EJ=*f2-10s trrr!

Hg"12000r, 1 937,96™, EKFK 6,6-10er

Xj

XZ=1\
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\N-yj,

' M,
v i
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m
io —

2,0 \r
L is. X!±nZ
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(acc. Io
m

Ll
Ii,

Fig. 6.

einen Durchschnittswert, N Hg -\- Hp/2, einzuführen. Damit können die
Einflußlinien nicht nur zur Bestimmung der Lastscheiden Verwendung finden,
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sondern sie liefern direkt angenäherte Werte der Schnittgrößen, die mindestens
in einer Vorberechnung den Arbeitsaufwand wesentlich abzukürzen gestatten.

4. Bei verankerten Hängebrücken mit durchlaufenden Versteifungsträgern
treten neben dem Horizontalschub als weitere überzählige Größen die
Stützenmomente des Versteifungsträgers auf. Zu ihrer Bestimmung stehen als
Elastizitätsbedingungen die Kontinuitätsbedingungen über den Stützen zur Verfügung,
die sich wie in der Elastizitätslehre anschreiben lassen, wenn gleichzeitig der
Einfluß der Momente N • i)k berücksichtigt, der Einfluß der Momente auf die
Verschiebungsgrößen also mit

aik \*&«-\ Mt ¦ Mk
dx (15)

M.

ZJC

1,SJC

Je

0,25
r*—-—h^^M 0,50

•*

EJ J EJ
eingeführt wird. Im übrigen ist auch die Berechnung dieser Tragwerksform
unter Beachtung der über die Hängebrücke mit gelenkig gelagerten
Versteifungsträgern geäußerten Bemerkungen analog zur Elastizitätslehre durchzuführen.

In Fig. 6 sind für eine dreifeldrige Hängebrücke einige Momentenflächen
und Mk, sowie quasilineare Einflußlinien dargestellt.

Die absolut größten Momente im
durchlaufenden Versteifungsträger treten
über den Zwischenstützen auf und zwar
ist bei der genaueren Berechnung der
Unterschied zwischen den größten Feld-
und Stützenmomenten noch stärker
ausgeprägt als bei der Berechnung nach der
Elastizitätslehre. Eine wirtschaftliche
Bauausführung wird deshalb ausgesprochen
lokale Verstärkungen der Querschnitte in
Stützennähe vorsehen. Auch eine derartige
sprunghafte Änderung der Steifigkeit EJ
innerhalb der für die Berechnung
eingeführten Feldweite Ax kann einfach
berücksichtigt werden. In Abb. 7 sind die Grundlagen

dazu skizziert: Man berechnet die
Auflagerkräfte der reduzierten dreieck-
förmigen Momentenflächen a und b über
die Feldweite Ax l und mit der Höhe l.
Die Werte dieser Auflagerkräfte sind in
Gleichung (8) statt der entsprechenden
Werte / und analog bei der Berechnung
der Verschiebungsgrößen einzuführen. In
Fig. 6 ist die quasilineare Einflußlinie des
Stützenmomentes X2 für symmetrisch zu
den Stützen nach Fig. 7 (Ax 40 m)
verstärkte Versteifungsträger ebenfalls

eingezeichnet, wobei für beide Fälle der Durchschnittswert des Trägheitsmomentes
über die Brückenlänge gleich groß angenommen wurde. Der Vergleich der
beiden Einflußlinien für konstantes und veränderliches Trägheitsmoment zeigt
deutlich die Notwendigkeit, den Einfluß solcher Steifigkeitsveränderungen bei
der Bemessung berücksichtigen zu können.

5. Es sei noch kurz auf die eingeführten Vereinfachungen der Berechnung
hingewiesen:

Jx

+».

Fig.
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In der der Elastizitätsbedingung Gleichung (11) zu Grunde liegenden
Ableitung, die auf der Betrachtung eines Kabelelementes in unverformtem und
verformtem Zustand beruht, wurden die kleinen Größen dl gegen dx, Ads

gegen ds und dr] gegen dy vernachlässigt. Während die beiden ersten
Vernachlässigungen ohne weiteres gegeben sind, ist die dritte, dr] gegen dy, an
sich nicht gerechtfertigt, weil wir ja gerade den Einfluß der Formänderungen i]
auf die Schnittgrößen als wesentlich untersuchen. Wenn wir diese
Vernachlässigung nicht einführen, erhalten wir folgende Elastizitätsbedingung:

H ¦ j^p ±*t't-Lt+ J(/' + \) ¦ V • dx 0 (16)

wobei das Integral auch durch

I [y" + t) "''"dx I (y + i)'v"dx (17)

ersetzt werden kann. Eine direkte Berechnung mit dieser genaueren
Elastizitätsbedingung ist nun in üblicher Weise nicht mehr möglich. Es wird sich
aber auch nur darum handeln, die Größe des durch die Anwendung der
vereinfachten Elastizitätsbedingung verursachten Fehlers für einen bestimmten
Belastungsfall zu untersuchen. Dann ist aber die Biegungslinie r\ näherungsweise
bekannt. Die genauere Elastizitätsbedingung wird nun dadurch erhalten, daß
wir in Gleichung (13) für MH X statt — 1 -y den Wert

MH=1 - 1 • (y + %) (18)

einsetzen. Die Fehler infolge der in Gleichung (13) eingeführten Vereinfachung
sind im allgemeinen recht klein. So wird im Beispiel der Fig. 3 bei Verwendung
der genaueren Elastizitätsbedingung das größte Moment um rd. Va °/o, die
größte Durchbiegung um rd. 2«/o kleiner erhalten als mit Gleichung (13).

Wir haben, wie üblich, die Längenänderung der Hängestangen vernachlässigt.

Die Berücksichtigung dieser Längenänderungen Ah (wieder bei der
Nachrechnung eines bestimmten Belastungsfalls, für den die Hängestangenkräfte

angenähert als Knotenlasten zur Belastung q (Gl. (14)) und damit die
Längenänderungen Ah bekannt sind) ergibt die Momente im Versteifungsträger

zu
M M0 — H-y — N(,j — Ah) — EJ ¦ >f. (19)

Das Zusatzmoment + tV ¦ Ah ist wie ein M0-M.oment zu behandeln. Ferner ist
in der Verschiebungsgröße alx der Elastizitätsbedingung noch der in der Regel
sehr geringe Beitrag dieser Längskräfte einzubeziehen. Im Beispiel der Fig. 3

verursachen die Längenänderungen Ah bei Annahme von Hangern aus Drahtseil
mit azui 4 t/cm2 und E 1400 t/cm2 eine Zunahme des größten Momentes
um rd. 1 o/o. Größer ist der Einfluß auf die Querkräfte in unmittelbarer
Auflagernähe, der jedoch stark von der Größe der Hängestangenabstände abhängig
ist. Immerhin handelt es sich dabei um einen ausgesprochen lokalen Einfluß.

Wir haben bisher nur den Einfluß der lotrechten Durchbiegungen rj von
Kabel und Versteifungsträger untersucht. Daneben treten aber auch horizontale
Verschiebungen | der einzelnen Kabelpunkte auf, deren Größe sich in Analogie
zur Ableitung der Elastizitätsbedingung Gleichung (11) für einen Schnitt x
ergibt zu

S H.±-l±-a-yj^±.l + att.±ALt, (20)
o Ek ¦ Fk l ° °
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wobei die Längen AL und ALt mit der angegebenen Bedeutung sich auf die
einzelnen Kabelelemente As beziehen. Infolge dieser Verschiebungen | tritt
eine Schiefstellung der Hängestangen ein, sodaß die Hängestangenkräfte Z
neben den lotrechten auch wagrechte Kräfte Zft von der Größe

Zh Z-
h (21)

auf das Kabel ausüben. Z bedeutet die Hängestangenkräfte infolge ständiger
und Verkehrslast, während mit h die Länge der einzelnen Hängestangen
bezeichnet ist. Wenn wir nun die Zusatzmomente AM0 infolge der Horizontalkräfte

Zh wie für einen Zweigelenkbogen mit gleicher Form wie das Kabel be-

Horizontal- Verschiebungen
Deplacements horizontaux |Horizontal displacement

cm;y
y

m\
\,o\-

Burchbiegungsänderungen
Variations duflechissement 4r)
Variation of deflections

cm\
s. 2*0171

Fig. 8.

rechnen, so ergibt sich die Verkleinerung der lotrechten Durchbiegungen, Ai]0,
zunächst zu

Ailn _ AM0
N (22)

Aus diesen Verschiebungen ist nun mit Hilfe der Elastizitätsbedingung die
Änderung AH des Horizontalschubes zu berechnen, wobei das Belastungsglied

mit
«io J y 'io dx

Dann ergibt sich die Änderung der Versteifungsträger-

AH-y

einzuführen ist.
momente zu

AM N- Ai,-
und die Änderung der Durchbiegungen zu

Ar, Ai,0 — AH- ilH=x-
Genau genommen wären nun die Verschiebungen | usw. auf Grund der
korrigierten Durchbiegungen ¦>] — Ai] neu zu berechnen. Solange die Änderungen
Ai] aber klein sind, wird diese Wiederholung der BerecTinung die Resultate der
ersten Rechnung nicht mehr merklich ändern. Die am Beispiel der Fig. 3
durchgeführten Berechnungen ergeben, daß infolge der Horizontalverschiebungen f
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die Momente um rd. 5 °/o, die größten Durchbiegungen um rd. 8 <y0 verkleinert
werden. In Fig. 8 sind die Horizontalverschiebungen f und die Änderungen
Ai]0, die hier wegen der annähernden Gegensymmetrie praktisch gleich den
Änderungen At] sind, für das Beispiel der Fig. 3 skizziert.

Falls die Türme, im Gegensatz zu den hier getroffenen Voraussetzungen,
keine freie Verschieblichkeit der Kabelauflagerpunkte erlauben, so wird für
die Berechnung der durch die Türme aufgenommenen Anteile des Horizontalschubes

die horizontale Ausbiegung e der Turmspitzen benötigt. Auch hier ist
der Einfluß der Formänderungen zu berücksichtigen, da die an der ausgebogenen
Turmspitze angreifende lotrechte Auflagerkraft V die Momente und damit die
Ausbiegungen vergrößert. Die gesuchten Ausbiegungen sind durch Auflösungen
eines dreigliedrigen Gleichungssystems Gl. (8) recht einfach zu berechnen, nur
ist hier statt N ein Mittelwert des Auflagerdruckes V und zwar mit negativem
Vorzeichen einzuführen. Werden für die Berechnung die Ausbiegungen von
der Lotrechten durch die ausgebogene Turmspitze aus gemessen, so fällt die
oberste Gleichung Gl. (8) aus, während für den Einspannquerschnitt eine
Symmetriebedingung anzuschreiben ist.

Für kleinere Hängebrücken werden wohl in der Regel die in diesem Abschnitt
skizzierten zusätzlichen Untersuchungen, mit Ausnahme etwa des Einflusses
der Horizontalverschiebungen f, unterbleiben können. Bei großen Bauwerken
oder bei extremer Biegsamkeit des Versteifungsträgers dagegen dürften auch
die übrigen Fehlereinflüsse der vereinfachten Berechnung wenigstens für die
ungünstigste Laststellung zu untersuchen sein.

Zusammenfassung.
Die Berechnung verankerter Hängebrücken unter Berücksichtigung der

elastischen Formänderungen wird dadurch auf die in der Konstruktionspraxis
zur Untersuchung statisch unbestimmter Tragwerke übliche Berechnungsform
zurückgeführt, daß das den Formänderungseinfluß auf die Momente darstellende
Glied H ¦ i] durch N • ?; ersetzt wird, wobei N einen gedachten Festwert des
Horizontalschubes darstellt. Dadurch werden Superpositionsgesetz und
Reziprozitätsgesetz wieder gültig. Das angegebene Berechnungsverfahren ist auf
Hängebrücken mit einfachen und mit durchlaufenden Versteifungsträgern gleich
gut anwendbar, wobei über die Form des Kabels oder der Kette keine
einschränkende Voraussetzung zu treffen ist. Die Berücksichtigung einer beliebigen
Veränderlichkeit der Steifigkeit des Versteifungsträgers ist einfach möglich;
ebenso können die gewöhnlich vernachlässigten Auswirkungen der
Hängestangenverlängerungen, der Horizontalverschiebungen der Kabelpunkte usw.
überprüft werden.

Resume.
Le calcul des ponts suspendus ancres, en tenant compte des deformations

elastiques, est ramene ä la forme de calcul usuelle dans la pratique pour l'etude
des systemes hyperstatiques, en remplacant par N -i] le membre H • rj repre-
sentant l'influence de la deformation sur les moments; N represente une valeur
imaginaire de la poussee horizontale. De cet fait la loi de la superposition et
la loi de la reciprocite sont de nouveau valables. Le procede de calcul que
nous donnons peut etre employe aussi bien pour les ponts suspendus avec
poutres raidisseuses simples que pour les ponts suspendus avec poutres
raidisseuses continues, sans qu'il soit necessaire d'admettre une hypothese
restrictive sur la forme du cable ou de la chaine. II est possible de tenir compte
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d'une facon simple de la Variation de la rigidite de la poutre raidisseuse; de
meme on peut contröler l'influence generalement negligee des allongements
des barres de suspensions, des deplacements horizontaux des points du cable, etc.

Summary.
The calculation of anchored Suspension bridges under consideration of

elastic deformations can be brought back to the usual mode of calculating stati-
cally indeterminate Systems as employed in ordinary practice, if the term H ¦ ?;

representing the influence of deformation on the moments is replaced by N -i].
The quantity N represents an assumed fixed value of the horizontal thrust.
This makes the laws of superposition and reciprocity become applicable again.
The procedure of calculation given in the paper can be employed in the same
easy manner to Suspension bridges with simple or with continuous stiffening
girder, without making restrictive assumptions as to the types of cables or
chains. Any variability of stiffness of the stiffening girder can be allowed for
in a simple manner. The effects of the elongation of hangers, which are usually
neglected, and the horizontal displacements of cable points, etc., can also be
checked.
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