
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 4 (1936)

Artikel: Die durchlaufende Balken auf nachgiebigen Stützen

Autor: Ritter, M.

DOI: https://doi.org/10.5169/seals-5096

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-5096
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DER DURCHLAUFENDE BALKEN AUF
NACHGIEBIGEN STÜTZEN.

LA POUTRE CONTINUE SUR APPUIS COMPRESSIBLES.

CONTINUOUS BEAMS ON COMPRESS1BLE SUPPORTS.

Prof. Dr. M. RITTER, Zürich.

Im Folgenden wird die Berechnung des in Fig. 1 skizzierten Tragwerkes
vorgeführt, das im Eisenbetonbau überaus häufig zur Anwendung gelangt. Ein
vollwandiger Balken ruht auf beliebig vielen, mit ihm biegungsfest verbundenen
Stützen oder Säulen und wird derart beansprucht, daß sich die Formänderung
in der Ebene des Systems vollzieht. Wir berücksichtigen in der Untersuchung
sowohl den Biegungswiderstand der Stützen, als auch elastische und unelastische
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Fig. 1.

Stützensenkungen; der meist sehr geringe Einfluß der Normalkräfte im Balken
selbst werde vernachlässigt. Ferner wird vorausgesetzt, daß ein festes
Endauflager vorhanden ist, die Stützenköpfe somit keine wagrechten Verschiebungen
erleiden. Die Darlegungen vermeiden analytische oder geometrische Betrachtungen

am Seileck der Momentenfläche, wie sie in den klassischen Studien von
O. Mohr, W. Ritter u. a. zu finden sind; als rein statische Grundlage dient die
Theorie des elastisch eingespannten Balkens, die in einfachster Weise mit Hilfe
des Gesetzes der Superposition entwickelt wird.

1. Der elastisch eingespannte Balken auf festen Stützen.
Wir beginnen mit einer kurzen Darstellung der Theorie des elastisch

eingespannten Balkens auf festen Stützen, soweit sie für die Behandlung des
durchlaufenden Balkens benötigt wird.

Als statisch bestimmtes Grundsystem wählen wir den einfachen Balken
von der Stützweite /, an dem die Einspannmomente Mt und M2 als überzählige
Größen wirken, vergl. Fig. 2. Die elastische Linie bildet an den Auflagern mit
der Wagrechten die Winkel a und ß, die wir positiv rechnen, wenn sie wie in
Fig. 2 geöffnet sind. Das Gesetz der Superposition liefert für diese Auflager-
drehwinkel die Beziehungen

« «o + Mt «! + M2 a2 1

ß ß0 + M, ß, + M2 ß2; I '
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darin bezeichnen am frei aufliegenden Balken
a0,ß0 die Winkel infolge der Belastung,
au /?! die Winkel infolge Mx 1,
a2,ß2 die Winkel infolge M2 1.

Als elastische Einspannung eines Auflagers definieren wir den Fall, wo der
Auflagerdrehwinkel einzig vom Einspannmoment abhängt, das vom Balken in
das Auflager übergeleitet wird und ihm proportional ist. Wir unterscheiden
drei verschiedene Fälle:

H

Mrf

<*!
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Fig. 2.

Erster Fall: Die Ursache der Winkeldrehunga liege rechts vom linken
Auflager. Der Balken selbst sei unbelastet. Dann ist a eine lineare Funktion
von Mu was man sofort erkennt, wenn man das linke Widerlager unmittelbar
rechts vom Einspannquerschnitt wegschneidet und für sich betrachtet. Es wird
— sofern keine Senkung durch die Querkraft erfolgt — einzig durch M^
deformiert; somit ist, wenn das Superpositionsgesetz gilt,

a —E1M1, (2a)
worin ex die Drehung des Widerlagers infolge Mt — 1 bezeichnet. Die erste
der Gl. (1) lautet darnach

Mx (ax + «i) + M^ a2 0

Die Momentenlinie ist eine Gerade; der Momentennullpunkt / ist ein
Festpunkt, d. h. sein Abstand a ist unabhängig von der Größe der Momente. Aus
obiger Beziehung und Fig. 3 a ergibt sich

Mx a a2

M2 l— a «*! -\-£x'
somit

«= "a /¦ (2b)
«i i- «2 + «i

Der Drehwinkel am rechten Auflager läßt sich jetzt als Funktion von M2 allein
darstellen; indem Mt eliminiert wird, findet man
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ß=M1ß1+Msßa= M2 (ß2 —-JL-ft).
Wir benötigen später den Winkel für M2 \, der mit ea bezeichnet sei,

l—a ßx- (2c)

EaM2

1-3
3)

M2

Mi llpiliLlP^^

Pd«l

l-bb) r

mm**,"
"^^llillilljife

6
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uk u2

Fig. 3.

Zweiter Fall: Die Ursache der Winkeldrehung ß liege links vom
rechten Auflager, der Balken sei wieder unbelastet. Dann ist ß proportional M2,

ß —e2M2, (3a)
worin s2 die Drehung des rechten Widerlagers infolge M2 — 1 bezeichnet.
Die zweite der Gl. (1) lautet

Mx ßx + M2 (ß2 -f- £2) 0

Die Momentenlinie ist eine Gerade; der Wendepunkt K ist wieder ein
Festpunkt. Aus obiger Beziehung und Fig. 3 b folgt

M2 b _ ßt

Mi l—b ß2 -f- e2
'

somit beträgt der Abstand b vom rechten Auflager
ßx

b
ßx + & + £2

l. (3 b)
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Für den Drehwinkel a läßt sich schreiben

a Mi «t -j- M2 «2 yWjt
6

l — b «2j-

Für yV?! 1 ergibt sich die später benötigte Formel

b
eb ax /—* (3c)

Dritter Fall: Die Ursache der Winkeldrehungen a und ß liege zwischen
der Auflagerquerschnitten, beide Widerlager sind elastisch eingespannt. Dieser
Fall ist nur denkbar, wenn der Balken belastet ist. Die Grundgleichungen (1)
liefern in Verbindung mit den Gleichungen (2a), (3 a) die
Elastizitätsgleichungen, die sich nach Mi und M2 auflösen lassen. Die Gleichungen lauten

«o + Mi (ax + e^ + M2 a2 0 1

ßo+Mxßi+M2(ß2A-E2) 0. I w
Um die Auswertung zu vereinfachen, empfiehlt sich die Einführung der sog.
Festpunktsmomente Mi und Mk nach Fig. 3 c, aus der sich ergibt, daß

Mt Mx l
¦Mo l

Mk Ml^-+Ms^—r

C J
t*-i ¦^%

' A 1 I 1 B. HE K F
Z7%.

yyc///

Daraus erhält man umgekehrt

Mi Mi

M, Mk

T~ J—t

Fig. 4.

l—b
c

l—a

¦Mk

¦M,
(5)

worin c / — a — b die Distanz der Festpunkte bezeichnet.
Die erste der Gl. (4) lautet daher

«. + ^^[(/~*)fl(/~fl)-^]-Af^[8(/7a) -(/-«)] 0.

Das letzte Glied fällt weg, sodaß für M, ein sehr einfacher Ausdruck entsteht.
In gleicher Weise läßt sich aus Gl. (4 b) Mk berechnen. Man findet

M;
a

T x—T-%- (6)

Hat man 44,- und Mk berechnet, so gewinnt man yWx und M2 leicht mit den
Gl. (5) oder graphisch, indem man die Schlußlinie aufträgt. Bei konstantem
Trägheitsmoment und einfachen Belastungszuständen lassen sich mit Hilfe der
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Gl. (6) die bekannten graphischen Konstruktionen zur Bestimmung der Schlußlinie

(nach O. Mohr und Wilhelm Ritter) ableiten, die in den Lehrbüchern zu
finden sind und von den praktisch tätigen Statikern bevorzugt werden.

2. Der durchlaufende Balken auf elastisch drehbaren,
festen Stützen 1).

Die Öffnung A B des in Fig. 4 skizzierten Balkens auf starr mit ihm
verbundenen Stützen sei lotrecht beliebig belastet, während alle andern Felder von
Lasten frei seien. Von Stützensenkungen werde zunächst abgesehen. Ausgehend
von der eben behandelten Theorie des elastisch eingespannten Balkens, läßt
sich über den Momentenverlauf in den verschiedenen Feldern folgendes
aussagen.

M/y,M?

Mi'

¦^

.,--—-^Y.MiSa
V er

Fig. 5.

Die belastete Öffnung verhält sich wie ein beidseitig elastisch eingespannter
Balken, da die Ursache der Deformation zwischen A und B liegt, somit der in
Abschnitt 1 als dritter Fall gekennzeichnete Zustand gilt. Kennt man die
Festpunkte f und K in dieser Öffnung, so findet man mit den Formeln (6) oder
den bekannten Konstruktionen leicht die Schlußlinie der Momentenfläche und
damit die Einspannmomente Mt und M2.

Eine unbelastete Öffnung C D, links von der belasteten Öffnung gelegen,
deformiert sich in der in Fig. 4 angedeuteten Weise; da die Ursache dieser
Deformation rechts der Öffnung C D liegt, so handelt es sich hier um den in
Abschnitt 1 als ersten Fall beschriebenen Zustand, für den die Beziehungen (2)
gelten. Entsprechend verhält sich eine unbelastete Öffnung E F, die rechts der
belasteten Öffnung liegt, im Sinne des in Abschnitt 1 definierten zweiten Falles
mit den Beziehungen (3).

Um den Momentenverlauf zu ermitteln, sind zunächst die Festpunkte J
und K in allen Offnungen zu ermitteln. Wir bezeichnen mit / und /' die
Stützweiten zweier aufeinander folgender Öffnungen, die links von der belasteten
Öffnung liegen, vergl. Fig. 5. Nach Gl. (2 b) hat der Festpunkt /' in der
Öffnung /' vom linken Auflager den Abstand

a «l'+«2'+£l~,l,

l) M. Ritter: Der kontinuierliche Balken auf elastisch drehbaren Stützen.
Schweizer. Bauzeitung, 1911. In dieser Arbeit sind Stützensenkungen nicht behandelt,
dagegen der Einfluß wagrechter Kräfte bei fehlendem Endwiderlager, sowie die
Wirkung von Temperaturänderungen mit Hilfe der Festpunkte berechnet.

Abhandlungen IV 33



514 M. Ritter

darin bezeichnet ex den Drehwinkel des linken Auflagers der Öffnung /', wenn
diese weggeschnitten und das Moment Mx — 1 am Knoten angebracht wird.
Um denselben Winkel drehen sich bei dieser Formänderung sowohl die Säule,
als auch die Öffnung /. Wir bezeichnen in der Folge die Einspannmomente
der Öffnung / mit Mx und M2, die der Öffnung /' mit Mx' und M2; dann ist

Ms Mx'~ M2 (7)
das Moment, das in die Säule übergeht.

Bezeichnet es die Drehung des Stützenkopfes für Ms 1, so gilt mit
Benützung der Formel (2 c) für die Drehung ea des Balkens / infolge M2 1

M' ex' M2 ea (Mx'— M2) es ;

daraus folgt

's | ta ba

somit

^' TTY oder
T> T + T- (8b>

's ^^ 'a 'i ts ba

Die Gleichung für a! lautet darnach

a' ^± (9a)
i \ i \ ^s ' &a

a>+a>+^+7a
Diese Beziehung ermöglicht die einfache Berechnung aller Festpunkte /. Man
beginnt am linken Trägerende, berechnet zunächst aus a (dieser Wert ist
entweder gleich Null oder aus der Einspannung des linken Endauflagers zu
ermitteln) den Wert

£a ft J ßx
l— a

und darauf nach Gl. (9) den Abstand a' des Festpunktes /' in der zweiten
Öffnung. Alsdann wird die zweite und die dritte Öffnung mit / und /' bezeichnet
und in gleicher Weise a' aus a bestimmt, usw.

Ober den Stützen ändert sich das Moment sprungweise, indem der Anteil
Mx' — M2 Ms in die Stützen geleitet wird. Gemäß Gl. (8 a) ist das Moment
Mi beim Überschreiten einer Stütze von rechts nach links mit der Übergangszahl

M2 es ,„„"=Äi7 ^ <10a>

zu multiplizieren.
In entsprechender Weise lassen sich die Festpunkte K berechnen. Man

beginnt am rechten Trägerende und findet aus dem Abstand b' einer Öffnung /'
den Abstand b der links benachbarten Öffnung / nach der Beziehung

b= "'¦' (9b)

b'
worin Eb' a/ — — a2. Die Ableitung entspricht ganz der Ableitung der

Gl. (9). Beim Überschreiten einer Stütze rechts der belasteten Öffnung von
links nach rechts ist das Moment M2 mit der Übergangszahl
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" 3? inFi? <10b>

zu multiplizieren.
Das Gesagte genügt, um die Momentenfläche in allen Öffnungen

aufzuzeichnen. Sind mehrere Öffnungen belastet, so behandelt man die Belastung
jeder Öffnung für sich und addiert zum Schlüsse die Momentenordinaten in
jedem Schnitte.

Bei konstantem Trägheitsmoment / ist nach bekannten Formeln
l l

«1 ßi TW7' «2 ßx
3EJ' l ~™ — 6EJ

Man erhält damit

ea l=^ßl -WeJ\2EJ\ l-al'
a' - (11)

3 + ^- t^±
' V l1+ l

ÖEJes V /—a

Mi=-^-EJa0, Mk=-^-.EJß0. (12)

Für gleichmäßige Belastung wird

*=-«£, *.= -*£.
Auch die Berechnung der Einspanngrößen es der Säulen bietet keine
Schwierigkeiten. Man erhält bei konstantem Trägheitsmoment fs einer Säule von der
Höhe h

es — ^-pry-, Säulenfuß gelenkig,
3EJh

Es -j-pj-, „ eingespannt,
4£yA

1 -j- r, Säulenfuß auf nachgiebigem Baugrund.
es -T~ßrj TfT~ ^ BeilUn&sziffer) Jf Trägheitsmoment der

4 EJh 3tJh Fundamentsohle.)^ CJPh

Die Berechnung der Auflagerdrücke bezw. der Normalkräfte in den Säulen
erfolgt mit der bekannten Beziehung

C X + ^7^+^-^, (13)

worin A den Auflagerdruck bezeichnet, wenn / und V als einfache Balken
gelagert sind.

3. Einfluß gegebener Stützensenkungen.
Der Kopf einer beliebigen Stütze, die die Öffnungen / und /' trennt, senke

sich um einen gegebenen Betrag v, während alle andern Stützenköpfe in ihrer
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Höhenlage verbleiben. Das System verbiegt sich, wie in Fig. 6 angedeutet. Bei
dieser Deformation ist der Balken l links, der Balken /' rechts elastisch
eingespannt, doch sind die Grundgleichungen (1) zu ergänzen, da zu den Winkeln,

die die elastische Linie mit der Stabsehne bildet, noch der Stabdrehwinkel —
v

bezw. —- hinzutritt. Versteht man unter a und ß die Winkel mit der

Wagrechten, so schreiben sich die Gleichungen (1) jetzt
v

a — Ei Mi Mi ax -y M2 a2 -f-

ß Mißi -y M2ß2 —
Die erste Gleichung liefert mit Gl. (2 b)

Mi — -,—-/ — a
M,

l

a,ll (14 a)

1 JÜm^^ ¦ i ^i*^*1 J^cr
>I- -Ä

WS6S

Fig. 6.

iA%te*K

Dieser Wert in die zweite Gleichung eingesetzt, gibt mit Gl. (2 c)

Entsprechend erhält man für den linken Drehwinkel der Öffnung /'

v
Mx'Eb'- l' — b'

(15 a)

(15b)

Wegen der starren Verbindung der Säule mit dem Balken müssen die Winkel
ß und a' der Drehung des Säulenkopfes entsprechen; daher ist

M2Ea —

Mi'£b' —

l— a

v

es(Mx'—M2),

Daraus folgt

M2 v-

1 + eb'JEs

l — a

£a + «ft' ¦

l'—b

1

ZEZ.
ea£b

-, es(M2-Mx').

1 + £al£S

Mx' v-
l'—b' ' /—a

£a£b
(16)
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Aus M2 findet man mit Gl. (14a) Mt\ die entsprechende Beziehung für M2
lautet

*.' -f=fK+jvf)- <,4b>

Der Auflagerdruck bezw. die Normalkraft in der Säule berechnet sich aus
Gl. (13), in der A 0 zu setzen ist.

Für den Fall einer frei drehbaren Stütze gehen die Beziehungen (16) mit
es co über in

1 1

M, M/ — v
l— a ^ V — V

(17)
Sa + «ft

Man gelangt in diesem wichtigen Sonderfall zu einer sehr einfachen graphischen
Konstruktion, wenn man e„ durch den Abstand a! des Festpunktes /' in der
Öffnung /' ausdrückt; nach Gl. (9a) ist mit es co

* «iL
ax -y a2' ~f- ea

'

J*^-./ IXi

OC?

u2

I

woraus
Fig. 7.

l' — a!

und weiter

,l'-a' b'
£a + Eb «2 -, a: l' — b'

folgt. Gl. (17) geht damit über in

M2-M'--^-a{l-a + 1'^.
Mit dieser Formel läßt sich leicht die einfache graphische Konstruktion von

M2 beweisen, die Fig. 7 wiedergibt; man trägt an der Stütze A B v/a2 V ab,

zieht die Linien /'/", //", K! J", worauf sich B C M2 ergibt. Für konstantes
Trägheitsmoment und freie Drehbarkeit aller Stützen ist diese Konstruktion auf

ganz anderem Wege bereits in der klassischen Literatur abgeleitet.

Ein anderer Sonderfall von Interesse betrifft die starre Stütze, ss 0. Die
Gl. (16) lauten hiefür

M, —^-—. Af,'=TT7^-m. 08)
ea(l—a)> Eb'(l'-b')-
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Ausgenommen abnormale Fälle, erhält man bei elastisch drehbaren Stützen
keine wesentlich abweichenden Auflagerdrücke, wenn man zur Vereinfachung
näherungsweise nach Gl. (17) oder (18) rechnet.

In den Öffnungen, die links von / bezw. rechts von /' liegen, fallen die
Nullstellen der Momente infolge der Stützensenkung v in die Festpunkte /
bezw. K; ferner gelten die Beziehungen (10) für alle Stützen, ausgenommen
die Stütze mit der Senkung v. Die in Abschnitt 2 und 3 enthaltenen
Darlegungen genügen also, um die Momentenverteilung im ganzen Tragwerk zu
finden und auch die Normalkräfte in allen Stützen zu ermitteln. Wie weiterhin

gezeigt wird, dient die Berechnung der Normalkräfte für v 1 als Grundlage

bei der Untersuchung elastischer Stützensenkungen.

4. Einfluß elastischer Stützensenkungen.
Wir behandeln nachstehend den Fall, daß die lotrechte Verschiebung jedes

Stützenkopfes nur von dem in dieser Stütze herrschenden Auflagerdruck
abhängig und ihm direkt proportional ist; die Senkung kann die Folge der
Elastizität der Stütze oder auch der (elastischen) Nachgiebigkeit des Baugrundes
sein. Dieser klassische Fall hat für frei drehbare Stützen in der Literatur mehrere
umfassende Darstellungen gefunden. F. Engesser und E. W i n k 1 e r stellten
als Elastizitätsgleichungen die sog. „Fünfmomentengleichungen" auf, mit deren
Auflösung sich später u. a. H. Müller-Breslau und A. O s t e n f e 1 d
befaßten ; der letztere gibt in seinem Lehrbuch2) eine besonders ausführliche
Darstellung der analytischen Theorie. Im Falle elastisch drehbarer Stützen dürfte
diese Theorie zu sehr verwickelten Beziehungen führen. Das klassische Werk
von Wilhelm Ritter3), „Anwendungen der graphischen Statik, nach C.
Culmann bearbeitet", brachte eine andere, zum Teil graphische Berechnungsweise,

indem hier nicht sofort die Stützenmomente, sondern zunächst die
Nullstellen einzelner Seiten der Momentenlinie ermittelt wurden. Das Studium
dieser hochwertigen, mit Tabellen und wichtigen Anwendungen durchsetzten
Arbeit stellt an den Leser hohe Anforderungen, da die Beweisführung stellenweise

nur angedeutet ist und stark auf das Gebiet der Geometrie übergreift.
Gestützt auf die Darstellung Wilhelm Ritters, aber unter Beschränkung auf
statische Hilfsmittel, hat später L. V i a n e 11 o4) eine rein graphische Behandlung

der Aufgabe durchgeführt. Auch bei diesen Lösungen entstehen indessen
große Schwierigkeiten, sobald man versucht, sie auf den Balken mit elastisch
drehbaren Stützen zu erweitern.

Als Grundlage zur Berechnung des durchlaufenden Balkens auf elastisch
senkbaren Stützen kann auch die Theorie des elastisch eingespannten Balkens
dienen, die sich auf den Fall elastisch senkbarer Widerlager erweitern läßt5).
Die Auflagerdrehwinkel a und ß der elastischen Linie sind in diesem Falle
nicht nur von den betreffenden Einspannmomenten abhängig, sondern wegen
der Auflagersenkungen auch von den Querkräften. Für die Elastizitätsbedingungen

ist daher an Stelle der Gl. (2 a) und (3 a) allgemeiner zu schreiben

« «io— Mxex1 +M2e12,
ß «20 — ^2 «22 -\-MiE21,

2) A. Ostenfeld: Teknisk Statik, II (in dänischer Sprache). Kopenhagen 1925.
3) Wilhelm Ritter: Der kontinuierliche Balken. Zürich 1900.
4) L. V i a n e 11 o: Der durchgehende Träger auf elastisch senkbaren Stützen.

Zeitschrift des Vereines deutscher Ingenieure, 1904. Eine kurze Darstellung enthält das
Lehrbuch von Müller-Breslau.

6) Der Verfasser: Allgemeine Theorie des elastisch eingespannten Balkens.
Abhandlungen der I. V. B. H., Band II, 1934.
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dazu kommen die Einsenkungen
Vi v10 - Mxvxx + M2Va,
v% v20 — M2v22 -f-yWj r21.

Die Anwendung auf den durchlaufenden Träger auf elastisch drehbaren und
elastisch senkbaren Stützen bietet keine prinzipiellen Schwierigkeiten, ist
jedoch insofern etwas mühsam, als in jeder Öffnung acht verschiedene Einspanngrößen,

nämlich die Werte exx, e12, vlu vX2, e22 usw. auftreten; zu ihrer Berechnung

lassen sich Rekursionsformeln aufstellen.
Das nachstehend beschriebene Verfahren löst die Aufgabe auf anderem,

besonders einfachen Wege, indem es die in Abschnitt 3 der vorliegenden
Arbeit gegebenen Hilfsmittel verwertet. Für die Darstellung nummerieren wir
die Stützen des durchlaufenden Balkens in ihrer Reihenfolge und bezeichnen
die Auflagerdrücke bezw. die Normalkräfte in den Säulen mit Cx, C2, C3
die entsprechenden Verschiebungen der Stützenköpfe mit vx, v2, v3. • • Nach dem
Gesetze der Superposition können wir schreiben

Ci Cx0 -f vx Cx i -f v2 C12 -f v3 Cxs -\ j
C2 C20-f ViC21 -irv2C22-\- v3C23 -| (19)
C3 C30 + Vi C31 -f v2 C32 -f v3 C33 -| usw. J

Darin bezeichnen

Cio> C20, C30 • ¦ • die Stützendrücke für feste Stützen,

Cu, C2i, C31 • • • „ „ „ vx 1, v2 i>3 • • • ü,
C12 > C22, C32 • • • „ „ „ v2 1, Vi v3 • • • ü,
Cis, C23, C33 • • • „ „ „ v3 1, vx v2 vt • • • 0, usw
Diese, mit Doppelzeiger versehenen Werte, lassen sich nach dem in Abschnitt 3

vorgeführten Verfahren leicht berechnen. Um z. B. die Drücke C12, C22, C32

zu finden, ermittelt man die Einspannmomente in allen Öffnungen für v2 1

(Vj v3 0) und berechnet nach Gl. (13) mit A 0 alle Stützendrücke.
Als Kontrolle dient die Gleichgewichtsbedingung

C12 T" C22 ~\~ C32 ~r • ¦ ¦ 0,
die erfüllt sein muß, weil diese Drücke die Reaktionen infolge v2 1, also
nicht infolge einer Belastung, darstellen.

Die elastische Nachgiebigkeit der Stützenköpfe kommt zum Ausdruck durch
die Bedingungen

vx kxCx, v2 — k2 C2 ,"^ v3 k3 C3 • • • ; (20)

darin sind kx, k2, k3 die Senkungsmasse der Säulen, d. h. die durch den
Stützendruck 1 (auf die vom Balken losgelösten Säulen) erzeugten Verschiebungen

der Säulenköpfe. Nach Einsetzen der Beziehungen (20) in (19)
entsteht das Gleichungssystem

Cj C10 ~y kx cx cxx -y k2 c2 c12 -f- «3 c3 c13 -[-•••
C2 Ci0 -f- kx Q C21 -f- k2 C2 C22 -f- k3 C3 C2S + • • • / (21)

C3 C30 -f- kx Cx Cji + h C2 C32 -\- k3 C3 C33 -f- • ¦ • usw.

usw., dessen Auflösung alle Stützendrücke Cx, C2, C3 liefert. Daraus folgen
nach Gl. (20) die Verschiebungen v, mit deren Hilfe man nun nach Abschnitt 3

die endgültigen Momente bestimmt; man hat nur die Momentenordinaten für
v 1 mit v zu multiplizieren und die Einflüsse aller Stützensenkungen mit
den nach Abschnitt 2 bestimmten Momenten für feste Stützen zu superponieren.
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Die Auflösung der Gleichungen (21) gestaltet sich sehr einfach, wenn man
das Verfahren der Iteration benützt. Da die Drücke mit gleichem
Doppelzeiger, wie man leicht einsieht, stets überwiegen, so werden im ersten
Rechnungsgang nur diese Drücke berücksichtigt, und man findet aus den
Gl. (21) die angenäherten Werte

r-* i c10 C2q r, c30
°1 1 U /~ > ^3 1 /./-!> ^31 — kx Cxx 1 k2 C22| i — «s c33

Mit diesen Näherungswerten berechnet man aus den Gl. (21) in einem zweiten
Rechnungsgang die verbesserten Werte

Ci (1 —kx Cxx) C10 -y k2 C2CX2 -j- k3 C3 CX3 -\- ¦ • •

C2 (1 k2 C22) C20 -j- ki Cj C21 -f- ks C3 C23 -+ • • •

C3 (1 — k3 C33) C30 -f- kx C/C3X -f- k2 C2 C32 -|~ • •

Die Rechnung kann beliebig fortgesetzt werden. Das Verfahren konvergiert
rasch; in der Regel liefern bereits der erste und zweite Rechnungsgang wenig
abweichende Werte. Sobald die Zahl der Stützen ein bescheidenes Maß
übersteigt, ist für die praktische Anwendung das Gleichungssystem (21) dem System
der klassischen Fünfmomentengleichungen bei weitem vorzuziehen, abgesehen
davon, daß letztere nur für frei drehbare Stützen gelten. Man erkennt leicht,
daß die Rechnung um so besser konvergiert, je kleiner die Verhältniszahlen
E Jk/fi ausfallen, d.h. je elastischer der Balken im Vergleich zu den Säulen ist.
Im Falle relativ wenig nachgiebiger Stützen genügt schon der erste Rechnungsgang.

Zusammenfassung.
Ausgehend von der Theorie des elastisch eingespannten Balkens, wird die

statische Berechnung des durchlaufenden Balkens auf elastisch drehbaren und
senkbaren Stützen vorgeführt.

Resume.
En partant de la theorie de la poutre elastiquement encastree l'auteur

expose le calcul statique de la poutre continue sur appuis elastiques et compres-
sibles.

Summary.
Starting from the theory of elastically restrained beams, the static

calculation of continuous beams on supports subjected to elastic turning and de-
pression is demonstrated.


	Die durchlaufende Balken auf nachgiebigen Stützen

