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LES METHQDES DE CALCUL DE LA R'E'ISISTANCE DES
MATERIAUX ET LA THEORIE D'ELASTICITE.

BERECHNUNGSMETHODEN DER FESTIGKEITSLEHRE UND
ELASTIZITATSTHEORIE.

METHODS OF CALCULATION CONCERNING THE STRENGTH OF
MATERIALS AND THE THEORY OF ELASTICITY.

‘ROBERT L’HERMITE, Directeur-Adjoint des Laboratoires du Batiment et des Travaux
Igublics, Paris.

Les théories élaborées dans le domaine de la résistance et de la déformation
des matériaux ont pris, comme point de départ, des hypothéses simplificatrices
telles, que les résultats ne sont valables qu’entre certaines limites trés rap-
prochées. Quand on s’écarte de ces limites, la réalité se montre profondément
différente des calculs. Ceci, tient au fait que, d’une part, les bases de départ
sont trop simplifies et que, d’autre part, on a négligé, au cours du développe-
ment, des termes qui ne devaient pas I’étre.

Le mot méme de résistance des matériaux utilisé habituellement pour dé-
signer cette partie de la physique mathématique implique I’idée de rupture.
Cependant, aucune liaison n’existe actuellement entre I’étude des déplacements
et celle des ruptures. On peut s’en étonner, car nous avons affaire avant tout
a une science constructive et non spéculative et ce que I’on cherche quand on
construit c’est a combatire la rupture, '

Toute la théorie de 1’élasticité est basée sur cette hypothése que les con-
traintes sont linéaires par rapport au déplacement. Pourtant rien n’est plus
contestable, toutes les expériences le prouvent. Cette persistance dans Perreur
tient simplement a ce que si les tensions sont des expressions du premier de-
gré, le potentiel des forces intérieures est une forme du second degré trés com-
mode a employer dans les calculs.

Dans ce domaine un autre fait a également une allure paradoxale. C’est la
contradiction qui existe entre Pélasticité et la plasticité. On est arrivé a batir
sur ces deux propriétés de la matiere deux sciences absolument distinctes et en
contradiction 'une avec Pautre. Cependant, la plasticité ni I’élasticité n’existent
séparément pour les solides et ces deux notions pourraient étre parfaitement ré-
unies si ’on tenait compte du facteur temps. Tous les corps possédent en effet,
a un degré variable, une propriété de relaxation qui fait qu’ils suivent les solli-
citations et tendent vers la forme et la position d’un liquide en équilibre par
rapport a celles-ci. Le temps nécessaire aux corps pour parvenir a cet état
d’équilibre et extrémement variable et, en général, au dessus de toute possibilité
d’observation directe. Cependant, il existe et il est trés facile 4 mettre en
évidence. _

L’expérience la plus courante, je la rappelle pour mémoire, est celle du fil
de brai de houille qui réagit comme un ressort aux torsions brusques et qui suit
sans réaction les torsions suffisamment lentes. Ce méme brai mis en morceaux
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dans une cuve prend lentement la forme d’un liquide en équilibre quoiqu’il soit
toujours nécessaire pour le sortir de le casser au marteau. Le temps de relaxation
est certainement réduit dans de grandes proportions lorsque les efforts, au lieu
d’étre constants, sont soumis a des variations fréquentes et réguliéres pro-
duisant des déplacements additifs et par 14 une adaptation ou une rupture
accélérées. ¥

Laissons de cté les efforts répétés et conS1derons un prlsme soumis a
’action d’une tension statique. Pour une valeur P de cette tension, la défor-
mation z') subie par le prisme est la somme d’une déformation élastique #,
et d’'une déformation dite plastique u,; u, reste constant, tandis que «, augmente
avec le temps. Il est d’autre part un fait expérimental certain que #, augmente
également avec la charge; u, est donc une fonction croissante de P et de £

Plagons-nous maintenant au simple point de vue thermodynamique et écri-
vons que 'augmentation -du potentiel interne, pendant une déformation, est
€gale: au travail des forces extérieures 6 V, plus la chaleur empruntée au dehors
.multipliée par équivalent mécanique: / é @2, moins 1’accroissement de 'énergie
dissipée en transformations plastiques irréversibles & P:

_ U =4dV—dP-4-J0Q.
Le travail externe s’exprime par: 8V == F §u, Paccroissement d’énergie dis-
sipée par: 0 P = F d u,, la chaleur empruntée au dehors par: Ead F pour une

transformation isotherme.
L’égalité ci-dessus devient alors:

U = F(du—Jdu,) -+ EadF.
Exprimons la sous la forme d’une dlfferentlelle exacte, par rapport i

‘Fett
ol S [l )

La premiére différentielle est nulle, puisque la différence u; = u — u, est
la déformation élastique pure qui par définition est mdependante du temps, il

vient:
L du duz) ]
U = [F (ﬁ: ar) TE@

Le coefficient a est en général assez complexe et mal connu. 11 est lui-
méme égal A la somme de deux fonctions, 'une correspondant i la déformation
plastique, toujours positive, 'autre a la deformatlon élastique, du signe de d F.

: Si au cours de la déformation, le potentiel interne atteint un maximum et
“devient décroissant, ’équilibre disparait et la déformation se poursuit spontane-
.ment sans apport d’energle extérieure. C’est par cette considération qu on ex-
-prime la rupture. Ce maximum se produit pour 4 U = 0. On peut donc énoncer
la regle suivante:

Larupture se produ1t gquand [’accroissement de 1’ éner-
‘gie extérieure est égal a l’accroissement de 1’énergie dis-
sipée en transformations plastiques et thermiques.

Si 'on néglige le coefficient @ on est conduit a simplifier cette régle et a
dire que la rupture a lieu quand du = Ju,, c’est-a-dire au moment oit Iac-
croissement du déplacement plastique devient plus grand que P’accroissement
du déplacement total.

1) u étant rapporté a unité.
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Une autre méthode a également été employée pour introduire la notion de
rupture dans la théorie de I’élasticité. En désignant par U le potentiel des
forces €lastiques intérieures, les tensiqns sont des expressions de la forme

N = ks et le potentiel a-pour exp,ression:

ds
2U = Ma, -+ Nya, + N3a3+ﬁg1+F2g2—|—F3g3 _
Sment N =F (a, a, a;) et T = F{g) ]ps expressmns des tensmns par rapport
au déplacement, A .
Explicitons ces formules et ecrwons

a"‘F(NI,Ng,N_g), g_“f(T)

Supposons que ces valeurs soient les racines d’un systeme d’equatlons liné-
aires de la forme:

N, =g, %(Nu Nz: N3)+az (Pz(Nz:- )+as Ps (Nl; )
Ny =, Ny = ----

Par raison de symetne ce systeme dmt se reduu‘e a:

N1 = a1‘P1(N1 +‘12(P2(N2 "l"aa ®s (Ns)
Ny = a3 ¢, (N;) 4 a, Py (N1) + as @2 (V)
N3 = a; 9, (Ny) + a; 92 (N,) + a, @ (Ns)
T, :90:1.(7‘1);%(7‘:) g, T, = %(Tz);% (T3) 2
T, = ¢’1(T3);‘P2(T3) gs. —

Si nous reportons ces valeurs dans l’expressmn du potentiel donnee plus
haut, nous constatons que pour retrouver la valeur N par dlfferen’uatlon it faut
que @; (N1) = @, (N:) = @, (N;) = constante. S :

I1 ne reste donc qu’une seule fonction & déterminer: la fonctlon (p1

Cette fonction dépendra des propriétés du corps et petit étre obtenue par
comparaison avec la courbe €lastique. Elle permet de tenir compte de la variation
du coefficient d’élasticité avec les pressions, ce qui peut étre d’une grande uhhte
dans ’étude des matériaux trés élastiques comme le béton.

" On peut se demander comment faire intervenir dans les équations, la notion

d’¢énergie dissipée sans arriver a une complication inextricable. Le moyen serait,
je pense, d’associer a chaque contrainte active produite par les forces extérieures
une contrainte résiduelle fictive qui persisterait aprés la disparition de la
premiere; cette contrainte entrainerait un déplacement permanent égal au dé-
placement plastique. Il me semble d’ailleurs illusoire, sauf dans les cas é1é-
mentaires, de chercher dans la théorie de 1’élasticité la solution analytique di-
recte d’un probleme de construction. Je pense plutét que devant les questions
qui nous sont posées tous les jours et qui, en général, ne sont pas simples, on
doit plutdt chercher a connaitre les résultats par approximations successives.
- Ce sont les méthodes d’approx1mat10ns semi- experlmentales qu’il convient
de développer. " Qu’importe a un Ingénieur de savoir si la contrainte calculée
est exacte a 590 pres, punsqu ’il ne connait jamais -exactement les charges
apphquees Ce qu’il veut, c’est déterminer rapidement l’ordre de grandeur de
la force & faire intervenir pour obtenir la rupture.

'Cet ordre de grandeur; la résistance des matériaux ne le lu1 donne qu’avec
une approXimation incertaine.- Les théories analytiques, de leur c6té, rébutent

et
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la plupart des esprits pratiques, par leur allure mathématique et par leur
complexité qui n’est pas seulement apparente. L’étude expérimentale pure n’est
malheureusement pas a la portée de tout le monde et les observations sont
souvent difficiles A interpréter directement.

Dans les quelques exemples que je donnerai 4 la fin de ce rapport et dans
les mémoires qui y feront suite, je voudrais montrer comment la théorie et I’ex-
pé€rience peuvent s’épauler mutuellement et conduire 3 des résultats sub-
stantiels et concluants. . .

Etudions maintenant les méthodes qui nous permettront d’utiliser les
données de la théorie de I’élasticité dans ses limites de validité pour I’étude du
béton armé. .

Une piéce de béton armé comprend essentiellement un support en béton
subissant des actions extérieures et une armature d’acier en équilibre sous
Paction des liaisons agissant entre cette armature et le support.

D’une fagon générale la rigidité des armatures est beaucoup plus élevée
dans la direction paralléle au génératrices que vers le sens transversal. La ri-
gidité transversale peut donc étrg négligée et ’on peut supposer que les aciers
suivent la courbe funiculaire des liaisons. Un acier rectiligne ne supporte donc
que des forces dirigées parallélement a sa direction. Si, réciproquement, on
connait ’action des forces de liaison précédemment définies sur le support du
béton ainsi que les déplacements et les tensions qui en découlent, le probleme
€lastique du béton armé est théoriquement résolu. En effet, il ne reste plus
qu’a écrire qu’en chaque point du passage de I’acier la résultante des déplace-
ments €lastiques apportés par chacune des liaisons est la méme pour cet acier
que pour le béton. ,

Pour P'acier assimilé a un fil inextensible la valeur des déplacements est
relativement facile a établir; pour le béton elle I’est beaucoup moins. 11 est,
en effet, nécessaire dans ce dernier cas de faire intervenir, outre les forces super-
ficielles appliquées au contour, des forces de masse appliquées au sein méme
du solide. Si I’on veut donc parvenir-a un résultat dans ce sens, il est avant
tout nécessaire de résoudre un certain nombre de problémes préliminaires stricte-
ment indispensables. '

Puisque les solides que nous envisageons sont en général a trois dimensions
finies, c’est vers I’élasticité a trois dimensions que nous tenterons de nous di-
riger en premier lieu. Malheureusement les problémes qu’on a pu résoudre
jusqu’ici dans ce domaine sont encore trés peu nombreux et leurs solutions se
présentent généralement sous des formes compliquées. '

Le premier probléme est celui de la force appliquée en un point d’un solide
indéfini. La solution fut donnée par Boussinesq. Elle se trouve dans tous les
traités. ,

Le second probléeme résolu par ce méme auteur est celui de la force
appliquée sur le plan limite d’un solide semi indéfini, Ces deux solutions sont
malheureusement insuffisantes pour traiter la question qui nous intéresse et nous
devons nous limiter pour I'instant a I'élasticité plane.

Parmi les problemes de V'élasticité plane qui présenteront pour nous un
intérét particulier citons en premier lieu celui de Flamant: Fig. 1 et 2.

Considérons ensuite le cas de la force massique appliquée en un point d’un
plan illimité: Fig. 3. '

Remarquons en particulier qu’ici les contraintes dépendent des constantes
élastiques du solide. Elles deviennent infinies quand » tend vers zéro. Dans les
cas olt on étudie les contraintes sur des sections suffisamment voisines de la
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‘surface d’application de la charge pour que les dimensions de celle-ci ne soient
plus négligeables on doit faire usage des formules suivantes: Fig. 4 et 5.

- Du cas de la figure 3 on peut facilement par superposition tirer celui de
la figure 6 oli detix forces opposées agissent sur deux directions contraires 2
une distance d ’'une de ’autre (figure 6). On peut remarquer que les cisaillements
sont nuls le long de la droite A B. On peut donc effectuer une coupure le long
de cette droite a condition de remplacer Ia partie sectionnée par les réactions
normales a A B.

Celles-ci sont données par la Fig. 7.

Fig. 6.

Nous avons en outre grace aux formules de la figure 1, la possibilité d’ap-
pliquer normalement &4 A B des forces égales et de signe contraire i ces ré-
actions. Nous obtenons alors la solution du cas de la charge appliquée a l’in-
térieur d’un 1% plan. Le calcul donne pour cette solution les expressions
suivantes.

RS ey LT L

I‘l £ 14

_ A (¥4 _y+d ((y d) (y+d)3 gj 2d | _2d%V?

N=a (=5 e (B - ) =2 (a2 e

_ 1 1 (-4 _ (y+d)* _gj 2d 2d3)(X 2y,

o ax(l k) x| O OL] 22 o,
A=gfﬁ, B = i Kz (voir flg 8).

7T
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Driicke am Rande einer einseitig be-
grenzien Halbscheibe auf einem starren
Untergrund.

Pressions 2 la limite d’'un tympan semi-
_ indéfini reposant sur un corps indéfor-
mable,

Pressures on the edge of an unlimited
hali-plane, resting on a rigid body.

Fig. 8.
£ g

Fig. 0.

La résolution des intégrales définies par la méthode des résidus donne en
définitive les formules ci-dessous (voir Fig. 9):
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y- d y+ y-d y+
N:‘—A( 22 +BX2( — 4d)

r? rt )
—2—y[2AdX211 4AdX12+2AdI,+ZBd3X214—4Bd3X15+ZBd3]6J

Ny:A[y_d J’+d]+ [(y 4y (y+d)3]— 2y3[2Ad11+ZBd31’4]

4

¥y =
T= Ax[ﬁ2 _72_2] +BX[(y;l§f)2 N (y;;f)g]
2y*

— ledXI1 —2Ad I, “2Bds 1, +28d316]

Les intégrales [y, I, ... I;, [ ont les valeurs suivantes:

i i 1 (YV+X)2+2/Y(iYV+X)+d?
h=7yea—rv] T av '( [()zy+ X)‘«’(+d2]2 ) ]
| id L L X[Eve X +d2]+2(lY+X)21Y]
R VI (7 ¢ S L A E [(V+X)2+d]?
s —d? 41 (X2+w)[(iy+X)2+dﬂ]+2iy(iy+X)3]
s T T d[Gd—X)E+ VR T 2Y® [(Y+X) +d¢
;o [(zY+X)2+d2]+4zY(zV+X)+(id—X)2+Y2+4id(iY—X)]
tT 2l vE[id-X) 1 YO Pid- X2+ Y
. _ a4 (id-X) +X[(iV—X)2+d2]+4iY(iV+X)2]
ST 2P [(id- X2+ V° Y3[([Y +X)2 + 37
f = F[CCHYEVEX) ELHAGYEX) Y | d[(id-X)M V2]—4id3(id—X)]
s = 7] V3V + X)2 + a2 Bid— X))+ V)P

Les figures 10, 11, 12 donnent les tableaux des valeurs des contraintes dans
un 1, plan établies d’apres ces formules par une force F = 1.

Si au lieu d’appliquer la force au point A perpendiculairement a la direction
du bord on V'appliquait suivant une parallele, on obtiendrait par la méme mé-
thode les contraintes sous forme d’expressions semblables aux précédentes.

Il est possible de résoudre analytiquement d’autres problémes d’élasticité
plane. Tels sont par exemple: le probléme du quart de plan soumis a une force
appliquée sur un coté a une distance 4 du sommet de ’angle droit, le probleme
du quart de plan soumis a l’action d’une force massique intérieure; le probléme
du 1%, plan chargé uniformément et supporté par des appuis rigides rectilignes,
normaux a la limite et régulierement espacés ... etc.

Examinons maintenant sur un cas concret comment il est possible d’ap-
pliquer quelques-uns de ces cas ¢élémentaires au calcul du béton armé. Soit
une force P agissant normalement a la limite d’'un 1, plan sur lequel a été
placé un acier A B d’une longueur 2/, En chaque point de 4 B agit une force
horizontale de liaison F (X). L’ensemble de ces forces produit en x un dé-
placement mesuré par (voir Fig. 13):

Vi) = J’o F(X)X F(X)x

dX—{—j wF dX.
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424 ' "~ " R. L’Hermite
La force P engendre le long de A B un déplacement horizontal exprimé par:
Vi) = 21 logx+ U2 p

Les forces "de liaison Faglssant sur le] béton produisent elles-mémes des
déplacements horizontaux qui sont:

2 X+ x
v =— 2 | Footog ¥t 2 an
Ecrivons que sur chaque pomt de AB: V,(x) =V,;(x) -+ Vs(x):
F(X)X [ FX)x 1+v 2 J’ X+x
JO o F dX - _nE' 0F(X)log _de.

Cette équation mtegrale peut étre remplacee par un systeme d’équations
linéaires quand on remplace les sommes continues par des sommes discrétes.
Dans ce cas, au lieu d’imposer les conditions de la formule précédente pour
toutes les valeurs de x de ~—/ a -/ on les restreint & quelques points le long
de cette droite et l'on suppose que les liaisons F agissent seulement en ces
points. L’approximation obtenue dépend évidemment du nombre des points
envisagés,

Une autre méthode de calcul plus générale peut étre employée pour ré-
soudre les problémes de béton armé dans le domaine de 1’élasticité plane. Nous
nous limiterons ici au résumé des principes généraux et nous formulerons en
premier lieu I’énoncé suivant:

Soit un massif de béton de forme et de dimensions dé-
terminées a I’avance. Il est soumis a un systéme de forces
extérieurement données, Dans certaines régions il est
soumis 2 des contraintes supérieures aux contraintes li-
mites fixées a l’avance. Déterminer les sections et les di-
rections des aciers a placer de telle facon que dans les ré-
gions olt se trouvent les aciers, [’une au moins des deux
contraintes principales soit constante et égale 2 1’un des
taux de travail limite du béton,

Dans cet ordre d’idée peuvent exister dans le solide quatre sortes de Zones:

a) Les zones sans armatures ou les deux tensions principales sont a Pinté-
rieur des limites.

b) Les zones armées ol une seule des deux tensions principales est a la
limite (de traction ou de compression).

c) Les zones armées ol les deux tensions principales sont & une limite de
méme signe.

d) Les zones armées oit les deux tensions principales sont a4 des limites
de signes contraires,

Dans les zones a) les équations liant les contraintes sont celles de 1’élasti-
cité ordinaire & deux dimensions. Dans les zones b) les contraintes sont liées
entre elles par les équations:

Ki+Nx = Nx- Ny

K, ftx =NxNy—T?
ol1 K, représente une tension limite et fx une tension principale. On en déduit
facilement la relation générale:

Ki*—T* + Nx Ny— K, (Nx+ Ny) = 0.
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On connait également les équations:

dNx ar — x
dx dy

dT | dNy _
dx + d ¥

qui lient les contraintes.
Dans les zones c) et d) les deux tensions principales sont connues et Pon
doit ajouter au systéme précédent la quatrieme relation Nx -+ Ny = K, -+ K..

Lorsque les limites des zones ainsi définies peuvent étre fixes a priori la
détermination des contraintes est rapide, Dans la plupart des applications le
contour ne peut pas étre fixé a ’avance et Pon est obligé d’opérer par approxi-
mations successives, approximations qui peuvent étre réalisées expérimentale-
ment ou par le calcul.

En premier lieu on fait ’étude du corps sans armatures et 'on détermine
les zones ol1 les tensions dépassent les taux fixés. On détermine alors & V’aide
du groupe d’équations précédent quelles forces de masses X et YV il faut
appliquer pour que ces équations soient satisfaites, la résultante de X et Y
étant dirigée suivant la direction de K; qui elle-méme coincide avec la direction
principale obtenue au méme point dans le solide sans armature,

P o
____X__.l
A
X
A i 8
v
F
{ [4 0 7
Hrm/erungszanen
Zones g'armatures
Reinforced zones
Fig. 13. Fig. 14. Fig. 15.

On reprend ensuite 1’étude du corps en tenant compte des forces X et V
et on trouve un nouveau contour de zone ainsi que des forces excentrées X’
et Y. Ce contour varie trés peu d’une approximation a I’autre puisque les forces
X et Y sont en équilibre et que leur influence ne s’étend d’une facon appréciable
que sur un faible rayon. On peut donc dire que ce systeme d’approximation est
rapidement convergent.

Les armatures a placer dans les zones ainsi déterminées suivront les trajec-
toires des vecteurs X et Y avec des sections proportionnelles, en chaque point,
a la grandeur de ces vecteurs.

Dans les zones du type b) X et Y sont liés entr’eux par une relation in-
diquant que leur résultante suit la direction de K et ’on trouve pour X et Y
une seule solution, donc une seule direction d’armatures.

Dans les zones des types ¢) et d) existe une relation supplémentaire entre
X’ et Y’ indiquant que leur résultante suit la direction de K,. On trouve alors
un autre groupe de forces massiques et une seconde direction d’armatures.

Prenons comme exemple d’application de ce principe la torsion d’un prisme
en béton armé, Chaque section de ce prisme travaille au cisaillement et chaque
point de celle-ci supporte un effort de cisaillement différent. Nous pouvons
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assimiler la ligne élastique de cisaillement du béton a une droite O 4 jusqu’au
point A ol le béton atteint un taux de travail qu’il ne dépasse jamais puisqu’on
ajoute des aciers destinés a 'empécher d’augmenter. Cette ligne est en tous
points semblable a celle qu’on envisage dans le cas ou les contraintes sont
sujettes a dépasser la limite élastique. On sait que dans ce cas, un phénoméne
d’analogie mécanique simple permet de représenter la distribution des efforts
par une membrane élastique venant butter sur une surface en tas de sable
construite sur le périmetre de la section. Les régions oit la membrane touche
la surface, (régions variables avec la hauteur du point 4 de la figure 14) subis-
sent des efforts de cisaillement constants. Cette région est donc celle oi1 il sera
nécessaire de placer des armatures. Supposons un prisme de section carrée par
exemple (Fig. 15). Les zones de contact sont représentées en hachures sur
la figure. On peut constater qu’elles sont situées prés du mileu des cotes.
Ceci indique que, pour armer une telle section il est nécessaire de placer
des aciers longitudinaux dans ces régions, ainsi que des cadres concentriques,
au périmetre du carré vers le centre. Cette facon de faire qui parait contraire
aux habitudes consacrées conduit cependant a des sections de plus grande ré-
sistance comme nous ont montré plusieurs expériences faites en confirmation.

Nous conclurons de ce rapide exposé que la théorie de I’élasticité a un
domaine d’application trés restreint quand on la considére seulement comme
une science purement mathématique. On arrive a élargir ce domaine dans de
grandes proportions en I’envisageant comme une branche de la physique géné-
rale et en cherchant une interprétation des phénoménes de la résistance des
matériaux dans I’énergétique et la chimie physique.

Nous constatons, en outre, que I’étude du béton armé peut donner lieu a
deux techniques différentes: '

Une technique constructive qui consiste a chercher quelles sont les régions
d’un solide oit devront étre placées les armatures et qu’elles doivent étre les
sections et les directions de celles-ci pour que ni I’acier ni le béton ne dépasse
un taux de travail fixé a Pavance.

Une technique analytique qui a pour but la recherche des contraintes dans
un solide armé quand les sections et les directions des armatures sont connues
a P’avance.

Résumeé.

Le but du mémoire n’est pas de fournir des indications sur les méthodes
de calcul de la résistance des matériaux habituellement utilisés, mais d’essayer
de montrer par oit celles-ci sont en défaut et quelle est la valeur relative des
résultats qu’on peut en tirer.

Il est montré, en premier lieu, que 1’élasticité que ’on a P’habitude de
considérer seule est accompagnée d’une plasticité et d’une viscosité dont I'im-
portance est loin d’étre négligeable. Ce sont ces deux derniéres propriétés qui
expliquent ’adaptation de solides aux contraintes qu’ils subissent et c’est grice
a leur utilisation dans la thermo-dynamique qu’on arrive & trouver des indi-
cations sur la probabilité de rupture en charge d’un élément de construction.
La troisiéme quantité qui a son importance dans les corps a faible coefficient
d’élasticité est la variation du module d’Young avec la contrainte. L’introduction
de coefficients variables dans les équations générales de 1’élasticité montre dans
quel sens on peut chercher & tenir compte de cette notion et en obtenir les
conséquences. - La premiére conclusion A tirer de ces constatations est qu’il ne
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faut pas trop espérer des méthodes de calculs dites exactes, mais qu'il LSt pre-
férable de pousser les recherches vers des méthodes d’approx1mahons semi-
expérimentales.

La deuxiéme partie du mémoire comprend quelques applications simples
des premicres idées; notamment, un essai d’application de la théorie mathé-
matique de l’élasticité au calcul analytique du béton armé et quelques indications
pour I’établissement d’une méthode générale destinée a déterminer dans un
massif de béton les régions ot il est nécessaire de placer des aciers, les sections
et les directions de ces aciers, pour que les contraintes subies par le béton ne
dépassent pas les limites flxees par avance.

L’étude du béton armé peut ainsi donner heu a deux techniques dlffe-
rentes, I’une constructive oit I’on recherche la forme a donner au solide et a ses
armatures; autre, analytique ayant pour but de rechercher les contraintes dans
un solide armé quand les sections et les directions d’armatures sont connues a
Pavance.

Zusammenfassung.

Die Abhandlung will keine Angaben iiber Festlgkeltsberechnungsverfahren
der gewohnlich gebrauchten Werkstoffe machen, sondern ihre Fehler und die
Wertung ihrer Ergebnisse zeigen.

In erster Linie wird gezeigt, daB die gewohnlich allein betrachtete Elasti-
zitit neben einer Plastizitat und Zihigkeit besteht, die wegen ihrer Wichtigkeit
auf keinen Fall vernachlissigt werden diirfen. Diese beiden letzteren Eigen-
schaften erkliren die Anpassung der festen Stoffe an die Spannungen; dank
ihrer Verwendung in der Thermodynamik lassen sich Hinweise auf einen mog-
lichen Bruch eines Bauteiles finden. Die dritte bei den Stoffen mit kleinem
Elastizititsmodul wichtige Eigenschaft ist die Anderung des Moduls von Young
mit der Spannung. Die Einfithrung verinderlicher Werte in den allgemeinen
Elastizititsgleichungen zeigt, in welchem Sinne man versuchen wird, dieser
Auffassung Rechnung zu tragen und die Folgerungen zu ziehen. Die erste
Folge dieser Feststellungen ist die, daB man von dem sogenanunten genauen
Berechnungsverfahren nicht zu viel erhoffen darf, sondern daB eine Erforschuug
von halbempirischen Naherungsverfahren vorzuziehen ist.

Der zweite Teil der Abhandlung umfaBt einige einfache Anwendungen der
oben genannten Anschauungen, Besonders wird der Versuch einer Anwendung
der mathematischen Elastizititstheorie auf die Berechnung des Eisenbetons dar-
gestellt. Ferner werden einige Angaben iiber die Aufstellung eines allgemeinen
Verfahrens gemacht, das in einem Betonblock die Lagen, die Querschnitte und
die Richtungen der Eisen bestimmen soll, damit die zuldssigen Betonspannungen
nicht iiberschritten werden. ;

Die Untersuchung des Eisenbetons kann auf zwei verschiedene Arten ge-
schehen: Entweder wird die Form und die Bewehrung gesucht, oder werden
die Spannungen aus bekannten Querschnitts- und Bewehrungsverhiltnissen er-
rechnet.

Summary.

The object of the paper is not to give information as to methods of cal-
culating the strength of materials, but to consider errors committed and the
evaluation of results.

In the first instance it is shown that, besides the usual, independently con-
sidered elasticity there exist plasticity and toughness, which on account of their
importance cannot be neglected. The two latter properties are those by which
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the adaption of solid materials to stresses can be explained; thanks to their
application in thermo-dynamics the possibility of fracture in a structural ele-
ment can be predicted. The third property of materials with a stnall modulus
of elasticity is the alteration of Young’s modulus with the stress. The intro-
duction of variable coefficients into the general elastic equations shows to what
extent consideration should be given to this view, and what conclusions may
be drawn from it. The first conclusion to be drawn is that too much cannot be
expected from the so-called exact methods of calculation, and that research work
on approximate semi experimental methods is preferable.

The second part of the paper gives some simple applications of the first
ideas. '

Particularly, an attempt is made to apply the mathematical theory of
elasticity to the analytical calculation of reinforced concrete. Some details are
given to determine, in a mass of concrete, zones requiring reinforcement, their
cross sectional area and the direction of reinforcement, so that the stresses to
which concrete is subjected do not exceed given limits.

The study of reinforced concrete can thus give rise to two different methods:
A constructive method, to find the dimensions and reinforcement of a structural
element, and an analytical method to ascertain the stresses in a structural ele-
ment of given dimensions and known reinforcement.
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