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LES METHODES DE CALCUL DE LA RESISTANCE DES
MATERIAUX ET LA THEORIE D'ELASTICITE.

BERECHNUNGSMETHODEN DER FESTIGKEITSLEHRE UND
ELASTIZITÄTSTHEORIE.

METHODS OF CALCULATION CONCERNING THE STRENGTH OF
MATERIALS AND THE THEORY OF ELASTICITY.

ROBERT L'HERMITE, Directeur-Adjoint des Laboratoires du Bätiment et des Travaux
Publics, Paris.

Les theories elaborees dans le domaine de la resistance et de la deformation
des materiaux ont pris, comme point de depart, des hypotheses simplificatrices
telles, que les resultats ne sont valables qu'entre certaines limites tres rap-
prochees. Quand on s'ecarte de ces limites, la realite se montre profondement
differente des calculs. Ceci, tient au fait que, d'une part, les bases de depart
sont trop simplifiees et que, d'autre part, on a neglige, au cours du developpement,

des termes qui ne devaient pas l'etre.
Le mot meme de resistance des materiaux utilise habituellement pour

designer cette partie de la physique mathematique implique l'idee de rupture.
Cependant, aucune liaison n'existe actuellement entre l'etude des deplacements
et celle des ruptures. On peut s'en etonner, car nous avons affaire avant tout
ä une science constructive et non speculative et ce que l'on cherche quand on
construit c'est ä combattre la rupture.

Toute la theorie de l'elasticite est basee sur cette hypothese que les
contraintes sont lineaires par rapport au deplacement. Pourtant rien n'est plus
contestable, toutes les experiences le prouvent. Cette persistance dans l'erreur,
tient simplement ä ce que si les tensions sont des expressions du premier
degre, le potentiel des forces interieures est une forme du second degre tres com-
mode ä employer dans les calculs.

Dans ce domaine un autre fait a egalement une allure paradoxale. C'est la
contradiction qui existe entre l'elasticite et la plasticite. On est arrive ä bätir
sur ces deux proprietes de la matiere deux sciences absölument distinctes et en
contradiction l'une avec l'autre. Cependant, la plasticite ni l'elasticite n'existent
separement pour les solides et ces deux notions pourraient etre parfaitement
reunies si l'on tenait compte du facteur temps. Tous les corps possedent en effet,
ä un degre variable, une propriete de relaxation qui fait qu'ils suivent les
sollicitations et tendent vers la forme et la position d'un liquide en equilibre par
rapport ä celles-ci. Le temps necessaire aux corps pour parvenir ä cet etat
d'equilibre et extremement variable et, en general, au dessus de toute possibilite
d'observation directe. Cependant, il existe et il est tres facile ä mettre en!
evidence.

L'experience la plus courante, je la rappeile pour memoire, est celle du fil
de brai de houille qui reagit comme un ressort aux torsions brusques et qui suit
sans reaction les torsions suffisamment lentes. Ce meme brai mis en morceaux
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dans une cuve prend lentement la forme d'un liquide en equilibre quoiqu'il soit
toujours necessaire pour le sortir de le casser au marteau. Le temps de relaxation
est certainement reduit dans de grandes proportions lorsque les efforts, au lieu
d'etre constants, sont soumis ä des variations frequentes et regulieres pro-
duisant des deplacements additifs et par lä une adaptation ou une rupture
accelerees.

Laissons de cote les efforts repetes et considerons un prisme soumis ä
l'action d'une tension statique. Pour une valeur P de cette tension, la
deformation u1) subie par le prisme est la somme d'une deformation elastique ux
et d'une deformation dite plastique «2; ux reste constant, tandis que u2 augmente
avec le temps. II est d'autre part un fait experimental certain que u2 augmente
egalement avec la charge; u2 est donc une fonction croissante de P et de t.

Placons-nous maintenant au simple point de vue thermodynamique et ecri-
vons que l'augmentation du potentiel interne, pendant une deformation, est
egale: au travail des forces exterieures d V, plus la chaleur empruntee au dehors
multipliee par l'equivalent mecanique: J 6 Q, moins l'accroissement de l'energie
dissipee en transformations plastiques irreversibles öP:

dt/= ÖV— dP-\-j6Q.
Le travail externe s'exprime par: <5V Fdu, l'accroissement d'energie
dissipee par: dP Fdu2, la chaleur empruntee au dehors par: EaöF pour une
transformation isotherme.

L'egalite ci-dessus devient alors:

(5c/= F(du — öu2) + EadF.
Exprimons lä sous la forme d'une differentielle exacte, par rapport ä""'

du=Fl«-<*)«+ [F\*L-%)+e.]<F.
La premiere differentielle est nulle, puisque la difference ux u — «2 est

la deformation elastique pure qui par definition est independante du temps, il
vient:

"=['(£-£)+*¦]"-•
Le coefficient a est en general assez complexe et mal connu. II est lui-

meme egal ä la somme de deux fonctions, l'une correspondant ä la deformation
plastique, toujours positive, l'autre ä la deformation elastique, du signe de d F.

Si au cours de la deformation, le potentiel interne atteint un maximum et
devient decroissant, l'equilibre disparait et la deformation se poursuit spontane-
ment sans apport d'energie exterieure. C'est par cette consideration qu'on ex-
prime la rupture. Ce maximum se produit pour d U 0. On peut donc enoncer
la regle suivante:

La rupture se produit quand l'accroissement de l'energie
exterieure est egal ä l'accroissement de l'energie

dissipee en transformations plastiques et thermiques.
Si l'on neglige le coefficient a on est conduit ä simplifier cette regle et ä

dire que la rupture a lieu quand du du2, c'est-ä-dire au moment oü
l'accroissement du deplacement plastique devient plus grand que l'accroissement
du deplacement total.

J) u etant rapporte ä l'unite.
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Une autre methode a egalement ete employee pour introduire la notion de
rupture dans la theorie de l'elasticite. En designant par U le potentiel des
forces elastiques interieures, les tensiqns sont des expressions de la forme

N — et le potentiel a -pour expression:

2 U Nt fll -f Nt a, + Nt a3 + Ft gx -f F2 g2 + F3 g3.
Soient N F (au a2, a3) et 7 / (g) les expressions des tensions par rapport
au deplacement.

Explicitons ces formules et ecrivons:

a F'(N1,Ni,NB), g f'(T).
Supposons que ces valeurs soient les racines d'un Systeme d'equations line-

aires de la forme:
Ni al tpiiNu A/g, N3) -f- a2 <p2 (Nlf...) + a3 <ps (Nlt
N2 • • • •, N3=

Par raison de symetrie ce Systeme doit se reduire ä:

A/i oq (Pl (A/x) + a2 <p9 (N2) + a3 <p2 (N3)
N2 a2 cp,. (N2) + a2 <p2 (A^) -f a3 <p2 (N3)
N3 a3 (fi (N3) + a2 cp2 (N2) + at cp2 (N3)

Pf T _ <Pi(Ti) — VtiTi) <Pi(Tz) — (p2(T2)
Cl 'x — 2 &1» 2 — ö £2

r _ VxiW — qpiJTa) „'s — ~ 2 *3 *

Si nous reportons ces valeurs dans l'expression du potentiel donnee plus
haut, nous constatons que pour retrouver la valeur N par differentiation it faut
que (p2 (Nx) cp2 (N2) cp2 (Ns) constante.

II ne reste donc qu'une seule fonction ä determiner: la fonction cpx.

Cette fonction dependra des proprietes du corps et peut etre obtenue par
comparaison avec la courbe elastique. Elle permet de tenir compte de la Variation
du coefficient d'elasticite avec les pressions, ce qui peut etre d'une grande utilite
dans l'etude des materiaux tres elastiques comme le beton.

On peut se demander comment faire intervenir dans les equations, la notion
d'energie dissipee sans arriver ä une complication inextricable. Le moyen serait,
je pense, d'associer ä chaque contrainte active produite par les forces exterieures
une contrainte residuelle fictive qui persisterait apres la disparition de la
premiere; cette contrainte entrainerait un deplacement permanent egal au
deplacement plastique. II me semble d'ailleurs illusoire, sauf dans les cas ele-
mentaires, de chercher dans la theorie de l'elasticite la Solution analytique
directe d'un probleme de construction. Je pense plutot que devant les questions
qui nous sont posees tous les jours et qui, en general, ne sont pas simples, on
doit plutot chercher ä connaitre les resultats par approximations successives.

Ce sont les methodes d'approximations semi-experimentales qu'il convient
de developper. Qu'importe ä un Ingenieur de savoir si la contrainte calculee
est exacte ä 5 0/0 pres, puisqu'il ne connait jamais exactement les charges
appliquees. Ce qu'il veut, c'est determiner rapidement l'ordre de grandeur de
la force ä faire intervenir pour obtenir la rupture.

Cet ordre de grandeur, la resistance des materiaux ne le lui donne qu'avec
une approximation incertaine. Les theories analytiques, de leur cöte, rebutent



414 R. L'Hermite

la plupart des esprits pratiques, par leur allure mathematique et par leur
complexite qui n'est pas seulement apparente. L'etude experimentale pure n'est
malheureusement pas ä la portee de tout le monde et les observations sont
souvent difficiles ä interpreter directement.

Dans les quelques exemples que je donnerai ä la fin de ce rapport et dans
les memoires qui y feront suite, je voudrais montrer comment la theorie et
l'experience peuvent s'epauler mutuellement et conduire ä des resultats sub-
stantiels et concluants.

Etudions maintenant les methodes qui nous permettront d'utiliser les
donnees de la theorie de l'elasticite dans ses limites de validite pour l'etude du
beton arme.

Une piece de beton arme comprend essentiellement un support en beton
subissant des actions exterieures et une armature d'acier en equilibre sous
l'action des liaisons agissant entre cette armature et le support.

D'une facon generale la rigidite des armatures est beaucoup plus elevee
dans la direction parallele au generatrices que vers le sens transversal. La
rigidite transversale peut donc etre negligee et l'on peut supposer que les aciers
suivent la courbe funiculaire des liaisons. Un acier rectiligne ne supporte donc
que des forces dirigees parallelement ä sa direction. Si, reciproquement, on
connait l'action des forces de liaison precedemment definies sur le support du
beton ainsi que les deplacements et les tensions qui en decoulent, le probleme
elastique du beton arme est theoriquement resolu. En effet, il ne reste plus
qu'ä ecrire qu'en chaque point du passage de l'acier la resultante des deplacements

elastiques apportes par chacune des liaisons est la meme pour cet acier
que pour le beton.

Pour l'acier assimile ä un fil inextensible la valeur des deplacements est
relativement facile ä etablir; pour le beton eile Fest beaucoup moins. II est,
en effet, necessaire dans ce dernier cas de faire intervenir, outre les forces
superficielles appliquees au contour, des forces de masse appliquees au sein meme
du solide. Si l'on veut donc parvenir ä un resultat dans ce sens, il est avant
tout necessaire de resoudre un certain nombre de problemes preliminaires stricte-
ment indispensables.

Puisque les solides que nous envisageons sont en general a trois dimensions
finies, c'est vers l'elasticite ä trois dimensions que nous tenterons de nous dL-

riger en premier lieu. Malheureusement les problemes qu'on a pu resoudre
jusqu'ici dans ce domaine sont encore tres peu nombreux et leurs Solutions se
presentent generalement sous des formes compliquees.

Le premier probleme est celui de la force appliquee en un point d'un solide
indefini. La Solution fut donnee par Boussinesq. Elle se trouve dans tous les
traites.

Le second probleme resolu par ce meme auteur est celui de la force
appliquee sur le plan limite d'un solide semi indefini. Ces deux Solutions sont
malheureusement insuffisantes pour traiter la question qui nous interesse et nous
devons nous limiter pour l'instant ä l'elasticite plane.

Parmi les problemes de l'elasticite plane qui presenteront pour nous un
interet particulier citons en premier lieu celui de Flamant: Fig. 1 et 2.

Considerons ensuite le cas de la force massique appliquee en un point d'un
plan illimite: Fig. 3.

Remarquons en particulier qu'ici les contraintes dependent des constantes
elastiques du solide. Elles deviennent infinies quand r tend vers zero. Dans les
cas oü l'on etudie les contraintes sur des sections suffisamment voisines de la
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surface d'application de la charge pour que les dimensions de celle-ci ne soient
plus negligeables on doit faire usage des formules suivantes: Fig. 4 et 5.

Du cas de la figure 3 on peut facilement par superposition tirer celui de
la figure 6 oü deux forces opposees agissent sur deux directions contraires ä
une distance </ l'une de l'autre (figure 6). On peut remarquer que les cisaillements
sont nuls le long de la droite A B. On peut donc effectuer une coupure le long
de cette droite ä condition de remplacer la partie sectionnee par les reactions
normales a AB.

Celles-ci sont donnees par la Fig. 7.

Fig. 6.

Nous avons en outre gräce aux formules de la figure 1, la possibilite
d'appliquer normalement ä AB des forces egales et de signe contraire ä ces
reactions. Nous obtenons alors la Solution du cas de la charge appliquee ä
l'interieur d'un 1/2 plan. Le calcul donne pour cette Solution les expressions
suivantes.

A 2-E^, B *EK (voirfig. 8).
TT TT X w '

T=AX\h~hu
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Drücke am Rande einer einseitig
begrenzten Halbscheibe auf einem starren

Untergrund.
Pressions ä la limite d'un tympan semi-
indefini reposant sur un corps indefor-

mable.

Pressures on the edge of an unlimited
half-plane, resting on a rigid body.

Fig. 8.

Fig

La resolution des integrales definies par la methode des residus donne en
definitive les formules ci-dessous (voir Fig. 9):
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— — \2AdX2I1-4AdXI2 + 2AdIi + 2BdsX2Ii-4BdiXI5 + 2BdilA

2Y2 I 1
\2AdXIl—2AdI2+2Bd3I3-\-2Bd3lA.

Les integrales Ix, l2, 76, /6 ont les valeurs suivantes:

_ [ 1 J_ (iY+ X)2 + 2 JY(iY+X) + dn
1 ~~3Tld[(id-X)2 + Y2]+2Vs [(iY+X)2 + d2]2 J

_
I id J_ X[(iY+ X)2 + d2] + 2(iY+ X)2IV]

2 ~~ nld[(id-X)2+Y2]2 + 2Y3 [(iY+X)2 + d2]2 i

_ [ -d2 J_ (X2 + Y2) [(i Y+ X)2 + d2] + 2 iY(iY+ X)3]
3 ~ n[d[(id-X)2+Y2]2 +2Y3 [(iY+X)2 + d2]2 I

_ ti_[[(JY+X)2 + d2] + 4iY(iY+X) (id-X)2 +Y2 + 4id(iY-AT)]
4-2L Y3[(id-X)2 + Y3]3 + d3 [(id-X)2 + Y2]3 J

n f -4d2(id-X) X\(iY-X)2 + d2] +4iY(iY+ X")»]
5 ~ 2 Lf3[(/rf-;C)2 + K2]3 + F3[(/F+X)2 + üf2]3 J

_ 7i r(X2+F2)[(/F+X)2 + of2]+4(/r+X)3/y rf2[(/aT-X)2+V2]-4id3(id-X)~\
5 "~ 2 L Y3[(iY+X)2 + d2]3 + rf3[(irf-X)2 + K2]3 }

Les figures 10, 11, 12 donnent les tableaux des valeurs des contraintes dans
un 1/2 plan etablies d'apres ces formules par une force F 1.

Si au lieu d'appliquer la force au point A perpendiculairement ä la direction
du bord on l'appliquait suivant une parallele, on obtiendrait par la meme
methode les contraintes sous forme d'expressions semblables aux precedentes.

II est possible de resoudre analytiquement d'autres problemes d'elasticite
plane. Tels sont par exemple: le probleme du quart de plan soumis ä une force
appliquee sur un cote ä une distance d du sommet de l'angle droit, le probleme
du quart de plan soumis ä l'action d'une force massique interieure; le probleme
du 1/2 plan charge uniformement et supporte par des appuis rigides rectilignes,
normaux ä la limite et regulierement espaces etc.

Examinons maintenant sur un cas concret comment il est possible
d'appliquer quelques-uns de ces cas elementaires au calcul du beton arme. Soit
une force P agissant normalement ä la limite d'un 1/2 plan sur lequel a ete
place un acier A B d'une longueur 2 /. En chaque point de A B agit une force
horizontale de liaison F (X). L'ensemble de ces forces produit en x un
deplacement mesure par (voir Fig. 13):

Vx(x)=\x^dx+\lEi^.dx.
Jo me jx coE
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La force P engendre le long de A B un deplacement horizontal exprime par:

^ ^-+yPp-
Les forces'de liaison F agissant sur lej beton produisent elles-memes des

deplacements horizontaux qui sont:

v^=-7^'iF^^x^xdx-
Ecrivons que sur chaque point de AB: V. (x) V2 (x) -\- V3 (x):

[XF(X)X,V [lF(X)x,v 2P. \ + vn 2 ['.v.. X+x,v' -dX-\-\ —±-£-dX=—=-,logx-\ — P w,\F(X)\og——dX.
Jo (oE Jx (oE TiE' b TiE' tiE'U v ' bX-x

Cette equation integrale peut etre remplacee par un Systeme d'equations
lineaires quand on remplace les sommes continues par des sommes discretes.
Dans ce cas, au lieu d'imposer les conditions de la formule precedente pour
toutes les valeurs de x de — / ä -f / on les restreint ä quelques points le long
de cette droite et l'on suppose que les liaisons F agissent seulement en ces
points. L'approximation obtenue depend evidemment du nombre des points
envisages.

Une autre methode de calcul plus generale peut etre employee pour
resoudre les problemes de beton arme dans le domaine de l'elasticite plane. Nous
nous limiterons ici au resume des principes generaux et nous formulerons en
premier lieu l'enonce suivant:

Soit un massif de beton de forme et de dimensions
determinees ä l'avance. II est soumis ä un Systeme de forces
exterieurement donnees. Dans certaines regions il est
soumis ä des contraintes superieures aux contraintes
limites fixees ä l'avance. Determiner les sections et les
directions des aciers ä placer de teile fa$on que dans les
regions oü se trouvent les aciers, l'une au moins des deux
contraintes principales soit constante et egale a l'un des
taux de travail limite du beton.

Dans cet ordre d'idee peuvent exister dans le solide quatre sortes de zones:
a) Les zones sans armatures ou les deux tensions principales sont ä l'interieur

des limites.
b) Les zones armees oü une seule des deux tensions principales est ä la

limite (de traction ou de cornpression).
c) Les zones armees oü les deux tensions principales sont ä une limite de

meme signe.
d) Les zones armees oü les deux tensions principales sont ä des limites

de signes contraires.
Dans les zones a) les equations liant les contraintes sont celles de l'elasticite
ordinaire ä deux dimensions. Dans les zones b) les contraintes sont liees

entre elles par les equations:

Kx + Wx Nx + Ny •

Kx ^x — NxNy— T2

oü Kx represente une tension limite et Nx une tension principale. On en deduit
facilement la relation generale:

Kx2 —T2 + Nx Ny—Kx (Nx -4- Ny) 0.
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On connait egalement les equations:

dNx dT _-\ ;— — X
dx dy

dT +dNy_=y
dx dy

qui lient les contraintes.
Dans les zones c) et d) les deux tensions principales sont connues et l'on

doit ajouter au Systeme precedent la quatrieme relation Nx + Ny Kx + AT2.

Lorsque les limites des zones ainsi definies peuvent etre fixes ä priori la
determination des contraintes est rapide. Dans la plupart des applications le
contour ne peut pas etre fixe ä l'avance et l'on est oblige d'operer par approximations

successives, approximations qui peuvent etre realisees experimentalement

ou par le calcul.
En premier lieu on fait l'etude du corps sans armatures et l'on determine

les zones oü les tensions depassent les taux fixes. On determine alors ä l'aide
du groupe d'equations precedent quelles forces de rnasses X et Y il faut
appliquer pour que ces equations soient satisfaites, la resultante de X et Y
etant dirigee suivant la direction de Kx qui elle-meme coincide avec la direction
principale obtenue au meme point dans le solide sans armature.

a

Fig. 13. Fig. 14.

flrmierungszonen
Zönes d'armatures
Reinforced zones

Fig. 15.

On reprend ensuite l'etude du corps en tenant compte des forces X et Y
et on trouve un nouveau contour de zone ainsi que des forces excentrees X'
et Y'. Ce contour varie tres peu d'une approximation ä l'autre puisque les forces
X et Y sont en equilibre et que leur influence ne s'etend d'une facon appreciable
que sur un faible rayon. On peut donc dire que ce Systeme d'approximation est
rapidement convergent.

Les armatures ä placer dans les zones ainsi determinees suivront les trajec-
toires des vecteurs X et Y avec des sections proportionnelles, en chaque point,
ä la grandeur de ces vecteurs.

Dans les zones du type b) X et Y sont lies entr'eux par une relation
indiquant que leur resultante suit la direction de K et l'on trouve pour X et Y
une seule Solution, donc une seule direction d'armatures.

Dans les zones des types c) et d) existe une relation supplementaire entre
X' et Y' indiquant que leur resultante suit la direction de Kz. On trouve alors
un autre groupe de forces massiques et une seconde direction d'armatures.

Prenons comme exemple d'application de ce principe la torsion d'un prisme
en beton arme. Chaque section de ce prisme travaille au cisaillement et chaque
point de celle-ci supporte un effort de cisaillement different. Nous pouvons
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assimiler la ligne elastique de cisaillement du beton ä une droite O A jusqu'au
point A oü le beton atteint un taux de travail qu'il ne depasse jamais puisqu'on
ajoute des aciers destines ä l'empecher d'augmenter. Cette ligne est en tous
points semblable ä celle qu'on envisage dans le cas ou les contraintes sont
sujettes ä depasser la limite elastique. On sait que dans ce cas, un phenomene
d'analogie mecanique simple permet de representer la distribution des efforts
par une membrane elastique venant butter sur une surface en tas de sable
construite sur le perimetre de la section. Les regions oü la membrane touche
la surface, (regions variables avec la hauteur du point A de la figure 14) subis-
sent des efforts de cisaillement constants. Cette region est donc celle oü il sera
necessaire de placer des armatures. Supposons un prisme de section carree par
exemple (Fig. 15). Les zones de contact sont representees en hachures sur
la figure. On peut constater qu'elles sont situees pres du mileu des cötes.

Ceci indique que, pour armer une teile section il est necessaire de placer
des aciers longitudinaux dans ces regions, ainsi que des cadres concentriques,
au perimetre du carre vers le centre. Cette facon de faire qui parait contraire
aux habitudes consacrees conduit cependant ä des sections de plus grande
resistance comme nous Font montre plusieurs experiences faites en confirmation.

Nous conclurons de ce rapide expose que la theorie de l'elasticite a un
domaine d'application tres restreint quand on la considere seulement comme
une science purement mathematique. On arrive a elargir ce domaine dans de

grandes proportions en l'envisageant comme une branche de la physique generale

et en cherchant une interpretation des phenomenes de la resistance des
materiaux dans l'energetique et la chimie physique.

Nous constatons, en outre, que l'etude du beton arme peut donner lieu ä

deux techniques differentes:
Une technique constructive qui consiste ä chercher quelles sont les regions

d'un solide oü devront etre placees les armatures et qu'elles doivent etre les
sections et les directions de celles-ci pour que ni l'acier ni le beton ne depasse
un taux de travail fixe ä l'avance.

Une technique analytique qui a pour but la recherche des contraintes dans

un solide arme quand les sections et les directions des armatures sont connues
ä l'avance.

Resume.
Le but du memoire n'est pas de fournir des indications sur les methodes

de calcul de la resistance des materiaux habituellement utilises, mais d'essayer
de montrer par oü celles-ci sont en defaut et quelle est la valeur relative des
resultats qu'on peut en tirer.

II est montre, en premier lieu, que l'elasticite que l'on a l'habitude de
considerer seule est accompagnee d'une plasticite et d'une viscosite dont l'im-
portance est loin d'etre negligeable. Ce sont ces deux dernieres proprietes qui
expliquent l'adaptation de solides aux contraintes qu'ils subissent et c'est gräce
ä leur utilisation dans la thermo-dynamique qu'on arrive ä trouver des
indications sur la probabilite de rupture en charge d'un element de construction.
La troisieme quantite qui a son importance dans les corps ä faible coefficient
d'elasticite est la Variation du module d'Young avec la contrainte. L'introduction
de coefficients variables dans les equations generales de l'elasticite montre dans

quel sens on peut chercher ä tenir compte de cette notion et en obtenir les

consequences. La premiere conclusion ä tirer de ces constatations est qu'il ne



Resistance des materiaux et theorie d'elasticite 427

faut pas trop esperer des methodes de calculs dites exactes, mais qu'il est pre-
ferable de pousser les recherches vers des methodes d'approximations semi-
experimentales.

La deuxieme partie du memoire comprend quelques applications simples
des premieres idees; notamment, un essai d'application de la theorie mathe-
matique de l'elasticite au calcul analytique du beton arme et quelques indications
pour l'etablissement d'une methode generale destinee ä determiner dans un
massif de beton les regions oü il est necessaire de placer des aciers, les sections
et les directions de ces aciers, pour que les contraintes subies par le beton ne
depassent pas les limites fixees par avance.

L'etude du beton arme peut ainsi donner lieu ä deux techniques diffe-
rentes, l'une constructive oü l'on recherche la forme ä donner au solide et ä ses
armatures; l'autre, analytique ayant pour but de rechercher les contraintes dans
un solide arme quand les sections et les directions d'armatures sont connues ä

l'avance.

Zusammenfassung.
Die Abhandlung will keine Angaben über Festigkeitsberechnungsverfahren

der gewöhnlich gebrauchten Werkstoffe machen, sondern ihre Fehler und die
Wertung ihrer Ergebnisse zeigen.

In erster Linie wird gezeigt, daß die gewöhnlich allein betrachtete Elastizität

neben einer Plastizität und Zähigkeit besteht, die wegen ihrer Wichtigkeit
auf keinen Fall vernachlässigt werden dürfen. Diese beiden letzteren
Eigenschaften erklären die Anpassung der festen Stoffe an die Spannungen; dank
ihrer Verwendung in der Thermodynamik lassen sich Hinweise auf einen
möglichen Bruch eines Bauteiles finden. Die dritte bei den Stoffen mit kleinem
Elastizitätsmodul wichtige Eigenschaft ist die Änderung des Moduls von Young
mit der Spannung. Die Einführung veränderlicher Werte in den allgemeinen
Elastizitätsgleichungen zeigt, in welchem Sinne man versuchen wird, dieser
Auffassung Rechnung zu tragen und die Folgerungen zu ziehen. Die erste
Folge dieser Feststellungen ist die, daß man von dem sogenannten genauen
Berechnungsverfahren nicht zu viel erhoffen darf, sondern daß eine Erforschung
von halbempirischen Näherungsverfahren vorzuziehen ist.

Der zweite Teil der Abhandlung umfaßt einige einfache Anwendungen der
oben genannten Anschauungen. Besonders wird der Versuch einer Anwendung
der mathematischen Elastizitätstheorie auf die Berechnung des Eisenbetons
dargestellt. Ferner werden einige Angaben über die Aufstellung eines allgemeinen
Verfahrens gemacht, das in einem Betonblock die Lagen, die Querschnitte und
die Richtungen der Eisen bestimmen soll, damit die zulässigen Betonspannungen
nicht überschritten werden.

Die Untersuchung des Eisenbetons kann auf zwei verschiedene Arten
geschehen: Entweder wird die Form und die Bewehrung gesucht, oder werden
die Spannungen aus bekannten Querschnitts- und Bewehrungsverhältnissen
errechnet.

Summary.
The object of the paper is not to give information as to methods of cal-

culating the strength of materials, but to consider errors committed and the
evaluation of results.

In the first instance it is shown that, besides the usual, independently
considered elasticity there exist plasticity and toughness, which on account of their
importance cannot be neglected. The two latter properties are those by which
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the adaption of solid materials to stresses can be explained; thanks to their
application in thermo-dynamics the possibility of fracture in a structural
element can be predicted. The third property of materials with a small modulus
of elasticity is the alteration of Young's modulus with the stress. The intro-
duction of variable coefficients into the general elastic equations shows to what
extent consideration should be given to this view, arid what conclusions may
be drawn from it. The first conclusion to be drawn is that too much cannot be
expected from the so-called exact methods of calculation, and that research work
on approximate semi experimental methods is preferable.

The second part of the paper gives some simple applications of the first
ideas.

Particularly, an attempt is made to apply the mathematical theory of
elasticity to the analytical calculation of reinforced concrete. Some details are
given to determine, in a mass of concrete, zones requiring reinforcement, their
cross sectional area and the direction of reinforcement, so that the stresses to
which concrete is subjected do not exceed given limits.

The study of reinforced concrete can thus give rise to two different methods:
A constructive method, to find the dimensions and reinforcement of a structural
element, and an analytical method to ascertain the stresses in a structural
element of given dimensions and known reinforcement.
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