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THE THEORY OF THE SUSPENSION BRIDGE.
THEORIE DES PONTS SUSPENDUS.

THEORIE DER HANGEBRUCKEN.

A. A. JAKKULA, Ph. D., Asst. Prof. of Civil Engineering, University of Michigan
Ann Arbor, Michigan.

Introduction.

In spite of the fact that long-span, stiffened suspension bridges have been
built for many years, no apparent attempt has been made to simplify the mathe-
matical equations involved in their analysis and to present them in their simplest
forms. It appears ofttimes as if the writers on the subject fail to remove the
mathematical falsework they erect during the construction of their equations
and thereby almost completely obscure their completed structure. Then, too,
these writers have failed to correlate their work to the work of their predecessors
so that to the engineer studying the subject for the first time, the theory of the
stiffened bridge appears exceedingly complex. Differences in nomenclature,
slight variations in apparently innocuous assumptions, and the representation
of the same thing in slightly different mathematical forms serve to obscure
rather than to clarify the essentially simple theory of the stiffened suspension
bridge.

In the following an effort will be made to correlate the work of the diffe-
rent writers and to indicate wherein their methods differ and wherein they are
alike. The assumptions made in each method will be scrutinized and their effect
upon the final result will be emphasized. A solution will be presented for each
method which, itis believed, is simpler than those in present use and the work-
ability of the solution will be shown by application to a numerical problem.

Statement of problem.

The stiffened suspension bridge as built today is a statically indeterminate
structure and its analysis would offer no particular difficulty if it were possible
to consider the dimensions the same during all conditions of loading and tempe-
rature. However, long-span structures suffer such great distortions under live
load and temperature variations from the normal that large errors are made in
the analysis if these distortions are not considered. These errors effect the eco-
nomy of the structure but not its safety, and in long-span bridges they are known
to be very large. This paper will confine itself to a discussion of the methods
of analysis in which these distortions are considered,

There are many types of stiffened suspension bridges, but the theory upon
which their analysis is based is fundamentally the same. However, in the ana-
lysis of certain types, the volume of algebraic work is less than in others, so
here where the object is to stress fundamental relationships the type will be
selected in which this volume is reduced to a minimum. This type has unloaded
backstays and a two-hinged stiffening truss. The procedure followed in the
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analysis for this type of structure can be extended so as to be applicable to any
type having a horizontal stiffening truss. The only difficulty encountered in
such an extension will be algebraic, caused by an increase in the number and
length of equations developed.

Fig. 1.

Nomenclature.

The type of structure discussed is that shown in Fig. 1 which defines some
of the terms employed in the equations. The nomenclature that will be used in
addition to that shown in Fig. 1 is as follows:

w = dead load, pounds per lineal foot.

p = total live load, pounds per lineal foot.

g = portion of live load carried by cable, pounds per lineal foot.

H, = horizontal component of cable stress produced by the dead load w.

H, = horizontal component of cable stress produced by the live load p.

H, = horizontal component of cable stress produced by all causes except
the dead load.

H = H, }+ H,

y = deflection of cable and stiffening truss.

E = modulus of elasticity of stiffening truss material.

I = moment of inertia of stiffening truss.

A, = cross-sectional area of cable,

E, = modulus of elasticity of cable material.

M = bending moment acting on stiffening truss.

IV = shear acting on stiffening truss. ,

M, = bending moment acting on stiffening truss calculated as if it were

a simple beam independent of the cable.
Additional notation will be defined as introduced.

Fundamental assumptions.

Certain assumptions are usually made in all methods while others are pe-
culiar to the methods themselves. The assumptions which are common to ail
methods are:

1. The curve assumed by the cable under the action of the dead load is a
parabola. : ,

This assumption is correct if the dead load is uniformly distributed on a
horizontal plane. The small error in this assumption can be seen from a study
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of the weight distribution in existing bridges. In the Ambassador Bridge in
Detroit 1) the distribution is as follows:

Uniformly distributed on horizontal plane 854 %
» " along cable 13.6 9
Variable (hangers) 1.0 %
In the Philadelphia-Camden Bridge ?) the distribution is approximately
Uniformly distributed on horizontal plane 80 %
% ” along cable 20 9%

2. The elongation of the hangers is so small that it can be neglected.

It has been shown?$) that the error in this assumption is small. The as-
sumption is equivalent to saying that any deflection suffered by the stiffening
truss is transmitted undiminished to the cable,

-

Urspringliche Lage |
FPosition ariginale
Original position

w 1bs/fl,

Ra

Fig. 2.

3. The spacing of hangers is so small compared with the length of span
that the hangers can be considered as forming a continuous sheet.

4, The horizontal component of cable stress in the side spans is assumed
equal to that in the main span.

This will be true if the cable is fixed to the top of flexible towers or if
the cable is fixed to a movable saddle placed on the top of the towers.

5. The stiffening truss is a beam, simply supported at the ends, that
under dead load is initially straight, horizontal, and of constant moment of
inertia. This truss is usually constructed so that it receives none of the dead
load and is stressed, therefore, by live load and temperature changes only.

Other assumptions that are made are peculiar to the methods themselves
and will be noted as they are encountered.

The differential equation method of finding the deflection.

One of the methods used for finding the distorted form of the structure is
to solve the differential equation whose result is the equation of the curve
assumed by the stiffening truss. This equation will, since the hangers are in-

1y Detroit River Bridge, Mc Clintic-Marshall Co., 1930.

2) The Delaware River Bridge, Final Report of Board of Engineers, Ralph Modjeski,
Chairman, 1927.

3) Page 300. Vol II, Modern Frame Structures, Johnson, Bryan & Turneaure,
Ninth Edition.
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extensible, give the deflection of the cable from its dead load position and will
also give, by differentiation, the equations for slope, bending moment, shear
and loading in the truss. This differential equation is
d2 ’l/’i
El g =—M (1)
and to solve it, M must first be evaluated. The conditions in the main span due
to live load in any position is shown in Fig. 2. The stiffening truss, originally
in a horizontal position, deflects to the curved form shown and pulls the cable
from its dead load position. The cable in turn pulls in the tower tops, and the
points of cable support move inward the amounts d 4 and d5 respectively. If a
section is passed through the structure at any point distant x from the left
support, the condition necessary for equilibrium of that portion to the left of
such a section is as shown in Fig. 3.

Oa, AVa
-—'—4—

Fig. 3.

Taking a moment center on the cutting section at the neutral axis of the truss,
and writing 2 M = 0,
‘ wx?  pz?
M+ H(y+ 5+ h) — Vals— 00 — Ra(s) + 25—+ L2

d4 can be neglected because it is small in comparison with the other di-
mensions, and 4 = H, + H,. The equation becomes

wx® pz®
M+(HW+H5)’Z+HWy+Hsy—x(VA+RA)+ 2 +12 :0'

owlE _A4jx i
HW'— Sf’ y_ 12 (! x) )’

— Hh =0,

and, if & is the length covered by live load and ¢ is the distance to its center
of gravity from Rj, then

wl  (pb)ec
B g

Va4 Ra=

2 {4
Mt (ot FY+ 57 (F) =0+ oy — (5 + 2

pbc ng)
by Y = 0.
[ 2
4) These follow from the assumption that the curve of the cable under dead load
is a parabola. :

M+ (Hw"‘}‘Hs)"]' -+ Hsy""(
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The quantity figifx~—%: can be recognized as the bending moment in

the truss computed as if it were a simple beam independent of the cable This
has been des1gnated as M,. Therefore,

M= M, — (Hy+ H)y— Hsy?®) (@)
Eq (1) becomes, with this value of M, '
d2 § # &
El—l = — M, + (Hy+ H)y + Hey
. Hy+H,
L G M . -
Letting . 7 @ =—Fr Lo RIS (3)
Eq. (1) becomes ’ '
A2y d M Hsy
dxz_az’i’:——l“‘ ; (4)

This differential equation can be solved by using elther hyperbolic functions
or by exponential functions. In most solutions M, and ¥, which are both func-
tions of x, are substituted in eq. (4) before the solution is attempted. This step
can be eliminated if the solutlon is arranged in the following form (using the
exponential solution):

= Cye*™ + Cye™* + E(

My 1 odm 1 a’Ml_'_‘__)

a® Tt dxt U ab dit
Sy Ly 1 dy )
ENaE T afgee T g et

The constants C, and C, are 1ntegratlon constants which must be evaluated
for each load position from the end condltlons and the conditions of continuity.

The equation is simplified by noting that T 'Z = 812]‘ and all higher derivatives
vanish. Likewise ——— "M, — p for that part of the structure covered by live

d 2
load and 0 for the rest. Higher derivatives likewise vanish. Makmg these
simplifications, .
- _ 1 H; 8

=Gk et =) gt —ah) ©
In discussions written on this question eq. (5) is given in different forms
which are readily obtained from it by algebraic manipulation. The following-
forms are given by the authorities noted. "

According to L. S. Moisseiff ¢)

g H ax ax p Sf ] | :

= + Hs{Kle + K e + s H5a2 _y+ aglz (6)

Note: If ———— s is factored out of the right-hand side of eq. (5) and
H,+ H, |

C, (Hw+ 1) i replaced by K; and C, (1 ]j 1) by K, eq. (5) becomes

1dent1cal wﬂh eq.: (6).

'8) If in this equation 7 is considered small enough to be neglected, the structure
can be analyzed as is common in other statically indeterminate structures in which the
dimensions before and after loading are considered the same.

.~ %) Page 98, The Delaware River Bridge, Final Report of Board of Engmeers,
R. Modjeski, Chairman.

Abhandlungen 1V - 22
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According to Johnson, Bryan, and Turneaure ?)

: H; 8f p ) 4fx }
ax ax = _— 7
n = HW_I_HS{Kle + Ko 4 + ( H, (t—xp (0
Note: This can be obtained from M01sse1ff’s equat1on replacmg y with its
equivalent in terms of x.
According to F. Bleich )
5 = C, sinhax + C'cbshax+( i _1')(y_ 8f)+ ! (M'_ﬁ) (8)
P 2 Ela? a*l®) ' Ela® a?
Note: This is the hyperbolic form preferred by most European investigators.
It can by obtained from eq. (5) by noting the following identities:

e”* = sinh ax -+ cosh ax,
e~** — sinh ¢ x — cosh ax.
X
(w=q) Ibs/f}
b l ' L s '
Ayl | |
. - }Lﬁ{bsﬁ — aw Vbsjft|
S
- {
Fig. 4.

If these are substituted in eq. (5), C, — C; replaced by C/, C; -- C, by

C., H, by H — H,, then a® becomes g s

given by Bleich. This form is also given by G. G. Krivoshein?).

and eq. (5) is converted: to the form

_ The various forms of eq. (5) represent the most common methods of ap-
proaching the problem of suspension bridge analyses.

. The series method of finding the deflection.

-Another method for finding the equation of the deflected truss is to re-
present it by a trigonometric series. This method has been presented by S.
Timoshenko *) and by G. C. Priester1t).

If the stiffening truss is considered as a free body it will be in equilibrium
under the force system shown in Fig. 4. The truss is acted upon by the dead
load w over the entire span, the live load p covering any portion &,/ — 4,1,
and the hanger pull (w - ¢g) 1?).

* The deflection curve of the truss can be represented by a trigonometric
series, as follows:

7) Page 279 Vol. 1I, Modern Frame Structures, 9th Edition.

8) Page 459 Theorie und Berechnung der eisernen Briicken, F. Bleich.

9) Page 280 Simplified Calculation of Statically Indeterminate Bridges, G. G.’
Krivoshein.
' 10) A.S.C.E. Transactions, Vol. 94 (1930), page 377.

1) Engineering Research Bulletm No. 12, University of Michigan.
: 12) The hanger pull due to dead load is uniform over the entire span and equal
to wlib/ft.



The theory of the suspension bridge 330

2n

. X . x . Jnx
= sm—l—+at2 sm—l—-{- as sin

)

The coefficients a;, a,, 45, etc., must be evaluated from the loads producing
the deflection in such a way that the series fits the particular case being in-
vestigated. This evaluation can be done by a consideration of the energy of
the system, )

The potential energy stored in a beam when it is deformed by a bending

moment is
! !
_ ("M2dx _EI (d21;)2dx 0
v —-LTE/ TL ) T (19)

If eq. (9) is substituted in the eq. (10), the expression for potential energy
becomes : o

oot asintIE

Elzt ) s 142 1,2 2 .
U=4la [1 a® -+ 2%a,® + 3 as +"'+n4an"+"'] (11)

If a small increase 4 a, is given to one of the coefficients of the series in
dai will be added to those

already present. The increase in potential energy produced by this displacement
will be o -

eq. (9), a small additional deflection 4a, sin

dU Elnt*nta
gy ey AT B
da, ¢ 278

This increase in potential energy must be equal to the work done by the forces
and loads acting on the truss. The dead load w is counter-balanced by the
equal and opposite dead load hanger forces, so that the live load p and the
live load hanger forces g are the only ones to be considered. The portion of
the live load that is carried by the stiffening truss can be found from eq. (2)

AU = . Aay. (12)

since it is equal to — el
\ 9 dx? *
M dEM, dy (d2 y)
—GE T g T g G

d? 8
:”"'(H‘”‘HS)KE“HS(?;)

[concerning p see footnote !3)).

L o : :
Therefore, g = — (Huw+ Hs)%x_g+ﬁs (%) e (13)
- Hy L wilr -

If ‘B-Fw’ and since H, = 8/
. 5 . S .
g=—Hy(1+8) 5+ fw. X (14)

The loads p and ¢ are in pounds per unit length so that the work done, 4 W,
by the downward load p and the upward load ¢ acting through the downward
displacement ' - ' _ o

At M,

13) If the load is being evaluated at a section Where there is no loading, It = 0.
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: o “HLIE T =
Aa, sin —— 18

it
‘ A;W:/)Aanj:zsjinm;xdx-—.jdnr[ﬁw—ﬂw(l ]Sm’_”;_xd
This, when evalﬁaf;d becomes |
Aw =L pda, (cos nmky — oS naky)
ki .
Az, [ﬂ“’ — Hy(l + f)a ,,”2 ] (15)

If the increase in external work given by eq. (15) is set equal to the correspon-
ding increase in potential energy, eq. (12), the expression for the general
coeff1c1ent a, is obtained.

'——-(cosnnkl — cosrznkg)—&w(l—cosmr)
nn nm
;oap = T ETt (16)
o AT

The deflection curve .is now completely found, for the coefficients a,, a,, as,
etc. can be evaluated from eq. (16) by letting n = 1, 2, 3, etc. It will be shown
later that the series shown by eq. (9) converges fast enough to make its use
practical. . ;

- Discussion of preceding equations.

. H the series eq. (9) with its evaluated coefficients is compared with eq. (5)
one of the greatest advantages of the series form is apparent. When the coeffi-
cient ¢, was found the problem of finding » was complete, but in eq. (3) there
is still left the problem of finding the constants C, and C,. In addition, eq. (9)
holds for all values of x, while eq. (5) holds only for those values of x in
which M; has the same algebraic form. When eq. (5) is applied to the type
of loading shown in Fig. 4 there will be three expressions for M, so that it
will be necessary to evaluate six constants of integration.

In both of the equations developed for the deflection of the stiffening truss
there appears the unknown A, which must be found before the deflections can
be numerically evaluated for any particular case. There are two methods for
finding ;. One method can be called the “Energy Method” and the other
the “Geometrlc Method”. :

The energy method of finding H).

This method consists of equating the work done by the hanger forces moving
through the deflection suffered by the cable to the internal work done by the
internal stress in the cable moving through the deformation suffered by the
cable. The force system acting on the cable. as a free body is shown in Fig. 5.
' To evaluate the external work done it must be assumed that the deflection
is directly proportional to the load. This is not apparent from the equations

14) Originally by Melan, ,,Eiserne Bogenbriicken und Hingebriicken®, 1888, and by
D. B. Steinmann, “A Practical Treatise on Suspension Bridges’, 1922.
L. S. Moiseiff, “The Delaware River .Bridge”, Final Report of Board of
Engmeers R. Modjeski, Chairman..
Johnson, Bryan & Turneaure, “Modern Frame Structures”, Vol. II,
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for # but it will be shown that it is, for all practical purposes, true. Before
the live load and temperature change acted the load on.the cable was w, after
they have acted the load is (w -+ ¢). The average load is therefore

w+(2w+q) vig).

Since the load on an element dx in length is (w + ) dx the external work
becomes " ~ <

W= jl(w + )7‘ de. . (17)

J Ursprung//che l.age
{ Position originalé
0r/gmal position

q . w) Ihs/ft

Fig. 5.

For the main span, the stress at any section under dead load is H, sec ©,
under live load and temperature changé it increases to (H,, | H,) sec (@ + A@)
The average stress is

Hw see O + (Hw + Hs) sec (@ + A @)
5 (18)

If the length of the element whose horizontal prOJectton is dx be called ds,

then the change in the length of the. element becomes

Hw{sec(@+A(9) sec@} dE-|-Hsec(@-|—A®)——+Wde (19)

Here w is the coefficient of lmear expansion and £ is the temperature
change from the normal.

If eq. (18) is multiplied by eq. (19) the expression for internal ‘work is
obtamed The change in angle 460 is neglected because of its minuteness so that

AW; = (Hw -+ ) sec @ [Hs sec O w tds]

AL‘E — .

ds
sec @, however, = —«— _ e

i s D) s B
and, W= (Hu+ )( Ll )[ = () ot L—‘g‘.” (20)
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For the left-hand side span, the dead load stress is #,, seca,. The live load
and temperature change increases it to (H, + HS) sec (a; + da;). The average
stress in then .

H, sec a, + (Hw + Hs) sec (e, + A a;)

5 (21)_
The change in Iength of the side span becomes
I seca,
Hw {sec(ozl +Aa1)——sec a } 1A E :
+ Hysec (o + Aa) A58 4 o1 seca (22)

AcE:

Now if eq. (21) and eq. (22) are multlphed together and da, is neglected, the
expression for internal work in the side spans is obtained as

‘ H\ Hl, H;
W, = ( 4 2“) A:Elc sect a; & (H,,, + —2—) wth seca; . (23)

A similar expression can be written for the right-hand side span.
Equating the expressions for internal and external work .

3 ! ds®
(HW H)[ < (J G sl sectay+l, secsaz) + wf (j %Sx—ll sec?a; +4; Seceaz)]

2/ LA E, dx? 0
!
L(m ‘;),, dx . (@)
To condense the equations let .~ -~
! dss .
J.O‘[Zx? + ll SEC3 o + 12 SeC3 0y — L
and
dsz .
j 71—+llsec2a1 + lzsecga —§ 5
0
Eq. (24) becomes with these substitutions
o[l o
LR (S E
Since ¢ = —H,, (1 + p) W -+ B, eq. (14), the right side of eq. (25)
becomes
i [ Hw(1+{>’) a7y /J’w] ) : . o
jo[w 2 dx- 7 dx (26)
H; R fH ; |
or, since p’-*ﬁwand W=7 ¥
12 HW+ 2 Oﬂdx 2 (1 + ﬁ)-odx% 17dx' (27)
Finally, eq. (24) becomes ' '
HL 8fr Hw+ H; J"d%; ,_
AE T = | IO H, T H e T (25)
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The geometric method of finding H;.

The geometric method has been presented by Fr. Bleich %) and by G. G.
Krivoshein 1¢), Bleich ‘'makes certain assumptions in his method that are un-
necessary and do not simplify the resulting equations, therefore, the method
of Krivoshein is presented here. If an element of the cable is removed as in
Fig. 6, the following relationships are obvious.

ds? = dx? + dy? | (29)
(ds + Ads)? = (dx—Adx)? + (dy + 4 dy)? (30)
. ax
p- = Urs, lich
| g Pasﬁi';%%gnlgcmglel age
| rrgma/ posmon

dy

Kf7)

\"“Urspringliche L age
‘ Po.sﬁ:on gr/g/na/eg

| dx-ddx__| 0riginal position

Fig. 6.

If from eq. (30), eq. (29) is subtracted and the terms (4 a!s)2 (ddx)? and
(4dy)? are neglected, one obtains

2ds(Ads) = —2dx(ddx) + 2dy(d dy) (31)
Ads 2. —{-Adx—-—-}-Ady(jy) f (32)

wtds, ddy = dy,

c =

-But dds = Hssec(@+A@)TE+

gi_' = 47" _S_I);_x, and if 40 is neglected as before,

eq. (32) becomes

H, ds ds® _4f . 8fx
ALE d & Ot TAW = A d 33)
and for the entire cable
H, j’ ds3 rds?_ 4fJ' Sf{’
A E ) g Tt gt Qatdn) =) du—p | xdu- (34)

d4 + 05 = the total inward movement of the towers. Under the assumption
that the horizontal component of cable stress in the side spans is equal to that,
in the main spans this quantity can be evaluated from the conditions in the side
spans. Referring to Fig. 7, the elongation along the length of the side span

15) Page 459, Theorie und Berechnung der eisernen Briicken.
16) Page 281, Simplified Calculation of Statically Indeterminate Bridges.
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cables, neglecting the small change 4a,, is

[Hs sec a,
AE,

] l1 sec o, + wtl sece;.

Therefore,

04 = [(1—_15[‘145;? a‘) + wtl sec ai]sec-al. T (3)

;For the right-hand span a similar equatlon can be written for evaluating ;.
If eq. (35) and 'the corresponding equation for the right-hand span is sub-

stituted in eq. (34). it becomes, since j.d_a; =0, .

H, L ) Sfj' s‘j{_
A Ec+ ml‘[_gE = xdu = | dx . (30)

[

' 7770 ﬁf__f'J

. . e

. Fig. 7

Discussion of eqgs. (28) and (36).

It is apparent that eqs. (36) and (28) would be identical if it were riot
for the second term on the right-hand side of eq. (28). This term has a simplg
meaning. If when ¢ was evaluated, the effect of deflection. on moment had
been neglected, eq. (2) would have been 5 :

M =M, —Hy : ' “ (37)
,Then the portion of the live load carrled by the cable would have been
‘ _ ' 8 :
q = Hs (‘?f) ) '_ (38)

With this value of ¢ eq. (28) would be identical w1th eq. (36). Thzs shows
that the energy method gives more accurate.results than the geometric method
because it takes into consideration the correct distribution of live load to the
«cable.- It also shows that neglecting the terms (4ds)?, (4 dx)? and (4dy)? is
.‘equivalent to the assumptions that the deflection is proportional to the load and
-that the live load is distributed to the cables as a uniform load.

;.- Inorder to complete the equations for F; it is necessary to take the equatlon
for u as expressed by eqs. (5) or (9) and substitute it in egs. (28) or (30).
A little consideration will show that the.algebraic work encountered in solving
eq. (28) -with 5 as given by eq. (5) is prohibitive, and, whenever this solution
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has been made, graphical integration has been used. Fortunately.the effect of
the true d1str1but10n of live load to the cable is for all practlcal purposes negli-
gible ). Therefore, if eq. (3) is used for 7, it is used in eq. (30). If, however,
7 as given by eq. (9) is used, either eq. (28) or (36) can be readlly solved.
This fact gives the series method a theoretical advantage over the differential
-equation method. .
Three methods are available for obtammg formulae for H,. These are:

1. eq. (5) in eq. (36) 2.'eq. (9) in eq. (36); and 3. eq. (9) in eq (28). These
will be called -

1. Melan method.

2. Timoshenko, approximate method.

3. Timoshenko, exact method.

Working formulae for H;.

Formulae by the three methods will be developed for 1 for the general
loadmg condition shown in Fig. 8. The live load p extends from x = £,/ to
x = ksl where £,/ and £,/ are any two' distances.

L kzl - ol

[ ol I 1
.._x_..l p Ibsfft S
A i -8 N Di
| I ) |

- Fig. 8/

1. The Melan Method.

Since the value of 7, eq. (:>) holds only for those vaiues of x in which M,
has the same algebraic form, three equations must be written for 5, as follows:

M for values of x between 0 and %,/

s e e e
n= e G, TR B T (y=30) o)
it which (M), = pg(k2 jkl)_( '_%_%) ” (40)

ne for values of x between kl:'l an(_i kyl

’ 1 Yo P - Hs 8
5 = Cye®™ 4 C,e~% + m[(M;)r— Zg]f m(y— agig). (41)

o ke R\ plx—k )®
and - (Mr)z::pl(kz—lif:)(l—j’—52_,)26—,L2—i

(42)
73 for values of x'"l-)'etwe.en k, ! and 1 »

I ax —ax 1 | - HS - Sf )
Ty — C5€ —|—- C(;E + m(Ml)a ""m(y a2l? (43)
and ' -

17) This will be shown in the numerical problem.
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(M)s = p1ls—t) (1 =5 — 22) s pryr— i) [e— (B TH0 1 1), (4

Therefore, eq. (36) becomes
H.L 8 f Ful kol {
=+ wtli+ [de‘lh + deﬁ', + jxd1]3] = 10 (45)
AE. 0 k! SRyt
Before the values of #,, #,, and ; can be substituted in eq. (45) the six
constants of integration C,, C,, C,, C,, C, and C; must be evaluated from the
end conditions and the conditions of continuity. -

The expressions for the bending moments and shears in the three sections
are obtained from the equations for the elastic curve, eqs. (39), (41) and (43),
since from mechanics .

d? /]

E/E?_—_——_M )
% = V. (47)
Substituting 5, 5., and 3, respecfively in these two equations

My = — (Hy+ H)(Creo% + Cyom) — ST (48)

V, = —a(H,+ H) (Cye®* — Cyee®) (49)

My = — (4 H) (Cy v - Cremon) 27— S2ET (50)

Ve = — a(Hy+ Hy) (Cy e — C, e~ (51)

My= — (Hhy+ H) (Cye® + Coomor) — ol (52)

Vi = — a(Hy + Hy) (Cy e — Cy %) (53)

From the end conditions and conditions of continuity, the following six
relationships are available for evaluating the six constants

(1) When x =20, 7 =0
(2) » x=1, g =0
(3) » x="~ki, M =M
(4) » X = kl l) " =V,
(5) % x = kyl, My= M,

(6) " x=rkyl, Vy, =1V;.
These relationships give
6 = il s ]
R — =
C pett e | (56)

T 20 (Hy+ Hy)
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Cl=—Pl g, 57
24 (H,+ H) ¥ .
. . Sst E—al il ( peaklgl o ) .
Cs = a2 (H,+Hy) R VP (Hw+H5)_c" (58)
___peak,z ' ‘
Ce = (59)

Y AR

These constants are then substituted in the equations: for 7 and the re-
sulting values of My 72, and us are in turn substituted in eq. (45) to obtain the
following expression:

Hg[ L ] HS[H g th +16f2 64f2K2] [pﬂKl+th +H, +8pr?’] (60)

A E, A Ec 3! A
In which K,, K, and K; have the following values:
K1 = k22(4k2'_6)—_k 2(4kl —6) ) (61)
4 + al (eal_e—al) 2 (eal+_e—al)
K, = al (ea!_. e—al) ‘ 7 ‘ (62)
al _ —akyl__ o—ak, ~al __ akyl __ ,akl al _ ,-al —
(e -1)(e e~ ol 4 (em¥-1) (et~ eh]) +(e e~ (akyl ak,l)‘ (63)

K3 = . ] as (eal_ eoal) ad (eal_e—al)

.2 Timoshenko — Approximate Method.

B eq. (9) is substituted in eq. (36) a solution which is equlvalént to that
given by eq. (60) ist obtained.

HL 6 | ’
arrotli—la+ F+g+ S+ =0 (64)

In comparison with eq. (60) this equat:on is very readily obtained and
the time involved is infinitely less. :

3. Timoshenko — Exact Method.

This solution, which takes into consideration the actual distribution of live
load to the cable is obtained by substituting eq. (9) into eq. (28). This yields

AcEcitht——l_; al+ 3 +—+—+ T ; |
H + H; ’ s
(2Hw+Hs)( )(“1 + 2052+ 30,8 4 --0) =0, (65)

By comparing eq. (65) with eq.-(64) the effect of the actual distribution
of live load is seen to be represented by the last term.

None of the three equations developed for finding /, can be solved directly
because they all contain unknown terms. The terms K, and K; in eq. (60) contain

“a’’ which equalsV WE+ A, 2 and the coefficients of eq. (64) and (65) contain

“p” which equals Ef The solutions must therefore be made by successwe

approXimations. In the numerical example which follows, methods are given
in which the number of approximations made are reduced to a minimum.
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Illustrative problem.

For purposes of comparing the workablllty of the different methods and
for showing the differences involved in them the Detroit-Windsor Bridge has
been selected for analysis. This structure is one for which the: equatlons de-
veloped are directly applicable, for it has unloaded backstays and a two-hinged
stiffening truss, In what follows, the effect of temperature has not been con-
sidered, so that H, is the unknown instead - of H.,

-The dimerisions of the structure, as taken from the report of the Mc Clmtlc-
Marshall Company, are as follows: . o .

= 2056 ft A, = 240.890 sqin
© 1= 18501t . E,= 27,000,000 Ibs/sqin

[, = 084.2 ft E = 30,000,000 lbs/sqin‘

L= 8339 ft . . ' :
From this data and from mformatlon taken from the report it is found that

T ) = 20°—32 ft

w = 6200 lbs/ft for the East Cable 18) by = 240
H;, = 12,920,000.1bs for the East Cable ') ...~ 7 = 113.71-1t.19)

‘ From the precedlng development of equations for #/, there are avallable
for analysis three methods, represented by egs. (60), (64) and (65). In the
derivation of egs. (60): and (64) it was assumed that the deflection of the
cable was proportional to the hanger forces acting upon it and that the live
load produced a hanger force whose magnitude was constant from one end of
the structure to the other, The only difference in these two equations is that
in-eq. (60), » as given by eq. (5) was used and in eq. (64), n as given by eq. (9)
was employed. Since the equations differ only in the representation of » any
numerical problem that is worked out by both methods will show how many.
terms of the series must be employed in eq. (64) to give results comparable
with eq. (60). However, the question of how many terms must be used is one
of practical importance and is worthy of presentation. Eq. (65) makes one less
assumption than the other two, since it takes into con31derat10n the actual
distribution of live load to the ‘cable.

The Detrmt—Wmdsor Brldge will be analyzed by eqs. (60) and (64) for
live loads of 200, 400, 600, 800, 1000,-1200, 1400, 1600, 1800 and 2000 lbs.
per foot. This analy51s will be for values of H and n and will ‘determine how
these quantities vary with the live load; and w111 show what, if any, error there
is in the assumption that the deﬂectlon is proportional to the load. The distri-
bution of these live loads will be as follows

1. Over entire span, k1.= 0, k=1
2. End half, - " k.— 0, ks — B
'3, Center - half, . ky= 25, k= .75
" 4. "End quarter ‘ k=0, b, — .25
5. - Quarter nearest center, k= 25, "k = 50

6. ~ Center quarter, bk, = 375, k, = .625.

--18)- There being only one - sidewatk on this brldge the loadmg on the East Cable
is_greater than on the West.
' 19) "This calculation is based on the average areas of the top and bottom chords
No allowance was made for the effect of web members. .
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A. Analysis py Eq. (60). _
Eq. (60) becomes, when the numerlcal data are substituted for the values
of L%), A, E,, etc,, : :

H, 2( 0000006670) + H, (130 4& — 0000002309 £;)
+ p (126,786,67 K; - 00048058 K;) = 0. (66)
furchbiegung bef x = 2L

fléchissement en x=2{
Deflection at x =21

pleds

[

Durchblegung in Fuss
Fléchissement en
Deflection in feet

T —S——
k‘l =375;/f2 =625

o 400 800 1200 1600 2000

Belastung in Ffund per fuss
Charge en livres par pieds
Load in pounds per j’aa/‘

Fig. 9.

. !
20) [ = J. Z - -+ [ secd a, + f sec®ay, in which

J”dss _-“O[H‘(d )] d"a_zj’/[ 64f2x2] 3

de2 - dx?

=fx (a1

0

s Gyl )
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From eq. (61),

When £, = 0, and & = 1, K= -20
3 k=0, # By = .5, K =-10 .
” k= .25, T K, = -1375
% k= 0, w ke = 25, = K, = -03125
5 k= .25, w ke = B0, K, = -0.6875
” k = 375, , ky = .025, K, = -0,734375.

Durchbiegung 1n Fuss
Fléchissement en pieds
Deflection in feer

oy + A

*

N

N
AN

=

L ANTINN
) )
VY

Fig. 10.

Charakteristische Biegungslinien. Belastung 2000 Pfund pro FuB.
Courbes caractéristiques de fléchissement. Charge 2000 livres par pieds.
Typical defection curves, Load 2000.pounds per Foot.

16

With these values of K the last term of eq (66) becomes for the 6 cases
of distribution

p(~25357334 + 00048058 K,)
p (~126,786.67 + 00048058 K)
p (~174,331.67 + 00048058 K;)
p (- 39,620.83 + .00048058 K)
p(~ 87,165.83 4 .00048058 K)
p(~ 93,108.96 + .00048058 K)

SOk LN~
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Since K, and K, depend upon “a” for their value and “4”’ depends upon
H,, a cut and try procedure must be resorted to for solution. However, a
ready procedure suggests itself. The coefficient of K, is so small that K, must
be very large to ‘materially affect the value of the second term of eq. (66).
Actually K, had values ranging between 44,251,200 and 54,798,800, but when
multiplied by its coefficient the product added to the second term amounts
ranging between 10.22 and 12.49. If eq. (66) is solved in the usual quadratic
form where 4 = .0000006670, B = 130.480 — .0000002309 K, and C =
126,786.67 K, -+ 00048058 K; so that

—B+\B*—4AC
24

then it is apparent that although the coefficient of K, is much larger than that
of K, the value of H, cannot be changed very much by any value of K, because
of the small value of A. If K; is considered zero then B* — 17,025.24. [t
was found that although K; hat values ranging between 54,104,300 and
10,483,400,4 AC ranged between 121.43 and 184.53. This shows that K, cannot

materially change the value of {82 —4 AC. Therefore, as a first approxi-
mation, K, and K, were assumed equal to zero and the equation was solved
for H,. Then K; and K; were computed with this approximate value of H,.
These values of K, and K; were then used in eq. (66) to get another value
of H,. It was found that this second value of H, was, for all practical pur-
poses, exact. The value obtained by considering K, and K, equal to zero was
very close to the final value and the second approximation could not be improved
upon. The results of this method of solution are given in Table I. The values
of H, found by. considering K, and K, equal to zero (/,’) are compared with
the exact values and the maximum difference is shown. The almost exact pro-
portionality between /, and p is apparent from the figures.

sz

Table 1
Values of H, in 1000 Pound Units

/1, = Approximate Value, //, = Exact Value

5 kl = 0 kl = 0 kl =.,25 kl = 0 kl = .25 kl. = .375
Live | £, =1 a=% ky =15 ky = .25 ka=50 | ky=.625
Load ; ; - -

Hy| H, | H'| H, | H) | H, | H/| H, | H | H, | H; | H,

200 ) 388 385 194 | 193] 267 | 269* 61 59 134 ] 134 | 143 144
400 ( 774 | 768 | 388} 385 | 533 | 536 | 121 | 117 267 | 268 | 285 | 288
600 | 1159 | 1150 | 5817 577 | 798 | 803 | 182 | 175*| 400 | 402 | 427 | 432*
800 | 1542 | 1531 | 774 | 768 | 1063 | 1069 | 243 | 234 533 { 536 | 569 575
1000 | 1924 | 1910 | 967 | 960 | 1327 | 1334 | 303 | 292 666 | 670 | 711 | T18
1200 | 2305 | 2287*} 1159 | 1150 | 1590 | 1598 | 364 | 350°*( 798 ; 803* 853 | 861
1400 [ 2684 | 2664 | 1351 | 1341 | 1853 | 1862 424 | 409 | .931 [ 936 | 994 | 1004
1600 | 3062 | 3038 | 1543 | 1531* 2115 | 2125 | 485 | 467 | 1063 | 1068 | 1135 | 1146
1800 | 3438 | 3412 | 1734 | 1721 | 2376 | 2387 | 545 | 525 | 1195 | 1201 } 1276 | 1288
:2000 | 3812 | 3784 | 1924 | 1910 | 2637 | 2648 | 605 | 583 | 1327 | 1334 | 1417 | 1430

*0.78 *0.78 074 *4.00 *0.62 " | *1.16

* Maximum difference — °, of Exact Value
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After the evaluation of /7, the calculation of the deflection is made by use
of egs. (39), (41) and (43) with the proper integration constants evaluated
from eqs. (54) to (59) inclusive. Calculations were made for each  10th point
of the span, but only the results of the 0.2 point are shown, see Fig. 9. In
Fig. 10 are shown typical deflection curves for the en’ure span, the live load in
each instance being 2000 lbs/ft.=). :

Fig. O shows how closely the deflections are proportlonal to the load. The
scale of the figure is so small, however, that the proportionality appears almost
perfect. Table II gives the deflections in feet for x — .2/ and is representative
of the other points. It shows some deviation from perfect proportionality.

Table 11

~ Live | k£ =0 k=0 | k=25 1" k=0 "k, =.25 ky =.375
LO&d k2 =1 k = 5 kg = .75 k2 = .25 kg = .50 k2 = .625
200 |- 0.2746 - 06926 0.0572 0.4108 0.2844 - ~0.0197
400 0.5463 1.3730 0.1174 0.8189 0.5663 ~0.0383
600 0.8170 2.0422 - 0.1818 1.2262 0.8443 - =0.0557.
800 1.0878 2.6721 0.2488 1.6306 1.1183 -0.0724
1000 1.3579 3.3488 0.3157 2.0319 1.3903 -0.0879.
1200 1.6226 3.0868 - 0.3852 24313 1.6602 -0.1021
1400 1.8936 4.6080 0.4554 2.8204 1.9282 -0.1150
1600 2,1617 52334 0.5274 3.2268 2.1915 -0.1264
1800 2.4278 5.8428 0.6080 3.6196 "2.4521 -0.1371
2000 2.6027 6.4437 0.6782 4.0169 2.7104 -0.1464

B. Ana!ysw by Eq (64).
Eq. (64) becomes, when the proper values are used for L, A,, E,, etc.,

H, = 848,602.69 (a, 4 -,j"’ + ?5 1 77 T iw ) (67)

Since this equation contains only the odd numbered coefficients of the
trignometric series it was decided to carry out the solution with the coefficients
a,, a, and ;. It will be shown that this gave values of #H, that compared
favorably with the results of eq. (66). In order to show clearly how much-
each term contributed to the value of H,, eq. (67) was used in the following
form:

H, = 848,602.69 a, + 282,867.55 a; + 160,72053 a5. (68)
The coefficients a,, a; and a; which are evaluated from eq. (16) contain

e so again a method of successive approximations must be used. After.
H £ P .

some experimentation a procedure was developed that gave very satisfactory
results. First, a value of H, or f was assumed, and then this value of g was
used in eq. (16) to get values of a;, a; and a;. These in turn were substituted
in eq. (68) to find H,. This computed value of H, dit not agree with the
assumed value unless by accident the correct value of H, had been guessed.
This procedure was repeated again so that finally for two assumed values of.
B, (B, and B,) two calculated values of H,, (H,, and H,,) were obtained.

21) This loading is larger than one truss of the Detroit-Windsor Bridge carries
or is designed to carry. ;
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The next step in finding the correct value of H, was graphical although an
analytical procedure could have been used. The straight line H, = gH, =
12,020,000 p was drawn, see Fig. 11, and the points gy, H,, and 3, H . plotted.
When these two points were connected by a straight line, the intersection of
this line with the line //, = 12,920,000 g gave the correct value of H and g.
As many as six points were plotted and always the calculated value of H, lay
on a straight line. This procedure was used in calculating 60 values of H,,
each of which was checked by finding the correct values of a,, @, and a;. These
values are shown in Table IIl. The values of //, from the graph are the values
most nearly correct since the check values of /4, often changed several thousand
pounds when /, from the graph was changed a few hundred.

Fig. 11,

Table III

Values of /A, in 1000 Pound Units
H, = Value from graph, H,” = Check value

. k]_ = 0 kl = 0 k1 = .25 3 kl = 0 kl = .25 kl = .375
Live | £, =1 ky =3 ko = .75 ky = .25 ky = .50 ky = 625
Load 4 ! ’ ! ’

Hy | H) | Hy | B | H, | 5, H, | 1, H, | A, H, | H,

200 ([ 385 | 386| 193 | 193 | 269 | 268 59 59 134 | 135 | 144 | 146"
400 ] 770 | 765| 385 | 383 | 536 | 538 | 117 | 117 269 | 268 | 289 | 287
600 § 1151 | 1160% 578 | 575 | 803 | 811* 176 | 174*| 403 | 403 | 432 | 433
800 | 1534 | 1524 | 769 ) 770 | 1069 | 1079 | 234 | 236 537 | 534 | 576 | 576
1000 | 1912} 1915 [ 961 | 956 | 1336 | 1331 | 292 | 293 671 | 660* 719 | 720
1200 | 2291 | 2281 | 1152 | 1149 | 1600 | 1601 | 351 | 352 804 | 804 | 863 | 857
1400 | 2668 | 2658 | 1343 | 1341 | 1863 | 1879 | 409 | 413 937 | 938 | 1005 | 1006
1600 | 3041 | 3054 | 1534 | 1524* 2127 | 2139 | 468 | 465 | 1070 | 1070 | 1148 | 1145
1800 | 3416 | 3419 | 1723 | 1722 | 2301 | 2383 | 526 | 526 | 1203 | 1203 | 1291 | 1286
2000 | 3789 | 3786 | 1913 | 1906 | 2651 | 2661 | 584 | 587 | 1335 | 1337 | 1433 | 1422

*0.78 *0 65 *1.00 *1.15 *0.75 *1.39

* Maximum difference — ¢, of H,

Abhandlungen IV 23
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Table 1V
Live Load — 2000 Ibs/ft.
k| g, BUrom | M, (from | 40600604, | 282867554, | 169,72053a, | H, (Check)
1 2 graph) graph) ) ) 1 ¥ s 3 y o ] f’)
0 | 1 |.20328 | 3,780,000 | 3,755,177.05 2852547 |  2,080.30 | 3,785,791.88
0 |5 |.14806 | 1.913000 | 1.801.382.90 1375647 078.66 | 1.906,118.03
25 | 75 | 20520 | 20652000 | 313147232 | —438788.13 | -31,587.26 | 2.661,006.93
0 | 25| 04520 | 5841000 | 317.660.67 | 25140623 | 17.486.03 | 586,552.03
25 | 50 | 110336 | 1,335,000 | 1,584538.60 | —230.801.03 | ~16.268.04 | 1,337.370.62
375 625| .11005 | 1433000 | 1.840,50454 | -432.763.70 | 1397138 | 1.421.802.13

The contribution of the various terms of eq. (68) to the value of H, is
shown in Table IV. The values are for a live load of 2000 lbs/ft. and are re-
presentative. It is seen that the term containing a; is contributing only about 19
to the final answer in most cases.

In calculating the deflections it was found necessary, especially in cases of
unsymmetrical loading, to use five terms of eq. (9) to get values comparable
with eq. (5). The values compare so well with five terms that to the scale of
Figures 9 and 10 no differences would be noted. However, in Table V the de-
flections in feet are given for x =4..2/ so that they can be compared directly
with those in Table 1L

The rate of convergence of the series can be seen from Table VI where the
complete calculations for x =.2/ and x=.3/ are shown for the 2000 lbs/ft.
S5nx

L 2ax
- of a foot at x = .3 /. The term a, sinT which appears in the unsymmetrical

loading. It is seen that a; sin is contributing deflections of over one-tenth

loading cases is large in comparison with the others, so that it must be obtained
with great accuracy. Any discrepancies between Tables Il and V may be
accounted for by the use of insufficient terms in the series and by slight diffe-
rences in the values of H,.

Table V
Live k, = k=0 b =.25 k=10 k=25 k, =.375
Load ky =1 k=5 ky = .75 ke =25 by =50 ky = 625
200 0.2744 0.6962 0.0594 0.4122 0.2879 -0.0214
400 0.5440 1.3267 0.1229 0.7951 0.5445 -0.0448
600 0.8249 2.0758 0.1908 1.1888 0.8622 -0.0646
800 1.0842 2.7167 0.2582 1.5838 1.1277 —-0.0829
1000 1.3448 3.2418 0.3170 2.03%94 1.3385 -0.1000
1200 1.6241 3.8637 0.3906 2.3625 1.6768 -0.1211
1400 1.8926 4.4757 0.4723 2.7514 1.8599 -0.1322
1600 2.1746 5.0835 0.5435 3.1326 2.1137 -0.1499
1800 2.4355 5.6719 0.6056 3.5173 2.3668 -0.1634
2000 2.6870 6.2535 0.6937 4.0276 2.7363 -0.1801

C. Analysis by Eq. (65).

Since it is probable that the effect of the actual distribution of the hanger
loads is greatest with non-symmetrical loading, eq. (65) was used for the loading
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conditions where &2, = 0; %k, = .5 and &, = 0; k; = .25, The procedure for
finding the correct value of /4, was exactly the same as when eq. (64) was
used, and the results were satisfactory.

In Table VII are shown the values of H, in 1000 1b. units obtained by
eq. (65) and the comparison with the values of H, from Table 1 which were
obtained from eq. (60). It is apparent that the actual distribution of live load
did not increase the value of H, more than 1 o,

Table VI
Deflections for x = .2/, Load — 2000 Ibs/ft.
. ] . 2ax . Jnx . 4nx . S5mx
ky ky @ sin— | ag sin —— | a3 sin —— | a;sin —— | g, sin —= 7
) ! ! l ]
0 1 - 2.60105 0 0.085901 0 0 2.6870
0 5 1.31008 4.89721 0.04625 0 0 6.2535
25 | 75 2.16903 0 -1.47530 0 0 0.6937
0 .25 0.22003 2.73806 0.84528 0.22423 0 4.0276
25 | 50 1.09754 2.63478 -0.77630 -0.21966 0 2.7363
375] .625 1.27490 0 -1.45504 0 0 -0.1801
Deflections for x = .3/, Load — 2000 lbs/ft.
b b o sin ™ | 4 sin 278 | 4 sin37tx a,sin4nx in59'rx
1 2 1 [ 2 SIN [ 3 l l aﬁ s l 7
0 1 3.58002 0 0.03116 0 -0.01231 3.5089
0 5 1.80316 4.89721 0.01563 0 -0.00577 6.6916
25 | .75 2.08541 0 -0.47936 0 0.18611 2.6022
0 25 0.30284 2.738006 0.27465 -0.22423 -0.10303 2.9884
25 | .50 1.51063 2.63478 ~-0.25224 021966 0.09586 4.2087
375 .625 1.75474 0 ~0.47277 0 -0.08232 1.1096
Table VII
Live kl = 0; kﬂ = .5 kl = 0; kg = -25
Load | gq (65) | Eq.(60) | % Diff. | Eq.(65) | Eq.(60) | % Dit.
200 193 193 0 59 59 0
400 386 385 0.26 117 117 0
600 579 5717 0.35 176 175 057
800 173 768 0.65 235 234 0.43
1000 066 960 D.62 204 202 0.68
1200 1159 1150 0.78 353 350 0.86
1400 1352 1341 0.82 412 409 0.73
1600 1545 1531 0.92 472 467 1.07
13800 1738 1721 0.99 531 525 1.14
2000 1931 1910 1,10 591 583 1.37
Average difference 0.65 Average difference 0.68
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Conclusions.

It is not possible to draw any far reaching conclusions from the analysis
of one structure, but from the analysis of the Detroit-Windsor Bridge the
following conclusions may be drawn:

1. Eq. (60) which is based on the Melan Methods leads to values of the
horizontal component of cable stress with a minimum of effort. The results
show that a value of H,, that is exact enough for purposes of estimating costs,
may be obtained directly, and that in one additional step the result may be
obtained exactly. It is felt that this equation is much easier to use than others
derived for the same purpose.

2. Eq. (60) shows, since the moment of inertia of the stlffemng truss is
involved only in the terms K, and K; which can be called zero with little error,
that the size of the truss has little effect on the value of /,. This also means,
since the truss is the distributing medium of the live load, that consideration of
the actual live load distribution to the cable can produce only small changes in
H, except perhaps in the case of concentrated loads. That this was true was
shown by the numerical problem.

3. In the series methods of Professor Timoshenko it was found necessary
to use three terms, and coefficients a;, @, and «; to obtain satisfactory values of
H ,; and five terms, and coefficients a,, a,, a5, a4 and a; to get satisfactory values
of . The procedure used for finding /, is quite direct.

4. The advantages and disadvantages of the two methods of solution can
be summarized as follows:

a) The complete derivation of the equations for deflection and for H, is
a great deal easier and quicker by the series method than by the Melan method

b) After the equations for /, have been found, it is simpler to find the
exact values of H, for any loading condltlon by the Melan method than by the
the series method

¢} However, when //, is once determined in any given numerical case the
deflections can be found more readily by the series method than by the Melan
method.

d) The series method ist the only practical way in which the effect of the
actual load distribution can be found.

5. A method of solution that works out quickly for finding deflectlons in
the stiffening truss for any loading condition is as follows:

1. Find H, by eq. (60).

2. Find by eq. (9).

3. Find bending moments by the substitution of the numerlca] values of »
in eq. (2).

=4

Summary.

The author undertakes to simplify the existing methods of calculation and
formulae in use for suspension bridges. He is of opinion that often inadequate
attention has been given to the works of earlier writers on this subject and
that the nomenclature should be standardised. The author by correlating his
work with earlier publications shows at the same time how the various me-
thods differ. ' He scrutinises the assumptions forming the basis of existing
methods with the object of finding their effects on the final result. For each
method of calculation a shorter solution is given.
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The stiffened suspension bridges as built today are statically indeterminate
systems which would not cause much difficulty in calculation if it were pos-
sible to start by choosing such dimensions as would satisfy all conditions of
loading and changes in temperature. Wide-span constructions are subject to
strong distorsions due to live loads and temperature changes, so that errors
will be committed if such influences are left without sufficient consideration
in the method of calculation. These errors affect the economy of the structures
more than its safety. Special mention is made of methods which reduce the
amount of algebraic work. The procedure adopted by the author can be applied
to all suspension bridges stiffened with a horizontal truss. The only difficulties
are to be found in extra algebraic work.

Résumé.

L’auteur cherche i simplifier les méthodes de calcul et formules existantes
concernant le calcul des ponts suspendus. Il est d’avis que I’on ne §’est le plus
souvent pas référé aux travaux précédents et que I’on ne s’est pas basé sur
ces derniers; il estime que les notations doivent étre unifiées. C’est pour cette
raison que "auteur s’efforce de mettre son travail en rapport avec des publi-
cations précédentes, et de montrer ol les diverses méthodes different. 11 examine
a fond les diverses hypotheses qui sont A la base des méthodes de calcul, afin
de déterminer I’influence qu’elles exercent sur le résultat final, Pour chaque
méthode de calcul, auteur donne un développement un peu plus court de la
solution, comparé a ce qui a été fait jusqu’a présent.

Les ponts suspendus raidis, tels qu’on les construit actuellement, sont des
constructions hyperstatiques, dont le calcul ne présenterait pas de grandes
difficultés, si I’'on pouvait choisir dés le début des dimensions telles qu’elles
satisfassent a toutes les surcharges et variations de température. Les construc-
tions de grande portée sont sujettes a de grandes variations dues aux surcharges
mobiles et aux changements de température; si ’on ne tient pas suffisamment
compte de ces influences, il en résulte de grandes erreurs. Ces derniéres con-
cernent la rentabilité plus que la sécurité. L’auteur fait ressortir surtout les
méthodes de calcul qui, selon son opinion, donnent moins a calculer. Le pro-
cédé utilisé s’applique & tous les ponts suspendus raidis par des poutres hori-
zontales a treillage. Les seules difficultés qu’il présente résident dans le calcul
algébrique plus long.

Zusammenfassung.

Der Verfasser setzt sich zur Aufgabe, eine Vereinfachung der bestehenden
Berechnungsmethoden und Formeln zur Berechnung der Héngebriicken her-
beizufithren. Er ist der Ansicht, daB des 6ftern keine Bezugnahme und kein
Aufbau auf frithere Arbeiten stattgefunden hat und daBf die Bezeichuungen
vereinheitlicht werden sollen. Der Verfasser bemiiht sich daher, seine Arbeit
mit fritheren Vertffentlichungen in Verbindung zu bringen und dabei zu zeigen,
worin sich die verschiedenen Methoden unterscheiden. Die den verschiedenen
Berechnungsannahmen zu Grunde gelegten Annalimen werden eingehender
untersucht, um festzustellen, was fiir einen Einflu8 sie auf das Endresultat
haben. Fiir jede Berechnungsmethode wird eine etwas kiirzere Fassung der
Lésung als bis anhin angegeben.

Die versteiften Hangebriicken, wie sie heute gebaut werden, sind statisch
unbestimmte Bauwerke, deren Berechnung keine grofien Schwierigkeiten hitten,
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kénnte man von Anfang an solche Dimensionen wihlen, die allen Belastungen
und Temperaturinderungen geniigen.

W eitgespannte Konstruktionen sind groBien Verinderungen durch Verkehrs-
lasten und Temperaturinderungen unterworfen, sodaB groBe Irrtiimer begangen
werden, wenn solche Einfliisse nicht geniigend Beriicksichtigung finden. Diese
beziehen sich mehr auf die Wirtschaftlichkeit als auf die Sicherheit. Diejenigen
Berechnungsmethoden, die nach Ansicht des Verfassers weniger Rechenarbeit
erfordern, sind besonders hervorgehoben. Das angewendete Verfahren kann
auf alle Hingebriicken mit horizontalen Gitter-Versteifungstrigern angewendet

werden. Die einzigen Schwierigkeiten sollen in der algebraischen Mehrarbeit
bestehen.
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