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THE THEORY OF THE SUSPENSION BRIDGE.

THEORIE DES PONTS SUSPENDUS.

THEORIE DER HÄNGEBRÜCKEN.

A. A. JAKKULA, Ph. D., Asst. Prof. of Civil Engineering, University of Michigan
Ann Arbor, Michigan.

Introduciion.
In spite of the fact that long-span, stiffened Suspension bridges have been

built for many years, no apparent attempt has been made to simplify the mathe-
matical equations involved in their analysis and to present them in their simplest
forms. It appears ofttimes as if the writers on the subject fail to remove the
mathematical falsework they erect during the construction of their equations
and thereby almost completely obscure their completed structure. Then, too,
these writers have failed to correlate their work to the work of their predecessors
so that to the engineer studying the subject for the first time, the theory of the
stiffened bridge appears exceedingly complex. Differences in nomenclature,
slight variations in apparently innocuous assumptions, and the representation
of the same thing in slightly different mathematical forms serve to obscure
rather than to clarify the essentially simple theory of the stiffened Suspension
bridge.

In the following an effort will be made to correlate the work of the different

writers and to indicate wherein their methods differ and wherein they are
alike. The assumptions made in each method will be scrutinized and their effect
upon the final result will be emphasized. A Solution will be presented for each
method which, it is believed, is simpler than those in present use and the work-
ability of the Solution will be shown by application to a numerical problem.

Statement of problem.
The stiffened Suspension bridge as built today is a statically indeterminate

structure and its analysis would offer no particular difficulty if it were possible
to consider the dimensions the same during all conditions of loading and temperature.

However, long-span structures suffer such great distortions under live
load and temperature variations from the normal that large errors are made in
the analysis if these distortions are not considered. These errors effect the eco-
nomy of the structure but not its safety, and in long-span bridges they are known
to be very large. This paper will confine itself to a discussion of the methods
of analysis in which these distortions are considered.

There are many types of stiffened Suspension bridges, but the theory upon
which their analysis is based is fundamentally the same. However, in the
analysis of certain types, the volume of algebraic work is less than in others, so
here where the object is to stress fundamental relationships the type will be
selected in which this volume is reduced to a minimum. This type has unioaded
backstays and a two-hinged stiffening truss. The procedure followed in the
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analysis for this type of structure can be extended so as to be applicable to any
type having a horizontal stiffening truss. The only difficulty encountered in
such an extension will be algebraic, caused by an increase in the number and

length of equations developed.

Ibsft

V/r/, *L l-i >—J
Fig. 1.

Nomenclature.
The type of structure discussed is that shown in Fig. 1 which defines some

of the terms employed in the equations. The nomenclature that will be used in
addition to that shown in Fig. 1 is as follows:

w dead load, pounds per lineal foot.
p total live load, pounds per lineal foot.
q portion of live load carried by cable, pounds per lineal foot.
H„ horizontal component of cable stress produced by the dead load w.

fip horizontal component of cable stress produced by the live load p.
Hs horizontal component of cable stress produced by all causes except

the dead load.
H Hw + ff,.
rj deflection of cable and stiffening truss.
E modulus of elasticity of stiffening truss material.
/ moment of inertia of stiffening truss.
Ac cross-sectional area of cable.
Ec modulus of elasticity of cable material.
M bending moment acting on stiffening truss.
V shear acting on stiffening truss.
yWj bending moment acting on stiffening truss calculated as if it were

a simple beam independent of the cable.

Additional notation will be defined as introduced.

Fundamental assumptions.
Certain assumptions are usually made in all methods while others are pe-

culiar to the methods themselves. The assumptions which are common to all
methods are:

1. The curve assumed by the cable under the action of the dead load is a

parabola.
This assumption is correct if the dead load is uniformly distributed on a

horizontal plane. The small error in this assumption can be seen from a study
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of the weight distribution in existing bridges. In the Ambassador Bridge in
Detroit *) the distribution is as follows:

Uniformly distributed on horizontal plane 85.4 %

„ „ along cable 13.6 %
Variable (hangers) 1.0 %

In the Philadelphia-Camden Bridge2) the distribution is approximately
Uniformly distributed on horizontal plane 80 %

„ „ along cable 20 %

2. The elongation of the hangers is so small that it can be neglected.
It has been showns) that the error in this assumption is small. The

assumption is equivalent to saying that any deflection suffered by the stiffening
truss is transmitted undiminished to the cable.

ti-*

n'fi

~7

y
Ursprüngliche Lage
Position originale
Original position

p Ibs/fr wlbsß

f?B

Fig. 2.

3. The spacing of hangers is so small compared with the length of span
that the hangers can be considered as forming a continuous sheet.

4. The horizontal component of cable stress in the side spans is assumed
equal to that in the main span.

This will be true if the cable is fixed to the top of flexible towers or if
the cable is fixed to a movable saddle placed on the top of the towers.

5. The stiffening truss is a beam, simply supported at the ends, that
under dead load is initially straight, horizontal, and of constant moment of
inertia. This truss is usually constructed so that it receives none of the dead
load and is stressed, therefore, by live load and temperature changes only.

Other assumptions that are made are peculiar to the methods themselves
and will be noted as they are encountered.

The differential equation method of finding the deflection.
One of the methods used for finding the distorted form of the structure is

to solve the differential equation whose result is the equation of the curve
assumed by the stiffening truss. This equation will, since the hangers are in-

Detroit River Bridge, Mc Clintic-Marshall Co., 1930.
2) The Delaware River Bridge, Final Report of Board of Engineers, Ralph Modjeski,

Chairman, 1927.
3) Page 300. Vol II, Modern Frame Structures, Johnson, Bryan & Turneaure,

Ninth Edition.
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extensible, give the deflection of the cable from its dead load position and will
also give, by differentiation, the equations for slope, bending moment, shear
and loading in the truss. This differential equation is

E,(aW -M 0)
and to solve it, M must first be evaluated. The conditions in the main span due
to live load in any position is shown in Fig. 2. The stiffening truss, originally
in a horizontal position, deflects to the curved form shown and pulls the cable
from its dead load position. The cable in turn pulls in the tower tops, and the
points of cable support move inward the amounts öA and dB respectively. If a
section is passed through the structure at any point distant x from the left
support, the condition necessary for equilibrium of that portion to the left of
such a section is as shown in Fig. 3.

H-*

öß.

>\

«^ '/ :i
w Ibsft

Ibsj/Tl

r
Fig. 3.

Taking a moment center on the cutting section at the neutral axis of the truss,
and writing 2 M 0,

wx*M + H{y+,, + h) - VA(x — dA) — RA(x) + -=- + pzA Hh 0.
2 ' 2

dA can be neglected because it is small in comparison with the other
dimensions, and H Hw + Hs. The equation becomes

W X2 71 Z2
M +{HW + Hs)rl + Hwy+Hsy-x{VA + Ra) + -^- + V" 0.

H«,
wP

y
4/x (/-*)*);8/ ' J l2

and, if b is the length covered by live load and c is the distance to its center
of gravity from RB, then

1/ j. o —wlj_ (Pb)c
va + Ka — -iy -\ -.—

M+{H„ + Hs)i,+ wP(4fx
8/ \ / (l- X) + Hsy - x\^+

wl pbc\wx2 pz
l 2 + 2

0

M+(HW + Hs)i, + Hsy-i^px-^pj 0.

4) These follow from the assumption that the curve of the cable under dead load
is a parabola.
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The quantity -— x —'—— can be recognized as the bending moment in

the truss computed as if it were a simple beam independent of the cable. This
has been designated as Mu Therefore,

M Ml — (Hw+Ns)i,- Hsy 6) (2)
Eq. (1) becomes, with this value of M,

£I^-=-Ml + (M„ + Hs) 7, + Hsy

Letting a^Uy±lk (3)

Eq. (1) becomes

dx2 ' E/+ EI
K '

This differential equation can be solved by using either hyperbolic functions
or by exponential functions. In most Solutions Mx and y, which are both functions

of x, are substituted in eq. (4) before the Solution is attempted. This step
can be eliminated if the Solution is arranged in the following form (using the
exponential Solution):

H,(y 1 d2y 1 d'y
EI\a2 "*" ai dx2 "*" ae dxi ^ " '

The constants Cj and C2 are integration constants which must be evaluated
for each load position from the end conditions and the conditions of continuity.
The equation is simplified by noting that -r~ -[ and all higher derivatives

d2 Mt dx l
vanish. Likewise

2 —p for that part of the structure covered by live

load and 0 for the rest. Higher derivatives likewise vanish. Making these
simplifications,

" =Ci^ + c>e'ax+Jühis(M>~%)-jf^{'-^ &
In discussions written on this question eq. (5) is given in different forms

which are readily obtained from it by algebraic manipulation. The following
forms are given by the authorities noted.

According to L. S. Moisseiff6)

.—."¦ [K^ + K^+f-y^-/+^L\ <6)
Hw + H.

L-T

Note: If * is factored out of the right-hand side of eq. (5) and
r~'w~\-~ l~>s

Cx {Hw~t Hs)
's replaced by Kx and C2

{Hw + "s) by K2, eq. (5) becomes
rjs l's

identical with eq. (6).

6) If in this equation r\ is considered small enough to be neglected, the structure
can be analyzed as is common in other statically indeterminate structures in which the
dimensions before and after loading are considered the same.

6) Page 98, The Delaware River Bridge, Final Report of Board of Engineers,
R. Modjeski, Chairman.

Abhandlungen IV " 22
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According to Johnson, Bryan, and Turneaure7)

Note: This can be obtained from Moisseiff's equation replacing y with its
equivalent in terms of x.

According to F. Bleich8)

•< c>'sinh« + c>cosh« + {-e%- x) (y «^) + m* (^-£) (8)

Note: This is the hyperbolic form preferred by most European investigators.
It can by obtained from eq. (5) by noting the following identities:

eax sinh ax -f- cosh ax,
e-ax _ sinh ax — cosh ax.

* *

bÄ.

*
I

4
I

\ **L

(rr*qj Ibs/ft

£/Ä£

SP
'ft w lös Vt

Fig. 4.

If these are substituted in eq. (5), C1 — C2 replaced by C/, d + C2 by

Cz, Hs by H — Hw, then a2 becomes -—, and eq. (5) is converted to the form
EI

given by Bleich. This form is also given by G. G. Krivoshein9).
The various forms of eq. (5) represent the most common methods of ap-

proaching the problem of Suspension bridge analyses.

The series method of finding the deflection.
Another method for finding the equation of the deflected truss is to

represent it by a trigonometric series. This method has been presented by S.

Timoshenko10) and by G. C. Priester11).
If the stiffening truss is considered as a free body it will be in equilibrium

under the force System shown in Fig. 4. The truss is acted upon by the dead
load w over the entire span, the live load p covering any portion k2l — k^l,
and the hanger pull (w-\-q)12).

The deflection curve of the truss can be represented by a trigonometric
series, as follows:

') Page 279, Vol. II, Modern Frame Structures, 9th Edition.
8) Page 459, Theorie und Berechnung der eisernen Brücken, F. Bleich.
9) Page 280, Simplified Calculation of Statically Indeterminate Bridges, Q. G.'

Krivoshein.
10) A. S. C. E. Transactions, Vol. 94 (1930), page 377.
u) Engineering Research Bulletin, No. 12, University of Michigan.
12) The hanger pull due to dead load is uniform over the entire span and equal

to wlb/ft.
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~T X 2 TT X 1 T X
n ßx sin'— + a2 sin-y- + a3 sin-^— h + a„sin^üf. (9)

The coefficients au a2, as, etc., must be evaluated from the loads producing
the deflection in such a way that the series fits the particular case being in-
vestigated. This evaluation can be done by a consideration of the energy of
the System.

The potential energy stored in a beam when it is deformed by a bending
moment is

If eq. (9) is substituted in the eq. (10), the expression for potential energy
becomes

u *^w~[14ßi2 + 24flä2 +34ßs2 + • • • + «4««2 + • • •] Ol)

If a small increase A an is given to one of the coefficients of the series in

eq. (9), a small additional deflection Aan sin —^— will be added to those

already present. The increase in potential energy produced by this displacement
will be

dU Eln^n^an N

AU^Tc7nAa" --l-p—-Aa- 02)

This increase in potential energy must be equal to the work done by the forces
and loads acting on the truss. The dead load w is counter-balanced by the
equal and opposite dead load hanger forces, so that the live load p and the
live load hanger forces q are the only ones to be considered. The portion of
the live load that is carried by the stiffening truss can be found from eq. (2)

d2M
since it is equal to ——.dx2

d*M_ d*Mt d'r, (d*y\

P + (NW + HS)^-HS(^)
[concerning p see footnote 13)].

Therefore, q - (H„,+ //,)^J + //,(^) (13)

- Hs rw wl~
If ß -—, and since Hw -^-y-Hw of

q -Hw(\+ß)^-+ßw. (14)

The loads p and q are in pounds per unit length so that the work done, A W,
by the downward load p and the upward load q acting through the downward
displacement

d2M
13) If the load is being evaluated at a section where there is no loading, 21 0.



34Ö A. A. Jakkula

nnxAan sin —-— is

'
AW pAan^sm^dx- Aan^'[ßw- H^\ + ß)^]s'm'^dx.

This, when evaluated, becomes

,v. pAanl.A W ' (cos nnk, — cos nnk«)
nn

a \ßwl i, \ lt 11 m n2n2~\ .._.— z)ß„[-y--(l — cos nn)—Hw(\ +ß)an-jj-\. (15)

If the increase in external work given by eq. (15) is set equal to the corresponding
increase in potential energy, eq. (12), the expression for the general

coefficient an is obtained.

°l I " U L \ lß 11 \— (COS nnk, — cos nnk«) iv(1 —cosnn)
_ nnK 2/ nn v '

"" ~~ n^EIn^ n^n2 ' * '
+ Hw{\ + ß)n n

The deflection curve is now completely found, for the coefficients au a2, a3,
etc. can be evaluated from eq. (16) by letting n 1, 2, 3, etc. It will be shown
later that the series shown by eq. (9) converges fast enough to make its use
practical.

Discussion of preceding equations.
If the series eq. (9) with its evaluated coefficients is compared with eq. (5)

one of the greatest advantages of the series form is apparent. When the coefficient

an was found the problem of finding i\ was complete, but in eq. (5) there
is still left the problem of finding the constants Cx and C2. In addition, eq. (9)
holds for all values of x, while eq. (5) holds only for those values of x in
which Mt has the same algebraic form. When eq.' (5) is applied to the type
of loading shown in Fig. 4 there will be three expressions for ML so that it
will be necessary to evaluate six constants of integration.

In both of the equations developed for the deflection of the stiffening truss
there appears the unknown tis which must be found before the deflections can
be numerically evaluated for any particular case. There are two methods for
finding Hs. One method can be called the "Energy Method" and the other
the "Geometrie Method".

The energy method of finding Hs1'1).
This method consists of equating the work done by the hanger forces moving

through the deflection suffered by the cable to the internal work done by the
internal stress in the cable moving through the deformation suffered by the
cable The force System acting on the cable as a free body is shown in Fig. 5.

To evaluate the external work done it must be assumed that the deflection
is directly proportional to the load. This is not apparent from the equations

u) Originally by Melan, „Eiserne Bogenbrucken und Hängebrücken", 1888, and by
D. B. Steinmann, "A Practical Treatise on Suspension Bridges", 1922.
L. S. Moiseiff, "The Delaware River Bridge", Final Report of Board of

Engineers, R. Modjeski, Chairman.
Johnson, Bryan & Turneaure, "Modern Frame Structures", Vol. II.
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for i] but it will be shown that it is, for all practical purposes, true. Before
the live load and temperature change acted, the load on.the cable was w, after
they have acted the load is (w -f- q). The average load is therefore

w+Jw + q) _ (h+

Since the load on an element dx in length is f w + -y) dx the external work
becomes

We =£(¦+*)< dx. (17)

*\1/

¦¦&

e+Ao

(q*w) Ibs/ft

'S ?/Ursprüngliche Lage' XV Position originale
^Original position

Fig. 5.

For the main span, the stress at any section under dead load is Hw sec 0,
under live load and temperature change it increases to (Hw -f- Hs) sec (0 -f- AS).
The average stress is

Hw sec Q + (HW + ffs) sec (0 + A 0) Q^

y— (18)

If the length of the element whose horizontal projection is dx be called ds,
then the change in the length of the element becomes

Hw {sec (Q + A 0) — sec 0} -— + Hs sec (0 + A 0) -^ ± ottds. (19)

Here co is the coefficient of linear expansion and t is the temperature
change from the normal.

If eq. (18) is multiplied by eq. (19) the expression for internal work is
obtained. The change in angle A© is neglected because of its minuteness so that

A Wi, [hw + ^) sec 0 \ns sec 0
ds

Act.c
cotds

sec 0, however, -r-dx

ds2

dx<"*=("•+£)=&£*(»•+£
and, m«.+£)(M£±(""+tH^)o>t\ —2 1 )n dx.' (20)
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For the left-hand side span, the dead load stress is Hw &eeat. The live load
and temperature change increases it to (Hw -f- Hs) sec (c^ + Aax). The average
stress in then

Hw sec «i -f- (Hw + Hs) sec (ort + A Cl)

The change in length of the side span becomes

," /, sec er,
Hw \ sec (or, + Aat) — sec ax j —-—-=—

+ Hssec(«, -f- AaL)
k seC(Xl ±totl1 sec«x (22)

* i
Now if eq. (21) and eq. (22) are multiplied together and Aat is neglected, the
expression for internal work in the side spans is obtained as

Wk [hw + ^)^| sec« Cl • ± (hw + ^) utk sec2 «x. (23)

A similar expression can be written for the right-hand side span.
Equating the expressions for internal and external work

("-4)[^({^+''secS«'+;''secV')±'»'(i^''sec!o'+,'sec'"-)]

=rw)**. w
To condense the equations let

'ds3

jdx
and

'
ds2

t 2 + lt sec3 «t + /2 sec3 a2 L

£ + /, sec2 er, -|- /, sec2 a Lt.
dx

Eq. (24) becomes with these substitutions

(»"+t)(^""<)=I>+i)'<*- <*>

Since q -H„(l+ß)£l + ßw, eq. (14), the right side of eq. (25)
dx2

becomes

fl„_«^.£+£i,ft (26)

//s J 8 / ^w
or, since ß -jy- and iv —^—

£(*+T)r>-*<1+».(&•""• <27»

Finally, eq. (24) becomes

Ä^±»tb -£)o>,dx-2„r + H,lär->i*'- <28>



The theory of the Suspension bridge 343

The geomelric method of finding Hs.
The geometric method has been presented by Fr. Bleich15) and by G. G.

Krivoshein16). Bleich makes certain assumptions in his method that are un-
necessary and do not simplify the resulting equations, therefore, the method
of Krivoshein is presented here. If an element of the cable is removed as in
Fig. 6, the following relationships are obvious.

ds2 dx2 + dy2 (29)
(ds + A ds)2 — (dx—A dx)2 + (dy + A dy)2 (30)

dx

Vi

e+Ae

ädyau*

+-

-m Ursprüngliche Lage
1 Position originale

Original position

dy

¦n2

Ursprüngliche Lage
Position originale

\u dx-dJx x\ Original position

Fig. 6.

If from eq. (30), eq. (29) is subtracted and the terms (Ads)2, (Adx)2 and
(A dy)2 are neglected, one obtains

2ds(Ads) — —2dx(Adx) + 2dy(Ady)

Ads^ + Adx=+Ady(^).
(31)

(32)

ds
But Ads — Hssec(© + A ©)~r-=¦ + totds, Ady d>,,

-¥- -/ 1^-, and if A0 is neglected as before,
dx l P

eq. (32) becomes

Hs ds3 ds2 4/ 8/x
ACEC dx2

and for the entire cable

<&3 ds2 ,_, 4/+ io t —, 1- A dx ~r d >,

dx l r-
d ij (33)

Hs [l dss Clds2 „. 4f[l, 8/f'

dA + dB the total inward movement of the towers. Under the assumption
that the horizontal component of cable stress in the side spans is equal to that.
in the main spans this quantity can be evaluated from the conditions in the side

spans. Referring to Fig. 7, the elongation along the length of the side span

16) Page 459, Theorie und Berechnung der eisernen Brücken.
16) Page 281, Simplified Calculation of Statically Indeterminate Bridges.
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cables, neglecting the small change Aau is

[Hs sec a,1, Jt- p—\h secax ± wtlx secßj.

Therefore,
r///5/1secs«1\ u, 1

öU -^-p—11 + w*/, sec ö! sec ax (35)

For the right-hand span a similar equation can be written for evaluating dB.

If eq. (35) and the corresponding equation for the right-hand span is sub-

stituted in eq. (34) it becomes, since d7] 0,

HSL JT 8/f' 8/f'

Ur+Jcti Jr*

777777.

1

(36)

Fig. 7.

Discussion of eqs. (28) and (36).
It is apparent that eqs. (36) and (28) would be identical if it were not

for the second term on the right-hand side of eq. (28). This term has a simple;
meaning. If when q was evaluated, the effect of deflection on moment had
been neglected, eq. (2) would have been

M Mx — Hsy
Then the portion of the live load carried by the cable would have been

q Hs
BA
l2J

(37)

(38)

With this value of q eq. (28) would be identical with eq. (36). This shows
that the energy method gives more accurate results than the geometric method
because it takes into consideration the correct distribution of live load to the
cable. It also shows that neglecting the terms (Ads)2, (Adx)2 and (Ady)2 is
equivalent to the assumptions that the deflection is proportional to the load and
that the live load is distributed to the cables as a uniform load.

In order to complete the equations for Hs it is necessary to take the equation
for 7] as expressed by eqs. (5) or (9) and Substitute it in eqs. (28) or (36).
A little consideration will show that the.algebraic work encountered in solving
eq. (28) with rj as given by eq. (5) is prohibitive, and, whenever this Solution
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has been made, graphical integration has been used. Fortunately the effect of
the true distribution of live load to the cable is for all practical purposes negli-
gible17). Therefore, if eq. (5) is used for n, it is used in eq. (36). If, however,
y] as given by eq. (9) is used, either eq. (28) or (36) can be readily solved.
This fact gives the series method a theoretical advantage over the differential
equation method.

Three methods are available for obtaining formulae for Hs. These are:
1. eq. (5) in eq. (36); 2. eq. (9) in eq. (36); and 3. eq. (9) in eq. (28). These
will be called

1. Melan method.
2. Timoshenko, approximate method.
3. Timoshenko, exact method.

Working formulae for Hs.
Formulae by the three methods will be developed for Hs for the general

loading condition shown in Fig. 8. The live load p extends from x ktl to
x k21 where kx l and k21 are any two distances.

M
±± \-^
-JS—J | P Ibs/ft

I-

w °\
-J

Fig. 8.

1. The Melan Method.
Since the value of 7], eq. (5), holds only for those values of x in which Mx

has the same algebraic form, three equations must be written for ?;, as follows:
7]x for values of x between 0 and k± l

,1-Cle-^-C2e-+Miv + Ms(Mi)1 ^ + ^[y a2l2) m
in which (M1)1=pl(k2 — £,)(l—^~ —4), (40)

»/2 for values of x between k{l and ktl

'«-c»e"+c^"+//.+//,N'-3- Hw + Hs\
8M

a2l2) (41)

and (Ml)t pl(k* — ki)(l — -£ — -i)x- p (x — k{l)2
2

(42)

7]3 for values of x between ks l and /

f* cnt i /-• r-ax 1 IM \ Hs {y- 8f\
a2l2) (43),u- cbc +cac \- Hw+H(Mlyi l

and

17) This will be shown in the numerical problem.
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(Ml)t=pl(k,-k1)[l-^-^)x-p(ktl-k1l)[x-(^=^ + All). (44)

Therefore, eq. (36) becomes

¦jf-g + t^I/ + -j[ [J «rfi/, + J *</»„ + J xdi,a\ 0. (45)

Before the values of rju r\2, and rj3 can be substituted in eq. (45) the six
constants of integration Cu C2, C3, d, C5 and C6 must be evaluated from the
end conditions and the conditions of continuity.

The expressions for the bending moments and shears in the three sections
are obtained from the equations for the elastic curve, eqs. (39), (41) and (43),
since from mechanics

El'y^-M (46)

'-£ *¦ <47>

Substituting r)u i]2, and »j3 respecfively in these two equations

M1 -(Hw + Hl)(Cle" + Cte-'")-^- (48)

Vx —a(Hw + Ht)(C1 ea* — C2 rax) (49)

M2 - (Hw + Hs) (C3 e" + Q «"«) + £ - ^M- (50)

K2 — a (Hw + Hs) (C3 eax — Ci e~a*) (51)

JW, - (H„ + Hs) (C5 *<" + C6 *-")-^l- (52)

K3 - a (Hw 4- //s) (C, ea* — C6 «r") (53)

From the end conditions and conditions of continuity, the following six
relationships are available for evaluating the six constants

(1) When x 0, in 0
(2) „ * /, ,„ =0
(3) „ x kx /, Mt M2
(4) „ * *,/, Vt V,
(5) „ x k21, M2 M3
(6) „ x k21, V, V3.

These relationships give

_ 8fHs [ e~al-\ ] p Ual(e-ak*f-e-akJ)+e-al(eakJ-eakit)'\
1 ~" P(Hw+Hs) [a2(eal-e-al)\ + 2(HW+HS)Y a2(eal-e-^j J '

C* - a2P(HwS+Hs)-Cl (55)

n e~ak'1

^=2^Wn)+C- (56>
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C'=2a2P(Hw + Hs)+C> <57>

_ 8fHse-"' I pe*' \^~ a2P(Hw+Hs)+e \2a2(Hw+Hs) CV {™>

—peak'1
C6

2a2(Hw+Hs) + Ci- (59)

These constants are then substituted in the equations for n and the re-
sulting values of v\x, V2, and rj3 are in turn substituted in eq. (45) to obtain the
following expression:

»AMH^y—¥-T^—*^]=°- <»>

In which Kx, K% and Ki have the following values:

Kx ki2(Ak2 — 6) — k12(Akl-d) (61)

_ 4 + al(eal-e~al) — 2 (eal-he~al) ,,_.*2 - a3(eal~e-al) (02)

_ (eo/-1)(e-ak*!-e-aki<) + (g'a/-1)(ggV-gaV) (eal-e-al)(ak2l-ak1l)
Kz ~ a3(eal-e-al) + a3(eal-e-<") ' '

2. Timoshenko — Approximate Method.
If eq. (9) is substituted in eq. (36) a Solution which is equivalent to that

given by eq. (60) ist obtained.

HSL 16/ T a* ß5 a7 1 _^7Zf±w^-7^h + T + f + f+-| o. (64)

In comparison with eq. (60) this equation is very readily obtained and
the time involved is infinitely less.

3. Timoshenko — Exact Method.
This Solution, which takes into consideration the actual distribution of live

load to the cable is obtained by substituting eq. (9) into eq. (28). This yields

± atLt 'U{«+S+%+l+-)ACEC

By comparing eq. (65) with eq. (64) the effect of the actual distribution
of live load is seen to be represented by the last term.

None of the three equations developed for finding H„ can be solved directly
because they all contain unknown terms. The terms Kz and Ks in eq. (60) contain

"a" which equals 1/—^=^—i and the coefficients of eq. (64) and (65) contain

"ß" which equals -rA The Solutions must therefore be made by successive
Hw

approximations. In the numerical example which follows, methods are given
in which the number of approximations made are reduced to a minimum.
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Illustrative problem.
For purposes of comparing the workability of the different methods and

for showing the differences involved in them the Detroit-Windsor Bridge has
been selected for analysis. This structure is one for which the equations
developed are directly applicable, for it has unioaded backstays and a two-hinged
stiffening truss. In what follows, the effect of temperature has not been
considered, so that H„ is the unknown instead of Hs.

The dimensions of the structure, as taken from the report of the Mc Clintic-
Marshall Company, are as follows:

/ 205.6 ft Ae 240.89 sqin
/ 1850 ft Ec= 27,000,000 Ibs/sqin
lt 984.2 ft E 30,000,000 lbs/sqin
k 833.9 ft

From this data and from Information taken from the report, it is found that

at 20°—32 ft
w 6200 lbs/ft. for the East Cable18) «2 24°

Hw= 12,920,000 lbs for the East Cable18) / 113.71 ft.19)

From the preceding development of equations for Hp there are available
for analysis three methods, represented by eqs. (60), (64) and (65). In the
derivation of eqs. (60) and (64) it was assumed that the deflection of the
cable was proportional to the hanger forces acting upon it and that the live
load produced a hanger force whose magnitude was constant from one end of
the structure to the other. The only difference in these two equations is that
in eq. (60), 7, as given by eq. (5) was used and in eq. (64), y\ as given by eq. (9)
was employed. Since the equations differ only in the representation of 7] any
numerical problem that is worked out by both methods will show how many
terms of the series must be employed in eq. (64) to give results comparable
with eq. (60). However, the question of how many terms must be used is one
of practical importance and is worthy of presentation. Eq. (65) makes one less
assumption than the other two, since it takes into consideration the actual
distribution of live load to the cable.

The Detroit-Windsor Bridge will be analyzed by eqs. (60) and (64) for
live loads of 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 and 2000 lbs.
per foot. This analysis will be for values of Hp and r\ and will determine how
these quantities vary with the live load; and will show what, if any, error there
is in the assumption that the deflection is proportional to the load. The
distribution of these live loads will be as follows:

1. Over entire span, ky 0, k2 1

2. End half, K 0, k2 .5
3. Center half, R>y — .^•¦D y k2 .75
4. End quarter, kx 0, ki .25
5. Quarter nearest center, ky .25, k2 .50
6. Center quarter, k, .375, k2 .625

18) There being only one sidevvalk on this bridge, the loading on the East Cable
is greater than on the West.

19) This calculation is based on the average areas of the top and bottom chords.
No allowance was made for the effect of web members.
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A. Analysis by Eq. (60).
Eq. (60) becomes, when the numerical data are substituted for the values

of I2»), A„ E„ etc., :

Hp2 (.0000006670) + Hp (130.48, — .0000002309 K2)

+ p(\ 26,786,67 Kx + .00048058 KB) 0. (66)

} J><2
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From eq. (61),
When k, 0, and k2 1, Kx -2.0

W kx 0, „ K2 .0, Kx -1-0
» Ä! .25, „ Ä2 ^ 10 K -1.375
» K 0, „ «2 ,Z3, Kx -0.3125
» K .25, „ k2 .50, Kx -0.6875
» Ät .375, „ ^2 .625,

Durchbiegung in russ
riechissemenl en pieös
Deflechon in feet

Kx -0,734375

r\& •kss \ i

NA

\ > \l \

V 3 \ \ /

Fig. 10.

Charakteristische Biegungslinien. Belastung 2000 Pfund pro Fuß.
Courbes caracteristiques de flechissement. Charge 2000 livres par pieds.
Typical defection curves. Load 2000 pounds per Foot.

With these values of K the last term of eq. (66) becomes for the 6 cases
of distribution

1. p(- 253,573.34 + .00048058 K3)
2. p(-\ 26,786.67 + .00048058 K3)
3. p (-174,331.67 + .00048058 K3)
4. p(- 39,620.83 + .00048058 KB)
5. p(- 87,165.83-1- .00048058 K3)
6. p(- 93,108.96 + .00048058*i)
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Since K2 and K3 depend upon "a" for their value and "a" depends upon
Hp, a cut and try procedure must be resorted to for Solution. However, a
ready procedure suggests itself. The coefficient of Ki is so small that /(2 must
be very large to materially affect the value of the second term of eq. (66).
Actually K?. had values ranging between 44,251,200 and 54,798,800, but when
multiplied by its coefficient the product added to the second term amounts
ranging between 10.22 and 12.49. If eq. (66) is solved in the usual quadratic
form where A .0000006670, B 130.480 — .0000002309/<2 and C
126,786.67^ + 00048058 K, so that

¦4AC__—B±JB2-"p~ 2~X

then it is apparent that although the coefficient of K3 is much larger than that
of Ks the value of Hp cannot be changed very much by any value of AT3 because
of the small value of A. If Kz is considered zero then B2 17,025.24. It
was found that although Kn hat values ranging between 54,104,300 and
10,483,400,4 AC ranged between 121.43 and 184.53. This shows that AT, cannot
materially change the value of ^B2 — 4AC. Therefore, as a first approximation,

K2 and K3 were assumed equal to zero and the equation was solved
for Hp. Then Ki and Ki were computed with this approximate value of Hp.
These values of K2 and K3 were then used in eq. (66) to get another value
of Hp. It was found that this second value of H.„ was, for all practical pur-
poses, exact. The value obtained by considering Ki and Kd equal to zero was
very close to the final value and the second approximation could not be improved
upon. The results of this method of Solution are given in Table I. The values
of Hp found by considering Ki and K3 equal to zero (Hp) are compared with
the exact values and the maximum difference is shown. The almost exact pro-
portionality between Hp and p is apparent from the figures.

Hn

Table I
in 1000

Approximate Value, Hp Exact Value

Values of Hp in 1000 Pound Units

kl 0 *!=0 kx .25 *i 0 *i .25 *.= .375
Live
Load

£2 1
«2 - 2 h .75 *2 .25 *• .50 *i .625

HP HP »P "p HP hp hp "p Hp »P Hp' HP

200 388 385 194 193 267 269* 61 59 134 134 143 144
400 774 768 388 385 533 536 121 117 267 268 285 288
600 1159 1150 581 577 798 803 182 175* 400 402 427 432*
800 1542 1531 774 768 1063 1069 243 234 533 536 569 575

1000 1924 1910 967 960 1327 1334 303 292 666 670 711 718
1200 2305 2287* 1159 1150 1590 1598 364 350* 798 803* 853 861
1400 2684 2664 1351 1341 1853 1862 424 409 931 936 994 1004
1600 3062 3038 1543 1531* 2115 2125 485 467 1063 1068 1135 1146
1800 3438 3412 1734 1721 2376 2387 545 525 1195 1201 1276 1288
2000 3812 3784 1924 1910 2637 2648 605 583 1327 1334 1417 1430

*0.78 *0.78 *0 74 *4.00 *0.62 *1.16

* Maximum difference — % of Exact ^/alue
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After the evaluation of Hp the calculation of the deflection is made by use
of eqs. (39), (41) and (43) with the proper Integration constants evaluated
from eqs. (54) to (59) inclusive. Calculations were made for each lüth point
of the span, but only the results of the 0.2 point are shown, see Fig. 9. In
Fig. 10 are shown typical deflection curves for the entire span, the live load in
each instance being 2000 lbs/ft.-'1).

Fig. 9 shows how closely the deflections are proportional to the load. The
scale of the figure is so small, however, that the proportionality appears almost
perfect. Table II gives the deflections in feet for x .2/ and is representative
of the other points. It shows some deviation from perfect proportionality.

Table II

Live ^ 0 ^=0 ^ .25 Aj= 0 K .25 ^ .375
Load h \ Aa .5 h -75 h .25 k2 .50 k2 .625

200 0.2746 0 6926 0.0572 0.4108 0.2844 -0.0197
400 0.5463 1.3730 0.1174 0.8189 0.5663 -0.0383
600 0.8170 2.0422 0.1818 1.2262 0.8443 -0.0557
800 1.0878 2 6721 0.2488 1.6306 1.1183 -0.0724

1000 1.3579 3.3488 0.3157 2.0319 1.3903 -0.0879
1200 1.6226 3.9868 0.3852 2.4313 1.6602 -0.1021
1400 1.8936 4.6080 0.4554 2.8294 1.9282 -0.1150
1600 2.1617 5.2334 0.5274 3.2268 2.1915 -0.1264
1800 2.4278 5.8428 0.6080 3.6196 2.4521 -0.1371
2000 2.6927 6.4437 0.6782 4.0169 2.7104 -0.1464

B. Analysis by Eq. (64).
Eq. (64) becomes, when the proper values are used for L, Ac, Ec, etc.,

Hp 848,602.69 (fl] + ^ + ^ + ^ + ••• (67)

Since this equation contains only the odd numbered coefficients of the
trignometric series it was decided to carry out the Solution with the coefficients
aL, «3 and ab. It will be shown that this gave values of H„ that compared
favorably with the results of eq. (66). In order to show clearly how much
each term contributed to the value of Hp, eq. (67) was used in the following
form:

Hp 848,602.69 a, + 282,867.55 a3 + 169,720.53 a5. (68)
The coefficients au a3 and a-a which are evaluated from eq. (16) contain
tj

ß -rr- so again a method of successive approximations must be used. After

some experimentation a procedure was developed that gave very satisfactory
results. First, a value of Hp or ß was assumed, and then this value of ß was
used in eq. (16) to get values of au a3 and a5. These in turn were substituted
in eq. (68) to find Hp. This computed value of H„ dit not agree with the
assumed value unless by accident the correct value of Hp had been guessed.
This procedure was repeated again so that finally for two assumed values of
ß, (ßx and ßü) two calculated values of Hp, (H„t and Hp2) were obtained.

21) This loading is larger than one truss of the Detroit-Windsor Bridge carries
or is designed to carry.
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The next step in finding the correct value of H„ was graphical although an
analytical procedure could have been used. The straight line Hp ßHw
12,920,000 ß was drawn, see Fig. 11, and the points ßu Hpl and ß2, Hp2 plotted.
When these two points were connected by a straight line, the intersection of
this line with the line Hp 12,920,000 ß gave the correct value of H and ß.
As many as six points were plotted and always the calculated value of Hp lay
on a straight line. This procedure was used in calculating 60 values of Hp,
each of which was checked by finding the correct values of au a3 and ab. These
values are shown in Table III. The values of Hp from the graph are the values
most nearly correct since the check values of Hp often changed several thousand
pounds when Hp from the graph was changed a few hundred.

HP

\\?

Hp

¦/3
ßi fiz

Fig. 11.

Table III
Values of Hp in 1000 Pound Units

Hp Value from graph, H„' Check value

ki 0 *i 0 ^ .25 *i 0 ?*• .25 *i 375
Live k2 l *, _ l~ 2 h -75 K- .25 kt .50 K 625
Load

Hp »P MP HP' HP »P hp »p HP HP' Hp H,,'

200 385 386 193 193 269 268 59 59 134 135 144 146*
400 770 765 385 383 536 538 117 117 269 268 289 287
600 1151 1160* 578 575 803 811* 176 174* 403 403 432 433
800 1534 1524 769 770 1069 1079 234 236 537 534 576 576

1000 1912 1915 961 956 1336 1331 292 293 671 666* 719 720
1200 2291 2281 1152 1149 1600 1601 351 352 804 804 863 857
1400 2668 2658 1343 1341 1863 1879 409 413 937 938 1005 1006
1600 3041 3054 1534 1524* 2127 2139 468 465 1070 1070 1148 1145
1800 3416 3419 1723 1722 2391 2383 526 526 1203 1203 1291 1286
2000 3789 3786 1913 1906 2651 2661 584 587 1335 1337 1433 1422

*0.78 *0 65 *1.00 *1.15 *0.75 *1.39

* Maximum differenc s - % of Hp

Abhandlungen IV 23
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Table IV
Live Load — 2000 lbs/ft.

lh k2 ß (from
graph)

Hp (from
graph)

848,602,69 c. 282,867.55 a3 169,720.53ö6 Hp (Check)

0
0
.25
0

.25

.375

1

.5

.75

.25

.50

.625

.29328

.14806

.20520

.04520

.10336

.11095

3,789,000
1,913,000
2,652,000

584,000
1,335,000
1,433,000

3,755,177.05
1,891,382.90
3,131,472.32

317,660.67
1,584,538.69
1,840,594.54

'
28,525.47
13,756.47

-438,788.13
251,406.23

-230,891.03
-432,763.79

2,089.30
978.66

-31,587.26
17,486.03

-16,268.04
13,971.38

3,785,791.88
1,906,118.03
2,661,096.93

586,552.93
1,337,379.62
1,421,802.13

The contribution of the various terms of eq. (68) to the value of Hp is
shown in Table IV. The values are for a live load of 2000 lbs/ft. and are re-
presentative. It is seen that the term containing a5 is contributing only about 1 o/o

to the final answer in most cases.

In calculating the deflections it was found necessary, especially in cases of
unsymmetrical loading, to use five terms of eq. (9) to get values comparable
with eq. (5). The values compare so well with five terms that to the scale of
Figures 9 and 10 no differences would be noted. However, in Table V the
deflections in feet are given for x => .21 so that they can be cornpared directly
with those in Table II.

The rate of convergence of the series can be seen from Table VI where the
complete calculations for x .2 / and x .3 / are shown for the 2000 lbs/ft.

5 TZ X
loading. It is seen that ß5 sin—— is contributing deflections of over one-tenth

2nx
of a foot at x .3 /. The term a2 sin —— which appears in the unsymmetrical

loading cases is large in comparison with the others, so that it must be obtained
with great accuracy. Any discrepancies between Tables II and V may be
accounted for by the use of insufficient terms in the series and by slight
differences in the values of Hp.

Table V

Live ki U ki= 0 ^ .25 kt= 0 kj. .25 ^ .375

Load k2 l h .s k, .75 k2 .25 Ä2 .50 k2 .625

200 0.2744 0.6962 0.0594 0.4122 0.2879 -0.0214
400 0.5440 1.3267 0.1229 0.7951 0.5445 - 0.0448
600 0.8249 2.0758 0.1908 1.1888 0.8622 -0.0646
800 1.0842 2.7167 0.2582 1.5838 1.1277 -0.0829

1000 1.3448 3.2418 0.3170 2.0394 1.3385 -0.1000
1200 1.6241 3.8637 0.3906 2.3625 1.6768 -0.1211
1400 1.8926 4.4757 0.4723 2.7514 1.8599 -0.1322
1600 2.1746 5.0S35 0.5435 3.1326 2.1137 -0.1499
1800 2.4355 5.6719 0.6056 3.5173 2.3668 -0.1634
2000 2.6870 6.2535 0.6937 4.0276 2.7363 -0.1801

C. Analysis by Eq. (65).
Since it is probable that the effect of the actual distribution of the hanger

loads is greatest with non-symmetrical loading, eq. (65) was used for the loading
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conditions where kt 0; k2 .5 and kt 0; k2 .25. The procedure for
finding the correct value of Hp was exactly the same as when eq. (64) was
used, and the results were satisfactory.

In Table VII are shown the values of Hp in 1000 Ib. units obtained by
eq. (65) and the comparison with the values of Hp from Table I which were
obtained from eq. (60). It is apparent that the actual distribution of live load
did not increase the value of Hp more than 1 o/o.

Table VI
Deflections for x .21, Load — 2000 lbs/ft.

kx nx 2nx 3?rx Anx 5 nxh a-i sin-y- a2 sin —-.— »a sin —j— üi sin —j— as sin —— V

0 1 2.60105 0 0.08591 0 0 2.6870
0 .5 1.31008 4.89721 0.04625 0 0 6.2535
.25 .75 2.16903 0 -1.47530 0 0 0.6937
0 .25 0.22003 2.73806 0.84528 0.22423 0 4.0276

.25 .50 1.09754 2.63478 -0.77630 -0.21966 0 2.7363

.375 .625 1.27490 0 -1.45504 0 0 -0.1801

Deflections for x 31, Load — 2000 lbs/ft.

nx 2nx 3jix at sin 4 n x Snxkl ks Oi sin —r- ßs sin —j— fl3 sin —j- l a6 sin —j— V

0 1 3.58002 0 0.03116 0 -0.01231 3.5989
0 .5 1.80316 4.89721 0.01503 0 -0.00577 6.6916
.25 .75 2.98541 0 -0.47936 0 0.18611 2.6922
0 .25 0.30284 2.73806 0.27465 -0.22423 -0.10303 2.9884
.25 .50 1.51063 2.63478 -0.25224 0 21966 0.09586 4.2087
.375 .625 1.75474 0 -0.47277 0 -0.08232 1.1996

Table VII

Live
Load

^ 0; K .5 ^ 0; it 25

Eq.(65) Eq. (60) % Diff. Eq. (65) Eq. (60) % Diff.

200 193 193 0 59 59 0
400 386 385 0.26 117 117 0
600 579 577 0.35 176 175 0.57
800 773 768 0.65 235 234 0.43

1000 966 960 0.62 294 292 0.68
1200 1159 1150 0.78 353 350 0.86
1400 1352 1341 0.82 412 409 0.73
1600 1545 1531 0.92 472 467 1.07
1800 1738 1721 0.99 531 525 1.14
2000 1931 1910 1.10 591 583 1.37

Averag e differen :e 0.65 Average difference 0.68



356 A. A. Jakkula

Conclusions.
It is not possible to draw any far reaching conclusions from the analysis

of one structure, but from the analysis of the Detroit-Windsor Bridge the
following conclusions may be drawn:

1. Eq. (60) which is based on the Melan Methods leads to values of the
horizontal component of cable stress with a minimum of effort. The results
show that a value of Hp, that is exact enough for purposes of estimating costs,
may be obtained directly, and that in one additional step the result may be
obtained exactly. It is feit that this equation is much easier to use than others
derived for the same purpose.

2. Eq. (60) shows, since the moment of inertia of the stiffening truss is
involved only in the terms K2 and K3 which can be called zero with little error,
that the size of the truss has little effect on the value of Hp. This also means,
since the truss is the distributing medium of the live load, that consideration of
the actual live load distribution to the cable can produce only small changes in
Hp except perhaps in the case of concentrated loads. That this was true was
shown by the numerical problem.

3. In the series methods of Professor Timoshenko it was found necessary
to use three terms, and coefficients ax, a3 and «5 to obtain satisfactory values of
Hp; and five terms, and coefficients alt a2, a3, a4 and ab to get satisfactory values
of 7]. The procedure used for finding Hp is quite direct.

4. The advantages and disadvantages of the two methods of Solution can
be summarized as follows:

a) The complete derivation of the equations for deflection and for Hp is
a great deal easier and quicker by the series method than by the Melan method.

b) After the equations for Hp have been found, it is simpler to find the
exact values of Hp for any loading condition by the Melan method than by the
the series method.

c) However, when Hp is once determined in any given numerical case the
deflections can be found more readily by the series method than by the Melan
method.

d) The series method ist the only practical way in which the effect of the
actual load distribution can be found.

5. A method of Solution that works out quickly for finding deflections in
the stiffening truss for any loading condition is as follows: r'j

1. Find/^by eq. (60).
2. Find r\ by eq. (9).
3. Find bending moments by the Substitution of the numerical values of rj

in eq. (2).

Summary.
The author undertakes to simplify the existing methods of calculation and

formulae in use for Suspension bridges. He is of opinion that often inadequate
attention has been given to the works of earlier writers on this subject and
that the nomenclature should be standardised. The author by correlating his
work with earlier publications shows at the same time how the various
methods differ. He scrutinises the assumptions forming the basis of existing
methods with the object of finding their effects on the final result. For each
method of calculation a shorter Solution is given.
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The stiffened Suspension bridges as built today are statically indeterminate
Systems which would not cause much difficulty in calculation if it were
possible to start by choosing such dimensions as would satisfy all conditions of
loading and changes in temperature. Wide-span constructions are subject to
strong distorsions due to live loads and temperature changes, so that errors
will be committed if such influences are left without sufficient consideration
in the method of calculation. These errors affect the economy of the structures
more than its safety. Special mention is made of methods which reduce the
amount of algebraic work. The procedure adopted by the author can be applied
to all Suspension bridges stiffened with a horizontal truss. The only difficulties
are to be found in extra algebraic work.

Resume.
L'auteur cherche ä simplifier les methodes de calcul et formules existantes

concernant le calcul des ponts suspendus. II est d'avis que l'on ne s'est le plus
souvent pas refere aux travaux precedents et que l'on ne s'est pas base sur
ces derniers; il estime que les notations doivent etre unifiees. C'est pour cette
raison que l'auteur s'efforce de mettre son travail en rapport avec des publi-
cations precedentes, et de montrer oü les diverses methodes different. II examine
ä fond les diverses hypotheses qui sont ä la base des methodes de calcul, afin
de determiner l'influence qu'elles exercent sur le resultat final. Pour chaque
methode de calcul, l'auteur donne un developpement un peu plus court de la
Solution, compare ä ce qui a ete fait jusqu'ä present.

Les ponts suspendus raidis, tels qu'on les construit actuellement, sont des
constructions hyperstatiques, dont le calcul he presenterait pas de grandes
difficultes, si l'on pouvait choisir des le debut des dimensions telles qu'elles
satisfassent ä toutes les surcharges et variations de temperature. Les constructions

de grande portee sont sujettes ä de grandes variations dues aux surcharges
mobiles et aux changements de temperature; si l'on ne tient pas suffisamment
compte de ces influences, il en resulte de grandes erreurs. Ces dernieres con-
cernent la rentabilite plus que la securite. L'auteur fait ressortir surtout les
methodes de calcul qui, selon son opinion, donnent moins ä calculer. Le
procede utilise s'applique ä tous les ponts suspendus raidis par des poutres
horizontales ä treillage. Les seules difficultes qu'il presente resident dans le calcul
algebrique plus long.

Zusammenfassung.
Der Verfasser setzt sich zur Aufgabe, eine Vereinfachung der bestehenden

Berechnungsmethoden und Formeln zur Berechnung der Hängebrücken
herbeizuführen. Er ist der Ansicht, daß des öftern keine Bezugnahme und kein
Aufbau auf frühere Arbeiten stattgefunden hat und daß die Bezeichnungen
vereinheitlicht werden sollen. Der Verfasser bemüht sich daher, seine Arbeit
mit früheren Veröffentlichungen in Verbindung zu bringen und dabei zu zeigen,
worin sich die verschiedenen Methoden unterscheiden. Die den verschiedenen
Berechnungsannahmen zu Grunde gelegten Annahmen werden eingehender
untersucht, um festzustellen, was für einen Einfluß sie auf das Endresultat
haben. Für jede Berechnungsmethode wird eine etwas kürzere Fassung der
Lösung als bis anhin angegeben.

Die versteiften Hängebrücken, wie sie heute gebaut werden, sind statisch
unbestimmte Bauwerke, deren Berechnung keine großen Schwierigkeiten hätten,
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könnte man von Anfang an solche Dimensionen wählen, die allen Belastungen
und Temperaturänderungen genügen.

Weitgespannte Konstruktionen sind großen Veränderungen durch Verkehrslasten

und Temperaturänderungen unterworfen, sodaß große Irrtümer begangen
werden, wenn solche Einflüsse nicht genügend Berücksichtigung finden. Diese
beziehen sich mehr auf die Wirtschaftlichkeit als auf die Sicherheit. Diejenigen
Berechnungsmethoden, die nach Ansicht des Verfassers weniger Rechenarbeit
erfordern, sind besonders hervorgehoben. Das angewendete Verfahren kann
auf alle Hängebrücken mit horizontalen Gitter-Versteifungsträgern angewendet
werden. Die einzigen Schwierigkeiten sollen in der algebraischen Mehrarbeit
bestehen.
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