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DER ALLGEMEINSTE FALL DER KNICKUNG DES
GERADEN BAUSTAHLSTABES MIT UNVERANDER-
LICHEM QUERSCHNITT

LE CAS LE PLUS GENERAL DU FLAMBAGE DE LA BARRE DRO!TE
EN ACIER DOUX AVEC SECTION CONSTANTE.

THE MOST GENERAL CASE OF BUCKLING OF A STRAIGHT BAR
OF BUILDING STEEL WITH CONSTANT CROSS-SECTION.

Prof. Dr.-Ing. FRIEDRICH HARTMANN, Wien.

Durch Engesser?) ist 1895 das Problem der Knickung eines-in der Schwer-
achse gedriickten Stabes aus Baustahl (also mit plastischem Verhalten) restlos
geklart worden. Engesser konnte zeigen, daBl auch bei Knickung im plastischen
Bereich fiir beliebig geformte Querschnitte die Eulerformel verwendet werden
kdnne, wenn an die Stelle des Elastizititsmoduls £ der von der Knickspanaung
abhingige ,,Knickmodul*

Ei+E .
Y —
J

gesetzt wird. Zu dessen Berechnung muB die Druck-Stauchungslinie o= f (&)

des Baustahles gegeben sein. Die Knickspannung o, = % entspricht darin dem

Modul der Druckspannung E, = Z'_Z und dem Modul der entlastenden Zug-

spannungen E,=E; J, ist das Trigheitsmoment des iiber der Biegedruck-
zone liegenden Querschnittsteiles, /, das Trigheitsmoment des {iber der Biege-
zugzone liegenden Querschnittsteiles, beide bezogen auf die Biegenullinie.
J aber ist das Trigheitsmoment des ganzen Querschnittes bezogen auf seine
Schwerachse. Die Lage der Biegenullinie ist bestimmt durch die Gleichung
EyS, + E:S; = 0, wobei die S die statischen Momente der durch die Biege-
nullinie getrennten Querschnittsteile, bezogen auf die Nullinie, sind, Der Knick-
modul 7 hdngt nicht nur von der GroBe der Knickspannung,‘sondern auch von
der Querschmttsform ab, sodaB also die Hohe der Knickspannung im plastischen
Bereich, im Gegensatz zur Knickspannung im elastlschen Bereich, von der Quer-
schmttsform abhingig ist.

Trotzdem man glauben kénnte, daBl hiemit der allgemeinste Fall der
Knickung gegeben sei, ist dem nicht so. Ein im Briickenbau hiufig vor-
kommender Fall ist mit der Engesser’schen Theorie (die 1910 von Karman durch
Versuche bestitigt wurde) nicht zu erfassen. In den Druckgurten von Fach-
werkbriicken und in vollwandigen Bogentragern liegt nimlich die Druckkraft 7

1) Schweizer Bauzeitung 1895 vom 27. Juli.
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in der lotrechten Schwerebene des Querschnittes, nicht aber in der wagrechten
(Fig. 1, 1a). In Fachwerkbriicken ist dieser Umstand bedingt durch die Ver-
dnderung des Querschnittes von Feld zu Feld und die damit verbundene Ver-
schiebung der Schwerachse ¥ — x, wihrend die Druckkraft in der von Feld zu
Feld unverinderlichen Netzlinie des Fachwerkes angreift, aber auch durch das
Auftreten von Biegespannungen durch die steifen Knotenbleche. Der Gurt ver-
biegt sich unter der Belastung der Briicke mit dieser nach einer stetig ge-
kriimmten Linie, im mittleren Teile hohl nach oben. Diese Wirkung kann man
.auf Feldweite oder Gurtknicklinge der Wirkung einer an einem Hebelsarm p
angreifenden Druckkraft gleichsetzen. Bei einem Bogentriger verlauft die Stiitz-
linie fast durchwegs auBerhalb der Achse, bei einem parabolisch geformten
Zweigelenkbogen mit Vollbelastung beispielsweise durchaus oberhalb der x — x-
Achse (Fig. 1und 1a). In allen diesen Fillen ist der Querschnitt in der Regel so
geformt, daB das auf die x-Achse bezogene Trigheitsmoment wesentlich groSer
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Fig. 1. Fig. 1a. Fig. 1b.

ist als das fiir die y-Achse, sodaB fiir die Berechnung die Knickung aus der Ebene
y — y mafgebend ist. Da die Kraft P in dieser Ebene wirkt, liegt also ein
Fall reiner Knickung, aber mit einer in der y-Richtung un-
gleichmidfBigen Spannungsverteilung, vor, da den reinen Druck-
spannungen schon bei der kleinsten Belastung Biegespannungen itberlagert sind.
Darin besteht die Abweichung vom gewdhnlichen Knickfall. Beim Bogentriager
ist allerdings der Druckstab in der y-Ebene nicht gerade, sondern gekriimmt.
Aber innerhalb der Knicklange ist der Kriitmmungspfeil klein. Streng genommen
ist auch beim Fachwerk mit geraden Gurten der einseitig gedriickte Gurt vor
dem Knicken nicht mehr gerade, doch ist die Kriimmung hier verschwindend
klein und ist auch noch durch eine anfingliche Gegenkriimmung, die jeder Briicke
als ,,Sprengung*‘ nach aufwirts bei der Anarbeitung gegeben wird, weiter ver-
mindert. Diese Kriimmungen beeinflussen wohl die Knickung in der y-Ebene, ihr
Einflufl auf die hier zu behandelnde Knickung in der x-Richtung aber ist ver-
schwindend. .

Der Querschnitt sei,” wie es den Ausfithrungen entspricht, symmetrisch zur
y-Achse, aber unsymmetrisch zur x-Achse (Fig. 1, 1a). Da im
Augenblick des Knickens wie vorher die Spannungen in der y-Richtung ver-
dnderlich sind, ist auch in jenen Querschnittsteilen, in denen die Spannungen
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oberhalb der Proportionalititsgrenze op liegen, der Modul verinder-
lich. Es ist zu untersuchen, ob auch in diesem Fall die Berechnung mit einem
einheitlichen Knickmodul durchgefiihrt werden kann, wie dies sonst der Fall ist,
Dieser Knickmodul miite offenbar einem Mittelwert aus den verschiedencn
Modul-Werten des Querschnittes entsprechen. Bisher hat man diesen Fall wohl

meist mit dem Knickmodul, der der reinen Druckspannung o, = % entspricht,

behandelt. Das fithrt zu einer Uberschiitzung der Tragkraft, also zu einer Ver-
ringerung der Sicherheit, die sehr betrichtlich sein kann, wenn die an der Gurt-
unterkante liegenden wagrechten Teile nur schmal sind, oder, wie beim T-Gurt,
iiberhaupt fehlen. Rechnet man andrerseits mit dem Modul, der der obein Rand-
spannung entspricht, so erhilt man wieder im allgemeinen eine zu geringe Trag-
kraft; nur beim T-Gurt ist diese Rechnungsweise ziemlich richtig ¢).

Die strenge Berechnung zerfillt in zwei Teile.

l. Die Ermittlung der Spannungsverteilung im Quer-
schnitt bei Erreichung der Knicklast. Hiezu muB natiirlich die
Druck-Stauchungslinie des verwendeten Baustahles gegeben sein. Der Verlauf
der Biegespannungen wird in jenen Teilen des Querschnittes, die iiber die op-
Grenze hinaus beansprucht sind, krummlinig verlaufen. Diese Spannungsver-
teilung ergibt sich streng aus der Berechnung des Stabes auf einseitigen Druck
mit dem Hebelsarm p. Dazu muB die Knicklast P2, geschitzt werden. Die vor-
hin angegebenen Niaherungsberechnungen liefern hiefiir gute Anhaltspunkte, Die
Durchfiihrung wird an einem Beispiel gezeigt werden.

In Fig. 1b sei die Spannungsverteilung dargestellt, wobei o,<C 6y ange-
nommen wurde. Es sind also die oberen Teile des Querschnittes plastisch, die
unteren elastisch beansprucht. Die Biegenullinie ist gestrichelt. Diese Span-
nungsverteilung ist in allen Stabquerschnitten dieselbe, wenn der Hebelarm p
tiber die ganze Stablinge konstant ist. Ist dies nicht der Fall, dann kann man
genau genug mit der Spannungsverteilung in Stabmitte rechnen, die schlieBlich
fiir die Knickung besonders maBgebend ist.

2. Die Berechnungauf Knickunginder x-Richtung. Hier
handelt es sich wie stets bei Knickaufgaben um die Ermittlung jener kritischen
Last, bei der das stabile Gleichgewicht des Stabes gerade in das unstabile Gleich-
gewicht iibergeht, um jene Last also, die neben der geraden auch noch eine ge-
bogene Gleichgewichtsform mit unendlich kleinen Ausbiegungen ermoglicht.
Dabei werden die iiblichen Voraussetzungen gemacht: Das Ebenbleiben der
Querschnitte auch nach der Ausbiegung, was bei unendlich kleinen Aus-
biegungen gerechtfertigt erscheint, also linearer Verlauf der Dehnungen in der
x-Richtung des Querschnitts. Ferner wird angenommen, daB im ausgebogenen
Stab zwischen Spannung und Dehnung iiberall derselbe Zusammenhang be-
steht, wie bei einem rein auf Zug oder Druck beanspruchten Stab. Auch diese
Annahme ist bei unendlich kleinen Ausbiegungen gerechtfertigt.

a) Zunidchstist die Lage der Biegenullinie n—n zu be-
stimmen. Es wird angenommen, daB sich bei der Knickung der Querschnitt
nach links verschiebt. Wir greifen aus dem Querschnitt m — m des Stabes
(Fig. 2b) zwei Flichenelemente df, und df, beiderseits der Biegenullinie 7 — »
heraus. lhre Abstinde von n —n sind @, und a,. Ihrer Lage im Querschnitt

2) Ros hat in dem Bericht iiber die ,,II. internationale Tagung fiir Briickenbau und
Hochbau‘“ niherungsweise mit einem arithmetischen Mittelwert der Module gerechnet
und Versuche mit Stiaben von rechteckigem Querschnitt durchgéfiihrt,

Abhandlungen IV 21
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(Fig. 2) entspreche die Spannung o, wie beispieléweise in Fig. 1 den kleinen
schraffierten Flichen in der Spannungsverteilung Fig. 1b die Spannung o ent-
spricht. Da die Dehnungen linear verlaufen, erhdlt man nach Fig. 2a fiir ein

' i a :
angenommenes & das zugehorige & = ¢ —2, und aus der Druck-Stauchungs-
a

1
linie (Fig. 2¢) die zugehtrigen Biegespannungen ¢, und o, Fiir die Bestim-
mung von ¢, ist der Modul £, der Druckspannung malBigebend und zwar ist
E, = tg B, des Tangentenwinkels im Punkt S, da ja ¢, unendlich klein zu denken
ist. Auf der Biegezugseite gilt die Entlastungsgerade (in Fig. 2c gestrichelt),
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die annihernd parallel zur Hook’schen Geraden verlduft, so da (E, =tgg,) =
(E = tg p) ist. Daraus erhidlt man o,, und damit die Spannungsverteilung im
Querschnitt 7z — m bei unendlich kleiner Ausbiegung. Die Spannungen sind
0, = E;&e und g, = E, ¢, im allgemeinen also o, = E,¢,. E, deutet den nach
der Lage des Flichenelementes im Querschnitt verinderlichen Modul an. Dabei
ist aber, wie im eben behandelten Fall E, auch fiir im Querschnitt gleich hoch
hegende Teile, je nachdem sie auf der Biegedruck- oder auf der Biegezug-
seite liegen, E, im ersten Fall gleich E,,, im zweiten Fall gleich E, = E.

Aus Fig. 3, die ein Stabelement von der Lange 1 in ausgebogenem Zu-

stand darstellt, folgt die bekannte Beziehung ¢, = ﬁ, g = 22 oder allgemein
& = &, wenn o der Kriimmungshalbmesser ist, der wegen der unendlich

kleinen Ausbiegungen unendlich grob zu denken ist und daher ebensogut von
der Schwerachse, wie von der Biegenullinie aus gegen den Kriimmungsmittel-
punkt gemessen werden kann. _
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Somit ist allgemein ;
E,a,

(1)

Nun mub fiir die Biegespannungen im Querschnitt die Gleichgewichtsbedingung
2V = 0 erfiillt sein. Diese lautet '

jaxdfx = 0 oder nach Gl (1) J.

o, = Eye, =

E.a,

dfs = 0.

Da im Querschnitt ¢ fiir alle Flachenteile konstant angesehen werden darf, er-
hidlt man die Gleichung

[ Epaydf, = 0.

df.-a, ist aber das statische Moment S, des Flichenelementes bezogen auf
die Biegenullinie. Dabei sind die a, einerseits, etwa rechts von der Nullinie,
positiv, andrerseits also links negativ zu bezeichnen. Damit lautet die letzte
Gleichung

| E.dS, = 0. (2)

Das Integral ist iiber den ganzen Querschnitt zu erstrecken, und aus dieser
Gleichung kann die Lage der Nullinie berechnet werden. Dazu ist es vorteil-
haft, den Abstand der Biegenullinie n — 7 von der y-Achse einzufithren. Dieser
Abstand soll mit e bezeichnet werden. Sind dann die Abstinde eines Flichen-
elementes df, von der y-Achse 4 ¢,, so ist

@ = *ete G)
Fithrt man diese Werte in die Gleichung (2) ein, so lautet sie
[E(+ec+e)df, = 0. 4)

Aus dieser Gleichung kann e berechnet werden.

b) Nachdem die Lage der Nullinie bekannt ist, hat man die Gleichung
M, = M, anzusetzen. Es ist also zuerst das Moment der inneren Krifte M; zu
bestimmen, denn M, = P, p ist bekannt. Nach Fig. 3 ist

. 2
M; = [ax. opdfy = jExf "; df; (5)
dfx a2 = d J, ist das Trigheitsmoment des Flichenelementes bezogen auf die
Nullinie. Die 4, sind jetzt bereits durch Gl (3) bestimmt. Somit ist auch
_ E,

M; :j - ds. (6)
Da M; = M, ist, erhdlt man, wenn man statt M, einfach M als Moment der
duBeren Krifte setzt, die Gleichung

M= %fo dfx (M)

als Differentialgleichung der Biegelinie; da es sich um un-

endlich kleine Ausbiegungen handelt, darf in voller Scharfe % == y” gesetzt

werden und man kann die Gleichung auch in der Form schreiben
M
” SN .o S 8

Das negative Zeichen ist einzusetzen, um Ubereinstimmung zwischen dem
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Biegungssinn und der Kriimmung zu erhalten. Wird das Moment M = P, -y
positiv angenommen, dann muB der positiven Richtung der y entsprechend y”

negativ sein (Fig. 4). Bezeichnet man nun mit £ den Ausdruck

- _1Ed],
E=——= Y
i (9)
dann kann man Gl (8) auch in der Form schreiben
" M
EJ :

Das ist aber wieder die gewoéhnliche Form der Differentialgleichung der Biege-
linie des ausgeknickten Stabes, wobei M = P, -y zu setzen ist3). An Stelle des

Moduls £ oder 7 tritt hier der Modul E, der nach Gl. (9) zu berechnen ist und

f

Fig. 3. Fig. 4.

F

in allen Querschnitten des Stabes denselben Wert hat, wenn der Hebelsarm p
unverinderlich ist oder noch als unverinderlich angesehen werden darf. Der

Modul £ ist also bei der Integration der Differentialgleichung (10) als Kon-
stante anzusehen und man erhilt daher auch wie fiir den elastischen Bereich die
Knicklast

py= L (11)

oder mit der Schlankheit 1 = li die Knickspannung

*E
o = “T - (12)
Die Rechnung ist aber nur richtig, wenn das nach GIl. (11) berechnete P, mit
dem angenommenen Wert von P, iibereinstimmt. Das wird nach der ersten
Rechnung im allgemeinen nicht der Fall sein, so daf die Rechnung so lange zu

3) Die Ausbiegungen erfolgen in der im Querschnitt mit x bezeichneten Richtung,
werden aber in iiblicher Weise mit y in die Rechnung eingesetzt.



Allgemeinster Fall der Knickung des geraden Baustahl-Stabes 325

wiederholen ist, bis Ubereinstimmung herrscht, was nach einer zweiten Rech-
nung durch Interpolation mit geniigender Genauigkeit zu erreichen sein wird.

Die Bestimmung der Knicklast ist also ungleich langwieriger als im Falle
einer in der Schwerachse wirkenden Kraft. Fiir den letzteren Fall erhidlt man
aus Gl (9) den Engesser’schen Knickmodul 7 ohne weiteres, wenn man be-
denkt, daB dann auf der Biegedruckseite durchaus der konstante Modul F, und
auf der Biegezugseite der hier konstante Modul E, = E herrscht, Man kann
daher das Integral der Gl. (9) in zwej Teile spalten und in jedem Teil das fiir
diesen konstante E vor das Integral setzen. Bezeichnet man dann schlieBlich
die zwei Integrale mit /, und /,, so erhilt man

EiJi +E:J:
==L ' =7
J

Ebenso erhidlt man aus Gl. (2) die Engesser’sche Gleichung zur Bestimmung
der Biegenullinie £, S, + E,S; = 0. Die Gleichungen (2) und (9)
stellen also die allgemeinste Lésung des einachsigen
Knickproblems dar.

Die Integrale wird man natiirlich durch Verwandlung in Summen berechnen,
indem man die Querschnittsfliche in geeigneter Weise in Teilflichen, zumeist
Rechtecke, zerlegt, deren Ausdehnung in der y-Richtung so groB gewihlt werden
kann, daB man hiefiir den Modul £, der mittleren Spannung in diesem Quer-
schnittsteil entsprechend, als unverinderlich annehmen darf. Eine iibertriebene
Genauigkeit ist natiirlich nicht am Platz, da ja bekannt ist, daB die Arbeitslinie
auch bei einem und demselben Baustahl zwischen Proportionalitits- und Stauch-
grenze verschieden verlaufen kann. Jedenfalls wird man aus Sicherheitsgriinden
den Verlauf moglichst flach annehmen., Die Dehnung am Beginn des FlieBens
kann je nach der Hoéhe der Stauchgrenze mit 0,2 bis 0,25 o,y angenommen
werden. Es ist auch zu empfehlen, fiir die Stauchgrenze den tiefsten Wert an-
zunehmen, wobei man allenfalls beriicksichtigen konnte, daf der von den Walz-
werken vielfach angegebene Tiefstwert von 55 o% der Mindestfestigkeit bei zu-
sammengesetzten Querschnitten doch wohl nicht in allen Teilen vorhanden sein
wird. .

Bleibt die gréBte Biegespannung im Querschnitt noch unter der Pro-

portionalititsgrenze, dann ist nach Gl, (9) E = E, woraus folgt, daB fiir diesen
Fall trotz der Exzentrizitit der Kraft genau so wie bei vollkommen zentrischer
Belastung gerechnet werden darf, also nach der Euler’schen Formel. Dabei ist
allerdings eine Einschrankung zu machen. Die vorhergehende Berechnung setzt
wie jede Knickberechnung zusammengesetzter Querschnitte voraus, daB die
einzelnen Teile auch fiir sich knick- oder beulsicher sind. Die Untersuchung der
einzelnen Teile, besonders also diinner Platten, auf Beulung muf} selbstverstind-
lich auch durchgefithrt werden und nur wenn die Beulspannungen héher liegen
als die rechnungsmiBige Knickspannung, ist diese richtig. So miissen beispiels-
weise bei einem Querschnitt nach Fig. 1a die zwei unteren Platten geniigend
oft durch Bindebleche und die Stege durch Querschoten verbunden sein.

Beispiel: Fig. 5 zeigt den Scheitelquerschnitt einer vollwandigen Bogen-
briicke mit Fahrbahn unten von 55,2 m Stiitzweite; der Baustoff ist St 44 mit
os = 2,7 und op = 2,14 t/cm®. Die Querschnittswerte sind: F == 885 cm?,
J, = 1762800 cmt, J, = 182760 cmt und W, = 39200 cm’. Die grilite
Druckkraft im Scheitel ist N = max H = 757,7 t. Bei Vollbelastung entsteht
ein positives Biegemoment M = 237 tm und man erhilt die groBte Spannung
am oberen Rand s = 0,857 + 0,605 = 1,462 t/cm®. Es handelt sich um eine
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Briicke ohne oberen Verband, also um eine offene Briicke. Die Berechnung in
der iiblichen Weise mit der Normalspannung allein erfolgt nach der Formel von
Engesser. Der erforderliche Rahmenwiderstand ist bei m = 2,5-facher Sicher-
heit und bei der Feldweite ¢ = 6,133 m

_ (mN)2 a (2,5 . 757,7)2 613,3 = 1,4 tfem
=\ 27) e, T U2 2150-182760 — " 7"
Da die Normalspannung o, = BN = 2,14 gerade gleich op ist, darf noch

F

mit £ gerechnet werden. Der ausgefiihrte Rahmenwiderstand in Briickenmitte
ist 1,74 t/cm, so daf man nach dieser Rechnung eine mehr als 2,5-fache Sicher-
heit erhilt. Die Sicherheit wird noch vergréBert dadurch, da die Engesser-
sche Berechnung durchaus gleiche Rahmenwiderstinde voraussetzt, wihrend
sie beim Bogentriger gegen die Enden zu stark anwachsen. Es ist noch zu unter-
suchen, ob die Engesser’sche Annahme gleichmiBig verteilter Rahmenwider-
stinde im vorliegenden Fall berechtigt ist. Hiezu muB die Halbwellenlinge
gréBer als 1,8 a sein. Man erhalt fiir m = 2,5

lk:”]/zﬂ — 1790 cm = 2,02 a.
mO

Zur richtigen Berechnung muB man zuerst die Knickkraft halbwegs
richtig schitzen. Der Fall der Knickung des Bogens in der Ebene der Trag-
wand braucht im gegebenen Fall deshalb nicht behandelt zu werden, weil es
sich um einen Bogen mit Zugband handelt, das vermdge seiner grofien Zug-
spannung das Knickbestreben unterbindet, dhnlich wie die Kette einer in sich
selbst verankerten Héingebriicke die Knickung in der Tragwandebene hemmt.
Ein Versagen wird also erst bei Erreichung der Stauchgrenze eintreten. Falt
man die Obergurtplatte mit den unterhalb unmittelbar anliegenden Teilen zu
einem einheitlichen Rechteckquerschnitt 700 - 52 zusammen, so hat dieser eine
Flache von 364 cm? Nimmt man mit m = 2 als Knickspannung (Normal-
spannung) o, = 2- 0,857 = 1,714 t/cm?, dann kann dieser in der oberen Platte
hochstens eine Biegespannung von rund 1,0 t/em? iiberlagert werden, da mit
dieser bereits die Stauchgrenze erreicht wird. Der Verfestigungsbereich komm¢t
nicht in Frage, weil dazu der Stauchbereich ganz durchlaufen werden miifite,
was ganz unzuldssige Verformungen ergibe. Somit kann die Obergurtplatte
durch die Biegebeanspruchung hochstens eine Kraft von 364 - 1,0 = 364 t auf-
nehmen. Der Druckkraft muBl im Falle der Biegung eine gleich groBe Zug-
kraft entsprechen. Zwar ist die Querschnittsfliche der unteren Platte kleiner,
dafiir aber ist die Spannung nicht begrenzt. Der Hebelarm der gleich groBen
Zug- und Druckkrifte ist rund 102 cm, so dal man ein inneres Moment
M; > (364-1,02 = 365 tm) erhidlt. Bei m = 2 ist das Moment der iiuBeren
Krifte aber M, = 2-237 = 474 tm. Da der Steg mit den daran liegenden
Winkelteilen die Differenz der Momente nicht zu decken vermag, ist 7 = 2 zu
hoch gegriffen, Mit m = 1,9 aber ist o, = 1,63, die gréBte Druckbiegespan-
nung 1,07 t/cm?, die Biegedruckkraft in der oberen Platte 390 t und ;>
(390- 1,02 = 398 tm), M, = 1,9- 237 = 450 tm; die inneren Querschnittsteile
hiatten also jetzt nur noch ein Moment von rund 50 tm zu decken, was schon
moglich ist. Daher wird mit rund o, == 71,65 berechnet und mit einer Druck-
biegespannung, die die Stauchgrenze gerade erreicht.

Zur genaueren Berechnung wird der Querschnitt in folgende Teile zerlegt:
Die obere Platte samt den unmittelbar anliegenden Teilen als Rechteckfliche
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mit 364 cm?, die untere Platte mit 169 cm?, die an diese anliegenden Winkel-
schenkel mit dem dazwischen liegenden kurzen Stegstiick mit 45,5 cm2, die am
Steg anliegenden Winkelschenkel mit dem dazwischen liegenden Stegstiick mit
64 cm? und in den restlichen Teil des Steges von 74 cm Liange und 2,4 cm
Stirke. Die Schwerpunkte der Flichen (mit Ausnahme des freien Stegteiles)
haben die in Fig. 6 angegebenen Abstinde. In Fig. 7 ist nun die Druck-
Stauchungslinie in geniigend stark verzerrtem MaBstabe gezeichnet. Dabei ist
die Lage der Stauchgrenze mit &5 = 0,002 angenommen und der Ubergang
voir der Hook’schen Geraden zur Stauchgrenze moglichst flach gezeichnet
worden. Dann wird die Gerade o, = 1,65 und 6, = 2,14 eingetragen. Die
erstere grenzt die reinen Normalspannungen von den iiberlagerten Biegespan-
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Fig. 5. Fig. 6.

nungen ab. Nun wird die Fliachenkraft 364 an die Stauchgrenze verlegt und
der Flachenkraft 169 der anderen Platte eine Lage zugewiesen, so daB die
Summe aller Biegespannungen voraussichtlich Null ergibt, Das gelingt natiir-
lich nicht gleich das erste Mal. Der Fliche 169 entspreche eine Biegezug-
spannung von 1,8 t/cm?. Der Abstand der beiden Grofien ist die Dehnung
¢ = 0,00207. Diese Strecke ist nun dem Abstand 102,8 cm der beiden Flachen-
krifte gleichzusetzen und dann sind die iibrigen Flichenkrifte verhiltnisgleich
einzutragen. Die Lage der Biegenullinie ergibt sich im Abstand von 45,9 und
28,1 cm von den Enden des freien Stegblechteiles, die eingeklammerten Koten
sind die wahren LingenmaBe im Querschnitt, mit denen weiterhin zu rechnen
ist. Die krummlinig begrenzte Fliche iiber dem Stegstiick von 34,4 cm wird
zerlegt in eine Trapezflache und in eine kleine Fliche, die anndhernd als parabel-
formig begrenzt angesehen wird. Der Schwerpunkt wird aber entsprechend
der Begrenzung von der Mitte etwas gegen die Nullinie hin verschoben gedacht.
Man erhilt die Biegedruckkraft '

D = 364.1,05 + 641,025 + (24 - 34,4) 0,75 + (24 - 34,4)% . 0,15
£ 241150245 = |
= 382,2 + 65,6 + 61,9 + 83 + 6,8 = 524,8 t



328 F. Hartmann

und die Zugkraft
Z=169-18 + 454 1,7+ 64 - 1,43 + (24 - 28,1) - 0,595 =
= 304,2 + 77,3 + 01,5 4+ 40,2 = 5132 t.
Die beiden Krifte sind also nicht genau gleich. Bevor aber an eine Korrektur
geschritten wird, muB man sich von der Gr68e des Momentes iiberzeugen. Man
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erhilt mit den eben berechneten Kriften das auf die Biegenullinie bezogene
Moment der inneren Krifte
M; = 382,2.59,9 4 65,6 - 51,7 4 61,9.308 + 83 .27 + 68- 7,7
4 304 .429 - 77,3-40,2 4+ 91,5. 33,7 + 40,2 - 18,74 =
= 48450 tcm. .

Der angenommenen Normalspannung o, = 1,65 entspricht eine Sicherheits-
01’86557 = 1,925, daher ein duBeres Moment M, = 1,925.23 700 =
45 600 tcm.’ Man kann nun zweierlei machen. Man kann, indem man bei
m — 1,025 bleibt, D verkleinern, indem man in Fig. 7 mit der Randkraft etwas

zahl nmi =
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von der Stauchgrenze gegen die P-Grenze zu abriickt, aber auch die Zugkrifte
etwas verkleinert, so daf} M; entsprechend kleiner wird.

Da man aber aus der Rechnung ersieht, da der Querschnitt imstande ist,
ein groBeres Moment als 456 tm aufzunehmen, ist es richtiger, mit der Normal-
spannung o, hinaufzuriicken, allerdings nur sehr wenig, da ja damit auch M,
grofler wird. Es soll aber hier weder das eine noch das andere durchgefiihrt
werden, sondern wir rechnen wegen der Geringfiigigkeit der Differenzen in
den Ergebnissen einfach weiter. Man muB bedenken, daB die Arbeitslinie ja
nicht unwesentlich anders aussehen kann sowohl was die Hoéhenlage von op
und og betrifft, als auch betreffs der Stauchdehnung 5. Es ist auch deshalb gut
weiter zu rechnen, weil man ja erst aus dem Endergebnis ersieht, ob die ange-
nommene Sicherheit auch wirklich vorhanden ist.

Es sind fiir die weitere Rechnung zunichst die E, fiir die einzelnen Quer-
schnittsteile erforderlich. Diese sind gegeben durch den Tangens des Neigungs-
winkels an die Druckstauchungslinie. Als MaBstab gilt natiirlich der Neigungs-
winkel der Hooke’schen Geraden mit £ = 2100 t/cm?. Die E,-Werte sind in
Fig. 7 eingetragen. Es wird nun die Lage der Biegenullinie e fiir die Knickung
senkrecht zur y-Achse bestimmt. Sie ist aus der Gleichung £ E, S, = 0 zu er-
halten; fiir die obere Platte ist E; auf der Biegedruckseite Null. Es kommt da-
her in der Gleichung nur die Biegezugseite der Platte mit E, = E vor; fiir den
Stegteil mit 34,4 cm Linge wird mit dem Mittelwert £, = 760 der Sehne in
der Arbeitslinie gerechnet. Soweit sich der Querschnitt elastisch verhilt, kann
er als Ganzes behandelt werden: Das ist der Stegteil von 52,6 cm Linge, die
unteren Winkel mit 78,6 cm? Fliche und die untere Platte:

—2100.%(35%)%r 60.64-¢+760- (2,4-34,4)e+2100. (2,4 -52,6+78,6+160,0)e=0

Dividiert man die Gleichung durch 2100, so lautet sie:
— 3185 -} 182¢—26¢ + 1,8+ 200¢ 4 373,8¢ = 0 oder
e?— 22596 ¢ + 1225 = 0.

Daraus erhilt man ¢ = 5,53 cm und ¢® = 30,58. Nun berechnet man E aus
der Gleichung EJ, = 2 E,J,. Die /J, sind hier natiirlich die Tragheitsmomente
der Teilflichen bezogen auf die Biegenullinie e. Das Trigheitsmoment des
unteren ganz elastischen Teiles bezogen auf die e-Linie ist 45 800 cm*.

115

12
+ 760 - (2,4 - 34,4) - 30,58 + 2100 - 45800 =

= 2100 - (44400 + 60 + 910 + 45 800) = 2100 - 91170;

= 2100-01170 .
£ = 182760 — 1050 t/cm?.

Frweitert man die Engesserformel auf den unelastischen Bereich, so ist

mO)2 a (1,925 . 757,7)2 613,3

2 JEJ R 2 1050 - 182760
Nachdem der vorhandene Rahmenwiderstand 1,74 ist, sieht man, daf die

Sicherheit ein wenig groBer als 1,925 ist, da fiir die angenommene Spanntngs-

verteilung das innere Moment etwas gréfler ist als das duBere Moment. Jeden-

falls ist eine weitere Rechnung iiberflitssig. Nachdem die hier durchgefiihrte

S E.Jx = 2100 - 533 (35 —553)° + 60[ 5,69 4 64 - 30,58]

= 1,70 tfcm.

erf V:(
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Berechnungsweise schon eine scharfe genannt werden darf, ist die Sicherheit
von 1,9 hinreichend.

Die Sicherheit wird fiir Volibelastung noch dadurch groBer werden, da
die Biegemomente vom Scheitel gegen die Kdmpfer zu abnehmen, wihrend die
Querschnitte groBer werden. Die Berechnung nach der Theorie von Engesser
setzt gleichmiBig verteilte Rahmenwiderstinde voraus und diese Aunahme ist
nur berechtigt, wenn die Halbwellenlange gréfier als das 1,8-fache der Halb-
rahmenentfernung, also der Feldweite @, ist. Man muB daher noch die Halb-
wellenldnge berechnen. Es ist

L =n Zﬂ: 1610 cm = 25 a.
mO
Um MiBverstindnissen vorzubeugen, sei noch aufmerksam gemacht, daBl unter
der Annahme gleichmiBig verteilter Rahmenwiderstinde die Knicklast die
GroBe hat
272 Ef
Py = i

Hier ergibt sich natiirlich P, = m O.

Das Ende der Berechnung gestaltet sich aber anders, wenn es sich um eine
Briicke mit einem oberen Querverband handelt. Dann ist die Knicklinge bei
Knickung aus der Ebene der Tragwand in der Briickenmitte gleich der Feldweite
[ = a = 613,3 cm. Da innerhalb dieser Linge keinerlei seitliche Stiitzung
vorhanden ist, erhidlt man jetzt die Knickkraft nach der gewdhnlichen Formel

P = £ = 5040t

I/
Das bedeutet einen starken Widerspruch gegeniiber der Annahme m O = 1460 t
mit o, = g, = 18% = 1,65 t/cm?. Man miiBte also die Rechnung mit einem

groBeren o, wiederholen, doch wird die Erhohung nur gering sein diirfen, weil
mit wachsenden o, die Biegespannungen schon stark in den FlieBbereich hinein-

ragen und dann der mittlere Modul E rasch abnimmt. Es wire aber auch
hier eine nochmalige Berechnung iiberfliissig, weil es zu wissen geniigt, daf3
die Sicherheit groBer als 1,925 ist. Diese Sicherheit diirfte ndmlich schon gréBer
sein als die gegen Knickung in der Ebene des Tragwerkes. Bei Bogentrigern
darf ja die Biegerandspannung die zuldssige Spannung erreichen, also bei
St44 ... s, = 1,67. Da die Stauchgrenze mit o5 = 2,7 angenommen wird,
2,7
1,67
Knicklinge sehr klein ist, wie bei einem Bogentriger mit Zugband. Selbst wenn
kein Knicken eintritt, entstehen doch grofle Verformungen, die einen uner-
wiinschten Grenzzustand bilden.

kann die Sicherheit nicht sehr viel gro8er sein als = 1,62, auch wenn die

Zusammenfassung.

An einem geraden Stab mit unverinderlichem, zur y-Schwerachse sym-
metrischen Querschnitt greift an den Enden die Druckkraft P in der y-Schwer-
ebene, aber auBlerhalb der x-Schwerebene an einem Hebelsarm p an. Wenn
das Trigheitsmoment J, geniigend groBer ist als /,, liegt der Fall von Knickung
senkrecht zur y-Ebene vor, wobei jedoch die Spannungsverteilung vom An-
beginn ungleichmaBig ist und auch in den plastischen Bereich ragen kann. Die
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Bestimmung der Knicklast P, erfolgt nach strengen Gleichungen, deren Losung
aber nicht vermittelbar moglich ist. Man schitzt zuerst P, und bestimmt die
zugehorige Spannungsverteilung (Moment P, - p) aus der Druckstauchungs-
Linie des gewihlten Baustahles. Dann wird die beim Knicken in der t-Rich-
tung sich ergebende Biegungslinie {(Gl. 4) und schlieBlich ein Knickmodul
bestimmt (Gl. 9), mit dem man die Knicklast berechnen kann (Gl. 11). Stimmt
diese mit dem angenommenen Wert P, nicht iiberein, so ist die Rechnung bis
zur Ubereinstimmung zu wiederholen. Fiir p = O (in der Schwerachse ge-
driickter Stab) iibergeht der Knickmodul € in den Engesser’schen Modul .
Ein Beispiel zeigt die praktische Anwendung des Verfahrens. '

Résumé.

Sur une barre droite avec section constante et symétrique par rapport a
I’axe des y agit aux deux extrémités la force de compression P dans le plan
de symétrie y, mais a Pextérieur du plan des x a la distance p de cet axe.
Lorsque le moment d’inertie J, est suffisamment plus grand que /,, le cas du
flambage se trouve perpendiculaire au plan des y, oll cependant la répartition
des contraintes est irréguliere a partir du début et peut se prolonger aussi
dans le domaine plastique. La détermination de la charge de flambage P, se
fait au moyen d’équations exactes dont la solution n’est cependant pas im-
médiatement possible. On admet d’abord P, et I’on détermine la répartition
correspondante des contraintes (moment ;- p), en partant de [a courbe de
I’écrasement de ’acier choisi. L’axe neutre (€q. 4) que ’on obtient pour le
flambage dans la direction des x, ainsi que le module de flambage & {(éq. 9),
peuvent étre déterminés et ’on peut ainsi calculer la charge de flambage
(éq. 11), Si cette valeur ne concorde pas avec la valeur P, admise, il faut ré-
péter le calcul jusqu’a ce que 'on obtienne concordance. Lorsque p = 0 (barre
comprimée dans son axe de gravité), le module de flambage ¢ se transforme
en le module d’Engesser z. Un exemple montre Papplication pratique du
procédé.

Summary.

A straight bar with constant cross section symmetrical to the gravity axis y
is subjected to two compression forces /. These forces act one at each end of
the bar in the gravity plane y but definitely outside the gravity plane x, with
a lever arm p.

If the moment of inertia / is sufficiently greater than /, we have buckling
at right angles to the plane y. At first the distribution of stresses is not uniform
in this case and can even enter the range of plasticity. The determination of the
buckling load P, can be effected by exacting equations, the solution of which
is, however, not a straightforward one.

The value of P, is first estimated and with it is calculated the stress distri-
bution (moment P, - p) based on the compression-upsetting line of building
steel. After this the neutral axis (Eq. 4) for bending due to buckling in the
direction x, and the modulus of buckling ¢ (Eq. 9) is determined, out of which
can be calculated the buckling load (Eq. 11). If the result to be obtained does
not tally with the assumed value of 7, the whole procedure. has to be repeated
until agreement is reached. For p-= 0 (compression along the gravity axis)
the modulus of buckling ¢ transforms itself into the so-called Engesser mo-
dulus .

An example is given to elucidate the procedure.
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