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DER ALLGEMEINSTE FALL DER KNICKUNG DES
GERADEN BAUSTAHLSTABES MIT UNVERÄNDER¬

LICHEM QUERSCHNITT.

LE CAS LE PLUS GENERAL DU FLAMBAGE DE LA BARRE DROITE
EN ACIER DOUX AVEC SECTION CONSTANTE.

THE MOST GENERAL CASE OF BÜCKLING OF A STRAIGHT BAR
OF BUILDING STEEL WITH CONSTANT CROSS-SECTION.

Prof. Dr.-Ing. FRIEDRICH HARTMANN, Wien.

Durch Engesser1) ist 1895 das Problem der Knickung eines in der Schwerachse

gedrückten Stabes aus Baustahl (also mit plastischem Verhalten) restlos
geklärt worden. Engesser konnte zeigen, daß auch bei Knickung im plastischen
Bereich für beliebig geformte Querschnitte die Eulerformel verwendet werden
könne, wenn an die Stelle des Elastizitätsmoduls E der von der Knickspannung
abhängige „Knickmodul"

gesetzt wird. Zu dessen Berechnung muß die Druck-Stauchungslinie 0 f (e)
p.

des Baustahles gegeben sein. Die Knickspannung ak — entspricht darin dem

Modul der Druckspannung f t -— und dem Modul der entlastenden Zug-
de

Spannungen E2 E; Jx ist das Trägheitsmoment des über der Biegedruck-
zone liegenden Querschnittsteiles, /2 das Trägheitsmoment des über der Biege-
zugzone liegenden Querschnittsteiles, beide bezogen auf die Biegenullinie.
J aber ist das Trägheitsmoment des ganzen Querschnittes bezogen auf seine
Schwerachse. Die Lage der Biegenullinie ist bestimmt durch die Gleichung
E^ Si + E2 S2 0, wobei die S die statischen Momente der durch die
Biegenullinie getrennten Querschnittsteile, bezogen auf die Nullinie, sind. Der Knickmodul

T hängt nicht nur von der Größe der Knickspannung, sondern auch von
der Querschnittsform ab, sodaß also die Höhe der Knickspannung im plastischen
Bereich, im Gegensatz zur Knickspannung im elastischen Bereich, von der
Querschnittsform abhängig ist.

Trotzdem man glauben könnte, daß hiemit der allgemeinste Fall der
Knickung gegeben sei, ist dem nicht so. Ein im Brückenbau häufig
vorkommender Fall ist mit der Engesser'schen Theorie (die 1910 von Karman durch
Versuche bestätigt wurde) nicht zu erfassen. In den Druckgurten von
Fachwerkbrücken und in vollwandigen Bogenträgern liegt nämlich die Druckkraft P

Schweizer Bauzeitung 1895 vom 27. Juli.
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in der lotrechten Schwerebene des Querschnittes, nicht aber in der wagrechten
(Fig. 1, la). In Fachwerkbrücken ist dieser Umstand bedingt durch die
Veränderung des Querschnittes von Feld zu Feld und die damit verbundene
Verschiebung der Schwerachse x — x, während die Druckkraft in der von Feld zu
Feld unveränderlichen Netzlinie des Fachwerkes angreift, aber auch durch das
Auftreten von Biegespannungen durch die steifen Knotenbleche. Der Gurt
verbiegt sich unter der Belastung der Brücke mit dieser nach einer stetig
gekrümmten Linie, im mittleren Teile hohl nach oben. Diese Wirkung kann man
auf Feldweite oder Gurtknicklänge der Wirkung einer an einem Hebelsarm p
angreifenden Druckkraft gleichsetzen. Bei einem Bogenträger verläuft die Stützlinie

fast durchwegs außerhalb der Achse, bei einem parabolisch geformten
Zweigelenkbogen mit Vollbelastung beispielsweise durchaus oberhalb der x —x-
Achse (Fig. 1 und 1 a). In allen diesen Fällen ist der Querschnitt in der Regel so
geformt, daß das auf die x-Achse bezogene Trägheitsmoment wesentlich größer

\u \u
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Fig. 1.

i
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Fig. Ib.

ist als das für die y-Achse, sodaß für die Berechnung die Knickung aus der Ebene

y — y maßgebend ist. Da die Kraft P in dieser Ebene wirkt, liegt also e i n
Fall reiner Knickung, aber mit einer in der y-Richtung
ungleichmäßigen SpannungsVerteilung, vor, da den reinen
Druckspannungen schon bei der kleinsten Belastung Biegespannungen überlagert sind.
Darin besteht die Abweichung vom gewöhnlichen Knickfall. Beim Bogenträger
ist allerdings der Druckstab in der y-Ebene nicht gerade, sondern gekrümmt.
Aber innerhalb der Knicklänge ist der Krümmungspfeil klein. Streng genommen
ist auch beim Fachwerk mit geraden Gurten der einseitig gedrückte Gurt vor
dem Knicken nicht mehr gerade, doch ist die Krümmung hier verschwindend
klein und ist auch noch durch eine anfängliche Gegenkrümmung, die jeder Brücke
als „Sprengung" nach aufwärts bei der Anarbeitung gegeben wird, weiter
vermindert. Diese Krümmungen beeinflussen wohl die Knickung in der y-Ebene, ihr
Einfluß auf die hier zu behandelnde Knickung in der x-Richtung aber ist
verschwindend.

Der Querschnitt sei, wie es den Ausführungen entspricht, symmetrisch zur
y-Achse, aber unsymmetrisch zur x-Achse (Fig. 1, 1 a). Da im
Augenblick des Knickens wie vorher die Spannungen in der y-Richtung
veränderlich sind, ist auch in jenen Querschnittsteilen, in denen die Spannungen
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oberhalb der Proportionalitätsgrenze aP liegen, der Modul veränderlich.
Es ist zu untersuchen, ob auch in diesem Fall die Berechnung mit einem

einheitlichen Knickmodul durchgeführt werden kann, wie dies sonst der Fall ist.
Dieser Knickmodul müßte offenbar einem Mittelwert aus den verschiedenen
Modul-Werten des Querschnittes entsprechen. Bisher hat man diesen Fall wohl
meist mit dem Knickmodul, der der reinen Druckspannung a0 — entspricht,
behandelt. Das führt zu einer Überschätzung der Tragkraft, also zu einer
Verringerung der Sicherheit, die sehr beträchtlich sein kann, wenn die an der
Gurtunterkante liegenden wagrechten Teile nur schmal sind, oder, wie beim T-Gurt,
überhaupt fehlen. Rechnet man andrerseits mit dem Modul, der der obern
Randspannung entspricht, so erhält man wieder im allgemeinen eine zu geringe
Tragkraft; nur beim T-Gurt ist diese Rechnungsweise ziemlich richtig2).

Die strenge Berechnung zerfällt in zwei Teile.
1. Die Ermittlung der Spannungs vertei lung im

Querschnitt bei Erreichung der Knicklast. Hiezu muß natürlich die
Druck-Stauchungslinie des verwendeten Baustahles gegeben sein. Der Verlauf
der Biegespannungen wird in jenen Teilen des Querschnittes, die über die o>-
Grenze hinaus beansprucht sind, krummlinig verlaufen. Diese Spannungsverteilung

ergibt sich streng aus der Berechnung des Stabes auf einseitigen Druck
mit dem Hebelsarm p. Dazu muß die Knicklast Pk geschätzt werden. Die vorhin

angegebenen Näherungsberechnungen liefern hiefür gute Anhaltspunkte. Die
Durchführung wird an einem Beispiel gezeigt werden.

In Fig. 1 b sei die Spannungsverteilung dargestellt, wobei a0 < aP
angenommen wurde. Es sind also die oberen Teile des Querschnittes plastisch, die
unteren elastisch beansprucht. Die Biegenullinie ist gestrichelt. Diese
Spannungsverteilung ist in allen Stabquerschnitten dieselbe, wenn der Hebelarm p
über die ganze Stablänge konstant ist. Ist dies nicht der Fall, dann kann man
genau genug mit der Spannungsverteilung in Stabmitte rechnen, die schließlich
für die Knickung besonders maßgebend ist.

2. Die BerechnungaufKnickungin der.v-Richtung. Hier
handelt es sich wie stets bei Knickaufgaben um die Ermittlung jener kritischen
Last, bei der das stabile Gleichgewicht des Stabes gerade in das unstabile
Gleichgewicht übergeht, um jene Last also, die neben der geraden auch noch eine
gebogene Gleichgewichtsform mit unendlich kleinen Ausbiegungen ermöglicht.
Dabei werden die üblichen Voraussetzungen gemacht: Das Ebenbleiben der
Querschnitte auch nach der Ausbiegung, was bei unendlich kleinen
Ausbiegungen gerechtfertigt erscheint, also linearer Verlauf der Dehnungen in der
x-Richtung des Querschnitts. Ferner wird angenommen, daß im ausgebogenen
Stab zwischen Spannung und Dehnung überall derselbe Zusammenhang
besteht, wie bei einem rein auf Zug oder Druck beanspruchten Stab. Auch diese
Annahme ist bei unendlich kleinen Ausbiegungen gerechtfertigt.

a) Zunächst ist die Lage der Biegenullinie n — n zu
bestimmen. Es wird angenommen, daß sich bei der Knickung der Querschnitt
nach links verschiebt. Wir greifen aus dem Querschnitt m — m des Stabes
(Fig. 2 b) zwei Flächenelemente df^ und df2 beiderseits der Biegenullinie n — n
heraus. Ihre Abstände von /z — n sind a1 und a2. Ihrer Lage im Querschnitt

2) Ros hat in dem Bericht über die „II. internationale Tagung für Brückenbau und
Hochbau" näherungsweise mit einem arithmetischen Mittelwert der Module gerechnet
und Versuche mit Stäben von rechteckigem Querschnitt durchgeführt.

Abhandlungen IV 21
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(Fig. 2) entspreche die Spannung a, wie beispielsweise in Fig. 1 den kleinen
schraffierten Flächen in der Spannungsverteilung Fig. 1 b die Spannung a
entspricht. Da die Dehnungen linear verlaufen, erhält man nach Fig. 2 a für ein

angenommenes s± das zugehörige e2 «i —, und aus der Druck-Stauchungs-
ax

linie (Fig. 2 c) die zugehörigen Biegespannungen ay und o2. Für die Bestimmung

von a1 ist der Modul Ex der Druckspannung maßgebend und zwar ist
Ex tg/?! des Tangentenwinkels im Punkt S, da ja ex unendlich klein zu denken
ist. Auf der Biegezugseite gilt die Entlastungsgerade (in Fig. 2c gestrichelt),

n y

r.f/?riTJla.l~ZI^A.

ß,

Or

n \ym

/
Fig. 2.

die annähernd parallel zur Hook'schen Geraden verläuft, so daß (E2 tg ß2)
(E tg/?) ist. Daraus erhält man a2, und damit die Spannungsverteilung im
Querschnitt m — m bei unendlich kleiner Ausbiegung. Die Spannungen sind
öi Ey ex und a2 E2 e2, im allgemeinen also ax Ex ex. Ex deutet den nach
der Lage des Flächenelementes im Querschnitt veränderlichen Modul an. Dabei
ist aber, wie im eben behandelten Fall Ex auch für im Querschnitt gleich hoch
liegende Teile, je nachdem sie auf der Biegedruck- oder auf der Biegezugseite

liegen, Ex im ersten Fall gleich Elx, im zweiten Fall gleich E2 E.
Aus Fig. 3, die ein Stabelement von der Länge 1 in ausgebogenem

Zustand darstellt, folgt die bekannte Beziehung ^ —, e2 —- oder allgemein
ax Q Q

ex —, wenn q der Krümmungshalbmesser ist, der wegen der unendlich

kleinen Ausbiegungen unendlich groß zu denken ist und daher ebensogut von
der Schwerachse, wie von der Biegenullinie aus gegen den Krümmungsmittelpunkt

gemessen werden kann.
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Somit ist allgemein

ox Exex=^- (1)
Q

Nun muß für die Biegespannungen im Querschnitt die Gleichgewichtsbedingung
2 V 0 erfüllt sein. Diese lautet

\axdfx 0 oder nach Gl. (1) f^- dfx 0.

Da im Querschnitt q für alle Flächenteile konstant angesehen werden darf,
erhält man die Gleichung

J Exaxdfx 0.
dfx-ax ist aber das statische Moment dSx des Flächenelementes bezogen auf
die Biegenullinie. Dabei sind die ax einerseits, etwa rechts von der Nullinie,
positiv, andrerseits also links negativ zu bezeichnen. Damit lautet die letzte
Gleichung

SExdSx 0. (2)
Das Integral ist über den ganzen Querschnitt zu erstrecken, und aus dieser
Gleichung kann die Lage der Nullinie berechnet werden. Dazu ist es vorteilhaft,

den Abstand der Biegenullinie n — n von der y-Achse einzuführen. Dieser
Abstand soll mit e bezeichnet werden. Sind dann die Abstände eines
Flächenelementes dfx von der y-Achse -}-_ cx, so ist

ax ±cx + e (3)
Führt man diese Werte in die Gleichung (2) ein, so lautet sie

}Ex(±cx + e)dfx 0. (4)
Aus dieser Gleichung kann e berechnet werden.

b) Nachdem die Lage der Nullinie bekannt ist, hat man die Gleichung
Ma Mi anzusetzen. Es ist also zuerst das Moment der inneren Kräfte Mi zu
bestimmen, denn Ma Pkp ist bekannt. Nach Fig. 3 ist

Mi =\ax- axdfx ^Ex[^dfx; (5)

dfx-ax2 dJx ist das Trägheitsmoment des Flächenelementes bezogen auf die
Nullinie. Die ax sind jetzt bereits durch Gl. (3) bestimmt. Somit ist auch

Mt ^dJx. (6)

Da Mt Ma ist, erhält man, wenn man statt Ma einfach M als Moment der
äußeren Kräfte setzt, die Gleichung

—^£x-dJx (7)M
Q

als Differentialgleichung der Biegelinie; da es sich um

unendlich kleine Ausbiegungen handelt, darf in voller Schärfe — y" gesetzt

werden und man kann die Gleichung auch in der Form schreiben

J ExdJx

Das negative Zeichen ist einzusetzen, um Übereinstimmung zwischen dem
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(9)

Biegungssinn und der Krümmung zu erhalten. Wird das Moment M Pk-y
positiv angenommen, dann muß der positiven Richtung der y entsprechend y"
negativ sein (Fig. 4). Bezeichnet man nun mit E den Ausdruck

_ J Ex djx
J

dann kann man Gl. (8) auch in der Form schreiben

S -^-. 00)
EJ

Das ist aber wieder die gewöhnliche Form der Differentialgleichung der Biegelinie

des ausgeknickten Stabes, wobei M Pk-y zu setzen ist3). An Stelle des
Moduls E oder T tritt hier der Modul E, der nach Gl. (9) zu berechnen ist und

Fig. 3. Fig. 4.

in allen Querschnitten des Stabes denselben Wert hat, wenn der Hebelsarm p
unveränderlich ist oder noch als unveränderlich angesehen werden darf. Der
Modul E ist also bei der Integration der Differentialgleichung (10) als
Konstante anzusehen und man erhält daher auch wie für den elastischen Bereich die
Knicklast

Pk 'EJ
ß

(H)

oder mit der Schlankheit l — die Knickspannung

ak (12)

Die Rechnung ist aber nur richtig, wenn das nach Gl. (11) berechnete Pk mit
dem angenommenen Wert von Pk übereinstimmt. Das wird nach der ersten
Rechnung im allgemeinen nicht der Fall sein, so daß die Rechnung so lange zu

3) Die Ausbiegungen erfolgen in der im Querschnitt mit x bezeichneten Richtung,
werden aber in üblicher Weise mit y in die Rechnung eingesetzt.
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wiederholen ist, bis Übereinstimmung herrscht, was nach einer zweiten Rechnung

durch Interpolation mit genügender Genauigkeit zu erreichen sein wird.
Die Bestimmung der Knicklast ist also ungleich langwieriger als im Falle

einer in der Schwerachse wirkenden Kraft. Für den letzteren Fall erhält man
aus Gl. (9) den Engesser'schen Knickmodul T ohne weiteres, wenn man
bedenkt, daß dann auf der Biegedruckseite durchaus der konstante Modul Et und
auf der Biegezugseite der hier konstante Modul E2 E herrscht. Man kann
daher das Integral der Gl. (9) in zwei Teile spalten und in jedem Teil das für
diesen konstante E vor das Integral setzen. Bezeichnet man dann schließlich
die zwei Integrale mit Jt und /2, so erhält man

-p
E1J1 -f- E2J2

J
Ebenso erhält man aus Gl. (2) die Engesser'sche Gleichung zur Bestimmung
der Biegenullinie E1S1 + E2S% 0. Die Gleichungen (2) und (9)
stellen also die allgemeinste Lösung des einachsigen
Knickproblems dar.

Die Integrale wird man natürlich durch Verwandlung in Summen berechnen,
indem man die Querschnittsfläche in geeigneter Weise in Teilflächen, zumeist
Rechtecke, zerlegt, deren Ausdehnung in der y-Richtung so groß gewählt werden
kann, daß man hiefür den Modul Eu der mittleren Spannung in diesem
Querschnittsteil entsprechend, als unveränderlich annehmen darf. Eine übertriebene
Genauigkeit ist natürlich nicht am Platz, da ja bekannt ist, daß die Arbeitslinie
auch bei einem und demselben Baustahl zwischen Proportionalitäts- und Stauchgrenze

verschieden verlaufen kann. Jedenfalls wird man aus Sicherheitsgründen
den Verlauf möglichst flach annehmen. Die Dehnung am Beginn des Fließens
kann je nach der Höhe der Stauchgrenze mit 0,2 bis 0,25 o/0 angenommen
werden. Es ist auch zu empfehlen, für die Stauchgrenze den tiefsten Wert
anzunehmen, wobei man allenfalls berücksichtigen könnte, daß der von den
Walzwerken vielfach angegebene Tiefstwert von 55 o/o der Mindestfestigkeit bei
zusammengesetzten Querschnitten doch wohl nicht in allen Teilen vorhanden sein
wird.

Bleibt die größte Biegespannung im Querschnitt noch unter der
Proportionalitätsgrenze, dann ist nach Gl. (9) E E, woraus folgt, daß für diesen
Fall trotz der Exzentrizität der Kraft genau so wie bei vollkommen zentrischer
Belastung gerechnet werden darf, also nach der Euler'schen Formel. Dabei ist
allerdings eine Einschränkung zu machen. Die vorhergehende Berechnung setzt
wie jede Knickberechnung zusammengesetzter Querschnitte voraus, daß die
einzelnen Teile auch für sich knick- oder beulsicher sind. Die Untersuchung der
einzelnen Teile, besonders also dünner Platten, auf Beulung muß selbstverständlich

auch durchgeführt werden und nur wenn die Beulspannungen höher liegen
als die rechnungsmäßige Knickspannung, ist diese richtig. So müssen beispielsweise

bei einem Querschnitt nach Fig. la die zwei unteren Platten genügend
oft durch Bindebleche und die Stege durch Querschoten verbunden sein.

Beispiel: Fig. 5 zeigt den Scheitelquerschnitt einer vollwandigen Bogen-
brücke mit Fahrbahn unten von 55,2 m Stützweite; der Baustoff ist St44 mit
as 2,7 und aP 2,14 t/cm2. Die Querschnittswerte sind: F 885 cm2,
Jx 1 762 800 cm4, Jy 182 760 cm* und Wx0 39 200 cm\ Die größte
Druckkraft im Scheitel ist N max H 757,7 t. Bei Vollbelastung entsteht
ein positives Biegemoment M 237 tm und man erhält die größte Spannung
am oberen Rand s 0,857 -j- 0,605 1,462 t/cmä. Es handelt sich um eine
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Brücke ohne oberen Verband, also um eine offene Brücke. Die Berechnung in
der üblichen Weise mit der Normalspannung allein erfolgt nach der Formel von
Engesser. Der erforderliche Rahmenwiderstand ist bei m 2,5-facher Sicherheit

und bei der Feldweite a 6,133 in

mNV a (2,5 ¦ 757,7\2 613,31
_ i > 'i =1,4 t/cm.

2 1 EJy \ 2 I 2150-182 760

m N
Da die Normalspannung o0 —p- 2,14 gerade gleich aP ist, darf noch

mit E gerechnet werden. Der ausgeführte Rahmenwiderstand in Brückenmitte
ist 1,74 t/cm, so daß man nach dieser Rechnung eine mehr als 2;5-fache Sicherheit

erhält. Die Sicherheit wird noch vergrößert dadurch, daß die Engesser-
sche Berechnung durchaus gleiche Rahmenwiderstände voraussetzt, während
sie beim Bogenträger gegen die Enden zu stark anwachsen. Es ist noch zu
untersuchen, ob die Engesser'sche Annahme gleichmäßig verteilter Rahmenwiderstände

im vorliegenden Fall berechtigt ist. Hiezu muß die Halbwellenlänge lh
größer als 1,8 a sein. Man erhält für m 2,5

lk 7t]ßEL \ 790 cm 2,92 a.
f mO

Zur richtigen Berechnung muß man zuerst die Knickkraft halbwegs
richtig schätzen. Der Fall der Knickung des Bogens in der Ebene der Tragwand

braucht im gegebenen Fall deshalb nicht behandelt zu werden, weil es
sich um einen Bogen mit Zugband handelt, das vermöge seiner großen
Zugspannung das Knickbestreben unterbindet, ähnlich wie die Kette einer in sich
selbst verankerten Hängebrücke die Knickung in der Tragwandebene hemmt.
Ein Versagen wird also erst bei Erreichung der Stauchgrenze eintreten. Faßt
man die Obergurtplatte mit den unterhalb unmittelbar anliegenden Teilen zu
einem einheitlichen Rechteckquerschnitt 700 • 52 zusammen, so hat dieser eine
Fläche von 364 cm2. Nimmt man mit m 2 als Knickspannung
(Normalspannung) t70 2- 0,857 1,714 t/cm2, dann kann dieser in der oberen Platte
höchstens eine Biegespannung von rund 1,0 t/cm2 überlagert werden, da mit
dieser bereits die Stauchgrenze erreicht wird. Der Verfestigungsbereich kommt
nicht in Frage, weil dazu der Stauchbereich ganz durchlaufen werden müßte,
was ganz unzulässige Verformungen ergäbe. Somit kann die Obergurtplatte
durch die Biegebeanspruchung höchstens eine Kraft von 364- 1,0 364 t
aufnehmen. "Der Druckkraft muß im Falle der Biegung eine gleich große
Zugkraft entsprechen. Zwar ist die Querschnittsfläche der unteren Platte kleiner,
dafür aber ist die Spannung nicht begrenzt. Der Hebelarm der gleich großen
Zug- und Druckkräfte ist rund 102 cm, so daß man ein inneres Moment
/W,->(364- 1,02 365 tm) erhält. Bei in 2 ist das Moment der äußeren
Kräfte aber Ma 2 ¦ 237 474 tm. Da der Steg mit den daran liegenden
Winkelteilen die Differenz der Momente nicht zu decken vermag, ist m 2 zu
hoch gegriffen. Mit /tx 1,9 aber ist a0 1,63, die größte Druckbiegespannung

1,07 t/cm2, die Biegedruckkraft in der oberen Platte 390 t und /M,->
(390- 1,02 398 tm), Ma 1,9 • 237 450 tm; die inneren Querschnittsteile
hätten also jetzt nur noch ein Moment von rund 50 tm zu decken, was schon
möglich ist. Daher wird mit rund o0 1,65 berechnet und mit einer
Druckbiegespannung, die die Stauchgrenze gerade erreicht.

Zur genaueren Berechnung wird der Querschnitt in folgende Teile zerlegt:
Die obere Platte samt den unmittelbar anliegenden Teilen als Rcchteckfläche
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mit 364 cm2, die untere Platte mit 169 cm2, die an diese anliegenden
Winkelschenkel mit dem dazwischen liegenden kurzen Stegstück mit 45,5 cm2, die am
Steg anliegenden Winkelschenkel mit dem dazwischen liegenden Stegstück mit
64 cm2 und in den restlichen Teil des Steges von 74 cm Länge und 2,4 cm
Stärke. Die Schwerpunkte der Flächen (mit Ausnahme des freien Stegteiles)
haben die in Fig. 6 angegebenen Abstände. In Fig. 7 ist nun die Druck-
Stauchungslinie in genügend stark verzerrtem Maßstabe gezeichnet. Dabei ist
die Lage der Stauchgrenze mit es 0,002 angenommen und der Übergang
von der Hook'schen Geraden zur Stauchgrenze möglichst flach gezeichnet
worden. Dann wird die Gerade o0 1,65 und aP 2,14 eingetragen. Die
erstere grenzt die reinen Normalspannungen von den überlagerten Biegespan-
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Fig. 5. Fig. 6.

nungen ab. Nun wird die Flächenkraft 364 an die Stauchgrenze verlegt und
der Flächenkraft 169 der anderen Platte eine Lage zugewiesen, so daß die
Summe aller Biegespannungen voraussichtlich Null ergibt. Das gelingt natürlich

nicht gleich das erste Mal. Der Fläche 169 entspreche eine Biegezugspannung

von 1,8 t/cm2. Der Abstand der beiden Größen ist die Dehnung
e 0,00207. Diese Strecke ist nun dem Abstand 102,8 cm der beiden Flächenkräfte

gleichzusetzen und dann sind die übrigen Flächenkräfte verhältnisgleich
einzutragen. Die Lage der Biegenullinie ergibt sich im Abstand von 45,9 und
28,1 cm von den Enden des freien Stegblechteiles, die eingeklammerten Koten
sind die wahren Längenmaße im Querschnitt, mit denen weiterhin zu rechnen
ist. Die krummlinig begrenzte Fläche über dem Stegstück von 34,4 cm wird
zerlegt in eine Trapezfläche und in eine kleine Fläche, die annähernd als parabelförmig

begrenzt angesehen wird. Der Schwerpunkt wird aber entsprechend
der Begrenzung von der Mitte etwas gegen die Nullinie hin verschoben gedacht.
Man erhält die Biegedruckkraft

D 364 • 1,05 4- 64 • 1,025 + (2,4 • 34,4) 0,75 4- (2,4 • 34,4) ^ • 0,15

+ 2,4.11,5-0,245=
3

382,2 + 65,6 + 61,9 + 8,3 + 6,8 524,8 t
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und die Zugkraft
Z 169 • 1,8 + 45,4 • 1,7 + 64 • 1,43 + (2,4 • 28,1) • 0,595

304,2 + 77,3 + 91,5 + 40,2 513,2 t.

Die beiden Kräfte sind also nicht genau gleich. Bevor aber an eine Korrektur
geschritten wird, muß man sich von der Größe des Momentes überzeugen. Man

361
E,*0WS ' -"

1025 £,*60

1.01

- ¦* El 760
0,75

0,19

1.19

6h
1.1*3

•tS.S

1,7
1 B

169

6o

+-6

Fig. 7.

erhält mit den eben berechneten Kräften das auf die Biegenullinie bezogene
Moment der inneren Kräfte

Mi 382,2 • 59,9 4- 65,6 • 51,7 + 61,9 • 30,8 + 8,3 • 27 + 6,8 • 7,7

+ 304 • 42,9 + 77,3 • 40,2 + 91,5 • 33,7 + 40,2 • 18,74

48450 tcm.
Der angenommenen Normalspannung a0— 1,65 entspricht eine Sicherheits-

1 65
zahl m= 7^y= 1,925, daher ein äußeres Moment Ma 1,925-23 700

45 600 tcm. Man kann nun zweierlei machen. Man kann, indem man bei
m 1,925 bleibt, D verkleinern, indem man in Fig. 7 mit der Randkraft etwas
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von der Stauchgrenze gegen die P-Grenze zu abrückt, aber auch die Zugkräfte
etwas verkleinert, so daß Ml entsprechend kleiner wird.

Da man aber aus der Rechnung ersieht, daß der Querschnitt imstande ist,
ein größeres Moment als 456 tm aufzunehmen, ist es richtiger, mit der
Normalspannung oa hinaufzurücken, allerdings nur sehr wenig, da ja damit auch M„
größer wird. Es soll aber hier weder das eine noch das andere durchgeführt
werden, sondern wir rechnen wegen der Geringfügigkeit der Differenzen in
den Ergebnissen einfach weiter. Man muß bedenken, daß die Arbeitslinie ja
nicht unwesentlich anders aussehen kann sowohl was die Höhenlage von aP
und as betrifft, als auch betreffs der Stauchdehnung es. Es ist auch deshalb gut
weiter zu rechnen, weil man ja erst aus dem Endergebnis ersieht, ob die
angenommene Sicherheit auch wirklich vorhanden ist.

Es sind für die weitere Rechnung zunächst die Ei für die einzelnen
Querschnittsteile erforderlich. Diese sind gegeben durch den Tangens des Neigungswinkels

an die Druckstauchungslinie. Als Maßstab gilt natürlich der Neigungswinkel

der Hooke'schen Geraden mit E 2100 t/cm2. Die fj-Werte sind in
Fig. 7 eingetragen. Es wird nun die Lage der Biegenullinie e für die Knickung
senkrecht zur y-Achse bestimmt. Sie ist aus der Gleichung 2 Ex Sx 0 zu
erhalten ; für die obere Platte ist E^_ auf der Biegedruckseite Null. Es kommt
daher in der Gleichung nur die Biegezugseite der Platte mit E2 E vor; für den
Stegteil mit 34,4 cm Länge wird mit dem Mittelwert Ex 760 der Sehne in
der Arbeitslinie gerechnet. Soweit sich der Querschnitt elastisch verhält, kann
er als Ganzes behandelt werden: Das ist der Stegteil von 52,6 cm Länge, die
unteren Winkel mit 78,6 cm2 Fläche und die untere Platte:

—2100-^(35-ß)2+60-64-e-i-760-(2,4-34,4)e+2100-(2,4-52,6+78,6+169,0)e=0

Dividiert man die Gleichung durch 2100, so lautet sie:

— 3185 + 182 e — 2,6 e2 + 1,8 e + 29,9 e + 373,8 e 0 oder

e2 — 225,96 e+ 1225 0.
Daraus erhält man e 5,53 c m und e2 30,58. Nun berechnet man E aus

der Gleichung EJy 2 ExJx. Die Jx sind hier natürlich die Trägheitsmomente
der Teilflächen bezogen auf die Biegenullinie e. Das Trägheitsmoment des
unteren ganz elastischen Teiles bezogen auf die e-Linie ist 45 800 cm1.

2 EXJX 2100 ^ (35 — 5,53)3 + 60 [^- - 5,6* + 64 - 30,5sj

+ 760 • (2,4 • 34,4) • 30,58 + 2100 • 45800

2100 • (44400 4- 60 + 910 + 45 800) 2100 • 91170;

- 2100-91170 ,___., 2E —182760"- 105° t/Cm •

Erweitert man die Engesserformel auf den unelastischen Bereich, so ist

ImOVa (1,925- 757,7 V 613,3 t „CTf ' h-J Tj =-(^2 •

T050TT8276Ö ,'70 ^
Nachdem der vorhandene Rahmenwiderstand 1,74 ist, sieht man, daß die

Sicherheit ein wenig größer als 1,925 ist, da für die angenommene Spannungsverteilung

das innere Moment etwas größer ist als das äußere Moment. Jedenfalls

ist eine weitere Rechnung überflüssig. Nachdem die hier durchgeführte
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Berechnungsweise schon eine scharfe genannt werden darf, ist die Sicherheit
von 1,9 hinreichend.

Die Sicherheit wird für Vollbelastung noch dadurch größer werden, da
die Biegemomente vom Scheitel gegen die Kämpfer zu abnehmen, während die
Querschnitte größer werden. Die Berechnung nach der Theorie von Engesser
setzt gleichmäßig verteilte Rahmenwiderstände voraus und diese Annahme ist
nur berechtigt, wenn die Halbwellenlänge größer als das 1,8-fache der
Halbrahmenentfernung, also der Feldweite a, ist. Man muß daher noch die
Halbwellenlänge berechnen. Es ist

lk icV ^^- 1610 cm 2,5 a.
I mO

Um Mißverständnissen vorzubeugen, sei noch aufmerksam gemacht, daß unter
der Annahme gleichmäßig verteilter Rahmenwiderstände die Knicklast die
Größe hat

2n*EJPk —^~\
Hier ergibt sich natürlich Pk mO.

Das Ende der Berechnung gestaltet sich aber anders, wenn es sich um eine
Brücke mit einem oberen Querverband handelt. Dann ist die Knicklänge bei
Knickung aus der Ebene der Tragwand in der Brückenmitte gleich der Feldweite
lk a 613,3 cm. Da innerhalb dieser Länge keinerlei seitliche Stützung
vorhanden ist, erhält man jetzt die Knickkraft nach der gewöhnlichen Formel

_ "*EJ 5040 t*~ 42
Das bedeutet einen starken Widerspruch gegenüber der Annahme mO -= 1460 t
mit ok a0 ~5^f- 1,65 t/cm2. Man müßte also die Rechnung mit einem

885
größeren a0 wiederholen, doch wird die Erhöhung nur gering sein dürfen, weil
mit wachsenden a0 die Biegespannungen schon stark in den Fließbereich hineinragen

und dann der mittlere Modul E rasch abnimmt. Es wäre aber auch
hier eine nochmalige Berechnung überflüssig, weil es zu wissen genügt, daß
die Sicherheit größer als 1,925 ist. Diese Sicherheit dürfte nämlich schon größer
sein als die gegen Knickung in der Ebene des Tragwerkes. Bei Bogenträgern
darf ja die Biegerandspannung die zulässige Spannung erreichen, also bei
St44 szui 1,67. Da die Stauchgrenze mit as 2,7 angenommen wird,

27kann die Sicherheit nicht sehr viel größer sein als ' 1,62, auch wenn die

Knicklänge sehr klein ist, wie bei einem Bogenträger mit Zugband. Selbst wenn
kein Knicken eintritt, entstehen doch große Verformungen, die einen
unerwünschten Grenzzustand bilden.

Zusammenfassung.
An einem geraden Stab mit unveränderlichem, zur y-Schwerachse

symmetrischen Querschnitt greift an den Enden die Druckkraft P in der j-Schwer-
ebene, aber außerhalb der x-Schwerebene an einem Hebelsarm p an. Wenn
das Trägheitsmoment Jx genügend größer ist als Jy, liegt der Fall von Knickung
senkrecht zur y-Ebene vor, wobei jedoch die Spannungsverteilung vom
Anbeginn ungleichmäßig ist und auch in den plastischen Bereich ragen kann. Die
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Bestimmung der Knicklast Pk erfolgt nach strengen Gleichungen, deren Lösung
aber nicht vermittelbar möglich ist. Man schätzt zuerst Pk und bestimmt die
zugehörige Spannungsverteilung (Moment Pk-p) aus der Druckstauchungs-
Linie des gewählten Baustahles. Dann wird die beim Knicken in der x-Richtung

sich ergebende Biegungslinie (Gl. 4) und schließlich ein Knickmodul 1

bestimmt (Gl. 9), mit dem man die Knicklast berechnen kann (Gl. 11). Stimmt
diese mit dem angenommenen Wert Pk nicht überein, so ist die Rechnung bis
zur Übereinstimmung zu wiederholen. Für p 9 (in der Schwerachse
gedrückter Stab) übergeht der Knickmodul I in den Engesser'schen Modul t.
Ein Beispiel zeigt die praktische Anwendung des Verfahrens.

Resume.
Sur une barre droite avec section constante et symetrique par rapport ä

l'axe des y agit aux deux extremites la force de cornpression P dans le plan
de symetrie y, mais ä l'exterieur du plan des x a la distance p de cet axe.
Lorsque le moment d'inertie Jx est suffisamment plus grand que Jy, le cas du
flambage se trouve perpendiculaire au plan des y, oü cependant la repartition
des contraintes est irreguliere ä partir du debut et peut se prolonger aussi
dans le domaine plastique. La determination de la charge de flambage Pk se
fait au moyen d'equations exactes dont la Solution n'est cependant pas
immediatement possible. On admet d'abord Pk et l'on determine la repartition
correspondante des contraintes (moment Pk-p), en partant de la courbe de
l'ecrasement de l'acier choisi. L'axe neutre (eq. 4) que l'on obtient pour le
flambage dans la direction des x, ainsi que le module de flambage e (eq. 9),
peuvent etre determines et l'on peut ainsi calculer la charge de flambage
(eq. 11). Si cette valeur ne Concorde pas avec la valeur Pk admise, il faut re-
peter le calcul jusqu'ä ce que l'on obtienne concordance. Lorsque p Q (barre
comprimee dans son axe de gravite), le module de flambage I se transforme
en le module d'Engesser %. Un exemple montre l'application pratique du
procede.

Summary.
A straight bar with constant cross section symmetrical to the gravity axis y

is subjected to two cornpression forces P. These forces act one at each end of
the bar in the gravity plane y but definitely outside the gravity plane x, with
a lever arm p.

If the moment of inertia / is sufficiently greater than Jy we have buckling
at right angles to the plane y. At first the distribution of stresses is not uniform
in this case and can even enter the ränge of plasticity. The determination of the
buckling load Pk can be effected by exacting equations, the Solution of which
is, however, not a straightforward one.

The value of Pk is first estimated and with it is calculated the stress
distribution (moment P,. ¦ p) based on the compression-upsetting line of building
steel. After this the neutral axis (Eq. 4) for bending due to buckling in the
direction x, and the modulus of buckling £ (Eq. 9) is determined, out of which
can be calculated the buckling load (Eq. 11). If the result to be obtained does
not tally with the assumed value of Pk, the whole procedure has to be repeated
until agreement is reached. For p=^ 0 (cornpression along the gravity axis)
the modulus of buckling 1 transforms itself into the so-called Engesser
modulus T.

An example is given to elucidate the procedure.
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