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DAS DURCHLAUFENDE AUSGESTEIFTE ZYLINDRISCHE
ROHR ODER ZEISS-DYWIDAG-DACH.

LE TUYAU CONTINU DE FORME CYLINDRIQUE RENDU RIGIDE
ET LE TOIT ZEISS-DYWIDAG.

THE CONTINUOUS STIFFENED CYLINDRICAL TUBE AND
THE ZEISS-DYWIDAG ROOQF.,

Prof. Dr. F. DISCHINGER, Berlin-Charlottenburg.

Das zylindrische Rohr, bei dem wir eine ganz beliebige Querschnittsform
voraussetzen, soll sich durchlaufend iiber eine Anzahl von Feldern erstrecken.
An sémtlichen Auflagerpunkten muB es zur Einfithrung der Auflagerreaktion
durch Scheiben ausgesteift sein. Die inneren Krifte des zylindrischen Rohres

Fig. 2. Fig. 3.

ergeben sich fiir den Membranspannungszustand bekanntlich aus den Gleich-
gewichtsbedingungen des Flichenelementes gegeniiber Verschieben in den drei
Richtungen des Koordinatensystems. Die Komponente der an einem Flichen-
element in Richtung der Gewdélbetangente oder der Normalen angreifenden
Krafte, die entweder Massenkrifte oder auch duBere Belastungen sein kénnen,
werden mit ¥ und Z bezeichnet. Ihr Verlaut in der Gewdlberichtung ist ganz
beliebig, in Richtung der Erzeugenden dagegen nehmen wir sie vorerst als kon-
stant an, jedoch wollen wir spiter die Aufgabe in dieser Hinsicht noch erweitern.
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Aus den drei Gleichgewichtsbedingungen erhalten wir: s. hierzut)

ZRdydx + N,dxdp =0 N, = —RZ
(1) YRdgds + éNydx + 0N,zRdp =0 Do L Ne 4y
2 'Z px Y = ox Ra(P -
L 6Nx 0N¢x .
ONyRdp + O Nyrdx =0 e 4 Rdo =0
hieraus folgt:
N, = —ZR
: o N,
(2) Nep = — V—l—Ra(p dy + C, = —xN, + C,
Nx = —.“aijaqu) dx+ Cg == ;dNO.—xCI.-;I- C2
wobei wir zur Abkiirzung gesetzt haben:
. o N, . 0Ny
NO_V+RE)¢ und N‘)_Ra(p'

C, und C; sind Funktionen von ¢. Bei den nachstehenden Untersuchungen
wollen wir eine anisotrope Schale betrachten, bei der die Schale durch Rippen
sowohl in Richtung des Gewdlbes, wie auch der Erzeugenden versteift ist.
Dieser Fall der Anisotropie wird auch mit Orthotropie bezeichnet. Der all-
gemeinste Fall der Anisotropie, bei welchem die Rippen unter beliebigen
Schriagen verlaufen, spielt im Bauwesen keine Rolle, so daBl wir ihn auBler Acht
lassen koénnen. Die Dehnungssteifigkeiten der Schale in den Richtungen ¢
und x bezeichnen wir mit D, und D,, die Verzerrungssteifigkeit mit D, . Da-
mit ergeben sich bei Vernachldssigung der fiir den Eisenbeton unwesentlichen
(Querkontraktion die nachstehenden Zusammenhinge zwischen den inneren
Kriften und den Verschiebungen (s. Literaturangabe unter 1d und 1f)

N, = D(p(v' + 1)

R
(3a) Ne = D.u wobel wiederum »* = o und ¢ = au
D Rép ox
qu; = 2¢x (u‘ + v')

Streng genommen gelten diese Gleichungen nur bei einer zur Mitteifliche
symmetrischen Ausbildung der Rippen. Bei unsymmetrischer Ausbildung der
Rippen, wie sie vorhanden wire, wenn die Rippen nur auf der Unterseite der
Schale angeordnet wiren, wiirden noch Zusatzglieder hinzutreten, die jedoch
fiir uns ohne Bedeutung sind, da wir uns nur mit dem Membranspannungs-
zustand beschiftigen. Aus der Gl. (3a) erhalten wir die Verschiebungen als
Funktionen der inneren Krifte

1) a) Fr. Dischinger: Handbuch fiir E. B., 3. Aufl,, Bd. 12, 1928,
b) K. Miesel: Uber die Festigkeit von Kreiszylinderschalen. Ing. Arch. 1930.
c) U. Finsterwalder: Dissertation Miinchen 1930 und Ing. Arch. 1932
d) W. Fliigge: Die Stabilitit der Kreiszylinderschale. Ing. Arch. 1932.
e) W. Fliigge: Statik und Dynamik der Schalen. Jul. Springer, 1934.
f) Fr. Dischinger: Die strenge Theorie der Kreiszylinderschale. Beton und Eisen
1935, Heft 16—18.
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1
it == D—xijdx + G
(3b) . v:——ju'dx—l— 2 qugxdx—F G
cpx
W:—UR+ (N R)

‘Wir erhalten demnach fiir die inneren Krafte und Verschiebungen die nach-
stehenden Gleichungen in Abhingigkeit von N,. Durch N, ist das Gesetz der
Spannungsverteilung sowohl beziiglich der Schubkrifte N,, wie auch der Bie-
gungskrifte N, gekennzeichnet,

N, =RZ
N(px == —'.’CNO+C1

2
4) N =+—;—N0‘—xC1‘+C2
1 3 2
174 :’l)—x[%No.'—%Cl.+xC2—C3]
1 o x5 2 x?
v -____l_);[__24N0.-+_6C % 2 C2 +xC3 C4]+Dq)x[—‘§‘N0+xC1—Co]
__R[ xS L X . ] ZR[ , 1 ZR?
w D 24N0 —‘_6—C1 +‘5C2 —xC3 +C4 Dq)x 2 No xCl +CO = D'p

1. Das an den Binderscheiben beliebig, aber auf beiden
Seiten gleichmidBig eingespannte Dach.

Die Konstanten C; — C, ergeben sich fiir das an den Binderscheiben frei-
aufliegende bezw. volleingespannte Dach wie folgt. Hierbei setzen wir starre
Binderscheiben voraus, so dal} die Verschiebungen v der Schale an den Binder-
scheiben zu Null werden.

a) Fiir das freiaufliegende Dach:
a) fiir x=0 ist N,=0 also C,=0
B) fitr x=0 ist v=0also C,=0, C, =0

b) Fiir das volleingespannte Dach:
a) fiir x=0 ist =0 also C;=0
g) fiir x=0 ist »=0 also C4:0 CO:O

y) fiir x=1 ist Ny=0 also C{:+NJ% y) fiir x=1 ist =0 also Ny’ ——Cl +C21 0
d) fiir x=1 ist v=0 also d) filr x=1 ist =0 also
- Ny 14 i C,"+1Cy=0 —NO"E+CI"I—3—C,'Z—2:O
2176 24 6 2
Gy = ~N0"£3 Hieraus Cg':No"ﬁ C,":NO"—l.
24 12° 2

Durch die Bedingung » = 0 ist die Schale an den Binderscheiben unverschieb-
lich festgelegt. Aus der obigen Konstantenbestimmung ersehen wir, da uns
keine Konstante mehr zur Verfiigung steht, um auch die w-Verschiebung zu Null
zu machen, Dadurch ergibt sich theoretisch zwischen der Schale und den
Binderscheiben eine klaffende Fuge, deren SchlieBung Biegungsmomente in
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Richtung der Erzeugenden ausldst, die vom Rand aus nach stark gedimpften
Schwingungen verlaufen, so daBl schon in ganz geringer Entfernung von den
Binderscheiben der reine Membranspannungszustand wieder vorhanden ist (s.
Literaturangabe unter 1b). Bei der eingespannten Tonne ist an den Binder-
scheiben u = 0, bei der freiaufliegenden Tonne dagegen ist dies nicht der
Fall, hier ist an den Scheiben ein Wert # vorhanden und zwar als Funktion
von ¢. In diesem Fall miissen wir also voraussetzen, daBl die Binderscheibe in
ihrer Fliche zwar vollstindig steif ist, aber in der dazu senkrechten Richtung
als Platte so verbiegbar ist, daB sie sich diesen verinderlichen Werten von «
anpassen kann,

Wir erhalten demnach fiir die beiden Falle folgende Gleichungen

a) Das freiaufliegende Dach: b) Das volleingespannte Dach:
N, =—ZR N, =—ZR
2x-1 ' 2x-1
N,px—_ 2 NO Nq’?x:——z_NO
v s 6x2-0ix+0% .
N, =+ 2 Ny Ny :——1—2—N0
_+4x3—61x2+l3 Ny _2x%-3Ix%+12x Ny
v 12 D, o= 12 D
_ =214 Px Ny* x2-1lx 2N, X -2034 P Nyt xP-Ux 2N,
v 24 D. 2 D, voET 24 - D, 2 D

JERL BN R Rl 2NGR ZRE x24I NeR 8 le2NGR ZR®
24 D. ' 2 D, D, -7 25 D, 2 D,x D,

Die Glieder, die von der Dehnungssteifigkeit D, abhingig sind, zeigen den
EinfluB der reinen Balkenbiegung auf die Verschiebungen. Die hierbei auf-
tretenden Funktionen f, sind sowohl bei der freiaufliegenden wie auch bei der
eingespannten Tonne nichts anderes wie die Biegelinien eines freiaufliegenden
bezw. eines eingespannten Balkens und deren Ableitungen. Die Funktion f,,
die bei den Gliedern mit Schubverzerrung (D,,) vorhanden ist, entspricht der
zweiten Ableitung der Biegelinie eines freiaufliegenden Balkens. Die bei den
Gliedern mit Gewdlbewirkung (D, ) auftretende Funktion j, ist gleich 1, sie
entspricht der oben als konstant angenommenen Lastverteilung lings der Er-
zeugenden.

Da die Spannungsgesetze bei dem freiaufliegenden wie auch bei dem voll-
eingespannten Dach sowohl beziiglich der Schubkrifte (gekennzeichnet durch
N,) wie auch der N,-Krifte (gekennzeichnet durch Ny) genau die gleichen sind,
konnen wir die beiden Lastfialle ohne weiteres addieren und wir erhalten damit
die inneren Krifte und Verschiebungen eines an den Bindern teilweise, aber
symmetrisch eingespannten Rohres oder Daches. Anstelle der Biegelinien des
freiaufliegenden bezw. volleingespannten Balkens und deren Ableitungen
mitssen wir nunmehr bei den von D, abhingigen Gliedern die Biegelinien des
beliebig, aber symmetrisch eingespannten Balkens bezw. die zugehorigen Ab-
leitungen einfithren, die wir mit é,,-, bis d,”” bezeichnen. Hierbei ist d,””
di¢ Lastfunktion lings der Erzeugenden, fiir die wir oben die Voraussetzung
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gemacht haben, daB sie konstant sein soll. Die bei den Gliedern mit Schubver-
zerrung (D,) auftretende Funktion f, entspricht dagegen der zweiten Ableitung
der Biegelinie des freiaufliegenden Balkens. Wir bezeichnen sie mit d,,". Die
. bei den Gliedern mit Gew6lbewirkung (D,) auftretende Funktion f, entspricht
der Las)tfunktion, die wir sowohl mit 4,”” wie mit 6, bezeichnen kénnen
(Fig. 4).

Wir erhalten demnach fir das beliebig, aber symmetrisch eingespannte
Rohr mit den Belastungen Z = Z,6,””, Y = Y,4,”" die nachstehenden sehr
einfachen Gleichungen fiir die inneren Krifte und Verschiebungen.

N, =-ZR = -Z,Rd,"™ u = gg—dx'

P D.
(5) Nyx= —Nyd," o — %)_ dx*%:—lj 5
wobei N, = V+ 2‘2{; i

Die Verschiebungen sind also Funktionen der

Biegungskrifte N,, der Schubkrifte N,, und der ‘
Gewblbekrifte N, wie aus den drei Faltoren der IIIIIIIIIIIIiIlIIII[lImum||m||mu||m|u||ll Y

Dehnungssteifigkeiten D,, Dy, und D, hervorgeht. g
Diese Gleichungen gelten aber nicht nur fiir | il

eine lings x konstante Lastfunktion 8,””, sondern
auch fiir eine ganz beliebige, wie man sich leicht

durch Einsetzen der obigen Werte in die Diff- g Y,
ot it shies Were 0 de DI <ot
Entwicklungen ohne weiteres hervorgeht, ist da- ! 1 !

i

gegen gleiche Schalenstirke vorausgesetzt, die ——d‘,{
Verinderlichkeit der Belastungen bezieht sich dem- | i Pl
nach nur auf die d&uBeren Belastungen. Durch die W——@
Gl. (5) sind demnach die inneren Krifte und Ver- | , |
schiebungen eines beliebig, aber symmetrisch ein-

gespannten Rohres bei beliebigen mit ¢ und x ver-
dnderlichen Belastungen

(6)  Z=Zuf1,0", Y = VY,fp, 0"  gegeben,

Wir gehen nun zu dem wichtigeren Fall iiber, daB die Tonne nur einseitig ein-
gespannt ist. -

2. Das einseitigeingespannte Dach.

Wir gehen hierbei wiederum von den Gl. (4) aus, bei denen wir voraus-
gesetzt haben, daB die Lastfunktion 6,”” eine konstante GréBe ist. Die Kon--
stanten ergeben sich jetzt aus den nachstehenden

a) flir x=0istv =0 also C, =0 und C, =0
B) firx=0istu=0also C; =0

12
—NO.H[C1‘+C2 - 0

y) fiir x = 1 ist N, = 0 also 5



232 F. Dischinger

d) fir x = 1isto = 0 also |- Ny* L+ 2c- |4 [ & Mo ic | =0
Dl 2476 ' 2771 D, 2

2 4 3
Aus y folgt _C2.£2“ = NO"—if—Cl"—lz— wir setzen diesen Wert in J ein.
AP LB Dx[ /2 ]__
24 D 8 48 D
7 [ . __x] _ 8, B D
(7) i N°512 Dy ! 5 Cy e DWC‘

Damit haben wir die Diff.-Gl. gefunden, aus welcher wir die unbekannte Funk-
tion C; in Abhidngigkeit von N, ermitteln miissen. Durch den Ansatz:

®) Co= (No+ ) o L

kénnen wir die Diff.-Gl. noch weiter vereinfachen und den Wert N,"" beseitigen.
Wir erhalten damit folgende Diff.-GL.:

6 D. _ 6 D,

(73) fqo" - f«pjz‘ szx =B DgprO
oder ausfiihrlich geschrieben
0 of 6 D, 6 D
7b o (e ) g, 5 Dy O D
(7h) | Rop \Rog fo /2 D¢x+5l2D<pr°

Infolge der Veridnderlichkeit von R ist eine allgemeine Losung dieser Diff.-Gl.
unmoglich. Wie im folgenden gezeigt wird, scheint eine Losung nur fiir die
besonderen Fille der Kreiszylinderschale und der Cykloidenschale méglich zu
sein. Fiir die im Bauwesen fiir die Konstruktion der Zeiss-Dywidag-Schalen-
dacher sehr oft benutzten elliptischen Querschnittslinien, die infolge ihrer starken
Uberh6hung gegeniiber der Seillinie eine ausgezeichnete Trigerwirkung von
Binderscheibe zu Binderscheibe besitzen, erscheint eine Losung der Diff.-Gl.
infolge der komplizierten Zusammenhinge zwischen dem Kritmmungsradius R
und dem Winkel ¢ nicht moglich zu sein. Die nachstehend fiir die Kreiszylinder-
schale gegebene Losung gestattet es uns aber auch, Riickschliisse auf die Wir-
kungsweise dieser Dachformen zu machen.

3. Die Lésung der Differentialgleichung fiir die durch
Eigengewicht belastete Zykloidenschale.

Die Zykloidenschale ist fiir die Schalenbauweise von Bedeutung, weil sie
ebenso wie die flache Ellipse gegeniiber der Seillinie eine starke Uberhdhung
aufweist und deshalb eine sehr gute Trigerwirkung besitzt (siche Fig. 5).
Wir betrachten eine Schale konstanter Wandstirke und gleichen Flichen-
gewichtes. Fiir die Zykloide ist:

R= —Rycosp, Z=gcosep, Y=gsing,
- demnach
aN, ,
N, = —gRcos¢p = —gR,cos? p, Ny, =Y+ Réo = 3gsing.

Die Lasung der Diff.-Gl. (7b) ist gegeben durch den Ansatz f, = x g sin¢.
Hiermit ergibt sich
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of 1 dfo

= —2  und
Rdog Rycosp do
6 (af(p)__ 1 (a‘«’f(p 1, sing g[g)__ _l_(&ﬁf,,;ﬁ a_f,p)
ROp\Rop/  Rycosp\d@? Rycose Rycosp g/ RyCosp \f¢? gtpa(p
. _ . d 1 . .
fiir ftp = xgsineg ist W(‘ﬁ%) = m(—‘%gSlﬂ (p—!— ~ g sin (p) =0
und damit geht die Diff.-Gl. (7b) in eine gewdhnliche Gleichung iiber.
6 D, 6 D . N,
f(p Fﬁ;——'ﬁmNo, f(p—-ﬂgSlﬂ(P——-—E,)—.
Damit ergibt sich nach der Gl. (8)
1 5 !
Cl :(NO—?N())@[:N()'Z

aus der Gl. (4) folgt dann
[

Npx= —xN; + C;.= N, (?——x),
d. h. die Schubkrifte werden in der Triagermitte fiir x = 1/2 zu Null. Daraus
folgt, daB bei der einseitig eingespannten Zykloidentonne tatsachlich gar keine

Cycloide
Nx  Cycloide
Cycloid

Seillinie
¢  Lligre funiculaire
i Funicular line

Fig. 5.

Einspannung vorhanden ist, bei dem durchlaufenden Zykloidenrohr arbeiten
demnach die einzelnen Felder wie freiaufliegende Triager, ohne sich gegen-
seitig durch Einspannungsmomente zu beeinflussen. Dieses iiberraschende Re-
sultat hiatten wir schon aus den Gl (4) ableiten konnen. Es war Ny =3 g sing,

damit wird N," — 00 _ 3gcosp 3¢

e W o — 22, Da N, konstant ist, ergibt sich

Rig Rcoseo R,
fiir N, eine geradlinige Spannungsverteilung, bei der jedoch die Krifte N,
unabhéngig von ¢, also fiir den gesamten Querschnitt konstant sind (siehe
Fig. 5) und in gleicher Weise sind auch die #-Verschiebungen fiir den ganzen
Querschnitt von gleicher GroBe. Daraus folgt aber, daB Gewdlbequerschnitte,
die vor der Belastung in einer senkrechten Ebene lagen, dies auch nach der Be-
lastung noch sind. Infolgedessen ergeben sich an den Binderscheiben keine
Verdrehungen und deshalb kdnnen auch keine Einspannungsmomente ent-
stehen. Voraussetzung fiir dieses merkwiirdige Verhalten der durchlaufenden
Zykloidenschale ist naturgemiBl, dal der Membranspannungszustand erhalten
bleibt und nicht durch die Randbedingungen wesentlich gestért wird. Die




234 F. Dischinger

Randbalken bezw. die Auflagerkonstruktion miissen demnach die gleichen u-Ver-
schiebungen aufweisen. In den Randgliedern entstehen aber parabelférmig ver-
laufende Zugkrifte, die den Druckkriften N, der Schale das Gleichgewicht
halten und infolgedessen kénnen wir die obige Bedingung beziiglich der u-Ver-
schiebung in den Randgliedern nur dann erfiillen, wenn wir in diesen durch
eine Vorspannung parabelformig verlaufende Druckkrifte erzeugen. Ein der-
artiger vorgespannter Zykloiden-Triger wird demnach nur Durchbiegungen in-
folge der Schubverzerrung aufweisen, Wenn diese MaBnahme nicht durch- -
gefithrt wird, dann ergeben sich wesentliche Randstérungen, die mit Biegungs-
momenten in der Schale verbunden sind, und durch die bei der durchlaufenden
Tonne eine gewisse, ihrer Gré8e aber nicht festzustellende Kontinuitdtswirkung
erzeugt wird. Die fiir das Zykloidendach von gleichbleibender Wandstirke bei
Eigengewichtsbelastung festgestellte Tatsache des Fehlens einer Kontinuitits-
wirkung gilt naturgemiB nur fiir Eigengewichtsbelastung, fiir Wind und Schnee
ist diese vorhanden, jedoch ist fiir diesen Fall die Auflésung der Diff.-Gl. nicht
moglich.

4. Die Losung der Diffe‘rentialgleichungen filr die in der
Ringrichtung beliebig belastete Kreiszylinderschale,

Entsprechend den Voraussetzungen fiir die Ableitung der Diff.-Gl. (7),
setzen wir auch hier voraus, daB die Lastfunktion 4, konstant ist. In der Ring-
richtung dagegen kénnen die Belastungen YV und Z ganz beliebig sein. Jede
dieser mit ¢ verdnderlichen Belastungen Z und V entwickeln wir in einer
Fourierreihe. Die Fourier-Glieder von Z und Y, die der gleichen Harmonischen
angehoren, kdnnen wir in einem Rechnungsgang zusammenfassen. Diese seien
Z=2Z,cosnp, Y = Y,sinng. Daraus ergibt sich nach den GI. (2)

Ny == —Zo= — nacosng, N = %’3 = nZ,sinne und damit wird
Ny =Y+ N, =sinnp(Y,+nZ,) bezw. |
.  0%N, n? .
NG = W% = ——ysin nep (Yu+ nZ,).
Wir setzen diese Werte in die Diff.-Gl. (7) ein und erhalten
. nt 24 Dxl .. 8 48 D,
—Slnncp(ynﬁ—nz,,)[zg——l-ﬁﬁ; = Cl —5—‘—— ClﬁDwx.

Wir erkennen sofort, daB die Diff.-Gl. durch den Ansatz
Cl = Sil‘l ﬂ(p(yn + ﬂZn)xO = Noxo

erfiillt wird, wobei die GréBe von C, durch den Wert x = x, gekennzeichnet
ist. Aus C, ergibt sich

2

n
a?

Cii= ——sinne(V,+ Z,) x,.

Setzt man die gefundenen Werte von C, und C;" in die Diff.-Gl. ein und 16st
nach x, auf, dann erhilt man nachstehende Gleichung fiir x,

[\ D [\ D
5 2(—) 94 D= 5 2(_) 62
) syt ") T Des _ L "\2a) T Doz
§ 1)2 D, 8 g(i)‘«' D,
n (; +6Dwx 5, +1,5D¢x



Das zylindrische Rohr und das Zeiss-Dywidag-Dach 235

Aus der Gl. (2) N, = — N, -+ C, = N, (v, — x) erkennen wir, daB x, die
Stelle bezeichnet, an der die Schubkrifte und damit die Querkraft zu Null wird.
Bei groBen Tragerspannweiten / im Verhiltnis zu den Kriimmungsradien «
konnen die zweiten Glieder des Zdhlers und des Nenners gegeniiber den ersten
vernachldssigt werden und es ergibt sich aus der Gl, (9)

_é_ w0 X, —> %l’ umgekehrt dagegen
l l
; — 0 xo - —5-

Bei groBen Spannweiten des Rohres oder des Daches im Verhiiltnis zu den
Kriimmungsradien liegt der Nullpunkt der Querkraft ebenso wie bei einem
schlanken, einseitig eingespannten Balken bei x,~25/8, bei kleinen Werten

von l:a dagegen liegt der Nullpunkt genau in der Feldmitte bei x == 71 und

damit geht jede Kontinuititswirkung verloren (Fig. 6).
Dieses auffallende Ergebnis hingt damit zusammen, daBl mit abnehmenden
Binderabstinden der EinfluB der Schubverzerrungen auf die Verschiebungen

Fig. 6. Fig. 7a. Fig. 7b.

und damit auf die Durchbiegungen wesentlich gréBer wird als der EinfluB der
Balkenkriimmung. Bei der Theorie des durchlaufenden schlanken Trigers kann
bekanntlich der EinfluB der Schubverzerrung gegeniiber den Forminderungen
aus den Biegungskriften vernachldssigt werden, und diese Vernachlissigung ist,
wie wir spiter an Zahlenrechnungen noch sehen werden, vollstindig gerecht-
fertigt. Bei sehr hohen Trigern im Verhiltnis zu den Spannweiten ist diese
Vernachliassigung jedoch unzulissig, wie z. B, auch bei den hohen Scheiben, die
als Trager bei Silobauten etc. beniitzt werden und bei denen die inneren Krifte
nur aus den Elastizititsgleichungen mit Hilfe der Airy’schen Spannungsfunk-
tionen ermittelt werden miissen.

Bei den zylindrischen Schalen, die als durchlaufende Trager benutzt werden,
miissen wir zwei Fille unterscheiden. Handelt es sich um freitragende Systeme
nach Fig. 1, bei denen eine flache Tonne mit den beiderseitigen Randbalken zu-
sammen als Trdger wirkt, dann ist der EinfluB der Schubverzerrungen im Ver-
héltnis zu den Forminderungen aus der Balkenkriimmung sehr gering und es
gelten annihernd die iiblichen Gleichungen des durchiaufenden Trigers, denn
bei diesem Trigersystem betrigt die gesamte aus Schale und Randbalken zu-
sammengesetzte Triagerhéhe % nur ca. 1/, bis 1/,, der Spannweite. Handelt es
sich dagegen um eine Tonne mit unnachgiebigen Auflagern an den Kimpfern
gemiB Fig. 7a, dann ist als Tragerhohe nicht %, sondern der Durchmesser des
Kreiszylinders 2a maBgebend und dann darf bei kleinen Verhiltnissen I:a der
EinfluB der Schubverzerrungen gegeniiber den Forminderungen aus der Ver-
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kriimmung nicht mehr vernachlissigt werden. Stellt man ein derartiges Dach
dagegen bei gleicher Konstruktionshoéhe % nicht aus einer Kreiszylinderschale,
sondern aus einem flachen elliptischen Zylinder gema8 Fig. 7 b her, dann wird
die wirksame Trigerhohe ganz wesentlich kleiner (sie betrigt jetzt 2 ») und da-
mit auch der Einflu8 der Schubverzerrungen.

Bei der isotropen Schale wird D, = D,,,. Beschrinken wir uns zugleich
auf die erste Harmonische Z = Z, cos ¢, Y =V, sin ¢, die einer in der Gewdlbe-
richtung gleichbleibenden Eigengewichtsbelastung Z =g cos¢, Y = g sin¢ ent-
spricht, dann ergibt sich:

[ 24q® -5/ .. . 5
(Qa) Xy =— '_8— -_6_(1_??1_2-_ fur l> a lS'[ Xg —> Fl
l<a Cx ~+L
= 0 2 .

Die Gl. (9) gibt uns noch einen wichtigen AufschluB {iber die Kontinuitits-
verhdltnisse bei den verschiedenen Harmonischen. Je héher die Zahl » der Har-
monischen, umso mehr ndhern sich die Kontinuititsverhiltnisse denen des
schlanken Balkens. Die Zahl » hat hierauf genau den gleichen EinfluB wie das
Verhiltnis //a von Trigerspannweite zum Kritmmungsradius. Das ist auch leicht
verstandlich, weil gemifl Fig. 15, 16 bei einer Harmonischen » >/ immer nur
ein Sektor mit dem Offnungswinkel z/n mit dem ihm gegeniiber liegenden
Sektor als Triger zusammenwirkt. Als Triger ist hier nur der Pfeil der beiden
Sektoren mafBigebend und infolgedessen ist die Triagerhthe gegeniiber dem
Durchmesser des Rohres nur sehr gering, so daB der EinfluB der Schubver-
zerrungen gegeniiber den Verkriimmungen stark zuriickgeht und die Kontinuitits-
verhiltnisse sich denen des schlanken Trigers ndhern.

Nachdem wir nunmehr aus den Diff.-Gl. (7) die Gr68e der Funktion C,
ermittelt haben, konnen wir die GroBe der inneren Krifte und Verschiebungen
angeben, indem wir die gefundenen Werte der Konstanten in die Gl. (4) ein-
setzen. Da wir fiir die verschiedenen Harmonischen entsprechend dem Faktor 72
verschiedene Werte fiir die Querkrafts-Null-Stelle x, gefunden haben, konnen
wir im Gegensatz zu der symmetrisch eingespannten oder freiaufliegenden Schale
fiir die einseitig eingespannte keine geschlossenen Gleichungen fiir eine be-
liebige Last in der Ringrichtung angeben. Dies ist nur méglich fiir die Be-
lastungsglieder der gleichen Harmonischen

10a) ' Z—=27Z,cosng, Y=7VY,sinng.
¥ ¢

Fiir jede Harmonische ergeben sich entsprechend den verschiedenen Werten
von x, andere Kontinuititsgesetze. Die Gesamtkrifte erhilt man durch Sum-
mierung der einzelnen Fourier-Glieder. Aus der Losung der Diff.-Gl. ergab
sich: C, =sinne [V, +nZ,]| x, = N, x,. Hieraus ergibt sich der Wert von

& P Ny!

szﬁ"jNo"i"!_lCl':“§N0.+lx0N0. - 2 (f — 2x).

2) Diese Gleichung fitr den Sonderfall der ersten Harmonischen der isotropen Schale
findet sich auch in dem unter 1e) angezogenen Buch von W. Fligge auf S. 72, Hieran
kniipft Fliigge die Bemerkung, daB} hier in der bisherigen Schalenliteratur ein Fehler vor-
liege, womit anscheinend der Satz im Hdb. f. E. B. gemeint ist: ,Die Kontinuititsgesetze
bleiben dagegen erhalten.* Diese von mir gemachte Bemerkung ist absolut richtig, denn
es ist fiir jeden Ingenieur eine selbstverstindliche Tatsache, daB die Einspannungs-
momente nicht nur von der Kriimmung des Balkens, sondern auch von der Schubver-
zerrung abhangig sind, und daf bei der Theorie des durchlaufenden Tragers diese Ver-
nachlissigung der Schubverzerrung bewulit als bedeutungslos vorausgesetzt wird. Die
Kontinnitatsgesetze bleiben aber trotzdem immer erhalten.
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Setzt man die Werte der beiden Konstanten C, und C; in die Gl. (4) ein, dann
ergibt sich:

- w3 24 2
N,=~-RZ=~-RZ,cos ngp, gy DN B X (3x%-01x)

Dx 6
. Ny Xt -002x7 -4 xy (x5 -31x%) 2N, x*-2xx,
(10b) Nye=—-Ny(x—xp), »=- D, >4 "D 3
x2—12-2xy(x-1) Ny R x*—002x2 -4 x,(x*>-31x*) 2Ny R x2-2xx, ZR?
N, = N, 0 _ 0 0 o I\ “Xo
o 2 » V=D, 24 Do, 2 "D,

Auch hier ergeben sich die Funktionen f, von v, u, Ny, N,,, N, wiederum als
Ableitungen einer Funktion, deren vierte Ableitung die Lastfunktion 0, ist,
aber die bei w und v auftretende Funktion /, ist jetzt nicht mehr die Biegelinie
des schlanken Balkens, weil sich die Nullstelle der Querkraft x, verschobesn
hat. Im Gegensatz zu der symmetrisch eingespannten Tonne, bei welcher sich
die Lage der Nullstelle durch die symmetrischen Einspannungsmomente mnicht
andert.

Damit ist nun die Aufgabe fiir den Zweifeldtriger mit gleichen Gifnungen
gelost, da dieser sich aus zwei derartig einseitig eingespannten Tonnen zu-
sammensetzt. Bei beliebig vielen und vor allem bei verschieden grofien Spann-
weiten ist eine Ermittlung der Einspannungsmomente aus den Verschiebungen
etwas umstindlich. Dieser umstindliche Rechnungsgang ist aber gar nicht not-
wendig, nachdem wir aus der Diff.-Gl. erkannt haben, daBl sowohl bei einseitiger
wie auch bei beiderseitiger Einspannung und damit auch bei ganz beliebigen
Kontinuititsverhiltnissen, die bei den freiaufliegenden Tonnen maBgebenden
Spannungsgesetze (gekennzeichnet durch N,) erhalten bleiben. Wir kénnen
also als wichtige Erkenntnis feststellen, daB bei dem Kreiszylinderrohr die
Spannungsverteilung unabhingig davon ist, ob es sich um einen freiaufliegenden
oder um einen durchlaufenden Balken handelt. Sobald der Kriimmungsradius
der Schale jedoch verinderlich ist, dann gelten, wie wir aus der Diff.-Gl. er-
kennen, diese einfachen Gesetze nicht mehr, denn dann gelten fiir das durch-

laufende Rohr, wie wir aus der Gl. (8) C, = (N, 4+ @) —g— erkennen, nicht mehr

die durch N, gekennzeichneten Spannungsgesetze des freiaufliegenden Rohres.
f» stellt in diesem Fall eine Storungsfunktion dar, deren Verlauf wir nicht
kennen, solange wir die Diff.-Gl. (7) fiir die betreffende Rohrform nicht inte-
grieren konnen. Bis jetzt ist, wie schon erwéhnt, eine Losung der Diff.-Gl. nur
fiir den konstanten Kriimmungsradius, d. h. fiir das Kreisrohr und fiir den oben
behandelten trivialen Fall des Cykloidenrohres, gelungen.

Wie in den nachfolgenden Abschnitten gezeigt wird, kénnen wir bei dem
Kreiszylinderrohr die Einspannungsmomente in sehr einfacher Weise durch ein
System von Clapeyron’schen Gleichungen ermitteln. Diese Art der Losung hat,
abgesehen von dem sehr einfachen und iibersichtlichen Rechnungsgang, noch
den Vorteil, daB wir nicht nur eine Verinderlichkeit der Lastfunktion &/,
sondern auch eine Veridnderlichkeit der Schalenstirke lings der Erzeugenden
beriicksichtigen kénnen. Hierzu stellen wir zunichst fiir den gewohnlichen
Balken die Clapeyron’schen Gleichungen in Form von Winkelgleichungen auf.

5. Die Clapeyron’schen Winkelgleichungen des gewohn-
lichen schlanken Balkens.

Bei einem freiaufliegenden schlanken Balken mit verinderlichem Quer-

schnitt und Trigheitsmoment, belastet durch die Momentenfliche 9, ergeben
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sich die beiderseitigen Winkeldrehungen an den Auflagern zu (siehe hierzu
Fig. 8)

(11) ;_'_1“]’19)2 x2 d ”'_—1—\[19)2 xI d
? =7 E], v = E/.

Fiir den Fall konstanten Trigheitsmomentes und konstanter Belastungen mit

parabelformiger Momentenfliache vereinfachen sich diese Gleichungen wie folgt
13

Die Winkeldrehungen infolge eines am linken oder rechten Auflager angreifen-

den Momentes M’ = 1 bezw. M" = 1, die wir mit o', f” bezw. a”, 8’ be-
zeichnen, betragen

o 12) o = L j LAy
° T JoEJ:

e <

L o

(11a)

I

) 1 r %2
¢ = — dx
b do )

g=p=p=1]

Xy x2
EJ,

Fiir den Sonderfall gleichen Trig-
heitsmomentes erhalten wir

(12a) o =¢o" = 3—1—

dx.

~

4 v S— l
Fig. 8. F=pF= - 0EJT

o

Wir betrachten nun die beiden Felder /, und /, , , eines durchlaufenden Tragers
mit den noch unbekannten Stiitzmomenten M, _,, M, und M, ,,. Bei der Er-
mittlung der Einspannungsmomente beriicksichitigen wir zugleich eine eventuelle
Stiitzensenkung, die wir durch den Sehnenwinkel y, ausdriicken (s. Fig. 9).
Dieser wird positiv gezdhlt bei einer nach oben springenden Ecke der Ver-
bindungslinie der Auflager. Aus der Bedingung, dall an der Stiitze » samtliche
Winkeldrehungen gleich Null sein miissen, erhalten wir eine Beziehung zwischen
den drei aufeinander folgenden Stiitzenmomenten M, __,, M, und M, .,

(1 3) M, Br+2M, (ar” + U‘;—+1) + Mp1 Bron + @" + GP;-.H + v =0:

Bei n — 1 Zwischenstiitzen ist der Triger » — 1 fach statisch unbestimmt, zur
Ermittlung dieser statisch unbestimmten GréBen stehen uns ebenso viel Winkel-
gleichungen der obigen Art zur Verfiigung.

Bei der Aufstellung der Einheitswinkel der Gl. (13) haben wir nur den
EinfluB der Verbiegung Dberiicksichtigt und den EinfluB der Schubverzerrung
vernachldssigt. Bei den durchlaufenden Schalendichern miissen wir aber diesen
Einflu@ der Schubverzerrungen mitberiicksichtigen. Dies soll in dem nichsten
Abschnitt erfolgen.
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6. Die Ermittlung der Kontinuitidtsgesetze des durch-
laufenden Kreiszylinderrohres mit verdnderlicher Be-
lastung und verdnderlicher Wandstdarke mit Hilfe der
Clapeyron’schen Winkelgleichungen.
. Wir setzen gemili den Gl. (6) eine Belastung voraus in der allgemeinen
orm

Z — ZO f“pd‘xml 5 y — yo fyw lsxml-

Auch fir die verschiedenen Felder des durchlaufenden Rohres kénnen so-
wohl Belastungen wie auch die Schalenstirken verschieden sein. Die Lastfunk-
tion ¢, gibt uns wieder die Verdnderlichkeit der Last lings der Erzeugenden
an. Die Funktionen f,, und /,,, durch welche die Verinderlichkeit der Be-
lastung in der Ringrichtung gekennzeichnet ist, entwickeln wir in bekannter

LI‘ big: lpoq

! 1 !

. ! ,

i

Mgl e ]
Petl s er B Hr+1

w

! | (

l m” | mp,7 |

Fig. 9.

Weise nach dem Fourier’schen Lehrsatz. Glieder der gleichen Harmonischen
der beiden Funktionen f,, und f,, konnen wir in einem Rechnungsgang be-
handeln. .

a) Die Lésung fiir die erste Harmonische.
Die Belastungen fiir den Fall der ersten Harmonischen lauten:
(14) _ Z=2Z,cospd” und Y = Y;singed,".

Der Lastfunktion 6,”” entspricht gemiB der Fig. 4 die Querkraftslinie 4,”” und
die Momentenlinie 8.”.

Setzen wir Z, = Y, — g,, dann ergibt sich aus der Gl. (14 a) der Fall des
durch sein Eigengewicht belasteten Rohres mit veridnderlicher Wandstarke,
deren Verdnderlichkeit jetzt durch die Lastfunktion 8, gekennzeichnet ist. Die
Gleichungen fiir die Belastungen lauten:

(142a) Z =g cospd,”, Y=g sinpd".

Setzen wir dagegen Y = 0, dann entspricht die in der Richtung der Normalen
wirkende Kraft

(14b) Z=27,¢c08¢

entweder einer antimetrischen Windbelastung oder auch der Wasserlast des
vollstindig wassergefiillten Rohres, Hierbei ist die Lastfunktion 6, = 1 zu
setzen, weil bei diesen beiden Belastungsfillen eine Verinderlichkeit lings x
nicht in Frage kommen kann. Wenn die Wasserfiilllung zugleich unter einem
hydrostatischen Druck steht, dann kommen zu der Belastung der Gl. (14 b)
noch drehsymmetrische Radialkrifte hinzu, die aber keinen EinfluB auf die
Kontinuitdt haben, da diese nur durch Ringkrifte aufgenommen werden.
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Den Belastungen der Gl. (14) entsprechen nach Gl. (2) oder (5) nach-
stehende innere Krafte

ay N, = —Za = — Z,acos pd,"”
(14¢) b) Ny, = —:(Y+ 22‘[;) dx = sin ¢ (Z, - K)Idx”"dx — —N,d,”,
N, = sing (Z,+ 1))
C) Ny = — ;i—g’%’dx = — coswg%ﬁ‘[dx”’ x = N, dx”.

Aus der Gl. (14 ¢) erkennen wir, daB die dem duleren Biegungsmoment wider-
stehenden Krifte N, von den cos ¢ abhingig, d.h. gemdB8 Fig. 10 proportional

, =2
M:] O-L

r "lllll"lll||HlIIIIi||||lllllllllllllllllllilllllllllllll 7 i I I -
', L pa-¢ . T 9o
[ — '
i ! : llIIlIIII!IIlllmmm.....‘ _ R
' WWWHWWWWM\} g Folx
’ ! | [

R Q= ™
. |
oy Kg—————-—=g % i 25

|' Gleitung ! | !

| Glissement ! s Smo oo - 7

! Glidin - -4
Jaz F o

e - 1 Gleitung

L A i | Glissement
= = ' Gliding

Fig. 11. Fig. 12.

dem Abstand von der neutralen Achse sind. Bei der ersten Harmonischen ist
also das Navier’sche Geradliniengesetz mathematisch streng giiltig, wéhrend
es bei dem schlanken Balken des Ingenieurwesens zwar sehr genaue Resultate
ergibt, aber immer nur eine Hypothese bleibts). Nach dieser Feststellung
konnen wir nun in einfacher Weise die verschiedenen Drehwinkel der Clapeyron-
schen Winkelgleichungen Gl. (12) aufstellen und daraus die Einspannungs-
momente ermitteln. Wir stellen zunichst die Gleichungen fiir die Winkel-
drehungen «’, «” und g bei Beriicksichtigung der Schubverzerrung auf. Die
Winkeldrehungen setzen sich zusammen aus dem Anteil der Biegung und aus

dem Anteil der Gleitung.
 =ap+ay, o =a+"ay, B =8+ B.

Unter dem Einflul der Stiitzmomente A’ = 1 und M” = 1 ergeben sich
nach Fig. 11 die Biegewinkel wie vor zu:

R AL " lrxl‘"dx i o . 1rx,x2
=l e ===

Hierbei ist 7, das Triagheitsmoment des Kreisrohres ], = = a® d, wobei bei Eigen-

3) Fr. Dischinger: Beitrag zur Theorie der Halbscheibe und des wandartigen
Balkens. Intern. Vereinigung fiir Briickenbau und Hochbau, Ziirich, 1932,
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gewichtsbelastung, wie oben schon dargelegt, d entsprechend der Lastfunktion
0, verinderlich sein kann. AuBer der Biegung miissen wir aber nun auch die
Gleitung beriicksichtigen. Infolge des Momentes M’ = 1 oder M” = 1 er-

gibt sich eine konstante Querkraft Q = % Diese Querkraft Q verteilt sich ge-

maB Gl. (14) iiber den Ringquerschnitt nach dem Gesetz N, = Nyg, Sing@.
Demnach
72 2
Q = 4ij¢p sinp adp = 4Nx,pnajsin2<p dp = naNy,,,
0 0

wobei N, der GroBtwert der Schubkraft in der neutralen Achse fiir ¢ = 90¢°,
Demnach ist N,, = —1—
e nal

! 2N, oL . .
Aus dem Gleitwinkel —_"¥% ergibt sich die zugehérige Durchbiegung zu

2 { x

47 = mj Da_x_’ wobei die(p Verzerrungssteifigkeit D,, = E d entsprechend
0 x

der Veréinderlichkweit von d im allgemeinen auch verinderlich ist. Der Dreh-

winkel infolge der Gleitung, der zu dem Biegungswinkel hinzuzuzihlen ist,

betrigt ég, da wir den Trager um dieses MaB zuriickdrehen miissen, damit er

wieder auf beiden Auflagern aufruht.
Demnach ergeben sich folgende Einheitsdrehwinkel:

, , . 1 (“x,2dx 2 J’l dx

(152) @t ey = FL EJ. " mal? ),D,.
" ” " 1 (x,2dx 2 J’ dx

(15b) @S+ Oy = Fj‘o EJ. T mal? ),D,,
' 1 L% 2 J’l dx

(i2s) o=+ P = T%jofjx “wal® ),D,,

In gleicher Weise werden auch die Drehwinkel ¢’, ¢” des durch Eigengewicht,
Wasser oder Wind belasteten freiaufliegenden Tragers ermittelt. Die gesamte
Belastung des Rohres durch Eigengewicht, Wasser oder Wind pro laufendem
Trager bezeichnen wir mit ¢ = ¢,6,””. Dieser Belastung entspricht gemaB
Fig. 12 wiederum eine Querkraftlinie ./ und eine Momentenlinie §,".

Die Drehwinkel infolge der Verbiegung befragen wiederum wie vor:

s/ ']
, 1
%:—ljsmx”dx w":—ljamx'dx
0

! EJ.' o EJe’
Hierzu kommen wieder die Einfliisse aus der Gleitung., Die Schubkraft in
der neutralen Faser betrigt nach Gl. (14b) N,,, = — N, ¢,””, demnach
4 "
, ]
(pé:-—g}é:——Q.Noj l)x dx .
, 0Hox
Wir erhalten also folgende Drehwinkel 7
y ) , 1 ‘*l x2 Jl’ dxm
(]63) (Pl—("Db-'-(JDg—T‘Om ij dx—2N0 Omdx
(16b) "= @b+ gy = ljlsm Mgy — 2N, r %" g
@ = Qs (Pg— 1 0 E,’x 0 0D¢x "

Abhandlungen 1V 16
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Fiir den Sonderfall konstanter Wandstirke und einer lings x unverinderlichen
Belastung g, vereinfachen sich die Gleichungen ganz wesentlich, weil wir die
Integration leicht durchfithren kénnen (s. hierzu auch die Gl. (12 a) und (11 a)).
Bei Beruckswhtlgung der I, = na*d, Dy, = Ed ergibt sich

bty el l 2 . {2 +6t12
(17} = =g Ea T nalEd " 3nadlEd
: / 2 2124
1 — _ _
(174} . P = 6naPEd  nalFd~ 6=a%l1Ed
— g =gt = DE r
(18) =9 = uF) T YU Ea

Wegen der Symmetrie des Triigers fillt bei den Drehwinkeln ¢’, ¢” der Ein-
fluB der Schubverzerrung heraus. Bei E1gengew1chtsbe1astung istg=2xmag,
fiir Wasserkraft dagegen ¢ = 7 a?-1,0.

Fiir antimetrischen Wind w = w, cos¢ ergibt sich:

12 Tj2

= 4] wcospadep = 4aw0jcos2<pdcp = zmaw.
0 0

Nachstehend werden nun fiir den Zwei- und Dreifeldtriger die Einspannungs-

momente ermittelt und der EinfluB der Schubverzerrung zahlenmiBig fest-

gestellt.’

a) Der Zweifeldtriger. I, = mly = ml.

Aus der kaelglmchung (12) erhalten wir das unbekannte Stiitz-
moment AM:

M(al"+a2)=—%—% .
[112+6a2' 1,2 4 6a ]_‘_ A
3zal Ed " 3za*LEd)l T 1247z a’
fiir 4, = mly, = m! folgt
(I(,-))- M=_"% H+m®) m _ gqol* (1+m*)ym ({[2a)° _ 7 (2a)?
, 8 Pm+6a® m+1 8 14m (L)“’ 1,5 (l>2 1,5°
' 2a/  m? 2a/ " m?

Hierbei glbt M das Einspannmoment bei Vernachlissigung der Schubverzerrung
-an, Fiir den Sonderfall /, = [, = 1 ergibt sich

_ 70! (/2a)*
(179) M= =8 (o +15

Hieraus erhalten wir fiir die verschiedenen Verhaltmsse der Trigerlinge [ zur
Tragerhohe 2a folgende Werte

Tabelle 1.

Fiir //2a = O 1 2 4 10 o |
M= 000 040 0,726 0012 0085 100 |M

Ermittelt man aus dem Emspannmoment der Gl (19 a) den Nullpunkt x, der
Querkraft, dann kommt man wieder auf den aus der Diff.-Gl. abgeleiteten Wert
x, der Gl. (9a).
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Die GI. (19) zeigt uns aber auch, daB bei ungleichen Feldern der Einfluf
der Schubverzerrung sehr stark anwichst. Z. B. ergibt sich fir /, = 0,5 [,

m= 0,5

3 ({j2a)? _ (l2a)
i — 2, Wia o (f2a)°
(190) 2 647" tRa 6 — M e+
Tabelle 2,
Fir 1f2¢a = 0 1 2 4 10 oo

M

M= 000 0143 0400 0,727 0833 1,00

In der Fig. 13 ist der Verlaqf,der Momente fiir die verschiedenen Verhiltnisse
I/2a dargestellt. Fiir /24> 0 fehlt jede Kontinuitiit, und fiir //2a» o ergibt .
sich das Einspannmoment des schlanken Balkens bei Vernachlissigung der

Schubverzerrung.

Fig. 14.

B) Der symmetrische Dreifeldtriger. I, = ml, = ml.
Das statisch unbestimmte Einspannmoment folgt aus der Winkelgleichung

" ’ ” ’ '391"+ 992’
M o M = — - y M = — " Q3
(al + 2)+ 48 %1 T2 o, "I'a? +[))2
’ v l13+l23 _ 31 +m3

AR L7 vty A [ TPy P L

# / _ L4 64 L2+ 0a® | L*—12a° *(Bm+2m?) + 1247
“ +“2+ﬁ—§§5m+3na3zzfd+6naszgfdf‘ bmma’lEd
: 4 3 2 3 2 — . 2
oy m=-%o_LQtm)m __ gl ltm*  (Ra* 5 (20
4 *(Bm+m?)+124* 4 342m (2a)+ (U2a) +
' % 3m+2m? _ 3m+2m*

Hierbei ist M wiederum das Einspannmoment bei Vernachlissigung der Schub-
verzerrung. Fiir den Sonderfall /, = /, = 1 ergibt sich

P (R2a? o ([2a)°

(202} M = 10 (2a)2+ 06 7 (/22)* 06" |

Der Vergleich mit der Gl. (19b) zeigt, daB beim Dreifeldtriger der EinfluBl
der Schubverzerrung wesentlich geringer ist (gekennzeichnet durch die Zahl 0,6
gegeniiber 1,5). Es wird . S
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Tabelle 3.

Fiir //2a = 0 1 2 4 10 oo
M = 0000 0625 0870 0965 0994 100 |M

Der EinfluB der Schubverzerrung wichst jedoch, wie die G, (20) zeigt, sehr
rasch an, wenn die Endfelder kleiner sind als das Mittelfeld. Setzt man/, = 0,5 /,
=: 0,5 /, dann ist m = 0,5 und es ergibt sich

g, p_ (202

(20b) M= =15 P tRa £ 15
: Tabelle 4.
Fir /j2a = 0 1 2 4 10 oo

M = 0000 0400 0726 0912 0985 100 |#

Der Verlauf der Momente ist in der Fig. 14 dargestellt.

In gleicher Weise lassen sich auch die Einspannmomente fiir den Vier-
oder Fiinffeldtrager ermitteln, in diesem Falle sind jedoch zwei unbekannte
Einspannmomente vorhanden und infolgedessen miissen wir die Winkel-
gleichungen zweimal ansetzen.

») Von Interesse ist vielleicht ein Vergleich mit einem eisernen /-Triger,
dessen Trigheitsmoment wir mit / bezeichnen. Es ergibt sich wiederum:

Q S«

Der Gleitwinkel an der neutralen Faser ergibt sich zu y,, = G 7d’ wobei

S, das statische Moment des halben Triagerquerschnittes in Bezug auf die neu-
trale Achse und 4 die Stegstirke bedeutet. Demnach ergibt sich fiir das Ein-
spannungsmoment M” = 1 bezw. M” = 1, denen die Querkraft ¢ = 1/1 ent-
spricht:
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Fiir einen Zweifeldtriger mit gleichen Offnungen erhalten wir hieraus das
nachstehende Einspannungsmoment:
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Fiir die Zahlenrechnung betrachten wir einen 1P -Triger mit der Hohe
h=30cm, I, = 25760 cmt, S, = 959 cm?, d = 1,2 cm, damit ist % = %
= 800 ecm? = /2 0,80, Fiir das Verhiltnis des Elastizititsmoduls zum Gleit-
modul setzen wir %(2)0—(%%0 = 2,3 und erhalten damit
(21a) M= Y

UA)* + 6,15 °
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Tabelle 5.
Fiir /ja = 0 1 3 4 10 oo
ist M= 0000 0140 0394 0,722 0940 1,000 M

Wir ersehen also bei einem Vergleich mit der Tabelle 1, daB bei einem Breit-
flanschtriager der EinfluB der Schubverzerrungen auf die Einspannungsmomente
des durchlaufenden Trigers wesentlich grofier ist, als bei einem Schalentriger
in Form einer Kreiszylinderschale. Nur ist zu beriicksichtigen, daB bei den
Schalentrigern meistens das Verhiltnis von Spannweite zu Trigerhohe wesent-
lich geringer ist als bei einem IP-Triger.

b) Die Ldsung fiir die héheren Harmonischen.
Den Belastungen nach den hoheren Harmonischen (2> 1)
Z=2Z,c08npd", Y = ¥,sinned,” (Fig. 15)

entspricht, wie die nachstehenden Integrationen zeigen, keine tatsichliche
Vertikallast, denn es ergibt sich
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Die gesamte vertikale Last wird also von der ersten Harmonischen allein ge-
tragen. Die Glieder der hoheren Harmonischen geben also nur den Einfluf an,
der sich aus der Umlagerung der Last entsprechend den Gesetzen der ersten
Harmonischen ergibt. Aus der Gl. (9) erkennen wir ohne weiteres, daB bei
den héheren Harmonischen, d. h. fiir die Lastumlagerung, der EinfluB der Schub-
verzerrungen infolge des Faktors n? gegeniiber den Verkriimmungen sehr klein
wird.

Tabelle 6.
Fiir //2a = 0 1 2 3 4 10 oo
ge=1 x, = 0500 0550 0591 0,608 0,614 0,623 0,625
n—=2 x, = 0500 0591 0,614 0,620 0,622 0,6245 0,625 !
p=13 x, = 0500 0,608 0,620 0,6228 0,6245 0,625 0,025
n=1 M= 0000 0400 0,726 0860 0912 0,985 1,000 _
n=>2 M= 0000 0726 0912 0960 0976 0,996 1,000 M
n=3 M= 0000 0860 0960 0982 0996 1,000 1,000

In der vorstehenden Tabelle 6 sind fiir die drei ersten Harmonihschen
n — 1 bis 3 bei 8,/ = 1 die Werte der Querkraftsnullstelle x, fiir den sym-
metrischen Zweifeldtriger fiir eine isotrope Schale angegeben. Fiir D, = D,,
ergibt sich aus der Gl. (9)
_ L 5n° (7/20)2 + 6
Y= g (2a)t + 15
und daraus ergibt sich nach der Fig. 6 die GréBe des Einspannungsmomentes zu
1* 8xy—41 Mg,fo—u
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hierbei ist M das Moment des schlanken Balkens bei Vernachlissigung der

Xy —

Schubverzerrung. Der Faktor L gibt die Abminderung des Einspan-

nungsmomentes infolge der Schubverzerrung an und demgemiB mufB} er fiir

¥y = %l gleich 1 werden.

Die Tabelle zeigt, daB bei den Harmonischen = 2.der EinfluB der Schubver-
zerrung schon sehr gering wird. Die sich gemiB der obigen Tabelle ergebenden
Einspannungsmomente M weichen von denen des schlanken Balkens ohne
Schubverzerrung M bei //2a > 2,0 nur noch um Prozente ab. Der Begriff des
Biegungsmomentes bezw. des Einspannungsmomentes muB bei den hdheren

N /
A /
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Fig. 15. Fig. 16. Fig. 17.
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Harmonischen noch etwas genauer definiert werden, denn wir haben oben schon
gesehen, daBl den hoheren Harmonischen gar keine hohere Last entspricht. Je-
doch bilden bei diesen héheren Harmonischen, wie ich schon im Hdb.f. E. B.
gezeigt habe, je zwei sich gegeniiber liegende Sektoren nach Fig. 16 einen ge-
meinsamen Triger, dessen neutrale Achse in der Sehne dieser Sektoren liegt.
Diesen beiden Sektoren entspricht aber eine senkrechte Last und damit auch ein
Biegungsmoment. Der ganze Ring besteht aus # derartigen flachen Trigern,
deren senkrecht zusammengefaBte Lasten sich gegenseitig aufheben. Da diese
flachen Kreissegmenttriger nur eine geringe Konstruktionshéhe besitzen, muB,
wie auch die Gl. (9) zeigt, der EinfluB der Schubverzerrung auf die Ein-
spannungsmomente klein werden.

Selbstverstindlich lassen sich auch fiir den Fall der héheren Harmonischen
die obigen Winkelgleichungen fiir die Ermittlung der Einspannungsmomente
bei mehreren Feldern aufstellen. Der Raumersparnis wegen will ich jedoch
darauf verzichten, insbesondere da wir aus den Diff.-Gl. schon die notwendigen
Riickschliisse ziehen kénnen, die nachstehend nochmals kurz zusammengefaBt
werden.

" Durch die erste Harmonische wird die gesamte Last der Kreiszylinderschale
getragen, Bei ihr ergibt sich eine wesentliche Verringerung der Einspannungs-
momente infolge der Schubverzerrung. Diese Verringerung ist bei der Kreis-
zylinderschale aber kleiner wie bei einem gewoéhnlichen IP-Trager. Durch die
héheren Harmonischen wird im Ringquerschnitt nur eine Umlagerung der Last
gegeniiber der ersten Harmonischen bewirkt. Je zwei gegeniiberliegende Sek-
toren mit den Offnungswinkeln z/2 bilden einen gemeinsamen flachen Triger,
die Sehne der beiden Kreissegmente bildet hierbei die neutrale Achse. Ins-
gesamt ergeben sich » derartige Triger, deren senkrechte Gesamtlast jedoch
gleich Null ist. Die Kontinuititsverhialtnisse bei diesen héheren Harmonischen
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liegen schon sehr nahe bei denen des schlanken Balkens ohne Schubverzerrung,
und zwar umso mehr, je gréBer die Spannweite [ im Verhiltnis zur Triger-
hohe 24 und je hoher die Harmonische ist. Wir wollen nun nachstehend die
gewonnenen Erkenntnisse noch auf die freitragenden Zeiss-Dywidag-Schalea-
décher anwenden. '

7. Die Kontinuitdtsverhidltnisse bei den freitragenden
Zeiss-Dywidag-Schalentonnen. :

Fir die am Kimpfer unterstiitzten Kreiszylinderschalen, in denen im
wesentlichen ein Membranspannungszustand wirkt, ist, wie ich schon oben
auseinandergesetzt habe, entsprechend der Fig. 7 a der ganze Rohrdurchmesser
als Tragerhohe maBgebend. Es gelten hierfiir also die im Abschnitt 6 ermittelten
Formeln und Tabellen, wobei die erste Harmonische fiir die Kontinuititsver-
héltnisse ausschlaggebend ist. Bei einer freitragenden Tonne mit Randgliedern
ist dagegen nicht die erste Harmonische, sondern die zweite oder dritte fiir die
Kontinuititsverhiltnisse maBgebend und infolgedessen ergeben sich fiir diese
durchlaufenden Tonnen fast die gleichen Kontinuititsverhaltnisse wie bei den
schlanken Balken. Eine strenge Losung unter Beriicksichtigung der Biegungs-
momente in der Gewdlberichtung ist nicht méglich, denn schon bei der frei-
aufliegenden Tonne ergeben sich sehr umfangreiche und schwierige Entwick-
lungen. Das ist aber auch gar nicht notwendig, weil die Verteilung der Biegungs-
momente in der Gewdlberichtung auf die Kontinuitidtsverhiltnisse annihernd -
ohne jeden EinfluB ist. Die GroBe der Einspannungsmomente ist vor allem
abhingig von dem Verhiltnis der Schubkrifte in der neutralen Achse zu den
die dulleren Biegungsmomente aufnehmenden N.-Kriften. Fiir eine derartige
freitragende, iiber mehrere Felder durchlaufende Schalentonne ergeben sich
N.-Krifte gemiB der Fig. 17. Die neutrale Achse liegt hierbei je nach der
gewihlten Randtrigerhéhe etwas iliber oder unter dem Kiampfer. Das Span-
nungsdiagramm der N,-Krifte ist also ganz dhnlich dem einer hoheren Har-
monischen. Diese Schalendicher werden im allgemeinen mit Offnungswinkeln
von 2.30° bis 2.45 ¢ ausgefiihrt, so daBl der Verlauf der N,-Krifte dem der Har-
monischen n = 2 bis # = 3 entspricht. Die Einspannungsmomente werden
demnach bei einem Verhiltnis //2 @ = 2 nur bis hochstens 10 oo vermindert. Da
bei den negativen Stiitzmomenten die Schale auf Zug beansprucht wird, ist da-
durch eine etwas gréBere Sicherheit gegeniiber Haarrissen gegeben. Das ist
umso mehr wiinschenswert, weil zu diesen Zugspannungen aus den negativen
Momenten noch die Zugspannungen aus den Schubkriften N,, hinzukommen.
An den Stellen der groBten Feldmomente ergeben sich bei einer Vernach-
lissigung der Schubverzerrung etwas zu kleine Biegungsmomente, Fiir diese
positiven Biegungsmomente ist der Fehler jedoch ohne jede Bedeutung. AuBer-
dem kann er durch geringe Zulagen an Zugeisen entsprechend den obigen
Formeln und Tabellenwerten leicht ausgeglichen werden.

Zusammenfassung.

Bei der Theorie des durchlaufenden schlanken Balkens werden die Ein-
fliissse der Schubverzerrung auf die Grofie der Einspannungsmomente bewuBt
als sehr klein vernachlissigt. Bei dem durchlaufenden ausgesteiften Rohr oder
den zylindrischen Zeiss-Dywidag-Schalen darf man diese Einfliisse ohne wei-
teres nicht vernachldssigen. In der vorstehenden Arbeit wird ein Verfahren
zur Ermittlung dieser Einfliisse in einer ganz allgemeinen Form entwickelt
und die Einfliisse werden an Zahlenbeispielen nachgewiesen. Hierbei wird
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auch gezeigt, daB in den Grenzfillen sehr kleiner Trigerspannweiten im Ver-
hiltnis zu den Rohrdurchmessern die Kontinuititserscheinungen ganz wegfallen.

Résumé,

Dans la théorie de la poutre continue élancée on néglige les influences
des déformations dues aux efforts tranchants sur la grandeur des moments
d’encastrement car on sait que ces influences sont tres petites. Dans le cas
du tuyau continu renforcé ou dans le cas des voiles cylindriques Zeiss-Dywidag
on ne peut pas négliger sans autre ces influences. Dans le présent travail
Vauteur développe un procédé, dans une forme tout-d-fait générale, pour la
détermination de ces influences et il montre ces influences par quelques exemples
numériques. L’auteur démontre encore que dans le cas limite de portées trés
faibles par rapport au diamgtre des tuyaux, V'effet de continuité disparait
complétement. '

Summary.

The theory of slender continuous beams purposely neglects the influences
of deformation due to shear, since they are very small. These influences,
however, cannot be neglected in the case of continuous stiffened tubes or
cylindrical Zeiss-Dywidag shells. In the treatise following, a general proce-

ure for determining these influences is given and the influences themselves.
are shown by examples. It is also shown that continuity conditions entirely
disappear for boundary cases of small spans in relation to the tube diameter.
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