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DAS DURCHLAUFENDE AUSGESTEIFTE ZYLINDRISCHE
ROHR ODER ZEISS-DYWIDAG-DACH.

LE TUYAU CONTINU DE FORME CYLINDRIQUE RENDU RIGIDE
ET LE TOIT ZEISS-DYW1DAG.

THE CONTINUOUS STIFFENED CYLINDRICAL TUBE AND
THE ZEISS-DYWIDAG ROOF.

Prof. Dr. F. DISCHINGER, Berlin-Charlottenburg.

Das zylindrische Rohr, bei dem wir eine ganz beliebige Querschnittsform
voraussetzen, soll sich durchlaufend über eine Anzahl von Feldern erstrecken.
An sämtlichen Auflagerpunkten muß es zur Einführung der Auflagerreaktion
durch Scheiben ausgesteift sein. Die inneren Kräfte des zylindrischen Rohres
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ergeben sich für den Membranspannungszustand bekanntlich aus den
Gleichgewichtsbedingungen des Flächenelementes gegenüber Verschieben in den drei
Richtungen des Koordinatensystems. Die Komponente der an einem Flächenelement

in Richtung der Gewölbetangente oder der Normalen angreifenden
Kräfte, die entweder Massenkräfte oder auch äußere Belastungen sein können,
werden mit Y und Z bezeichnet. Ihr Verlaut in der Gewölberichtung ist ganz
beliebig, in Richtung der Erzeugenden dagegen nehmen wir sie vorerst als
konstant an, jedoch wollen wir später die Aufgabe in dieser Hinsicht noch erweitern.
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Aus den drei Gleichgewichtsbedingungen erhalten wir: s. hierzu1)

ZRdcpdx + Ntpdxd<p 0 Nv — RZ

(l) YRd<pdx+ dN^dx-i- 8N,pXRd<p 0 ^^- + -^- + Y 0

dNxRd<p + 6Nvxdx 0 ^ + 4^ 0

dx Reep

lNx_+ dNvX
dx Rdcp

hieraus folgt:
Nv —ZR

(2) Nxv lK+|^WC' =-*"»+<:,

Nx =-\d^-dx+C2 =YNo-*d-+ct
wobei wir zur Abkürzung gesetzt haben:

snv eNtp
N'=Y+r£ Und N*=R6J'

Cx und C2 sind Funktionen von cp. Bei den nachstehenden Untersuchungen
wollen wir eine anisotrope Schale betrachten, bei der die Schale durch Rippen
sowohl in Richtung des Gewölbes, wie auch der Erzeugenden versteift ist.
Dieser Fall der Anisotropie wird auch mit Orthotropie bezeichnet. Der
allgemeinste Fall der Anisotropie, bei welchem die Rippen unter beliebigen
Schrägen verlaufen, spielt im Bauwesen keine Rolle, so daß wir ihn außer Acht
lassen können. Die Dehnungssteifigkeiten der Schale in den Richtungen cp

und x bezeichnen wir mit Dv und Dx, die Verzerrungssteifigkeit mit Dxtp. Damit

ergeben sich bei Vernachlässigung der für den Eisenbeton unwesentlichen
Querkontraktion die nachstehenden Zusammenhänge zwischen den inneren
Kräften und den Verschiebungen (s. Literaturangabe unter 1 d und 1 f)

(wV' + ~n

(3a) Nx Dxu wobei wiederum u' ^—— und u —

Nxv=?f{X + v)
Rdcp dx

Streng genommen gelten diese Gleichungen nur bei einer zur Mittelfläche
symmetrischen Ausbildung der Rippen. Bei unsymmetrischer Ausbildung der
Rippen, wie sie vorhanden wäre, wenn die Rippen nur auf der Unterseite der
Schale angeordnet wären, würden noch Zusatzglieder hinzutreten, die jedoch
für uns ohne Bedeutung sind, da wir uns nur mit dem Membranspannungs-
zustand beschäftigen. Aus der Gl. (3 a) erhalten wir die Verschiebungen als
Funktionen der inneren Kräfte

a) Fr. Dischinger: Handbuch für E. B., 3. Aufl., Bd. 12, 1928.
b) K. Miesel: Über die Festigkeit von Kreiszylinderschalen. Ing. Arch. 1930.
c) U. Finsterwalder: Dissertation München 1930 und Ing. Arch. 1932.
d) W. Flügge: Die Stabilität der Kreiszylinderschale. Ing. Arch. 1932.
e) W. Flügge: Statik und Dynamik der Schalen. Jul. Springer, 1934.
f) Fr. Dischinger: Die strenge Theorie der Kreiszylinderschale. Beton und Eisen

1935, Heft 16—18.
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Nxdx + C3

(3b) v — J u-dx + 1j-]NvXdx+ C

w= —v-R + -±-(NvR)
u tp

Wir erhalten demnach für die inneren Kräfte und Verschiebungen die
nachstehenden Gleichungen in Abhängigkeit von N0. Durch N0 ist das Gesetz der
Spannungsverteilung sowohl bezüglich der Schubkräfte Nx, wie auch der
Biegungskräfte Nx gekennzeichnet.

(4)

Nv RZ
Nvx -xN0 + Cx

Nx
X2

+ — N0--x <V + c2

u
1 lx\r-^1-6^-

X2

2
¦Cx' + x C. ¦•]

i r jc4 x3 x2 l r v2 i

' §Ss^--^~-*Tw-'v^]*^[^'-'^*c']-^
1. Das an den Binderscheiben beliebig, aber auf beiden

Seiten gleichmäßig eingespannte Dach.
Die Konstanten Ct — C, ergeben sich für das an den Binderscheiben

freiaufliegende bezw. volleingespannte Dach wie folgt. Hierbei setzen wir starre
Binderscheiben voraus, so daß die Verschiebungen v der Schale an den
Binderscheiben zu Null werden.

a) Für das freiaufliegende Dach: b) Für das volleingespannte Dach:
a) für x=0 ist A^=0 also C2=0 a) für x=0 ist u 0 also C3 0

ß) für x-0 ist v=0 also C4 0, C0 0 ß) für x=0 ist v=0 also Q 0, C0 0

y) für x \ ist Nx-0 also Ci'=+N0-— y) für *=1 ist u=0 also No—-Cx'— + C2/=0

d) für x=\ ist v 0 also 6) für *=1 ist v 0 also

/4 /3 /4 /3 l2
-A/o"24 + yCr' + /C3- 0 _A/0»_+cI"^-CJ-y 0

C,* - N0"^ Hieraus C,' N0" ^, C,~ A/0" y.
Durch die Bedingung v 0 ist die Schale an den Binderscheiben unverschieblich

festgelegt. Aus der obigen Konstantenbestimmung ersehen wir, daß uns
keine Konstante mehr zur Verfügung steht, um auch die ^-Verschiebung zu Null
zu machen. Dadurch ergibt sich theoretisch zwischen der Schale und den
Binderscheiben eine klaffende Fuge, deren Schließung Biegungsmomente in
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Richtung der Erzeugenden auslöst, die vom Rand aus nach stark gedämpften
Schwingungen verlaufen, so daß schon in ganz geringer Entfernung von den
Binderscheiben der reine Membranspannungszustand wieder vorhanden ist (s.
Literaturangabe unter lb). Bei der eingespannten Tonne ist an den
Binderscheiben u 0, bei der freiaufliegenden Tonne dagegen ist dies nicht der
Fall, hier ist an den Scheiben ein Wert u vorhanden und zwar als Funktion
von cp. In diesem Fall müssen wir also voraussetzen, daß die Binderscheibe in
ihrer Fläche zwar vollständig steif ist, aber in der dazu senkrechten Richtung
als Platte so verbiegbar ist, daß sie sich diesen veränderlichen Werten von u
anpassen kann.

Wir erhalten demnach für die beiden Fälle folgende Gleichungen

a) Das freiaufliegende Dach: b) Das volleingespannte Dach:

Nv =-ZR Nv =-ZR

2x-l 2x-l
NvX= y-Wo Nvx- 2— N0

x2-lx... hr 6x2-6lx + l2
Nx + —^—N0- Nx j2 No

4x3-6lx2 + l3 N0- _2x3-3lx2 + l2x AV
* ~+ 12 ~D~X

U ~~ 12 Dx

xi-2lx3 + l3x N0" x2-lx2N0 _ xi-2lx3 + l2x2 N0" x2-lx 2N0
V ~ 24 ~tTx 2T ~D^

V ~ 24 Dx 2 Dvx

x*-2lx*+l»xN<;"R x2-lx2Ns>'R ZR2 _xi-2lx3+l2x2 Nq"R x2-lx2N0-R ZR2
W ~+ 24 Dx

+
2 Dvx Dv'

W ~ 25 Dx
+

2 DrpX Dv '

Die Glieder, die von der Dehnungssteifigkeit Dx abhängig sind, zeigen den
Einfluß der reinen Balkenbiegung auf die Verschiebungen. Die hierbei
auftretenden Funktionen fx sind sowohl bei der freiaufliegenden wie auch bei der
eingespannten Tonne nichts anderes wie die Biegelinien eines freiaufliegenden
bezw. eines eingespannten Balkens und deren Ableitungen. Die Funktion fx,
die bei den Gliedern mit Schubverzerrung (Dxq>) vorhanden ist, entspricht der
zweiten Ableitung der Biegelinie eines freiaufliegenden Balkens. Die bei den
Gliedern mit Gewölbewirkung (Dv) auftretende Funktion fx ist gleich 1, sie
entspricht der oben als konstant angenommenen Lastverteilung längs der
Erzeugenden.

Da die Spannungsgesetze bei dem freiaufliegenden wie auch bei dem
volleingespannten Dach sowohl bezüglich der Schubkräfte (gekennzeichnet durch
A^o) wie auch der AVKräfte (gekennzeichnet durch NI) genau die gleichen sind,
können wir die beiden Lastfälle ohne weiteres addieren und wir erhalten damit
die inneren Kräfte und Verschiebungen eines an den Bindern teilweise, aber
symmetrisch eingespannten Rohres oder Daches. Anstelle der Biegelinien des
freiaufliegenden bezw. volleingespannten Balkens und deren Ableitungen
müssen wir nunmehr bei den von Dx abhängigen Gliedern die Biegelinien des
beliebig, aber symmetrisch eingespannten Balkens bezw. die zugehörigen
Ableitungen einführen, die wir mit dx, 6/ bis dx"" bezeichnen. Hierbei ist dx""
die Lastfunktion längs der Erzeugenden, für die wir oben die Voraussetzung
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gemacht haben, daß sie konstant sein soll. Die bei den Gliedern mit Schubverzerrung

(Dx) auftretende Funktion fx entspricht dagegen der zweiten Ableitung
der Biegelinie des freiaufliegenden Balkens. Wir bezeichnen sie mit <5.t0". Die
bei den Gliedern mit Gewölbewirkung (Dv) auftretende Funktion fx entspricht
der Lastfunktion, die wir sowohl mit b"" wie mit öx0"" bezeichnen können
(Fig. 4).

Wir erhalten demnach für das beliebig, aber symmetrisch eingespannte
Rohr mit den Belastungen Z — Z0 dx"", Y Y0 öx"" die nachstehenden sehr
einfachen Gleichungen für die inneren Kräfte und Verschiebungen.

(5)

Nv -ZR -Z0RÖx"

NpX= -N0dx"

u
No
-DXÖX

N0- 2Nq
oxo

Nx =+N0-6x"

wobei N0 Y+-^-'p

No"R„ 2N0-R
Dvx

ZR2

Rdcp

Nxv und
Faktoren der

DX(p und Dv hervorgeht.

Die Verschiebungen sind also Funktionen der
Biegungskräfte Nx, der Schubkräfte NXm und der
Gewölbekräfte Nv, wie aus den drei
Dehnungssteifigkeiten D

Diese Gleichungen gelten aber nicht nur für
eine längs x konstante Lastfunktion öx"", sondern
auch für eine ganz beliebige, wie man sich leicht
durch Einsetzen der obigen Werte in die Diff.-
Gl. (1) und (3 a) überzeugen kann. Wie aus den
Entwicklungen ohne weiteres hervorgeht, ist
dagegen gleiche Schalenstärke vorausgesetzt, die
Veränderlichkeit der Belastungen bezieht sich demnach

nur auf die äußeren Belastungen. Durch die
Gl. (5) sind demnach die inneren Kräfte und
Verschiebungen eines beliebig, aber symmetrisch
eingespannten Rohres bei beliebigen mit cp und x
veränderlichen Belastungen

plmnnrmmr-»
¦umuiuuiimmi"

pk.
"^uiaumiiiiigijjiiiiimuu*^'

Orn

-tx
-dir

Fig. 4.

(6) Znfitp "x Y= Ynf2tp l gegeben.

Wir gehen nun zu dem wichtigeren Fall über, daß die Tonne nur einseitig
eingespannt ist.

2. Das einseitig eingespannte Dach.
Wir gehen hierbei wiederum von den Gl. (4) aus, bei denen wir vorausgesetzt

haben, daß die Lastfunktion dx"" eine konstante Größe ist. Die
Konstanten ergeben sich jetzt aus den nachstehenden

a) für x 0 ist v 0 also C4 0 und C0 =[0
ß) für x 0 ist u 0 also C3 0

/2
y) fürx= 1 ist Nx 0 also yAV-/C,*+C2 0
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'tpX ¦

l2 /4 l3Aus y folgt -C2*— A'o" — -Cx"—- wir setzen diesen Wert in 6 ein.

/4 /3 ß 13 n r /2 1

(7) U--7V 21 N/- ic-^^C
Damit haben wir die Diff.-Gl. gefunden, aus welcher wir die unbekannte Funktion

d in Abhängigkeit von N0 ermitteln müssen. Durch den Ansatz:

(8) CL (N0 + U)^l
können wir die Diff.-Gl. noch weiter vereinfachen und den Wert AY" beseitigen.
Wir erhalten damit folgende Diff.-Gl.:

(7a) f-f 6 Dx - 6 Dx N

oder ausführlich geschrieben

Hh\ d 8U\ f
6 D*

1

6 D*
K ' RdcpKRdcp) hl2Dvx + 5l2DvX

N0.

Infolge der Veränderlichkeit von R ist eine allgemeine Lösung dieser Diff.-Gl.
unmöglich. Wie im folgenden gezeigt wird, scheint eine Lösung nur für die
besonderen Fälle der Kreiszylinderschale und der Cykloidenschale möglich zu
sein. Für die im Bauwesen für die Konstruktion der Zeiss-Dywidag-Schalendächer

sehr oft benutzten elliptischen Querschnittslinien, die infolge ihrer starken
Überhöhung gegenüber der Seillinie eine ausgezeichnete Trägerwirkung von
Binderscheibe zu Binderscheibe besitzen, erscheint eine Lösung der Diff.-Gl.
infolge der komplizierten Zusammenhänge zwischen dem Krümmungsradius R
und dem Winkel cp nicht möglich zu sein. Die nachstehend für die Kreiszylinderschale

gegebene Lösung gestattet es uns aber auch, Rückschlüsse auf die
Wirkungsweise dieser Dachformen zu machen.

3. Die Lösung der Differentialgleichung für die durch
Eigengewicht belastete Zykloidenschale.

Die Zykloidenschale ist für die Schalenbauweise von Bedeutung, weil sie
ebenso wie die flache Ellipse gegenüber der Seillinie eine starke Überhöhung
aufweist und deshalb eine sehr gute Trägerwirkung besitzt (siehe Fig. 5).
Wir betrachten eine Schale konstanter Wandstärke und gleichen
Flächengewichtes. Für die Zykloide ist:

R —R0cos<p, Z gcos<p, Y — gsm<p,
demnach

SN
Nv —gRcoscp —gR0cos2(p, N0 Y+ —-^- 3^sin9?.

Rdcp
Die Lösung der Diff.-Gl. (7 b) ist gegeben durch den Ansatz /„, % g sin cp.

Hiermit ergibt sich
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df _
1 8fv

Rd cp Ro COS cp dcp
und

Rd<p\Rdcp! /?0c<

3*U l
-+-

COS 9? \dcp2 R0COS<p R0 COS cp d<p

d

s'ny iM _J_ &+te §j*
R0COS<p\d<p2

' S<P
d<p

für fv *gs'm<p ist ^_(|^) ^-Ls-(_x^siii?, + ^siiiP) 0

und damit geht die Diff.-Gl. (7 b) in eine gewöhnliche Gleichung über.

fv 12C7L ~ KTirT-^o» /v x£siri99 ^
'$>* 5/»flipA;

Damit ergibt sich nach der Gl. (8)

Cx =(n0-^No)^1=No^
aus der Gl. (4) folgt dann

Nvx =—xN0 + C1 N0 [^ — xj,

d. h. die Schubkräfte werden in der Trägermitte für x 1/2 zu Null. Daraus
folgt, daß bei der einseitig eingespannten Zykloidentonne tatsächlich gar keine

Cycloide
Hx Cycloide""" Cycloid,

Seillinie
<j> Ligne funiculaire

Funicular line

Fig. 5.

Einspannung vorhanden ist, bei dem durchlaufenden Zykloidenrohr arbeiten
demnach die einzelnen Felder wie freiaufliegende Träger, ohne sich gegenseitig

durch Einspannungsmomente zu beeinflussen. Dieses überraschende
Resultat hätten wir schon aus den Gl. (4) ableiten können. Es war N0 3g sin cp,

dNü _ 3gcos<p _ 3_g

Rdcp ^~ Rcoscp
~~

R0
für Nx eine geradlinige Spannungsverteilung, bei der jedoch die Kräfte Nx
unabhängig von cp, also für den gesamten Querschnitt konstant sind (siehe
Fig. 5) und in gleicher Weise sind auch die «-Verschiebungen für den ganzen
Querschnitt von gleicher Größe. Daraus folgt aber, daß Gewölbequerschnitte,
die vor der Belastung in einer senkrechten Ebene lagen, dies auch nach der
Belastung noch sind. Infolgedessen ergeben sich an den Binderscheiben keine
Verdrehungen und deshalb können auch keine Einspannungsmomente
entstehen. Voraussetzung für dieses merkwürdige Verhalten der durchlaufenden
Zykloidenschale ist naturgemäß, daß der Membranspannungszustand erhalten
bleibt und nicht durch die Randbedingungen wesentlich gestört wird. Die

damit wird AY Da No konstant ist, ergibt sich
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Randbalken bezw. die Auflagerkonstruktion müssen demnach die gleichen
«-Verschiebungen aufweisen. In den Randgliedern entstehen aber parabelförmig
verlaufende Zugkräfte, die den Druckkräften Nx der Schale das Gleichgewicht
halten und infolgedessen können wir die obige Bedingung bezüglich der
«-Verschiebung in den Randgliedern nur dann erfüllen, wenn wir in diesen durch
eine Vorspannung parabelförmig verlaufende Druckkräfte erzeugen. Ein
derartiger vorgespannter Zykloiden-Träger wird demnach nur Durchbiegungen
infolge der Schubverzerrung aufweisen. Wenn diese Maßnahme nicht
durchgeführt wird, dann ergeben sich wesentliche Randstörungen, die mit
Biegungsmomenten in der Schale verbunden sind, und durch die bei der durchlaufenden
Tonne eine gewisse, ihrer Größe aber nicht festzustellende Kontinuitätswirkung
erzeugt wird. Die für das Zykloidendach von gleichbleibender Wandstärke bei
Eigengewichtsbelastung festgestellte Tatsache des Fehlens einer Kontinuitätswirkung

gilt naturgemäß nur für Eigengewichtsbelastung, für Wind und Schnee
ist diese vorhanden, jedoch ist für diesen Fall die Auflösung der Diff.-Gl. nicht
möglich.

4. Die Lösung der Differentialgleichungen für die in der
Ringrichtung beliebig belastete Kreiszylinderschale.

Entsprechend den Voraussetzungen für die Ableitung der Diff.-Gl. (7),
setzen wir auch hier voraus, daß die Lastfunktion 6X"" konstant ist. In der
Ringrichtung dagegen können die Belastungen Y und Z ganz beliebig sein. Jede
dieser mit cp veränderlichen Belastungen Z und Y entwickeln wir in einer
Fourierreihe. Die Fourier-Glieder von Z und Y, die der gleichen Harmonischen
angehören, können wir in einem Rechnungsgang zusammenfassen. Diese seien
Z Zncosncp, Y Ynsmncp. Daraus ergibt sich nach den Gl. (2)

d N
Nv —Za — Zna cos ncp, N' — ——^ nZn sin ncp und damit wird

adcp

N0 Y + Np sin ncp(Y„ + nZ„) bezw.

d2Nv _ _n^
a2d2cp a2

Wir setzen diese Werte in die Diff.-Gl. (7) ein und erhalten

N°"=y¥^ —^s'mn<p(Yn + nZn).

— s\n nq>(Yn + nZ,n,[a2 +5l2Dvx r-£_r üikCl 5 C,5l*Dvx-
Wir erkennen sofort, daß die Diff.-Gl. durch den Ansatz

C, sin ncp(Y„ + nZn)xa N0x0

erfüllt wird, wobei die Größe von d durch den Wert x x0 gekennzeichnet
ist. Aus Cx ergibt sich

n2
C,"t — —^ sin n cp (Yn + Zn) Xo.

Setzt man die gefundenen Werte von Cx und d" in die Diff.-Gl. ein und löst
nach Xo auf, dann erhält man nachstehende Gleichung für xa

_ y-yh^, _ y-ii-h^
8 «¦(t)'+6#l ~*°i^'+^'\ a 1 DvX \2 al Dvx



Das zylindrische Rohr und das Zeiss-Dywidag-Dach 235

Aus der Gl. (2) N,pX — N0 + C, N0 (xa — x) erkennen wir, daß x0 die
Stelle bezeichnet, an der die Schubkräfte und damit die Querkraft zu Null wird.
Bei großen Trägerspannweiten / im Verhältnis zu den Krümmungsradien a
können die zweiten Glieder des Zählers und des Nenners gegenüber den ersten
vernachlässigt werden und es ergibt sich aus der Gl. (9)

/ 5
>oo x0 -> --/, umgekehrt dagegen

-> 0
2

Bei großen Spannweiten des Rohres oder des Daches im Verhältnis zu den
Krümmungsradien Hegt der Nullpunkt der Querkraft ebenso wie bei einem
schlanken, einseitig eingespannten Balken bei x0^5/8, bei kleinen Werten

von l:a dagegen liegt der Nullpunkt genau in der Feldmitte bei x -=- und

damit geht jede Kontinuitätswirkung verloren (Fig. 6).
Dieses auffallende Ergebnis hängt damit zusammen, daß mit abnehmenden

Binderabständen der Einfluß der Schubverzerrungen auf die Verschiebungen

fi ^-t-=L
HL

^nfffflinni

i

j
Fig. 6. Fig. 7 a. Fig. 7 b.

und damit auf die Durchbiegungen wesentlich größer wird als der Einfluß der
Balkenkrümmung. Bei der Theorie des durchlaufenden schlanken Trägers kann
bekanntlich der Einfluß der Schubverzerrung gegenüber den Formänderungen
aus den Biegungskräften vernachlässigt werden, und diese Vernachlässigung ist,
wie wir später an Zahlenrechnungen noch sehen werden, vollständig gerechtfertigt.

Bei sehr hohen Trägern im Verhältnis zu den Spannweiten ist diese
Vernachlässigung jedoch unzulässig, wie z. B. auch bei den hohen Scheiben, die
als Träger bei Silobauten etc. benützt werden und bei denen die inneren Kräfte
nur aus den Elastizitätsgleichungen mit Hilfe der Airy'schen Spannungsfunktionen

ermittelt werden müssen.
Bei den zylindrischen Schalen, die als durchlaufende Träger benutzt werden,

müssen wir zwei Fälle unterscheiden. Handelt es sich um freitragende Systeme
nach Fig. 1, bei denen eine flache Tonne mit den beiderseitigen Randbalken
zusammen als Träger wirkt, dann ist der Einfluß der Schubverzerrungen im
Verhältnis zu den Formänderungen aus der Balkenkrümmung sehr gering und es
gelten annähernd die üblichen Gleichungen des durchlaufenden Trägers, denn
bei diesem Trägersystem beträgt die gesamte aus Schale und Randbalken
zusammengesetzte Trägerhöhe h nur ca. Vio bis y12 der Spannweite. Handelt es
sich dagegen um eine Tonne mit unnachgiebigen Auflagern an den Kämpfern
gemäß Fig. 7 a, dann ist als Trägerhöhe nicht h, sondern der Durchmesser des
Kreiszylinders 2a maßgebend und dann darf bei kleinen Verhältnissen l:a der
Einfluß der Schubverzerrungen gegenüber den Formänderungen aus der Ver-
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krummung nicht mehr vernachlässigt werden. Stellt man ein derartiges Dach
dagegen bei gleicher Konstruktionshohe h nicht aus einer Kreiszylinderschale,
sondern aus einem flachen elliptischen Zylinder gemäß Fig. 7 b her, dann wird
die wirksame Tragerhohe ganz wesentlich kleiner (sie betragt jetzt 2 b) und
damit auch der Einfluß der Schubverzerrungen.

Bei der isotropen Schale wird Dt Dvx. Beschranken wir uns zugleich
auf die erste Harmonische Z Z„ cos cp, Y Y„ sin cp, die einer in der Gewolbe-
richtung gleichbleibenden Eigengewichtsbelastung Z gcos<p, Y gsmcp
entspricht, dann ergibt sich:

/n ^ ' 24ß2 f"5/2 t- • *
5

(9a) Xo=tT-6^Tir' >fl ,St Xo^~8l
ll < a x0 —>- —.

Die Gl. (9) gibt uns noch einen wichtigen Aufschluß über die Kontinuitats-
verhaltnisse bei den verschiedenen Harmonischen. Je hoher die Zahl n der
Harmonischen, umso mehr nahern sich die Kontinuitatsverhaltnisse denen des
schlanken Balkens. Die Zahl n hat hierauf genau den gleichen Einfluß wie das
Verhältnis l/a von Tragerspannweite zum Krümmungsradius. Das ist auch leicht
verstandlich, weil gemäß Fig. 15, 16 bei einer Harmonischen ny-l immer nur
ein Sektor mit dem Offnungswinkel n/n mit dem ihm gegenüber liegenden
Sektor als Trager zusammenwirkt. Als Trager ist hier nur der Pfeil der beiden
Sektoren maßgebend und infolgedessen ist die Tragerhohe gegenüber dem
Durchmesser des Rohres nur sehr gering, so daß der Einfluß der
Schubverzerrungen gegenüber den Verkrümmungen stark zurückgeht und die Kontinuitatsverhaltnisse

sich denen des schlanken Tragers nahern.
Nachdem wir nunmehr aus den Diff.-Gl. (7) die Große der Funktion Ct

ermittelt haben, können wir die Große der inneren Kräfte und Verschiebungen
angeben, indem wir die gefundenen Werte der Konstanten in die Gl. (4)
einsetzen. Da wir für die verschiedenen Harmonischen entsprechend dem Faktor«2
verschiedene Werte für die Querkrafts-Null-Stelle v0 gefunden haben, können
wir im Gegensatz zu der symmetrisch eingespannten oder freiaufliegenden Schale
für die einseitig eingespannte keine geschlossenen Gleichungen für eine
beliebige Last in der Ringrichtung angeben. Dies ist nur möglich für die
Belastungsglieder der gleichen Harmonischen

(10 a)
' Z Zn cos ncp Y Yn sin n cp

Für jede Harmonische ergeben sich entsprechend den verschiedenen Werten
von x0 andere Kontinuitatsgesetze. Die Gesamtkrafte erhalt man durch
Summierung der einzelnen Founer-Gheder. Aus der Losung der Diff.-Gl. ergab
sich: Cx sin n cp [Yn + n Z„] xQ A^0 xa. Hieraus ergibt sich der Wert von

Ct - ~N0- +7C," — y AV + lx0N0- _^(/_ 2*0).

2) Diese Gleichung für den Sonderfall der ersten Harmonischen der isotropen Schale
findet sich auch in dem unter 1 e) angezogenen Buch von W Flügge auf S 72 Hieran
knüpft Flügge die Bemerkung, daß hier in der bisherigen Schalenliteratur ein Fehler
vorliege, womit anscheinend der Satz im Hdb f E B gemeint ist ,,Die Kontinuitatsgesetze
bleiben dagegen erhalten " Diese von mir gemachte Bemerkung ist absolut richtig, denn
es ist für jeden Ingenieur eine selbstverständliche Tatsache, daß die Einspannungsmomente

nicht nur von der Krummung des Balkens, sondern auch von dei Schubverzerrung

abhangig sind, und daß bei der Theorie des durchlaufenden Tragers diese
Vernachlässigung der Schubverzerrung bewußt als bedeutungslos vorausgesetzt wird Die
Kontinuitatsgesetze bleiben aber trotzdem immer erhalten
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Setzt man die Werte der beiden Konstanten d und C2 in die Gl. (4) ein, dann
ergibt sich:

N0- x3-3l2x-x0(3x2-6lx)
Ntp ~RZ--RZ„cosncp, u~ Dx 6

(\0b) N - Mix x) «- Ay*4-<^x2-4x0(*s-3/x2) 2N0x2-2xXo
Uuo; Nvx- N0(x-Xo), "-"pr- 24^

¦ ^ 2

^ x2-l2-2xp(x-l) Nq"R xi-bl2x2-4xo(x3-3lx2) 2NqRx2-2xx0 ZR2
X ° 2 ' W~+

Dx 24 +
Dvx 2~ Drp

Auch hier ergeben sich die Funktionen fx von v, u, Nx, N<px, Nv wiederum als
Ableitungen einer Funktion, deren vierte Ableitung die Lastfunktion dx"" ist,
aber die bei w und v auftretende Funktion fx ist jetzt nicht mehr die Biegelinie
des schlanken Balkens, weil sich die Nullstelle der Querkraft xa verschoben
hat. Im Gegensatz zu der symmetrisch eingespannten Tonne, bei welcher sich
die Lage der Nullstelle durch die symmetrischen Einspannungsmomente nicht
ändert.

Damit ist nun die Aufgabe für den Zweifeldträger mit gleichen Offnungen
gelöst, da dieser sich aus zwei derartig einseitig eingespannten Tonnen
zusammensetzt. Bei beliebig vielen und vor allem bei verschieden großen Spannweiten

ist eine Ermittlung der Einspannungsmomente aus den Verschiebungen
etwas umständlich. Dieser umständliche Rechnungsgang ist aber gar nicht
notwendig, nachdem wir aus der Diff.-Gl. erkannt haben, daß sowohl bei einseitiger
wie auch bei beiderseitiger Einspannung und damit auch bei ganz beliebigen
Kontinuitätsverhältnissen, die bei den freiaufliegenden Tonnen maßgebenden
Spannungsgesetze (gekennzeichnet durch N0) erhalten bleiben. Wir können
also als wichtige Erkenntnis feststellen, daß bei dem Kreiszylinderrohr die
Spannungsverteilung unabhängig davon ist, ob es sich um einen freiaufliegenden
oder um einen durchlaufenden Balken handelt. Sobald der Krümmungsradius
der Schale jedoch veränderlich ist, dann gelten, wie wir aus der Diff.-Gl.
erkennen, diese einfachen Gesetze nicht mehr, denn dann gelten für das durch-

5
laufende Rohr, wie wir aus der Gl. (8) d (N0 + /<p) -5- erkennen, nicht mehr

o
die durch N0 gekennzeichneten Spannlingsgesetze des freiaufliegenden Rohres.
frp stellt in diesem Fall eine Störungsfunktion dar, deren Verlauf wir nicht
kennen, solange wir die Diff.-Gl. (7) für die betreffende Rohrform nicht
integrieren können. Bis jetzt ist, wie schon erwähnt, eine Lösung der Diff.-Gl. nur
für den konstanten Krümmungsradius, d. h. für das Kreisrohr und für den oben
behandelten trivialen Fall des Cykloidenrohres, gelungen.

Wie in den nachfolgenden Abschnitten gezeigt wird, können wir bei dem
Kreiszylinderrohr die Einspannungsmomente in sehr einfacher Weise durch ein
System von Clapeyron'schen Gleichungen ermitteln. Diese Art der Lösung hat,
abgesehen von dem sehr einfachen und übersichtlichen Rechnungsgang, noch
den Vorteil, daß wir nicht nur eine Veränderlichkeit der Lastfunktion <5C"",

sondern auch eine Veränderlichkeit der Schalenstärke längs der Erzeugenden
berücksichtigen können. Hierzu stellen wir zunächst für den gewöhnlichen
Balken die Clapeyron'schen Gleichungen in Form von Winkelgleichungen auf.

5. Die Clapeyron'schen Winkelgleichungen des gewöhn¬
lichen schlanken Balkens.

Bei einem freiaufliegenden schlanken Balken mit veränderlichem
Querschnitt und Trägheitsmoment, belastet durch die Momentenfläche 9tt, ergeben
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sich die beiderseitigen Winkeldrehungen an den Auflagern zu (siehe hierzu
Fig. 8)

(H) cp =rbw."- "'=II>^ä-
Für den Fall konstanten Trägheitsmomentes und konstanter Belastungen mit
parabelförmiger Momentenfläche vereinfachen sich diese Gleichungen wie folgt

l3
(lla) <P <P" ?24£y-
Die Winkeldrehungen infolge eines am linken oder rechten Auflager angreifenden

Momentes M'
zeichnen, betragen

:-g0<Sx

m'Qoä.

4 ?"

Wir

rf.i{ ß \ii tt

Im

7/3' rf"'H
1M"=1

1 bezw. M" 1, die wir mit a', ß" bezw. a", ß' be-

(12)
1

a
1

~~~ T dx

a" l
i*EJx

dx

ß' ß' ß: U^dx.
I )»EJx

Für den Sonderfall gleichen
Trägheitsmomentes erhalten wir

(12a) a a" l
3EJ

Fig. 8.
ß'=ß"= ß

ÖEJ

Wir betrachten nun die beiden Felder /, und lr + t eines durchlaufenden Trägers
mit den noch unbekannten Stützmomenten Mr _ 1} Mr und Mr + x. Bei der
Ermittlung der Einspannungsmomente berücksichtigen wir zugleich eine eventuelle
Stützensenkung, die wir durch den Sehnenwinkel yr ausdrücken (s. Fig. 9).
Dieser wird positiv gezählt bei einer nach oben springenden Ecke der
Verbindungslinie der Auflager. Aus der Bedingung, daß an der Stütze r sämtliche
Winkeldrehungen gleich Null sein müssen, erhalten wir eine Beziehung zwischen
den drei aufeinander folgenden Stützenmomenten Mr _ 1} Mr und Mr + x

(13) M^ ßr+2Mr («/' + «;+1) + Mr+1 ßr+l + cpr" + cp'r+1 + yr 0.

Bei n — 1 Zwischenstützen ist der Träger n — 1 fach statisch unbestimmt, zur
Ermittlung dieser statisch unbestimmten Größen stehen uns ebenso viel
Winkelgleichungen der obigen Art zur Verfügung.

Bei der Aufstellung der Einheitswinkel der Gl. (13) haben wir nur den
Einfluß der Verbiegung berücksichtigt und den Einfluß der Schubverzerrung
vernachlässigt. Bei den durchlaufenden Schalendächern müssen wir aber diesen
Einfluß der Schubverzerrungen mitberücksichtigen. Dies soll in dem nächsten
Abschnitt erfolgen.
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6. Die Ermittlung der Kontinuitätsgesetze des
durchlaufenden Kreiszylinderrohres mit veränderlicher
Belastung und veränderlicher Wandstärke mit Hilfe der

Clapeyron'schen Winkelgleichungen.
Wir setzen gemäß den Gl. (6) eine Belastung voraus in der allgemeinen

Form
•^ =- ^QfltpVx Il 'ofttpOx •

Auch für die verschiedenen Felder des durchlaufenden Rohres können
sowohl Belastungen wie auch die Schalenstärken verschieden sein. Die Lastfunktion

öx"" gibt uns wieder die Veränderlichkeit der Last längs der Erzeugenden
an. Die Funktionen fltp und }iq>, durch welche die Veränderlichkeit der
Belastung in der Ringrichtung gekennzeichnet ist, entwickeln wir in bekannter

lr+1
W
S._._.__.j.._

Mr+i\"r
"x<p\\mr i TTCr+i i

Fig. 9. Fig. 10.

Weise nach dem Fourier'schen Lehrsatz. Glieder der gleichen Harmonischen
der beiden Funktionen flv und f2v können wir in einem Rechnungsgang
behandeln.

a) Die Lösung für die erste Harmonische.

Die Belastungen für den Fall der ersten Harmonischen lauten:

(14) Z Zx cos cp dx"" und Y V, sin cp öx".

Der Lastfunktion öx"" entspricht gemäß der Fig. 4 die Querkraftslinie dx" und
die Momentenlinie dx".

Setzen wir Zx Yx gx, dann ergibt sich aus der Gl. (14 a) der Fall des
durch sein Eigengewicht belasteten Rohres mit veränderlicher Wandstärke,
deren Veränderlichkeit jetzt durch die Lastfunktion dx"" gekennzeichnet ist. Die
Gleichungen für die Belastungen lauten:

(14 a) Z gl cos cp d/", Y gl sin <p dx"".

Setzen wir dagegen Y 0, dann entspricht die in der Richtung der Normalen
wirkende Kraft

(14 b) Z Zx cos cp

entweder einer antimetrischen Windbelastung oder auch der Wasserlast des
vollständig wassergefüllten Rohres. Hierbei ist die Lastfunktion öx"" 1 zu
setzen, weil bei diesen beiden Belastungsfällen eine Veränderlichkeit längs x
nicht in Frage kommen kann. Wenn die Wasserfüllung zugleich unter einem
hydrostatischen Druck steht, dann kommen zu der Belastung der Gl. (14 b)
noch drehsymmetrische Radialkräfte hinzu, die aber keinen Einfluß auf die
Kontinuität haben, da diese nur durch Ringkräfte aufgenommen werden.
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Den Belastungen der Gl. (14) entsprechen nach Gl. (2) oder (5)
nachstehende innere Kräfte

(14c) b) A/j

a) Nv — Za — Z,a cos cp 6,

dN,
x<p ' Y +

adcp
dx sin cp (Z, + Yx) dx""dx — —N0dx

c) Nx —i dN,Xtp

aocp
dx

Mo sin cp (Zx + Yx)

Z
— COS cp

+ Yx f
a J

öx'"dx N0' dx".

Aus der Gl. (14 c) erkennen wir, daß die dem äußeren Biegungsmoment
widerstehenden Kräfte Nx von den co&cp abhängig, d.h. gemäß Fig. 10 proportional

QM'-i

Q~

ftii
Xl X2

a; ßl
I Gleirung
i Glissement

Ghdin
JjZ

~9oOx

9oO.

m*q.0äZ

\7<P'b

JZ

Gleitung
Glissement

1

Gliding

Fig. 11. Fig. 12.

dem Abstand von der neutralen Achse sind. Bei der ersten Harmonischen ist
also das Navier'sche Geradliniengesetz mathematisch streng gültig, während
es bei dem schlanken Balken des Ingenieurwesens zwar sehr genaue Resultate
ergibt, aber immer nur eine Hypothese bleibt3). Nach dieser Feststellung
können wir nun in einfacher Weise die verschiedenen Drehwinkel der Clapeyron-
schen Winkelgleichungen Gl. (12) aufstellen und daraus die Einspannungsmomente

ermitteln. Wir stellen zunächst die Gleichungen für die
Winkeldrehungen u', a" und ß bei Berücksichtigung der Schubverzerrung auf. Die
Winkeldrehungen setzen sich zusammen aus dem Anteil der Biegung und aus
dem Anteil der Gleitung.

et a'b + a'g, a" — ag + Wg, ß ßb + ßg.

Unter dem Einfluß der Stützmomente M' 1 und M" 1 ergeben sich
nach Fig. 11 die Biegewinkel wie vor zu:

1 (lx22dx „
1 [lxx2dx 1 (xxx2

Hierbei ist Ix das Trägheitsmoment des Kreisrohres ]x n a3 d, wobei bei Eigen-

3) Fr. Dischinger: Beitrag zur Theorie der Halbscheibe und des wandartigen
Balkens. Intern. Vereinigung für Brückenbau und Hochbau, Zürich, 1932.
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gewichtsbelastung, wie oben schon dargelegt, d entsprechend der Lastfunktion
dx"" veränderlich sein kann. Außer der Biegung müssen wir aber nun auch die
Gleitung berücksichtigen. Infolge des Momentes M' 1 oder M" 1

ergibt sich eine konstante Querkraft Q =—. Diese Querkraft Q verteilt sich

gemäß Gl. (14) über den Ringquerschnitt nach dem Gesetz Nx Nxv sin<p.
Demnach

Q 4 NXfpsm<padcp 4NX(Pna sm2cpd<p naNx<p
•>o Jo

wobei Nxq>n der Größtwert der Schubkraft in der neutralen Achse für cp 90 °.

Demnach ist Nxa>
Vn n al

Aus dem Gleitwinkel —X^L ergibt sich die zugehörige Durchbiegung zu
2 Cl dx ^v*

AZ ——, wobei die Verzerrungssteifigkeit Dxw Ed entsprechendjial Jo L>vx
der Veränderlichkeit von d im allgemeinen auch veränderlich ist. Der
Drehwinkel infolge der Gleitung, der zu dem Biegungswinkel hinzuzuzählen ist,

beträgt —j-, da wir den Träger um dieses Maß zurückdrehen müssen, damit er

wieder auf beiden Auflagern aufruht.
Demnach ergeben sich folgende Einheitsdrehwinkel:

.,_ \ x.,2 dx 2 C dx
(15a) o=O4+Oe 7^_+_j0_

05c, ß=h + f.=^«»«-^*_
In gleicher Weise werden auch die Drehwinkel cp', cp" des durch Eigengewicht,
Wasser oder Wind belasteten freiaufliegenden Trägers ermittelt. Die gesamte
Belastung des Rohres durch Eigengewicht, Wasser oder Wind pro laufendem
Träger bezeichnen wir mit q — q0 öx"". Dieser Belastung entspricht gemäß
Fig. 12 wiederum eine Querkraftlinie öj" und eine Momentenlinie dx".

Die Drehwinkel infolge der Verbiegung betragen wiederum wie vor:

' 1
«m X2dx „

1 \ em xx dX

Hierzu kommen wieder die Einflüsse aus der Gleitung. Die Schubkraft in
der neutralen Faser beträgt nach Gl. (14 b) Nxq>n —N06x'", demnach

/*/ t in

<Pg —<Pg — 2 A^o -7^— dx.
J 0 LJ<px

Wir erhalten also folgende Drehwinkel
1 /»/ /•/ 1 III

(16a) <p'= <p'„ + <p'g -i- \m-Prdx-2N0 \ -^dx

(16b) cp"=cp'b + <p's=±-[m-^rdx-2N0\ ^~dx.
I Jo *~/X iü'-J<pX

Abhandlungen IV 16
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Für den Sonderfall konstanter Wandstärke und einer längs x unveränderlichen
Belastung q0 vereinfachen sich die Gleichungen ganz wesentlich, weil wir die
Integration leicht durchführen können (s. hierzu auch die Gl. (12 a) und (IIa)).
Bei Berücksichtigung der Ix 7ia> d, Dxdj Ed ergibt sich

/i7o\ ' l 2 l2 + 6a2
(17a) «=«==r—TT-i +

(17b)

3nasEd JialEd 3na3lEd
l 2_ _ l2 — \2a2

ona3Ed nalEd Qjza3lEd

/io\ ' t, q^i t
24 EJ ^*24na3-Ed'

Wegen der Symmetrie des Trägers fällt bei den Drehwinkeln cp', <p" der Einfluß

der Schubverzerrung heraus. Bei Eigengewichtsbelastung ist q 2nag,
für Wasserkraft dagegen q n a- ¦ 1,0.

Für antimetrischen Wind w — w0 cos,cp ergibt sich:

Jvr'2
*n\7

w cos cp adcp 4aw0\ cos2cpdcp nawü.
o •'o

Nachstehend werden nun für den Zwei- und Dreifeldträger die Einspannungsmomente

ermittelt und der Einfluß der Schubverzerrung zahlenmäßig
festgestellt.

a) Der Zweifeldträger. /t ml% m l.
Aus der Winkelgleichung (12) erhalten wir das unbekannte

Stützmoment M:
M (ax" + a2') — cpx" — <p2'

./,3 + 43M
I /t8 + 6g2

+
42 + 6«ä 1

Y3na3 ltEd 3na3l2Ed\ 24na3d'
für /, — ml2 ml folgt

(\Q\ M- yo/4(l+/«3) m _ q0l2(\+tn3)m (l\2a)2 _- (l\2a)2
8 l2m + 6a2m + 1 8 \+m ir\2 1,5 //\2 1,5'

\2a) m2 \2al m2

Hierbei gibt M das Einspannmoment bei Vernachlässigung der Schubverzerrung
an. Für den Sonderfall lx k 1 ergibt sich

(19a) M =-M VW
K ' 8 (//2ß)2 + l,5
Hieraus erhalten wir für die verschiedenen Verhältnisse der Trägerlänge / zur
Trägerhöhe 2 a folgende Werte

Tabelle 1.

Für //2a 0 1 2 4 10 oo

M 0,00 0,40 0,726 0,912 0,985 1,00 M

Ermittelt man aus dem Einspannmoment der Gl. (19 a) den Nullpunkt x0 der
Querkraft, dann kommt man wieder auf den aus der Diff.-Gl. abgeleiteten Wert
x0 der Gl. (9a).
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Die Gl. (19) zeigt uns aber auch, daß bei ungleichen Feldern der Einfluß
der Schubverzerrung sehr stark anwächst. Z. B. ergibt sich für /x 0,5 /,
m 0,5

(19b) M - 3
/2 W2")2

64 g°l
(//2 a)2+ 6

M VI2 a)*

(//2 a)2+ 6

Tabelle 2.

Für 1/2 a 0 1 2 4 10

M 0,00 0,143 0,400 0,727 0,833 1,00 M

In der Fig. 13 ist der Verlauf der Momente für die verschiedenen Verhältnisse
1/2a dargestellt. Für 1/2a>0 fehlt jede Kontinuität, und für 1/2 a^ oo ergibt
sich das Einspannmoment des schlanken Balkens bei Vernachlässigung der
Schubverzerrung.

l/zl 2a* 0

*-h« »¦+¦« *+*

Fig. 13. Fig. 14.

ß) Der symmetrische Dreifeldträger. lx ml2 ml.
Das statisch unbestimmte Einspannmoment folgt aus der Winkelgleichung

<Px + cpzM(a,"+a2') +Mß —cpx" — (pi', M

A3 + 43
<Pi + <Pi —q» 24 7i a3Ed ~ 9o

i'+a'+ä- /'2 + 6fl2 42+6a2 42-12a

«l"+«2'+/f2
/3 1 4- m3

24na3Ed'
l2(3m-{-2m2)+ 12a2

(20) M <7o

3na3lxEd 3na3l2Ed ona3l2Ed

/4(l+/«3)m _ ff0/2 Hot8 (//2a)2
4 /2(3/« + m2) + 12a2

omna3lEd

(Iß a)2
4 3 + 2/«

VW

(//2 a)2 +
3/ß+2/«2 (//2a)2 + 3m+2m2

Hierbei ist M wiederum das Einspannmoment bei Vernachlässigung der
Schubverzerrung. Für den Sonderfall /t /2 1 ergibt sich

(20a) m - ^ W2")2 _ iü _ W")2M
10 (//2 a)2+ 0,6

M
(//2 a)2+ 0,6'

Der Vergleich mit der Gl. (19 b) zeigt, daß beim Dreifeldträger der Einfluß
der Schubverzerrung wesentlich geringer ist (gekennzeichnet durch die Zahl 0,6
gegenüber 1,5). Es wird



244 F. Dischinger

Tabelle 3.

Für //2a =0 1 2 4 10

M 0,000 0,625 0,870 0,965 0,994 1,00 M

Der Einfluß der Schubverzerrung wächst jedoch, wie die Gl. (20) zeigt, sehr
rasch an, wenn die Endfelder kleiner sind als das Mittelfeld. Setzt man lx 0,5 /2

0,5 /, dann ist m 0,5 und es ergibt sich

(20b) m^-^p-W*—128 70 (//2 a)2+1,5

Tabelle 4.

Für //2a 0 1 2 4 10 oo

M 0,000 0,400 0,726 0,912 0,985 1,00 M

Der Verlauf der Momente ist in der Fig. 14 dargestellt.
In gleicher Weise lassen sich auch die Einspannmomente für den Vieroder

Fünffeldträger ermitteln, in diesem Falle sind jedoch zwei unbekannte
Einspannmomente vorhanden und infolgedessen müssen wir die
Winkelgleichungen zweimal ansetzen.

y) Von Interesse ist vielleicht ein Vergleich mit einem eisernen /-Träger,
dessen Trägheitsmoment wir mit / bezeichnen. Es ergibt sich wiederum:

Q S
Der Gleitwinkel an der neutralen Faser ergibt sich zu yx g -^ +*, wobei

Sx das statische Moment des halben Trägerquerschnittes in Bezug auf die
neutrale Achse und d die Stegstärke bedeutet. Demnach ergibt sich für das Ein-
spannungsmoment M' 1 bezw. M" 1, denen die Querkraft Q 1/1
entspricht :

i II I ^x a I ^X

3EJ ' GJdl' r oEJ OJdl'
Für einen Zweifeldträger mit gleichen Öffnungen erhalten wir hieraus das
nachstehende Einspannungsmoment:

_qol__

(21) M= l^^—g ^^ M
1 +-%r 8

/2 + 3$^ l2 + 3ESx
3EJ ' OJdl

' Od ' G d

Für die Zahlenrechnung betrachten wir einen IP-Träger mit der Höhe

h 30 cm, Ix 25 760 cm4, S, 959 cm3, d 1,2 cm, damit ist ^ ^
800 cm2 h2 0,89. Für das Verhältnis des Elastizitätsmoduls zum

Gleitmodul setzen wir pr- 2,3 und erhalten damit
81UÜÜ0

(21a) M M ^(l\h)2 + 6,15
•
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Tabelle 5.

Für Ija 0 1 3 4 10 oo

ist M 0,000 0,140 0,394 0,722 0,940 1,000 M

Wir ersehen also bei einem Vergleich mit der Tabelle 1, daß bei einem
Breitflanschträger der Einfluß der Schubverzerrungen auf die Einspannungsmomente
des durchlaufenden Trägers wesentlich größer ist, als bei einem Schalenträger
in Form einer Kreiszylinderschale. Nur ist zu berücksichtigen, daß bei den
Schalenträgern meistens das Verhältnis von Spannweite zu Trägerhöhe wesentlich

geringer ist als bei einem IP-Träger.

b) Die Lösung für die höheren Harmonischen.
Den Belastungen nach den höheren Harmonischen («>1)

Z Zn cos n <p <V'", Y Yn sin n cp öx"" (Fig. 15)

entspricht, wie die nachstehenden Integrationen zeigen, keine tatsächliche
Vertikallast, denn es ergibt sich

p2n p2n
I Z cos cp adcp Zna dx"" I cos n cp cos cp dcp 0
Jo Jo
Sin p2ji

Ysin cpadcp Y„adx"" sin ncp sin cpdcp 0
Jo Jo

Die gesamte vertikale Last wird also von der ersten Harmonischen allein
getragen. Die Glieder der höheren Harmonischen geben also nur den Einfluß an,
der sich aus der Umlagerung der Last entsprechend den Gesetzen der ersten
Harmonischen ergibt. Aus der Gl. (9) erkennen wir ohne weiteres, daß bei
den höheren Harmonischen, d. h. für die Lastumlagerung, der Einfluß der
Schubverzerrungen infolge des Faktors n2 gegenüber den Verkrümmungen sehr klein
wird.

Tabelle 6.

Für //2 a 0 1 2 3 4 10 oo

n \
n-2
n 3

x0
Xo

x0

0,500 0,550 0,591 0,608 0,614 0,623 0,625
0,500 0,591 0,614 0,620 0,622 0,6245 0,625
0,500 0,608 0,620 0,6228 0,6245 0,625 0,625

/

n l
n 2
n 3

M
M
M —

0,000 0,400 0,726 0,860 0,912 0,985 1,000
0,000 0,726 0,912 0,960 0,976 0,996 1,000
0,000 0,860 0,960 0,982 0,996 1,000 1,000

M

In der vorstehenden Tabelle 6 sind für die drei ersten Harmonihschen
n 1 bis 3 bei 6X"" 1 die Werte der Querkraftsnullstelle x± für den
symmetrischen Zweifeldträger für eine isotrope Schale angegeben. Für Dx Dxq>

ergibt sich aus der Gl. (9)
/ 5n2(l/2a)2 + 6

Xo~~8 n2(U2a)2+\,5
und daraus ergibt sich nach der Fig. 6 die Größe des Einspannungsmomentes zu

/ ,„ n ^ 8x0 — 4l _-; 8*6 — 4/
M= -q0^(2Xo-l) -qo-%—1-l M—Sj
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hierbei ist M das Moment des schlanken Balkens bei Vernachlässigung der
8*0^4/Schubverzerrung. Der Faktor

/ gibt die Abminderung des Einspan-

nungsmomentes infolge der Schubverzerrung an und demgemäß muß er für
5

xQ -^l gleich 1 werden.
o

Die Tabelle zeigt, daß bei den Harmonischen «;>2 der Einfluß der Schubverzerrung

schon sehr gering wird. Die sich gemäß der obigen Tabelle ergebenden
Einspannungsmomente M weichen von denen des schlanken Balkens ohne
Schubverzerrung M bei 1/2 a 2; 2,0 nur noch um Prozente ab. Der Begriff des
Biegungsmomentes bezw. des Einspannungsmomentes muß bei den höheren

Z Zj-cos30

ym
c—4v-*/

s \Xtni
v»-+-v V

Fig. 16.Fig. 15 Fig. 17.

Harmonischen noch etwas genauer definiert werden, denn wir haben oben schon
gesehen, daß den höheren Harmonischen gar keine höhere Last entspricht.
Jedoch bilden bei diesen höheren Harmonischen, wie ich schon im Hdb. f. E. B.
gezeigt habe, je zwei sich gegenüber liegende Sektoren nach Fig. 16 einen
gemeinsamen Träger, dessen neutrale Achse in der Sehne dieser Sektoren liegt.
Diesen beiden Sektoren entspricht aber eine senkrechte Last und damit auch ein
Biegungsmoment. Der ganze Ring besteht aus n derartigen flachen Trägern,
deren senkrecht zusammengefaßte Lasten sich gegenseitig aufheben. Da diese
flachen Kreissegmentträger nur eine geringe Konstruktionshöhe besitzen, muß,
wie auch die Gl. (9) zeigt, der Einfluß der Schubverzerrung auf die
Einspannungsmomente klein werden.

Selbstverständlich lassen sich auch für den Fall der höheren Harmonischen
die obigen Winkelgleichungen für die Ermittlung der Einspannungsmomente
bei mehreren Feldern aufstellen. Der Raumersparnis wegen will ich jedoch
darauf verzichten, insbesondere da wir aus den Diff.-Gl. schon die notwendigen
Rückschlüsse ziehen können, die nachstehend nochmals kurz zusammengefaßt
werden.

Durch die erste Harmonische wird die gesamte Last der Kreiszylinderschale
getragen. Bei ihr ergibt sich eine wesentliche Verringerung der Einspannungsmomente

infolge der Schubverzerrung. Diese Verringerung ist bei der
Kreiszylinderschale aber kleiner wie bei einem gewöhnlichen IP-Träger. Durch die
höheren Harmonischen wird im Ringquerschnitt nur eine Umlagerung der Last
gegenüber der ersten Harmonischen bewirkt. Je zwei gegenüberliegende
Sektoren mit den Öffnungswinkeln n/n bilden einen gemeinsamen flachen Träger,
die Sehne der beiden Kreissegmente bildet hierbei die neutrale Achse.
Insgesamt ergeben sich n derartige Träger, deren senkrechte Gesamtlast jedoch
gleich Null ist. Die Kontinuitätsverhältnisse bei diesen höheren Harmonischen



Das zylindrische Rohr und das Zeiss-Dywidag-Dach 247

liegen schon sehr nahe bei denen des schlanken Balkens ohne Schubverzerrung,
und zwar umso mehr, je größer die Spannweite / im Verhältnis zur Trägerhöhe

2 a und je höher die Harmonische ist. Wir wollen nun nachstehend die
gewonnenen Erkenntnisse noch auf die freitragenden Zeiss-Dywidag-Schalen-
dächer anwenden.

7. Die Kontinuitätsverhältnisse bei den freitragenden
Zeiss-Dywidag-Schalentonnen.

Für die am Kämpfer unterstützten Kreiszylinderschalen, in denen im
wesentlichen ein Membranspannungszustand wirkt, ist, wie ich schon oben
auseinandergesetzt habe, entsprechend der Fig. 7 a der ganze Rohrdurchmesser
als Trägerhöhe maßgebend. Es gelten hierfür also die im Abschnitt 6 ermittelten
Formeln und Tabellen, wobei die erste Harmonische für die Kontinuitätsverhältnisse

ausschlaggebend ist. Bei einer freitragenden Tonne mit Randgliedern
ist dagegen nicht die erste Harmonische, sondern die zweite oder dritte für die
Kontinuitätsverhältnisse maßgebend und infolgedessen ergeben sich für diese
durchlaufenden Tonnen fast die gleichen Kontinuitätsverhältnisse wie bei den
schlanken Balken. Eine strenge Lösung unter Berücksichtigung der Biegungsmomente

in der Gewölberichtung ist nicht möglich, denn schon bei der
freiaufliegenden Tonne ergeben sich sehr umfangreiche und schwierige Entwicklungen.

Das ist aber auch gar nicht notwendig, weil die Verteilung der Biegungsmomente

in der Gewölberichtung auf die Kontinuitätsverhältnisse annähernd
ohne jeden Einfluß ist. Die Größe der Einspannungsmomente ist vor allem
abhängig von dem Verhältnis der Schubkräfte in der neutralen Achse zu den
die äußeren Biegungsmomente aufnehmenden AYKräften. Für eine derartige
freitragende, über mehrere Felder durchlaufende Schalentonne ergeben sich
AVKräfte gemäß der Fig. 17. Die neutrale Achse liegt hierbei je nach der
gewählten Randträgerhöhe etwas über oder unter dem Kämpfer. Das
Spannungsdiagramm der AVKräfte ist also ganz ähnlich dem einer höheren
Harmonischen. Diese Schalendächer werden im allgemeinen mit Offnungswinkeln
von 2.30 ° bis 2.45 ° ausgeführt, so daß der Verlauf der ^-Kräfte dem der
Harmonischen n 2 bis n 3 entspricht. Die Einspannungsmomente werden
demnach bei einem Verhältnis 1/2a> 2 nur bis höchstens 10 o/o vermindert. Da
bei den negativen Stützmomenten die Schale auf Zug beansprucht wird, ist
dadurch eine etwas größere Sicherheit gegenüber Haarrissen gegeben. Das ist
umso mehr wünschenswert, weil zu diesen Zugspannungen aus den negativen
Momenten noch die Zugspannungen aus den Schubkräften Nxq> hinzukommen.
An den Stellen der größten Feldmomente ergeben sich bei einer
Vernachlässigung der Schubverzerrung etwas zu kleine Biegungsmomente. Für diese
positiven Biegungsmomente ist der Fehler jedoch ohne jede Bedeutung. Außerdem

kann er durch geringe Zulagen an Zugeisen entsprechend den obigen
Formeln und Tabellenwerten leicht ausgeglichen werden.

Zusammenfassung.
Bei der Theorie des durchlaufenden schlanken Balkens werden die

Einflüsse der Schubverzerrung auf die Größe der Einspannungsmomente bewußt
als sehr klein vernachlässigt. Bei dem durchlaufenden ausgesteiften Rohr oder
den zylindrischen Zeiss-Dyvvidag-Schalen darf man diese Einflüsse ohne
weiteres nicht vernachlässigen. In der vorstehenden Arbeit wird ein Verfahren,
zur Ermittlung dieser Einflüsse in einer ganz allgemeinen Form entwickelt
und die Einflüsse werden an Zahlenbeispielen nachgewiesen. Hierbei wird
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auch gezeigt, daß in den Grenzfällen sehr kleiner Trägerspannweiten im
Verhältnis zu den Rohrdurchmessern die Kontinuitätserscheinungen ganz wegfallen.

Resume.
Dans la theorie de la poutre continue elancee on neglige les influences

des deformations dues aux efforts tranchants sur la grandeur des moments
d'encastrement car on sait que ces influences sont tres petites. Dans le cas
du tuyau continu renforce ou dans le cas des voiles cylindriques Zeiss-Dywidag
on ne peut pas negliger sans autre ces influences. Dans le present travail
l'auteur developpe un procede, dans une forme tout-ä-fait generale, pour la
determination de ces influences et il montre ces influences par quelques exemples
numeriques. L'auteur demontre encore que dans le cas limite de portees tres
faibles par rapport au diametre des tuyaux, l'effet de continuite disparait
completement.

Summary.
The theory of slender continuous beams purposely neglects the influences

of deformation due to shear, since they are very small. These influences,
however, cannot be neglected in the case of continuous stiffened tubes or
cylindrical Zeiss-Dywidag shells. In the treatise following, a general proce-
dure for determining these influences is given and the influences themselves
are shown by examples. It is also shown that continuity conditions entirely
disappear for boundary cases of small spans in relation to the tube diameter.
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