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£TUDE SUR LES SURFACES AUTOPORTANTES MINCES
METALLIQUES.

CONSIDERATIONS THEORIQUES ET CALCUL.
EXEMPLES DE REALISATION (COUVERTURE).

UNTERSUCHUNGEN UBER FLACHENTRAGWERKE IN STAHL,
THEORIE UND BERECHNUNG.

- STUDIES ON SELF-SUPPORTING STEEL SHELLS, THEIR THEORY
AND CALCULATION.

L. BESCHKINE, Ingénieur aux Etablissements Delattre et Frouard Réunis.

1re partie.
Considérations théoriques.

Chapitre I. Conditions d’emploi de surfaces métallicques minces.

Les surfaces minces de grande portée ont été employées en premier lieu
dans la construction en béton armé. Dans ce mode de construction les élé-
ments d’ossature peuvent étre & des distantes assez importantes les uns des
autres, sans crainte du flambage de la surface. — Au contraire, dans le cas
de la construction métallique, les faibles épaisseurs pratiquement utilisables
(1mm & 4 mm — au lieu de 4 & 8 cm pour le béton armé) rendent impossible
Putilisation des principes de construction adoptés pour le béton armé.

Prenons par exemple, pour illustrer cette idée, le cas de voiites cylindriques
avec raidisseurs (ces raidisseurs étant, soit des nervures dans la vofite, soit
des plans réalisés avec une membrure supérieure et un tirant, un treillis reliant
~les deux).

La relation liant la pression critique sur la vofite, supposée radiale (p,)
Pépaisseur de la voiite (¢), le rayon de la voiite (R), ’écartement des raidis-
seurs (L), le module d’élasticité (E) et le coefficient de Poisson (o) est:

8 9
ut +1_2("‘ + )t

iy —

n*(«® + 7%)
ol1:
_ Po(1—0% R __R ___(i)2
zP—-—'—E—‘—‘e, f'.l~——L7l: 8.—-R

n: nombre d’ondes de flambage pour un cylindre complet, défini de
maniére a rendre ¥ minimum.

(Loir par exemple, pour les formules permettant d’établir ces résultats,
Love ,,Mathematical Theory of Elasticity*, 4¢me édition, pp. 571 et s.)
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Prenons par exemple:

1° béton e=5cm R=60m L=8m E=2.100kgm2 ¢ =0,
on trouve: p, = 350 kg/m?2.

2° acier e=3mm R=10m L=1m E=2.10kgim? ¢ =03
on trouve: p, = 387 kg/m=.

On voit les petites dimensions de voiles métalliques auxquelles on est
conduit, si on veut les faire travailler a la compression dans des conditions
analogues a celles des voiles en béton armé,

Il a donc faliu, pour réaliser des surfaces metalllques autoportantes,
sorienter vers de nouvelles solutions.

Deux procédés, totalement différents, ont été appliqués. On peut, soit
s’imposer la condition qu’en aucun point, le voile ne travaille en compression,
le voile métallique faisant office de toile tendue sur un cadre, soit diminuer
les rayons et les distances entre raidisseurs, pour obtenir des éléments pouvant
résister a la compressmn

Dans le premier procédé, on est conduit & réaliser des surfaces i courbures
opposées de maniére a avoir toujours une direction en traction quel que soit
le sens de 'effort appliqué. Ces surfaces sont en principe de révolution, de
maniére 3 permettre de constituer des éléments d’assemblage identiques.

Dans le deuxi¢me cas, que nous étudions ici, on réalise des surfaces ayant
au moins un rayon de courbure qui est tres petit par rapport aux dimensions
générales de 'ouvrage.

On réalise ce que nous appelons des membranes minces a cadres, dont
nous faisons ci aprés une étude théorique générale.

-Dans tous les cas d’ailleurs, les surfaces sont réalisées par des éléments
de surface développables, 'obtention de surfaces non développables en métal,
par exemple par emboutissage, étant trés onéreuse,

Chapltre II. Généralités sur les membranes a cadre en forme de
segment d'hyperboloide de revolution.

Une membrane a cadre est un élément constructif formé d’une surface mince
entourée par un cadre. La surface est assez mince pour ne supporter aucune
flexion; le cadre est assez rigide pour supporter les forces induites sur les rives;
de la membrane il est calculé en conséquence.

Dans ces condltlons I’élément considéré forme un tout capable d’absorber
des efforts quelconques, exactement comme une poutre droite formée d’une
ame et de semelles est un ensemble pouvant supporter tous les efforts situés
dans son plan.

Un groupement de ces éléments, rigidement liés entre eux, constitue une
construction qui peut étre étudiée dans son ensemble, suivant les pria-
cipes c13531ques de la Résistance des Matériaux & condition que sa
forme générale corresponde aux hypotheses de la Résistance des Matériaux.
En particulier il faut que I'on puisse définir d’une facon naturelle une ligne
moyenne, ce qui implique que le corps doit étre Iong par rapport a sa (ou ses)
dimensions transversales (problémes plans ou a trois-dimensions).

On peut donc définir en tout point de la ligne moyenne, le moment, Peffort
:normal et Deffort tranchant, seules quantités utilisées en Résistance de Maté-
riaux de par le principe d’equlpollence (cas du probléme plan).

Ces quantités sont déterminées sans hypothése pour des systemes 1so-
statiques. -
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Dans le cas de systémes hyperstatiques, il est possible de tenir compte
de divers facteurs: | '

1° Si ’on se borne a tenir compte des déformations de flexion seulement,
Ihypothése de la planéité des sections aprés déformation n’entraine pas de
contradiction appréciable avec les résultats fournis par les calculs d’élasticité,
et le probleme est résolu, & une approximation normalement satisfaisante.

20 Si l'on met en compte les efforts franchants et les efforts normaux
perpendiculaires a la ligne moyenne, ces efforts calculés i partir de I’hypo-
thése de planéité, sont entierement erronés; aussi faut il corriger partiellement
les résultats en tenant compte des équations différentielles d’équilibre.

Il résulte de ces considérations que, dans le cas des membranes, si 'on
ne calcule le systeme qu’a la flexion, les résultats donnés par la Résistance
des Matériaux des corps allongés sont exacts a leur précision habituelle.

Dans le cas ot I'on veut calculer le systéme en tenant compte des autres
facteurs (forces normales transversales et cisaillements) il faut, compte tenu
d’un premier calcul approché, déterminer les déformations subies sous P’in-
fluence de ces facteurs, et faire un deuxie¢me calcul définitif.

La détermination des déformations locales, la répartition générale des
efforts étant supposée connue, est précisement I’objet de cette étude.

A partir des déformations locales on peut définir. les efforts transmis par
la membrane i son cadre, et accessoirement les efforts dans la membrane qui
sont d’ailleurs définis assez exactement par la Résistance des Matériaux,

Le calcul exact de la membrane proprement dite est peu utile, étant donné
que dans les conditions normales d’emploi, les efforts sont nettement inférieurs
aux fatigues limites, a cause de 1’épaisseur minima que ’on doit adopter pour
la membrane (absence supposée de déformations initiales, résistance aux charges
locales, rigidité pour la mise en place et le transport, résistance a {a corrosion).

Dans les chapitres suivants, compte tenu des considérations qui précédent,
nous étudierons les déformations des membranes en forme de segment d’hyper-
boloide de révolution, le segment étant limité a deux paralléles et deux mé-
ridiens.

Les divers segments sont liés l'un a
Iautre par les méridiens,

Considérons un segment réalisé par un
cadre avec membrane mince formant un élé-
ment de poutre continue, droite ou courbe,

o
7
724,

7
/l

Fig. 1. D’aprés ce qui précede nous introduisons
Rahmenelement. Cadre €élémentaire. ’hypotheése de planéité des sections apres dé-
Fram element. formation.

D’une mani¢re plus précise, nous supposons que la répartition des dé-
formations est linéaire le long de la hauteur de 1’é1ément, ce qui conduit
3 introduire le coefficient de Poisson et les contraintes transversales, procédé
plus précis que celui habituel en résistance des matériaux.

D’autre part, cette distribution entraine une distribution hyperbolique des
contraintes (solution approchée de Résal pour les poutres courbes, Annales
des Mines 1862) qui, pour des rapports du rayon de courbure a la hauteur
supérieurs 2 10, est pratiquement confondue avec la distribution réelle (solution
de H. Golovine, Bulletin de I’Institut de Technologie de Saint Petersbourg 1831,
et de C. Ribi¢re, Comptes Rendus, Vol. 108, 1889). Pour la comparaison
effective de ces solutions, voir Timoshenko: Theory of Elasticity, p. 61 et aussi
du méme, Strength of Materials, Vol. 11, p. 420.



158 ' ; ' L. Beschkine

.. D’une maniére plus précise, l’hypothese de planéité des sections (distri-
bution linéaire des déformations) n’est pas introduite en termes différentiels
pour un €élément infinitésimal pris le long de la ligne moyenne, ce qui don-
nerait des contraintes en contradiction avec les équations d’équilibre du voile,
Nous écrivons uniquement que-la déformation globale d'un cadre élémentaire
est définie par cette hypothése de planéité, c’est & dire que la déformation t o-
tale entre les 2 rives du cadre (dans le sens de la ligne moyenne) est définie
par une loi linéaire. Cette, condition est jointe aux efforts totaux définis dans
la section moyenne du cadre (ces derniers calculés par la Résistance des Maté-
riaux classique), effort normal et moment de flexion d’une part, effort tranchant
d’autre part.

On obtient ainsi deux equatlons définissant les valeurs moyen nes des
contramtes (équations des moments et des efforts normaux).

- D’autre part les équations différentielles d’équilibre des surfaces minces
sont au nombre de 3:

(A) equatlons différentielles
1 équation 2 termes finis
la dernieére équation pouvant, au moins dauns le cas de surfaces a courbures in-
verses, étre écrite (voir plus loin):
- H2
2D
7 étant la contrainte composée de cisaillement en coordonnees asympto-

T = RN+

tiques, Ry I'effort normal une fonction de la courbure, (,,gauchlssement“

H?

b 2DI
de la surface). ,

Cette derniere équation, jointe, non aux 2 equatlons différentielles mais
aux 2 équations tirées de I’hypothése de planéité donne un systéme de 3
équations a termes finis déterminant les valeurs moyennes des
contraintes le long de leurs lignes d’action qui sont les asymptotiques. En
particulier le probléme est trés simple quand les asymptotiques sont rectilignes.

Le systéeme .d’équations ainsi formé dit systeme (B) n’est pas en contra-
diction avec le systeme (A4).

Celui ci donne en effet les variations des contraintes dans un élément, mais
ne définit pas leurs valeurs moyennes.

Le systeme (B) au contraire, donne les valeurs moyennes, sans définir
les variations.

Le systeme (B) est d’ailleurs suffisant, au point de vue de la connais-
sance des contraintes, quand le cadre elementalre est petlt par rapport aux
dimensions générales de la piece.

I[1 faut d’ailleurs noter que des constructions des types envisagés étant
destinées 4 supporter des charges réparties, des charges rapidement variables:
(concentrées) qui rendraient le procédé de calcul illusoire, ne sont pas a con-
siderer.

Nous établirons le calcul & partir des équations (B) uniquement,

Il est & remarquer que Uintroduction des équations (A) n’augmente pas
les difficultés du calcul et vient simplement compléter les résultats fournis
par les équations (B).
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Chapitre III. Formules générales d'équilibre des membranes.

Dans 1’étude que nous avons faite pour Monsieur Lafaille sur la construc-
tion des voiites en béton (voir le Rapport paru dans les Publications Pré-
liminaires) nous-avons développé, a partlr des formules fondamentales établies
par Monsieur Aimond et relatives a 1’équilibre général des surfaces minces,
un certain nombre de résultats d’ensemble relatifs an calcul de- ces surfaces
et que nous ne reproduisons pas ici.

Nous reprenons simplement d’une facon plus complete les calculs relatifs
aux surfaces doublement réglées avec application plus particuliére aux hyper—
boloides de révolution, ces calculs servant de base au calcul des membranes a
cadre en forme d’ hyperbolonde

Section I: Formules de géométrie.
Soit une surface doublement réglée définie par les équations
s =x(y) y=y@y) 2=z
u et v étant les coordonnées asymptotiques de la surface, c’est & dire que
u= Cte et v = (!¢ définissent les dr01tes des 2 famllles de la surface. Posons:

= &)+ &)+ (&)
b = (au s du + du
¢x dx | dy dy 4 % 0z 0z
cu ov ou cv oun ov

ox\?> [éy\?, {0z
&)+ &)+ G
H*=EG—F2,
Un élément d’arc ds (du, dv) est égal a:
ds? = Edu® + 2Fdudv 4+ Gdv?.
Un élément de surface d S (du, dv) est égal 4 dS = H du dv.
Les directions principales sont définies par
Cde dv
VG

Nous defxmssons les directions asymptohques par leurs vecteurs umtaxres

F = —

I

U et V. Par exemple la projection de U sur 'axe des x est
1 dx
lu = ——— 5.
VE du
Section I1I: Equations d’équilibre.
Les forces extérieures de surface étant représentées par le vecteur
—>
R(X, Y, 2)
sur élément (du, dv) agit la force
—)—
R Hdu dv

Nous décomposons R suivant les 2 directions asymptotiques (R, et R,)
et Uintersection des plans osculateurs aux directions principales de la surface

(R.). La projection de R sur la normale 4 la surface est Ry.
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Les contraintes internes agissant sur les cotés de 1’élément du, dv, sont:

v, agiscant sur dv parallelement a du
Ve ” » au . » y av
T " tangentiellement sur du et sur dv.

L’équation générale d’équilibre est:

HR = 2 (VeYG+UnYG)+ £ (Us VE+V VE)
(—(w )+ (nfzs))Jrv(‘9 (VE) + 2 (V0))
oV 5 _
1(55 — VE).
Le vecteur
VG+8UV/E

est intersection des plans osculateurs aux directions principales de la surface.
En effet, les lignes prmc1pales ont pour d1rect10ns U + V

Les plans osculateurs, sont définis par U -+ V et par:
c’est a dire:

avec: du

. > >
et comme: ol oV . 3
= 0 b 0 (asymptotiques rectilignes)

la direction commune des deux plans est bien:
> >
U — oV
La projection de ce vecteur sur la normale 2 la surface a pour valeur:
0 02

’

= avec D:‘a—u, E’W (%5 2).
On a donc: ?
, G E
HRu = a (VI VO) + a (Ta})/ )
HRv:a(WVE) ¢ (zva)
ov o
He
T — _ZFRN‘
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Section IIl: Cas des hyperboloides de révolution,-
10 Formules de géometrie.

L’hyperboloide est représenté par 1’équation 12 12
2 2 2 2 M | [~
I e w A S ST
b* a? a’ : [
o PR (TR, SRS .. M e e
avec €t = a? - b2, L ) X
Les coordonnées asymptotiques seront ¢ et zp, | M T
angles pris sur le cercle de gorge correspondant aux \,‘L‘ \
intersections avec celui-ci des 2 asymptotiques «
passant par le point M (x, y, z) considéré. N \'}
NOv A
Posons: f= YT, Y7 “
2 2 Fig. 2
On a:
_ _Cosg __sing _
~ %eosyt 7 cosy Tty
En particulier, pour g =0 (plan x0 z):
a
* cos y’ E=L1gy

Dans ce qui suit, les coordonnées (x, z) seront issues du point ¢ = 0,
w = 0, de sorte que:

( 1 ) asin®y
¥ i i —1} = .
cos y cos y (1 4 cos y)

Les coordonnées curvilignes fondamentales étant considérées comme étant
y, @, et les formules étant exprimées a I’aide de g, y, on a:

_F__
2 cos? y

2(:053 ] sm2/-}- = 2<:os2 tgw.

o est le demi-angle des asymptothues, tel que:

]/sin2y+ b
-
tg(u —

cos y

a . a . o
COSw — —COS 73 sim ¢ — — -
c c

2

&

a pour valeur:

4t e,
2D T 26 ¢
Le ds d’arc de parallele est:

La quantité ZHD

a

ds = cos 7 ag.
Le d¢ d’arc de méridien est:
_a g w d
COS ¥

Abhandlungen 1V . 11
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Enfin, ¥ étant I’angle avec Paxe du plan tangent en un point, on a: -

: . t : b
tg%:%smy; sz:ﬂ; cos % =

tg w acos ytgw’

On a, par application des formules générales:

a? R
'E:RN-Z—b--tg w

) 5, ( T )__ _tz_2 tgw

(4) (cosﬂy)_l_ dp \cos?y/ Re c cos?y

e Vo o ( T ) a_2 tg(f)
e’ a2 oy (cos“zy)+ dp \cos?y Ry ¢ cos?y

winkel ¢ P steigend .
angles ¢ @ croissants . R et R remplacant respectivement R, R, des
dngle 10 @ nsIng formules générales.

Fig. 3.

11° Formules d’équilibre sur les directions principales.
Si ’on considére les lignes g = C%, y = C* (méridiens et paralléles)
les fatigues normale et tangentielle sont:
Sur un élément d f: u,, ©
Sur un élément dy: u,, ©

On a les relations suivantes entre ces contraintes et les contralntes asymp-
totiques:

Ry
t
gy = g‘”(v1+y2_2p) = ! ¥
R ¥
ﬂ .u2:2tg( ( +1’2+27,') . 1-——6
' - A
1 8
0 = 5 6n =) Fig. 4

La combinaison des formules précédentes en asymptotiques donne:

0 (ustg w) i( o ) . tgw
5?(0082 y + dy \cos2y Ryt cos3y
] 6 (_i’i_) L (_@_) —R,- 4
dy \tg wcos? y - g c0327 o R”cos3;f
tig g« tg — RN—'(g .

Ces formules seront utilisées plutot sous la forme:

2
ty = pg tg% w — RN%’(g3 0]

9_@ = R, ( *”1__-_._)
’cosy oy dy \tg wcos?y

o
_(_’9_( o )_R tgw tgw duy
dy \cos?y #4C0ssy T costy @B
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Dans une premitre partie, nous déterminerons la répartition des efforts
N et M (effort normal et moment de flexion). Dans une 2¢ partie nous mettrons
en compte Ieffort tranchant 7, qui permet de repartir les efforts de cisaillement.

Chapitre IV Etude de la répartition des efforts normaux
a partir des hypothéses de planéité.

I Introduction.

Soient 2 sections droites voisines d’une poutre (droite ou courbe) a I’état
libre.

Quand on charge cette poutre, les sec- i
tions, tout au moins en général, ne restent Y
pas planes, et 'on ne peut plus définir- REREAN
Iangle des 2 sections aprés déformation. v I\
Mais il est toujours loisible d’écrire que, R WA | N .
en premi¢re approximation, ’allongement 5 ~?’}=_r" X

des fibres tout le long de I’axe transversal
0 x est de la forme:

4 = d, x-+ 4, (1)
Cette expression entraine évidemment

i

I

|

I

- e e o . - |

une répartition des contraintes bien dé- I

i A ) A,

terminée, F'_'_@A '
N\ \ | /

Dans le cas usuels, cette répartition A o
est évidemment en bonne approximation % B /
de la répartition réelle dont elle représente ‘f‘\ P4
sensiblement les premiers termes du dé- \\\! i/
veloppement en série en fonction de x. Y

Si Von considere le développement Fig. 5.

comme limité a ces deux termes, la
statique pure permet de définir leur valeur, si le moment et 1’effort normal sont
définis au droit de la section.

D’autre part Pexpression (1) permet évidemment d’écrire (en lui ad-
joignant les déformations d’effort tranchant) des relations entre les déformations
angulaire et métrique de la picce, d’une part, et les efforts qui lui sont appliqués
en chaque point, d’autre part.

Il en résulte que des relations, telles que les théorémes de Castigliano et
de Menabrea, peuvent étre transposées a cette élastique dont la formule fonda-
mentale est (1).

Il est alors intéressant de remarquer que si la formule (1) ne donne pas de
résultats exacts pour la répartition rigoureuse des contraintes, les 2 quantités
d, et §, représentant ’allongement moyen et la rotation moyenne, suffisent pour
une application trés précise de théorémes sus-indiqués, de sorte que la résolution
du systeme hyperstatique est relativement bien plus exacte que la résolution
du probleme de la répartition des contraintes.

[l Relation entre les contraintes et les déformations.
Soit un cadre élémentaire d’un hyperboloide de révolution défini par son

rayon R = a au cercle de gorge et la valeur b de I’axe non transverse de ’hyper-
bole méridienne.

Soient 2 L la longueur d’arc sur le cercle de gorge, 2 B la largeur du cadre.
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@ et y étant les coordonnées asymptotiques, ona sur le méridien de rive,
Paxe de ’élément étant pris pour origine:

L
il e= R = ¢,
Sur les rives des paralleles on a:
Q':lp:—(p:l et btgl:B.
a a
rE T w—e  “ T sy
Sur l'axe ¢ €53

z=btgi Tt =bigh

Soient u; et u, les contraintes suivant le méridien et le paralicle, prises
pour toute ’épaisseur e.
La déformation dans le sens du paralldle est:

(E: module d’Young,
o : coefficient de Poisson)

1
(ug — op1q) e
La déformation totale le long de 1’élément est:

1
A :—E‘,—E*J\(tllg“—‘ O"Ul) ds

a z
A = m‘f_(‘gg — o) dg

: a
(pulsque ds = cos 7 dﬁ).

Dans le cas de cadres normalement utilisés, ¢ est petit (de Pordre de 1/3).
Dans ces conditions Vintégrale:

Fre=s ‘ (g — ayl)dﬂ

devient:
I =2¢e(us —ouy).
Comme:
"
fy = g tg% w— RN71g3 w,

il résulte:

= %cosy [142 (1 —otg? (U)+GRN tg3 (u]
Comme il a été dit, nous posons:
4 = 0, x4 dg.
\ Remplacant d, et &, par des quantités proportionnelles telles que:
my my  Ee

J; 0o  2ac¢’
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il vient:

1 —0otg?w  otg?w

x4+ my =

MK e = My oS y + Cos 7

II en résulte la formule fondamentale:
_ ctgiw COS y
Ha = — 1—otg?ow b R1v+(m1x+rﬂ0 —otg? w

Les quantités m, et m, sont déterminées en écrivant que la résultante des
. est égale a Peffort normal résultant, et que le moment des forces u, est
égal au moment résultant.

On a donc les équations:

N= [u d=
M= Ju,xd=
les moments étant pris sur le cercle de gorge,
On a:
gs =418,
Cos ¥

On peut généraliser ces équations en ecrlvant que les pitces formant les
rives paralleles participent a la. déformation.

Soit S leur section et 7 leur moment d’inertie, les rives étant soumises a
une contramte n, on a immédiatement:

n 2¢a
EcoSy

En appliquant les régles classiques de la résistance des matériaux il vient,
/o étant ’abscisse du centre de gravité de la rive:

Jrzds = {fod1+ 50)3 = E08%

a
yo est ’angle moyen, prathuement confondu avec 1’angle correspondant

S
= (form -I—mo)—e—CO_S Yo-

a fo
De méme, on a:
S I
jtzxds = fo {forn + ’”o)?cos Yo +;’m1 COS Y.
Il en résulte les formules:
. ¢l at
N = L%d +—(’”1fo+mo) oS 7o
o f e lgo (1), | SRm At Im - Sfom) cos 1
0 — Jo cosy COSy
. otgdw cos y
*‘2“*1—atg2w ¥ o) T e
— (_’Meii”_o) dosp
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III° Relation entre les efforts totaux et les déformations
— Centre d’action — Potentlel 1nterne

Posons:

[ cosyd=> S
l—a}’tgzw_l—-?ws 7o = 1o

. e
] %‘F%%COS Yo = h
(X2 cOS yd2+ Sf2--1
J1—otgtw
[ otigiw
J 1—otg?w
_ otgtw
) T 1 =sig?w b

COS yy = 1,

RN D= —PII.QO'

RNxdE = —PIHQ G.

I1 vient: .
N=mlh +myly—Pro
M= ml, +myly — Pro
‘Dans un calcul de systéme hyperstatique, M est défini par rapport au
centre de gravité de la section et 1’on obtient:

11 _m

rr EI'

Pour que on puisse écrire ici une telle relation cherchons un point tel
que la déformation angulaire m, ne dépende pas de Ieffort normal, quand on
définit le moment par rapport a4 ce point.

Soit g ce point (x = g), M, le moment correspondant:

M=M;+gN.

Donc: : _
Mg=m(l; —gh)+ mo(h, —gl)) —(Pr— Prg)o.
~ On déduit immédiatement:

_ 4
g = 70—.
On voit que:

1°) g n’est pas le centre de gravité défini en Résistance des Matériaux. II
en différe par lintroduction dans les intégrales /, et I, de cosy (qui est une
généralisation au cas des poutres courbes des formules uselles pour les poutres
droites) et de I’expression l—atg2co qui provient de la contraction trans-
versale.

2%) m; est donné par la relation:

g‘{"(P" — Pr8) u
— g1, .
Au dénominateur figure une eXpressmn du type / — S g2 qui représente un
moment d’inertie.

Au numérateur, M, ne figure pas seul. Les intégrales Py’ et Pg” existent
de par la présence du coefficient de Poisson.

m]_:
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La déformation angulaire peut étre définie par 4;:

d, . L da .
— "t donne la variation de courbure —- qui est:
2e(@ L g) @ 1
de _1_ 1 _  a M+ (Pr—Prg)o
dy ¢ a+g Ee(lat+g I, — g1, '
Posons:

x—g)2cosydr | 1
Ig:j( l—g—)atg2z; +7(S(f0‘—g)2—i—l)cos;fo

_a? tg? w |
Pr = —1_7—.{1—— o tg® cu(x_g)RNdZ
o €tant le rayon de courbure;:
y ( 1 ) 1 Mg+ Pro

e E Igea+g

a

L’expression du rayon de courbure ne différe de Pexpression classique que
par les conventions sur la définition de g et de /,, d’'une part, et par I’intro-

duction de o Py, d’autre part.

Posant: my - my & = myg,
on a:
N = myl, — Po.
[ 1= lotfa £
Posant: : e
l I ::]ga—l_ge

on a donc (/ etant le raccourcissement unitaire):
N + Pro i 1 N4 Pro N+ Pro

Mg = —"7j— E, atg  ED
0 . _
! I, "’ 0 E [gea g ElI
a

On déduit immédiatement expression du potentiel interne par unité de
longueur sur le cercle de gorge: '

1
W= ——[m*2l; — m; 6 Pr+ mg® Iy, — mgo Pgl

2Ee
_ L [l Peo)* = (hoPa? | (N3 PR — GoPi |
" 2Fe A A .

La partie utile de Vexpression de W pour le calcul des réactions hyper-
statiques est (c’est la seule partie dépendant des réactions hyperstatiques) :

w, — L M+ 3Pro)* 1 (N + % Pro)?
k2R el 2E A '

W, est donc la somme de deux carrés 'un en M, Vautre en N.
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Uapplication du théoréme de Menabrea i cette expression se fait de la
méme facon qu’d une expression du méme type de la Résistance des matériaux
classique.

Chapitre V. Répartition des efforts de cisaillement.
Les efforts de cisaillement sont définis par les 2 expressions suivantes:

66 5 _( M1 )
() Er3 =Ry cosy 08 ”ay tg w cos?y
@) _é)_( 0} )_ ﬂatgw_ tgw Ou,
éy \cos®y/ cos®y  cos?y 98 °

Ces 2 formules s’interprétent de fagons différentes. La formule (1) définit,
dans lintérieur d’un cadre, la variation de © le long d’un parallele, mais ne
définit pas les valeurs de © le long d’un méridien. Dans son expression figure

la quantité:
d ( a2 )
oy \1g wcos®y

qui peut étre calculée i partir des considérations indiquées ci-dessus.
En effectuant les opérations on trouve:

c?

50 o tgy 2———cos“‘y
— = Ry — myatg o+ (my x + m,) +
op cos y l—otg%)[
—2—{—51112
20tgw c? 2RNn (2 . . c® ) )
+1—atg2a)a9cos~/]—cos2yb s y+1—atg2w -

4 at tg? w ¢ Rn
b (1—otg2w) o0y °
D’autre part, la formule (2) semble définir la répartition de @ le long
d’un méridien, mais on doit remarquer que:

¢ (‘ug tg w) _ tgw du,
9B \costy)  costy 08
n’est pas défini par les considérations qui précédent. D’autre part, la distribution

des cisaillements en section est fonction principalement de la distribution des
efforts normaux wu,, non & l'intérieur d’un cadre, mais le long de la ligne

moyenne, d’'un cadre a Vautre. Il s’ensuit donc que a ﬁ peut étre obtenu en

dérivant par rapport a B 'expression de p, calculée sur I’axe du cadre, en
considérant M et ¥N comme des fonctions de g.
Nous pouvons donc écrire:

Qus _ 20tgw Ot (amlx amo) cos y
Fr R l_atgwc‘),h’ + l1—otg2w’
Posant:
o my om,

:Ll‘ '——-Lz

ap oB
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il vient donc:

%__ 20tgw COS y
op Utg2w66+(L1x+L°) —otg?w’
D’autre part: )
oMy N _
6{3 = TRM- '67“;-— T+PtRM-

Ry est le rayon de la ligne moyenne, P; la composante tangentielle des
forces extérieures, M, le moment sur la gigne moyenne,

On a: M=M;,4Ng.
. du, atgw
) [ ngRM+TR_JxOﬂ cos 7 7
_ | fu: atgow
l FiRu T*.[ F cosy

(R est le rayon du cercle de gorge R = a.)
En introduisant les sections des membrures, on trouve, d'une fagon géné-
rale, les 3 formules fondamentales:

8!12____ o tgd w _a_zaRN _cosy
(9{)’ - l_o'th(U b 8‘8 +(L1x+L0)1 O'tg P
0
{1 p‘RM—sz f;; dz—l_?(LlfO_{'-Lo)COS')/O
8 SP2Ly +1L,+SF,Lo)CoS
gPtRM'“l-TR:j ‘l;;'d“_!_(fﬂl 16 foLo)CoS 7o

La formule (2) ci dessus permet de déterminer 2 (——2—) compte tenu
dy \Cos°y

du fait que pour y = 0 par raison de symétrie, le cisaillement est nul.

Cette détermination de @ pour g = 0, jointe & la formule QQ, donne
toutes les valeurs de €. 9

Ces formules ne permettent pas de résoudre le probleme des efforts intro-
duits par les cisaillements dans les pannes. En effet représentons en fonctions
de f la loi de cisaillement @ pour y == c¢'?, dans 2 cadres consécutifs,

Dans chaque cadre a partir de la valeur (90 cal-
caluée sur son axe @ varie suivant la loi en trait
plein. @, qui peut étre calculé en tout point de la
ligne moyenne, varie suivant le fracé en pointillé
(qui ne correspond pas & une distribution matérielle ---
de cisaillements), On peut dire que le cisaillement
supporté par la panne, dii au cadre /7, est égal a
A B et que le cisaillement supporté par la panne,

dil au cadre //, est égal 2 A C. On voit immédiate- Fig. 6
ment que:
’ 60 006,
=(55 52,
(?ﬁ of
¢ 6,

s'obtient en dérivant les formules (II').

of
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On a 28 par la formule (1).

op

11 en résulte immédiatement (avec % = %‘1 = Ko)
o* ( ON )_8Rﬂ 1 O2u, tgw
dyop \cos?y/ — ép atgwcosw— 0% cos?y
O%uy otg®w a® 0*Rn cosy
0pr ~  1—otgiw b 087 +(k1x+k2)l—otg2w
iy

P s oy S
WRM‘FN—'PJ':RM == Y d~+?(k1fo + k) €OS 7,
gRu g‘?—NR-FanRM :jx ao[;'; g Shfatlk t,sf‘)K") ek

On définit ainsi la valeur des cisaillements dans la panne.

Chapitre V1. Efforts dans les pieces du cadre.

Les piéces du cadre sont: les membrures (le long des paralleéles) et les
pannes rives intérieures (le long des méridiens).

[o Les membrures.
Les membrures sont soumises aux efforts suivants:
1¢9) La part qui leur est propre de 'effort de compression ou traction, tel

qu’il est défini par g lsy ps €tant calculé pour x = f,.

29) Les efforts normaux g, que ’on peut admettre uniformes d’une panne
a Pautre. ,

39) Les efforts tangentiels O (différents de ©,) qui varient linéairement.

Ces membrures peut étre considérées comme poutres courbes continues.
Comme, dans les calculs de vérification, on calcule les régions d’effort maximum,
les efforts varient lentement d’un cadre a ’autre; le calcul peut donc étre assimilé
a celui d’une poutre continue uniformément chargée, c’est a dire une poutre
encastrée aux points d’appuis qui sont formés par les pannes.

Iie. Les pannes (rives intérieures).

Les pannes sont soumises aux efforts suivants:

1°) Les différences des efforts p, d’un coté et de I'autre de la panne que .
nous négligeons, étant donné que la rigidité d’une bande de la surface prise
le long du méridien est incomparablement plus grande que celle d’'une panne.
Eu égard a la petitesse des efforts différentiels u,, cette approximation est de
peu d’importance, :

2¢) Les efforts (© — ©,) qui s’ajoutent des deux cotés de la panne.

39) Les réactions d’appui (efforts tranchants) des membrures. L’ensemble
des forces 20 et 3¢ doit &tre €quivalent 3 0.

La panne doit étre calculée comme une poutre courbe sur deux appuis
(les réactions d’appuis étant définies indépendamment des charges) dans le
sens transversal a la ligne moyenne du systéeme étudié.
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Chapitre VII. Conclusions théoriques.

Dans ce qui suit, nous allons faire une bréve comparaison de la méthode
de calcul, telle qu’elle vient d’étre esquissée, avec la méthode de calcul classique
de Résistance des Matériaux.

Notons tout d’abord que la méthode de calcul actuelle, pas plus que les
méthodes employées jusqu’ici pour ce genre de problemes, n’étudie pas I’état
de contraintes au voisinage immédiat des pieces de cadre, sauf foutefois en ce
qui concerne la déformation le long des membrures suivant le paraliele, les
déformations de la membrure et de la membrane étant compatibles, aux faibles
efforts @ pres, qui sont induits dans la membrure (et qui sont d’autant plus
petits que le cadre est petit).

On peut répondre a cette observation en s’appuyant, soit sur les principes
d’accomodation, soit sur les démonstrations mathématiques de la faible im-
portance des équations surabondantes.

Ceci posé, nous remarquerons que des 2 équations que fournit Pélastique
a 2 dimensions: '

on ot : on, ot
Ox 8y_X’ oy +8x_y’
le processus habituel de calcul de Résistance consiste a en utiliser zéro ou
une seule. _

Dans le ler cas, on pose les formules suivantes a partir de ’hypothése de
la planéité des sections (qui entraine implicitement le principe d’équipollence,
puisque, si celui ci n’était pas vrai, les déformations des sections restant planes

ne donneraient pas suffisamment de parametres arbitraires pour tenir compte de
la distribution des forces):

- Mv N h T
Ry — —1— + -5; o = ﬂ
Dans le 2¢ cas, on rectifie la 2¢ formule qui devient:
__TA
t= 7R

A étant le moment statique, par rapport au centre de gravité, de la section au
deld du point considéré, et ¢ I’épaisseur en tout point. Pour établir cette
formule, on se sert de la 2¢ équation différentielle (x étant dans le sens trans-
versal et y suivant la ligne moyenne de la piéce). :
La 1re équation différentielle donne des valeurs de 7, qui sont en géné-

ral inconciliables avec "équation dite de compatibilité.

0° g® 60X oV
(Zot os)mtm)=—a+a(S5+57).

X

Au contraire, les 3 équations d’équilibre des membranes sont entierement
appliquées dans les calculs développés précédemment, avec la seule restriction,
(qui peut étre levée par introduction de termes correctifs avec lesquels on
pourrait reprendre le calcul et atteindre ’approximation que 'on veut) que la
longueur d’un cadre élémentaire doit étre petite par rapport a celle de la piece
étudiée.

D’autre part, équation de compatibilité n’existant pas dans le cas de
‘membranes non planes, le probléme est enti¢rement résolu.

(L’équation de compatibilité est remplacée par la 3¢ équation d’équilibre.)

Il résulte de ces considérations que, en introduisant la méme hypothese
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fondamentale que celle de la Résistance des Matériaux Classiques (principe de
Saint-Venant), nous résolvons compléetement le probleme posé, en vérifiant
toutes les conditions imposées par les équations d’équilibre, ce que ne donne
pas la Résistance des Matériaux des pieces planes.

On voit donc que 'on peut avoir en ces calculs une confiance au moins
aussi grande qu’en ceux de la Résistance des Matériaux et que la technique
de la construction par membranes minces a cadres rigides peut étre considérée
comme entierement au point.

28me partie.

Exemple de réalisation.

Au début de 'année 1935, Le Ministére de I'Air décida de construire un
assez grand nombre de hangars métalliques.

Fig. 7.
Gewdlbe-Bogen von 70 m Spannweite. Hersteller: Delattre et Frouard réunis.
Voiite-arc de 70 m de portée — Vue générale. Etablissements Delattre et Frouard Réunis.
Shell-Arch, 70 m span. Built by Delattre et Frouard réunis.

Nous avons ¢étudié, pour un des concours qui ont eu lieu a cette époque,
deux modeles différents de couvertures autoportantes en métal, les deux mo-
deles dérivant des mémes considérations théoriques (exposées dans la premiére
partie).

Pour les deux modeles, nous avons réalisé des éléments d’essai en vraie
grandeur, dont les photographies ci-aprés donnent une idée.

Le premier modele est un arc de 70 m de portée et de 8 m de fleche.
Il a été réalisé sur le sol, appuyé sur des culées. Il est destiné a servir de
couverture a des hangars de 70 m, avec, soit un tirant directement suspendu a
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’arc, soit des contrefiches extérieures des deux cotés du batiment, avec tirant
enterré ou butées dans le sol.

Le deuxiéme modele est une couverture plate travaillant en poutre sur 35 m
de portée.

Fig. 8.
Gewolbe-Bogen von 70 m Spannweite — Endansicht.
Hersteller: Delattre et Frouard réunis.
Voflite-arc de 70 m de portée — Vue en bout. Etablissements Delattre et Frouard réunis.
Shell-Arch, 70 m span — End view. Built by Delattre et Frouard réunis.

Fig. 9.

Gewolbe-Balken von 35 m Spannweite. Hersteller: Delattre et Frouard réunis.
Volite-poutre de 35 m de portée — Vue générale.
Etablissements Delattre et Frouard réunis.

Shell-Beam, 35 m span. Built by Delattre et Frouard réunis.

Les deux modeles sont réalisés de la méme facon.

L’arc et la poutre sont formés d’éléments en tole de 3 mm, cintrée pour
réaliser un demi-tube.

Suivant le tracage des joints, on obtient des arcs de divers rayons consti-
tués par des demi-tubes placés bout a bout ou bien des poutres droites. Le
demi-tube est raidi de place en place par des raidisseurs en corniéres et des
pannes réalisées par de petites poutres courbes en treillis. Plusieurs éléments
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de tole sont soudés bout & bout. De place en place, des joints démontables
sont réalisés par des lignes de boulonnage.

- Un pareil élément a une largeur d’environ 4,5 m. Un certain nombre de
tels éléments placés cote i cote et reliés entre eux par des joints étanches
constituent une couverture de batiment.

Le modéle qui nous a été commandé en trois exemplaires (hangar de
67,5 m X 67,5 m) est le deuxié¢me (poutre droite). Ce modele correspond plus
exactement aux conditions du concours, un appui au centre du hangar étant
autorisé. Ce deuxiéme modele, qui nécessitait ’emploi du point d’appui inter-
médiaire, eu égard a la distance a franchir, était, par 1a méme, moins onéreux
que le premier qui nécessite des tirants et des pignons supplémentaires.

Nous examinons en détail le mode de construction du batiment réalisé a
partir de cette vofite.

aTa ; c-C
T : e fan

3 ' S R

1 || — 1
) I 1
i 62500 : | 57500

. usoq , Grundriss - Hue enplan - Flan c

% R

LWt
Fig. 10."

Chapitre I. Description du hangar.

Le hangar a le gabarit intérieur suivant: 67,5m X 67,5m X 8,5m (fig. 10).

Un des longs pans (fagade) du hangar est fermé par des portes roulant
sur le sol et s’éclipsant dans un garage latéral. Ces portes ont été'réalisées par
les Etablissements Huguet & Tournemine.

Dans ’axe du hangar perpendiculaire A la fagade et a 22 m 50 en arriere
de celle-ci, un poteau central est prévu, qui, avec un poteau placé dans le long
pan arriére du hangar supporte une poutre de 67,5 m de long servant de ligne
d’appuis intermédiaires pour la couverture.

La couverture est constituée par 15 voiites accolées de 67 m 50 de longueur,
de 4,54 m de largeur, portant sur 3 lignes appuis: les 2 longs pans latérau
et la poutre centrale. :

Les longs pans sont constitués par un bardage en tole ondulée sur ossature
en IPN (lisses et poteaux).

Les portes sont en tole pliée de 2 mm d’épaisseur.

Le hangar est entierement démontable. Les assemblages fixes sont réalisés
par soudure a l’arc sans aucune rivure.
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[* Couverture,

Les vofites sont en tole de 3 mm. Chaque élément d’un c6té de la poutre
centrale est formé de 6 trongons démontables, reliés par un joint axial —
génératrice supérieure des voiites — et par deux joints transversaux.

Chaque trongon couvre environ 11,5 m X 2,27 m, deux troncons réalisent
une vofite complete de 11,5 m X 4,54 m, trois voiites accolées constituent une
poutre de 34 m.

En section droite, une voiite est un arc de cercle de 150 ® environ d’angle
au centre, de 2,10 m de rayon et de 1,70 m de fléche. Des deux cotés de 1’arc
sont soudés deux chéneaux en tole de 3 mm a 4 mm (suivant les conditions
de résistance), de 20 cm de largeur chacun.

Le joint axial supérieur est réalisé par 2 corniéres 40 X 20 > 3 soudées
sur la tole et boulonnées entre elles. Le joint entre cheneaux est réalisé par
boulonnage des 2 relevés. Ces deux joints sont protégés par des tdles de
8/10 mm formant recouvrement.

Les joints par recouvrement entre trongons sont réalisés par boulormage
des tdles entre un plat de serrage de 4 mm et une corniére de 35 X 35 X 4
intérieure, qui sert de raidisseur.

Un troncon de 11,5 m est formé par 8 téles soudées bout a bout. A la
soudure entre 2 toles un raidisseur (corniére 40 X 20 X 3) sert de support
de soudure,

En plus de ces raidisseurs au droit des soudures, des raidisseurs inter-
médiaires sont soudés aux téles, de manieére a obtenir un espacement de rai-
disseurs de 0,70 m environ.

Un raidisseur sur quatre est remplacé par une panne.

Cette panne est constituée par 2 membrures (corniére basse de 35 x 35
% 3%, corniére haute de 40 X 20 X 3) et un treillis & 45¢ soudé, en corniéres
de 25 X 25 X 3. Les hors-corniéres de la panne sont de 22 cm. Ces pannes,
comme les raidisseurs, sont soudées sur les toles.

Un ensemble démontable comprend ainsi 8 toles cmtrees avec tous leurs
raidisseurs et pannes soudés.

Aux joints supérieurs et inférieurs, les pannes et raidisseurs sont assemblés
par couvre-joints.

Les voutes ne peuvent pas supporter de poussée horizontale dans le sens
perpendiculaire a leur portée, car elles n’ont pas de résistance en torsion. Aussi,
la premiere et la derniere voiites sont renforcées par un treillis en poutres-
caissons qui forme un contreventement a plat dans le plan des chéneaux, Le
profil d’une vofite est donc refermé par ce treillis et la vofite peut résister a
des efforts horizontaux. Ces poutres caissons sont formés de 4 corniéres ré-
unies par un treillis a 45° environ. Les corniéres utilisées varient de 25 x 25
X 3 a 50 x 50 x 5. Ces poutres sont assemblées sur des goussets soudés sous
les chéneaux.

Les poutres au vent ainsi constituées s appuient sur Ies longs paus et la
poutre centrale.

-II* Poutre centrale.

La poutre centrale est formée par deux poutres jumelées a dmes pleines
distantes de 80 cm. Les voiites sont continuées a travers les poutres grice a
deux amorces soudées de chaque coté de ’ensemble des deux poutres et une
téle cintrée placée dans lintervalle entre ces deux poutres.

Les poutres ont 2.10 m de hauteur.
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L’ame a 5 mm d’épaisseur. Elle est raidie par des corniéres 60 < 40 X 5
et 60 X 60 X 6 distantes de 30 a 50 cm, placées alternativement d’un coté et
de 'autre de ’ame et soudées a celle-ci par leur nez.

Les tables sont formées par les deux moitiés d’un I. T. L. A. coupé en deux
et soudé en haut et en bas de ’ame. Sauf aux extrémités oit le I. T. L. A, est un
profilé 180 x 180, dans toute la poutre le profilé adopté est 280 x 280, ren-
forcé localement par des plats atteignant 260 X 24 au droit du poteau central.

Les poutres sont entretoisées entre elles, d’une part, par les vofites qui
les traversent, d’autre part, par des plans de raidissement espacés de 4 m en-
viron.

Ces plans sont formés par deux X superposés en corniéres (40 x 40 X 4
a 70 X 70 X 7) encadrés par des corniéres horizontales & la hauteur des
membrures et de la génératrice d’intersection de la voiite et du plan de raidisse-
ment, et par des montants faisant partie des raidisseurs d’Ame.

Le poteau avant est en V formé de deux poutres caissons (deux faces en
tole de 8 mm, deux faces en treillis, corniéres membrures de 100 x 100 x 10,
section 400 x 300).

La base du poteau est a rotule (les piéces sont en acier moulé). L’axe d’arti-
culation est perpendiculaire a la poutre.

Le poteau arriere est en poutre caisson, formé de quatre corniéres de
90 X 90 X 9 réunies par du treillis. La téte et le pied du poteau sont articulés
dans les deux sens. Les rotules sont en acier moulé, les axes sont forgés.

IlT® Longs pans,

Ils sont réalisés avec de la tole ondulée de 8/10 mm fixée sur des lisses
par des boulons soudés sur les lisses; les lisses sont des I. P.N. de 80 sauf
la lisse supérieure qui recouvre la tole et qui est constituée par un |[_ PN 100,

Le haut des longs pans (sur 2.50 m) est vitré avec 1/3 de chassis ouvrants,
Les poteaux sont en I. P. N. 220, espacés de 4,54 m sur les longs pans laté-
raux et de 5,88 m sur le long pan arriére.

Les longs pans sont portés par des murettes en béton armé, en forme de
[” de 50 cm de hauteur et 12 cm d’épaisseur.

Les voutes, sur les longs pans latéraux, sont terminées par des tympans
demi-circulaires en tole de 2,5 mm raidie par des corniéres.

IVe Stabilité générale.

Dans le sens de la profondeur, la stabilité générale est assurée par les
poutres au vent décrites dans la couverture. La poussée sur les 2 cotés du
hangar est reprise par la vofite qui travaille en poutre horizontale dans son
ensemble et transmet les efforts jusqu’a la poutre centrale qui avec ses poteaux
constitue un portique tenant le renversement.

Dans le sens transversal, la stabilité est assurée par deux contrefiches
en caisson avec deux poteaux en caisson (remplacant les poteaux courants de
longs pans) qui supportent les poussées sur les longs pans transmises par
cisaillement dans les vofites jusqu’aux tétes des contrefiches.

Ve Portes.

Les portes sont formées de 14 panneaux roulant sur le sol et se logeant
dans un garage latéral.

Les panneaux sont formés par 7 éléments en tdle pliée (ayant ’aspect
d’un Zores) assemblés entre eux par rivets et boulons.

VI® Poids total
Non compris les portes, le hangar pése au total 283.000 kgs, soit 62 kg/mz.
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Chapitre IL Matériaux uﬁlisés.

Les toles de 8/10 mm sont en acier doux (limite €lastique 24, limite de
rupture 42) avec un indice de corrosion de 1 mgr/cm?/24 H a Pessai a l’aClde
sulfurique (cahiers des charges de la Marine et de Air).’

Les autres tdles et les profilés sont en acier Ac 54, conforme aux spé-
cifications du cahier des charges des Ponts et Chaussées :

limite élastique: 36 kg/mm?
limite de rupture: 54 kg/mm?
allongement: 20 o

Ces aciers sont & environ 0,3 % de chrome, 0,3 o de cuivre et moins de

0,25 % de carbone. Leur indice de corrosion est de ©6 mgr/cm?/24 H.

Chapitre IIl. Conditions de calcul.

A. Le batiment doit étre calculé sous les deux systé¢mes de charges
suivants:

10 Charges S, comprenant:

Le poids mort,
Les charges de neige: 75 kg/m? sans vent
‘ - 25 kg/m? avec vent.
Le vent défini par:
Une pression de 45 kg/m? sur les surfaces frappées.
Une dépression de 45 kg/m? sur les surfaces non frappées.
Une pression variant de 4 45 kg/m? & — 45 kg/m? a Vintérieur du hangar.
Le vent est supposé horizontal.
Les variations de température: -- 30°.
29 Charges S; comprenant:
Le poids mort diminué de /5.
Les charges de neige et de vent majorées de 1.
Les variations de température.

B. Les taux de travail admissibles sont les suivants (acier Ac. 54):

Aciers laminés en traction ou compression: 24 kg/mm?
Aciers laminés en cisaillement: 12 kg/mm?
Boulons en cisaillement: 6,6 kg/mm?
Boulons a larrachement: . 3, 3 kg/mm?

Variation des efforts au droit des assemblages boulonnés: 36 kg/mm?
Le coefficient de majoration de flexion dfi au flambage dans les pitces
comprimées, d’aprés les études faites au Ministere de 1’Air, est:
' 1
13N
rs

S : section de la piéce
N: effort normal

14393 (5)“’2

(T

R : limite de rupture de Pacier (54 kg/mm?)

I' =R

Abhandlungen 1V 12
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C = 7;21:“— (limite o "Euler)

r : rayon de giration de la piéce - |
[ : longueur de la piéce.

On admet de plus que toutes les pieces comprimées ont une fleche égale

1
16001eme de la portée.

3éme partie.
Calculs pratiques.

Dans cette partie, nous nous occupons des condltlons de réalisation du
hangar décrit dans la 2tme partie.

Chapitre I. Considérations relatives au flambage.

Le flambage de tubes en compression le long des génératrices a été étudié
par divers auteurs (voir en particulier la monographie parue dans les recueils
des publications du ,,National Advisory Committee for Aeronautics*: Technical
report N° 473 par E. Lundquist ,,Strength tests of thin-walled cylmders in
compression‘‘).

Il semble d’aprés ces études que les raidisseurs ont une faible influence
sur la charge critique, qui est définie par une relation du type:

1, = kE%

n.: fatigue critique en compression.

k: coefficient expérimental qui varie beaucoup avec la maniére dont on
réalise le tube et qui, par celdh méme peut dépendre des dimensions dans
d’assez larges mesures.

e: épaisseur du tube.

r: rayon du tube.

E: module d’élasticité.

On voit que les raidisseurs n’apparaissent pas dans cette expression.

Nous avons effectué, préalablement a la construction d’une voiite d’essai,
des expériences sur des portions de tubes (tdles cintrées) i I’échelle des bati-
ments que nous avions en vue.

Ces essais ont été faits aux Forges et Aciéries de la Marine et d’Homé-
court, & St-Chamond, a ’aide d’une presse hydraulique de 200 Tonnes.

La tdle cintrée était placée debout sur le plateau inférieur (mobile) de la
presse. Le contact entre les plateaux et la tole était réalisé par des cales en
bois qui assuraient une assez bonne répartition des pressions..

Les toles réalisaient un développement de 5 m et une hauteur de 1,00 m.
Les expériences ont été faites avec et sans raidisseur transversal intermédiaire.
Celui-ci améliorait la résistance au flambage dans certains cas; par contre,
dans d’autres cas, il n’avait aucune efficacité. Les deux bords latéraux de la
tole étaient pliés deux fois & angle droit, de maniére a réaliser des [ qui

servaient de raidisseurs latéraux.
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Nous avons trouvé des résultats en bon accord avec les résultats indiqués
dans le rapport précité. On peut admettre que, pour des tdles cintrées aux en-
virons de 2m a 2,50 m de rayon, la charge critique se trouve aux environs de
15 2 18 kg/mm2, 1 en résulte que si I’on fait travailler la t6le a 5 ou 6 kg/mm?,
on obtient un coefficient de sécurité réel de 3.

Ces essais ont été controlés par des essais sur les voiites plates réalisées
a notre usine et décrites plus haut. Dans les conditions réelles d’emploi (charges
réparties sur une voiite de 30 m de portée), les fatigues correspondant i la
rupture sont environ-triples des fatigues admises pour le calcul de Vouvrage
dans les conditions de surcharges indiquées plus haut.

'Chapitre II Calcui de la couverture.

a) Efforts dans la téle — Formules générales.

Les formules établies dans la 1% partie peuvent étre notablement simpli-
fiées dans le cas de voliites cylindriques au lieu de surfaces de revolutlon
Nous reprenons le calcul complet dans ce cas.
Soient:
n; la fatigue normale sur un élément paralléle aux génératrices du cylindre.
n, la fatigue normale sur un élément normal aux génératrices.
¢ la fatigue de cisaillement sur ces deux éléments.
R le rayon du cylindre.
N Ueffort normal par unité de surface du cylmdre d1v1se par "épaisseur de
la téle.
- T Deffet tangentiel (perpendiculaire aux generatnces)

Les équations d’équilibre sont:

(1) nmy = NR
1 én, ot
) 4 R ¢a +6x_
1 ot ony

a est 'angle définissant la position du point considéré, I’origine ¢tant prise
sur ’axe de symétrie de la vofite.

x est I’abscisse comptée sur les génératrices.

Nous déduisons de I'équation (2):

X
t= j (T— g1y )dx—l—f(a)

0 cu
L’origine des x étant prise au milieu du panneau, nous

posons alors:

Tt —_—-:t"-"—t”
= _ﬁﬂ_lL)
g _Jo( o« R dx

£ = f ().

t” est constant dans P’intervalle compris entre deux pannes distantes de 2 L.
C’est Veffort tranchant d’ensemble.

" est Ieffort tranchant local; il est nul au milieu d’un panneau (partie de
la toéle comprise entre deux parmes). , _
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D’autre part, I’équation (3) donne:

m=— LT D it g

([t el ol
_ oRaax ()Raax Rf(a)_i_ (a)
= ny + o
n,' est Peffort normal local; il est nul sur les bords d’un panneau.

n," est I'effort normal d’ensemble; il doit étre le méme sur les bords de
deux panneaux consécutifs. |
D’apres ce qui a été exposé dans la premiere partie on peut poser:

‘ ' _ Mv
I
en négligeant la contraction due & effort transversal n, qui est négligeable.
Puisque 7,” ne dépend plus de la loi de charge sur le panneau, on déduit
£” qui, comme en résistance des matériaux classiques, est défini par:
" — AT (A: moment statique au droit d'une
" el section définie par «)

Les quantités n”; et ” sont ainsi définies comme si la charge était con-
centrée au droit des pannes et 7 constant dans chaque panneau.

Les quantités n,” et ¢ représentent ’influence de la répartition des charges
sur le panneau.

D’une maniére plus exacte, étant donné qu’il y a un moment m dans la
rive (chéneau) dii aux charges ‘(poussées des vofites) appliquées, on a:
' w_ M—mv

- !

Quant a Veffort tranchant local, il est transporté aux pannes, soit par les
forces #, soit par les efforts tranchants dans le chéneau considéré comme une
poutre indépendante, avec des appuis formés par les pannes.

La quantité m étant de 'ordre de 1/1000 de M nous écrivons:

"

fly

g

. Mo
ny' = —;
. Al
o= el
n"= 0.

Etant entendu que ces formules représentent la part des efforts totaux
quand les charges sont concentrées aux pannes.

Efforts dans la tble dans les différents cas de charge.

N T ny t n,
Vent =~ | N~ 0 NR 0 0
y ; : (L2*-x*) cosa
Poids mort | Vcosa | Vsine VRcosa | 2Vxsina v R
2_ 2
Neige Pcos?a | Psinacosa | PR cos?a| 3Pxsinacosa %%(eos%—sin%)
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Ces efforts n,, ¢, n,’ ne dépassent pas 0,1 kg/mm>.

. Les seuls efforts a4 envisager sont donc n,” et ¢”, qui ne dépendent pas
du mode d’application des charges.

Pour le calcul de Peffort tranchant et du moment de flexion, la poutre est
calculée comme une poutre sur 3 appuis, Pappui central étant dénivelé par
suite des flexions de la poutre centrale. Cette dénivellation n’est pas négli-
geable, eu égard aux hauteurs comparables des deux poutres et le faible taux
de travail de la tole des voiites (inférieur 2 6 kg/mms?). Le systeme global est
hyperstatique, la dénivellation de ’appui modifiant la réaction d’appui et les
efforts produits dans la poutre centrale.

b) Efforts dans les chéneaux.

Sur le chéneau agissent: les forces directement appliquées, les poussées
n, = NR dues a la volite, les cisaillements # dus a la voiite, Ces efforts
sont repris par les pannes qui servent de points d’appui aux chéneaux. Sous
ces charges, le chéneau est calculé comme une poutre continue sur appuis équi-
distants.

En dehors de ces efforts, le chéneau participe a la flexion générale de la
voiite: efforts n,” et £”. Les poussées n, entrainent des moments de flexion
de Pordre de 400 kgm et des fatigues de 'ordre de 0,70 kg/mm?, Les efforts
n,” sont de ordre de 6 kg/mm2,

c) Efforts dans les pannes.

Sur les pannes agissent: les forces directement appliquées, les actions
des chéneaux définies précédemment, des efforts de cisaillement dus a la vofite.
On a en effet, d'un c6té de la panne:

= t-’|—L + ti';,)
de Pautre coté:
_ b=t -+t

p et p + 1 étant les numéros d’ordre des panneaux entre pannes avec:
AT,

el '
T, étant Ueffort tranchant au milieu du panneau d’ordre p.

Les deux efforts # ainsi définis étant différents, leur différence est trans-
mise A la panne. On vérifie que la panne est en équilibre sous ’ensemble des
forces ainsi définies. Elle est calculée comme un arc sans tirant soumis a ’en-

semble de ces efforts.

Les moments maxima obtenus sont de I’ordre de 500 kgm avec des efforts
normaux de I’ordre de 600 kg et des efforts tranchants de Pordre de 300 kg
(pannes espacées de 3 m environ 'une de Pautre).

La panne étant solidaire de la tole de couverture ne peut flamber trans-
versalement sous des charges de compression,

"’
t, =

d) Calcul des voiites de facade avantetarriere.

Si ’on fait supporter 4 une section formée d’une votite et de deux chéneanx
des forces horizontales placées a une hauteur quelconque par rapport a la voiite,
celle-ci se tord sauf si les forces horizontales passent par une ligne appelée axe
de torsion de la vofite et située A environ 50 cm au-dessus du sommet de la
voiite.

Pour supporter des efforts quelconques, le profil de la voiite doit étre
refermé par un treillis horizontal reliant les deux chéneaux. Ce treillis, décrit
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plus haut, absorbe 89 v de V'effort tranchant dit & des forces appliquées dans
le plan des chéneaux (poussée des portes et du long pan arriere). Les 11 o
restants de Dleffort tranchant, ainsi que la totalit¢ des moments de flexion
horizontaux, sont absorbés par la voiite, dont les chéneaux sont renforcés en
conséquernce. -

Conclusions.

f Nous avons décrit succintement un mode de construction en téle auto-
porteuse permettant de réaliser des constructions fort légeres, le poids total du
batiment décrit ci-dessus ne dépassant pas 62 kg au meétre carré. Pour des
batiments de portée double — 70 m — avec couverture en arc avec tirant, le
poids ne dépasserait pas 80 kgs au metre carré, dans les mémes conditions de
calculs de résistance. Avec des poutres plates du type réalisé et des arcs-caissons
supérieurs, on peut méme arriver a un poids de 70 kgs au métre carré (comprls
les longs pans).

Résumae.

L’étude résume les recherches poursuivies pendant deux ans pour réaliser
la mise au point de couvertures de batiments métalliques sans ossature de
support, la téle de couverture se portant elle méme. Nous avons divisé cette
¢tude en trois parties:

1° Considérations theorlques
20 Exemple de réalisation.
30 Détails de calculs dans ce dernier cas.

Dans la premieére partie nous examinons les modes de calcul des surfaces
d’un certain type que nous appelons membranes a cadres, cette dénomination
provenant de ce que la surface est constituée par la juxtaposition d’éléments
formés d’une membrane métallique entourée d’un cadre rigide.

Dans la deuxieme partie nous décrivons une réalisation inspirée de ces
principes, qui consiste en une couverture formée de demi tubes accolés en tdle
de 3 mm travaillant comme des poutres rectilignes sur trois appuis.

Dans la troisieme partie nous détaillons le mode de calcul spécial a cette
réalisation.

Zusammenfassung.

Die Untersuchung faBt die Forschungen zusammen, die wihrend zwei
Jahren unternommen worden sind. Sie sollen die Verwendung von stihlernen
Gebiudeabdeckungen ohne Traggeriist ermoglichen, wo sich die Dachhaut
selber tragt. Wir haben diese Studien in drei Teile getrennt:

1. Theoretische Betrachtungen.
2. Ausfithrungsbeispiel.
3. Berechnungseinzelheiten fiir diesen Fall,

Im ersten Teil priifen wir die Berechnungsarten einer Flichenart, die als
Rahmenmembran bezeichnet wird. Diese Benennung rithrt von der Uberlage-
rung der Stahimembranteile mit einem steifen Rahmen her. _

Im zweiten Teil beschreiben wir eine Ausfithrung nach diesen Grundsitzen,
die aus zusammengefiigten Halbréhren von 3 mm Blechstiarke besteht und die
wie ein gerader Balken auf drei Stiitzen wirkt.

Der dritte Teil enthilt die besondere Berechnungsart fiir diese Ausfuhrung

—



Etudes sur les surfaces autoportantes minces métalliques. 183

Summary.

The investigation summarises the research work carried out during the last
two years and aims at making possible the use of steel roof covers without
trusses for cases in which the roof covers are to be self-supporting. The study
is divided into three parts:

1. Theoretical considerations.
2. Applied example,
3. Details of calculation for 2.

The first part concerns the examination of a particular type of surface,
which is termed a framed membrane. This designation is derived from the
superimposition of a rigid frame on the steel membrane,

The second part describes a structure based on these principles. This
structure consists of a composition of halved tubes of 3 mm thick plates, carried
on three supports in the same way as a straight beam,

The third part deals with the particular calcnlation of this structure.
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