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DIE BEANSPRUCHUNG DURCHLAUFENDER
TRAGWÄNDE DURCH MASSENKRÄFTE,

BESONDERS REIBUNG

LES PAROIS PORTANTES SOLLICITEES PAR DES FORCES DUES
A LA MASSE, ET PARTICULIEREMENT PAR LE FROTTEMENT

CONTINUOUS SUPPORTING-SLABS SUBJECT TO FORCES DUE
TO MASS, ESPECIALLY TO FR1CTION

Dr. Ing. habil. H. CRAEMER, München (Deutschland).

In einer früheren Abhandlung *¦) hat der Verfasser u. a. auf die
Zweckmäßigkeit einer konstruktiven Ausnutzung der Balkenwirkung von
Silowänden hingewiesen, die es möglich macht, die unter letzteren leider immer
wieder angeordneten und z. B. in den Abbildungen des Betonkalenders 1930
dargestellten zwecklosen Balken fortzulassen und die Wände selbst als
tragend auszubilden. Da die Höhe solcher Tragwände in der gleichen Größenordnung

liegt, wie ihre Spannweite, ist das Navier'sche Biegungsgesetz durch
ein allgemeineres Gesetz zu erweitern. Zu dieser Frage sind inzwischen eine
Reihe von Arbeiten erschienen2)-6), die sich vor allem mit den
Beanspruchungen befassen, die durch Belastung der Scheiben rä n d er — also
besonders des unteren Randes durch die dort angehängte Bodenlast —
hervorgerufen werden.

Die vorliegende Arbeit befaßt sich im Gegensatz hierzu mit den innerhalb
der Scheibenfläche in dieselbe eingetragenen Lasten. Zu diesen

gehört insbesondere das Eigengewicht und die vom Füllgut auf die
Wandoberfläche ausgeübte Reibung. Letztere kann selbstverständlich mit
genügender Genauigkeit als in der Mitte der Wanddicke angreifend
angenommen werden. Sie spielt besonders bei engen, sog. Schachtsilos, eine
große Rolle, da dort ein beträchtlicher Teil des Füllgutgewichts gar nicht
auf dem Siloboden lastet, sondern durch Reibung unmittelbar von den
Wänden getragen wird.

Wir legen hierbei, wie dies auch in den in Fußnote 2, 4, 5 und 6
genannten Arbeiten geschehen ist, eine über viele Felder durchgehende Tragwand

konstanter Dicke zu Grunde, deren Baustoff dem Hooke'schen Gesetz
gehorcht. Die Spannweiten / seien unter sich gleich, doch stehen einer Er-

x) Craemer, Scheiben und Faltwerke als neue Konstruktionselemente des
Eisenbetonbaus. Beton und Eisen, 1929, Hefte 13, 14.

2) Craemer, Spannungen in wandartigen Balken bei feldweise wechselnder
Belastung. Zeitschr. f. ang. Math. u. Mech., 1930, Heft 3.

3) Bay, Über den Spannungszustand in hohen Trägern. Diss. Stuttgart, 1931.
4) Dischinqer, Beitrag zur Theorie der Halbscheibe und des wandartigen Balkens.

Zürich, 1932.
5) Bay, Der wandartige Träger auf unendlich vielen Stützen. Ingenieurarchiv 1932.
6) Craemer, Spannungen in durchlaufenden Scheiben bei Vollbelastung sämtlicher

Felder. Beton und Eisen, 1933, Heft 15.
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Weiterung der späteren Ansätze auf abwechselnd verschieden große Spannweiten

lx und 4 keine grundsätzlichen Schwierigkeiten entgegen. Die
Wirkung einer auf die Raumeinheit bezogenen Eigengewichtslast y in sämtlichen
Feldern unterscheidet sich von der Wirkung einer am unteren Rande
hängenden Belastung pr y • h, wo h die Scheibenhöhe, nur durch das
Hinzutreten von zusätzlichen lotrechten Spannungen oy, die über die Balkenlänge
konstant sind und deren Betrag im Abstand y vom Rande sich auf Grund
des Gleichgewichts in lotrechter Richtung zu oy —pr 4- f y dy ergibt; die
Scheibe wird also hierdurch alsGanzesin lotrechter Richtung zusammengedrückt,

andere zusätzliche Wirkungen entstehen nicht. Hierauf wurde
schon in den in Fußnote 5 und 6 genannten Abhandlungen hingewiesen. Da
eine andere als über sämtliche Felder gleichmäßige Verteilung des
Eigengewichts praktisch nicht in Frage kommt, sind dessen Wirkungen somit in
gleicher Weise wie die einer durchgehenden unteren oder auch oberen
Randbelastung erfaßbar.

1/ j ~H; <-^s +o,s"i __ ir __ __ s: __r "t"__F 4_ -£ 3^r
-0,3

Fig. 1.

Das Gleiche gilt für eine über sämtliche Felder gleichmäßig
durchgehende Belastung durch Reibungskräfte, d. h. wenn sämtliche Zellen des
Bunkers gefüllt sind. Die auf die Flächeneinheit bezogene Reibungsbelastung
yr ist dann der Balkenlänge nach konstant, der Höhe nach dagegen in irgend
einer Weise verteilt. Die für das Eigengewicht gemachten Angaben gelten
auch in diesem Falle, wenn man in diesen y durch yr d ersetzt. Sind
dagegen die Zellen abwechselnd voll und leer, so lassen sich die Wirkungen
der nunmehr feldweise verschiedenen Reibungslasten nicht mehr auf
diejenige von Randlasten zurückführen, da die zusätzliche Zusammenpressung
oy ebenfalls feldweise verschieden sein und dadurch ihrerseits weitere Schub-
und Biegespannungen verursachen würde. Dieser Fall, der in der Praxis
häufig vorkommt, fordert also eine besondere Untersuchung.

Es ist hierbei zweckmäßig, die Belastung jedes zweiten Feldes mit der
vollen Nutzlast dadurch zu erfassen, daß man sie nach Fig. 1 zerlegt in eine
Belastung sämtlicher Felder mit halber Nutzlast einerseits und eine
abwechselnd ab- und aufwärts gerichtete Belastung mit ebenfalls halber Nutzlast

andererseits, wie dies auch in den Arbeiten 2) und 6) für die Randlasten
geschehen ist. Der erste Teilbetrag ist wieder in der oben für Eigengewicht
dargestellten Weise erfaßbar, mit den Wirkungen des zweiten befassen wir
uns im Folgenden.

Wir bezeichnen mit o„ oy, x die für die Einheit der Scheibenstärke
berechneten Spannungen, siehe Fig. 2. g yr d sei die auf die Flächeneinheit

bezogene und über die Dicke der Scheibe gleichmäßig verteilte Reibungskraft.
Die Gleichgewichtsbedingungen am Element, siehe Fig. 2, lauten dann

cxjcx — cdcjyjcy — o; cxjcy — cox\cx. (1)
Setzt man

fQty R, (2)
wobei die Konstante gleichgültig ist, da in den späteren Ergebnissen doch
nur die Ableitungen von R vorkommen, so läßt sich den Gleichgewichts-
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bedingungen (1) durch Einführung einer Spannungsfunktion F Rechnung
tragen, die durch

Gx=d2Fl6y2, x _= d2Fjdxdy, oy d2Fjdx2 + R (3)
definiert ist, sich also durch das Hinzutreten des Gliedes R von der
Spannungsfunktion nur randbelasteter Scheiben unterscheidet. Andererseits liefert
die geometrische Verträglichkeit der bezogenen Dehnungen ex und ev und
der Schiebung y die bekannte und unabhängig von der Art der Belastung
gültige Bedingung

d2exjdy2 + d*eyjdx2 + d2y\dxdy 0.
Bei Gültigkeit des Hooke'schen Gesetzes ist nun, wenn E der Elastizitätsmodul

und p die reziproke Querdehnungszahl,
«X — (OX — p>0y)E, €y (Oy — p'CJx)\E, / 2(1 + p) X\ E'.

Drückt man hierin die Spannungen durch (3) aus und setzt sie in die
Verträglichkeitsgleichung ein, so erhält man nach kurzer Umformung

AÄF+ d2Rjcx2 — p • 62Rjcly2 0 (4)
als Differentialgleichung der Spannungsfunktion. Für R 0 geht sie in die
bekannte Bedingung

AAF=0 (4a)
für randbelastete Scheiben über.

^
6,

*-l
-=_-

-PV:^Fig. 2. Fig. 3.

Wir nehmen nun an, daß die Reibung über die Höhe der Tragwand
gleichmäßig verteilt sei, d. h. dg/dy 0. Zwar nimmt bei großräumigen
Silos die Reibung nach dem Erddruckgesetze von null am oberen Rande
geradlinig bis zum Boden zu, doch spielt gerade für diese Art Silos die Reibung
nur eine ganz geringe Rolle, sodaß der größte Teil des Füllgutgewichts vom
Boden und nicht von den Wänden getragen wird. Bei engen Silos dagegen
strebt der Seitendruck und damit auch die Wandreibung nach unten hin sehr
rasch einem unveränderlichen Werte zu, sodaß mit obiger Festsetzung den
tatsächlichen Verhältnissen genügend Rechnung getragen ist. Da die
Verteilung der Länge nach sich nach Fig. 1 richten soll, haben wir

o(x,y) — + q für —//2<> <C + l\2 usw.,
Q(x,y)= — Q » +//2<*< -f- 3.//2 usw.

Diese periodische Belastung läßt sich als Fourier'sche Reihe
n — \

Q(x,y) q 2j x—^—cos —- (5)
1,3,5 n i

Abhandlungen III. 4
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darstellen, wovon man sich ohne Schwierigkeiten durch Ableitung der
Fourier-Koeffizienten oder auch anschaulich durch zeichnerische Auftragung
der einzelnen Wellen überzeugen kann. Mit den Abkürzungen

(-1)"^ _(_!)„ und fi, ^-* (6)

findet man hieraus für die Hilfsgröße R die Darstellung

R=--Q-y 2—~cosf„. (7)
^ 1,3,5 n

Wegen S2 R/dy2 0 geht somit (4) über in

Dieser Bedingung genügt die Spannungsfunktion

^ ^^2^=1-cos f., (8)

wie durch Ausführung der vorgeschriebenen Differentialoperalionen leicht
nachweisbar. Die zugehörigen Spannungen finden sich nach (3) zu

alx chy 0, Tt=—^Ql2 ^~ßn sin f-, (9)

Der Ausdruck für die Schubspannungen ist aber nichts anderes als die Fourier-
Entwicklung einer der Höhe nach konstanten, der Länge nach wie beim
Navier'schen Gesetz geradlinigen Verteilung:

tx — q • x für —//2<;x << + l\2 usw.,

Ti= — q (l-x) „ + lj2 < x < + 3 • 112 usw., siehe Fig. 3. a'

Die Form (9 a) ergibt sich infolge der Abwesenheit von Normalspannungen
ox und oy überdies in einfachster Weise aus den Gleichgewichtsbedingungen.

Diese Schubspannungen treten nun auch in den beiden Rändern auf,
sodaß die Lösung (8) einer Ergänzung bezüglich der Randbedingungen bedarf.
Da aber die an den Rändern wirkenden x± je unter sich eine Gleichgewichtsgruppe

bilden, so läßt sich schon jetzt auf Grund des de St. Venant'schen
Prinzips voraussagen, daß im Innern der Scheibe, also in genügendem
Abstand von den Rändern, die Spannungen genügend genau durch (9)
wiedergegeben werden. Das Gleichgewicht wird dort also unter Ausschluß von
Biegungs- und lotrechten Normalspannungen ausschließlich durch
Schubspannungen hergestellt,-die Spannungstrajektorien verlaufen demnach unter
+ 45°.

Um nun die an den Rändern verbleibenden xt zu beseitigen, überlagern
wir der ersten eine zweite Spannungsfunktion F2, die an den Rändern
y — + h/2 die Spannungen

o*y(x, + A/2) 0, (10a)

t2(x, ± A/2) + -^e/S^j^sin^ (10b)
n

liefert; sie hat der Bedingung (4a) für nur am Rande belastete Scheiben
zu genügen und ihre Spannungen sind durch die Anweisung (3) gegeben,
sofern dort R 0 gesetzt wird. Mit den Abkürzungen
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nn y nnh
und yn/ 2/

— yn Sof y„ ©in iin + ©in y- tln • Sof 7y„
#cosfÄ- ^— ^t—-TT- > vlz;

lautet die Lösung

F _ 8^ v j--l)*r2 ~ ^ ^ /z4 wo *n' 2yn — ©in 2 yn

die zugehörigen Spannungen sind also

8 e / v (—*)« - (2 @in *A ~ A e°f /«) ©***/« + ©in y- i/Ä Sof //Ä n ~
n2 n1 2 yn — ©m 2 y-

8 ^ / v (— 1 )„ (©in yÄ - y- Sof y„) ©of >tn 4- ©in yÄ iln ©in i/Ä

n2 n2 2 yn — ©tn 2 y-

8^/^(—1)« + y/z (Sof >w ©in iin - ©in y„ iin (Sof ;y/g

2 y« — ©in 2 y-
(13c)

Daß F2 der Bedingung (4 a) genügt, läßt sich durch Ausführung der
betreffenden Rechenoperationen ohne Schwierigkeiten nachweisen. Ebenso
ist das durch (10 a) geforderte Verschwinden von o2y für rjn __¦ yn aus (13 c)
klar ersichtlich. Setzt man ferner in (13 b) i]n _- yn und beachtet, daß

2 ©in y • Gof y ©in 2 y und 60p y — ©in2 y =- 1,

rtf7^ w
1 \\
1 \ \
\ 1

1/2
*s "1

l ' 3^;n̂x
äfc

V \
^S4>

Fig. 4.

so erkennt man ebenfalls das Übergehen dieser Gleichung in die Bedingung
(10 b). Obwohl also die Lösung (12) nur aus 2 statt im allgemeinen Falle
4 Gliedern besteht, ist infolge der Symmetrie den 4 in (10) enthaltenen
Randbedingungen Genüge getan. Die Lösung ist somit richtig und
vollständig. Als endgültige Spannungen haben wir die Summe derjenigen in
(9) und (13).

In Fig. 4 sind nun die Spannungen in verschiedenen Schnitten für das
Seitenverhältnis h : l 1, also eine quadratische Tragwand, dargestellt.
Bei 1 ist der Verlauf der Biegespannungen in Feldmitte aufgetragen, Linie 2
stellt zum Vergleich das Navier'sche Gesetz [ox (0, — A'2) oh • l2/S: /z2/6]
dar. Linie 1 ähnelt übrigens stark der Linie 11 der unter *) genannten Ab-
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handlung für die Biegespannungen infolge einer Druckbelastung des oberen
und einer gleich großen Zugbelastung des unteren Randes. Linie 3 gibt die
lotrechten Zugspannungen an, die in der unteren Hälfte der Scheibe
entstehen.

Kurve 4 stellt den Verlauf der Biegespannungen am unteren oder oberen
Rande, Linie 5 die Navier'sche Parabel dar. Bei 6 endlich sind die
Schubspannungen im Auflagerquerschnitt und bei 7 die zugehörige Navier'sche
Parabel (f ghl\%h) aufgetragen. Der Vergleich der auf Grund der strengen
Lösungen (9) und (13) errechneten Linien 1,4 und 6 mit den nach der
Navier'schen Theorie sich ergebenden 2,5 und 7 zeigt, daß für das
untersuchte Seitenverhältnis die letztere noch einigermaßen brauchbare Ergebnisse

liefert. Die größere Völligkeit der Linie 6 im Vergleich zur Parabel 7,
d. h. die gleichmäßigere Verteilung der Schubspannungen in der strengen
Lösung deutet aber schon auf die vollkommen gleichmäßige Verteilung
derselben hin, die im Innern genügend hoher Wände auf Grund von (9) in
Verbindung mit dem de St. Venant'schen Gesetz erwartet werden muß.

Praktisch wichtiger als das eben behandelte sind indessen die größeren
Seitenverhältnisse h:l, da nur bei solchen, wie oben erläutert, ein wesentlicher

Teil des Füllgutgewichts durch Reibung übertragen wird. Zur
Beschreibung des Spannungszustandes in diesen stärker gedrungenen Scheiben
ist es zweckmäßig, den Koordinaten-Nullpunkt in die Mitte des unteren
Randes zu verlegen; wir setzen deshalb

/ A/2 +y, i,'n njj~ hn + 7nj (14)

sodaß also
®in jtn ©in ^ ©of y„ — ©of //„ • ©in yn

und ©of )in ©of i/n ©of yn — ©in i/n • ©in yn.
Für genügend hohe Wände, d. h. yn -> oo kann dann überdies (Bhx y ©of y

V2 * ev gesetzt und y gegenüber ©in y vernachlässigt werden; ferner
ersetzt man zweckmäßig 2 ©in rj' durch eh' — e~y)' und 2 ©of rj durch e*' + e~n\
Die einfachste der Gleichungen (13), nämlich (13 c), in dieser Weise
umgerechnet, liefert dann

J2y A Q* 2 (—^ cos Sn-'.n-e-'1«. (15c)

Die Gleichungen (13 a) und (13 b) lassen sich in gleicher Weise umrechnen,
einfacher ist es aber, o2x und r2 aus (15 c) mit Hilfe der Gleichgewichts-
bedingungen (3) unter Fortlassung von R unmittelbar zu errechnen; man
erhält so

°*x ~ Ql Z^^ cos £42-><n) •
e~": (15a)

und x2 =^/S^sinf,(l-g.^:. (15b)

Entsprechende Formeln würde man bei Verlegung des Koordinaten-Anfangspunkts
in den oberen Rand erhalten haben.

Die in den Gleichungen (15) als Faktor auftretende, rasch abklingende
Funktion e~^ zeigt deutlich, daß bei stärker gedrungenen Scheiben, wie
erwartet, in einem gewissen Abstand vom Rande die aus der Befriedigung der
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Randbedingungen entstehenden Spannungen o2xy r2} o2y belanglos werden,
sodaß nur der in (9) dargestellte Zustand übrig bleibt.

In Fig. 5 ist für den unteren Teil einer sehr hohen Tragwand durch t die
Biegungsspannung des Mittelschnitts dargestellt, wie sie sich nach (15 a)
ergibt; das gleiche Spannungsbild mit umgekehrtem Vorzeichen erhält man
im oberen Teil der Wand, wenn man die Koordinaten von dort aus rechnet.
Die größte Biegungsspannung am unteren Rand findet sich bei der
Auswertung genau genug zu

<!* +0,750 g/; (16)
die Navier'sche Theorie würde dagegen gh • l2/8:h2/6 0,750 gl2/h liefern,
für große Seitenverhältnisse h:l also praktisch null; diese Theorie verliert
demnach hier, wie überhaupt bei sehr hohen Scheiben, jeden Sinn.

?A

e/2
V
+ \
k 75$>e

Fig. 5.

Durch Planimetrieren der Zugspannungsfläche erhält man die Grösse
der unteren Zugkraft zu Z 0,1345 gl2, sie wirkt in einem Abstand
a 0,147-/ vom unteren Rande. Die gleiche Größe hat die in der oberen
Hälfte nahe dem dortigen Rande entstehende Druckkraft. Die im unteren
Teil wirkenden geringen Druckspannungen und die ihnen entsprechenden
Zugspannungen im oberen Teil weiter zu betrachten, lohnt sich dagegen
nicht,

Linie 2 in Fig. 5 gibt den Verlauf der Schubspannungen in den
Auflagerquerschnitten nach (9) und (15 b), Linie 3 dasselbe unter Annahme;
gleichmäßiger Verteilung über die ganze Höhe. Der Vergleich beider Linien
zeigt, daß bis zu einem Abstand vom Rande, der etwa gleich einem Viertel
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der Spannweite ist, die Verteilung praktisch gleichmäßig ist, um von da dann
auf null abzunehmen.

Es ist endlich noch von Interesse, die Abhängigkeit der Spannungen vom
Schlankheitsgrad zu verfolgen. Fig. 6 stellt diese Abhängigkeit für die
Biegungsspannungen in der Mitte eines der beiden Ränder dar. Wir sahen vorhin,

0
i

t

2o-

lo- / _-.---"' --^^^^^
^A

\

üjh

^^^2
<1 2 : '

(S -cl.fzf.
Fig. 6.

daß diese für h: l ->co genau genug durch ox + 0,750 gl ausgedrückt wird,
während die Navier'sche Biegungslehre für jeden beliebigen Schlankheitsgrad

ox __• 0,750 gl2/h angibt. Wertet man die fragliche Spannung nach
(13 a) aus, indem man dort rjn -= _j- yn setzt, wobei sich beträchtliche
Vereinfachungen in der Formel ergeben, und drückt die gefundenen Ergebnisse in
derForm

aK a.Ql
aus, so lassen sich die Beiwerte a durch die Linie 1 in Fig. 6 darstellen; dem
Navier'schen Gesetz dagegen entspricht die Gerade 2 mit a 0,75 l/h. Diese
Darstellung zeigt nochmals sehr deutlich, daß dieses Gesetz besonders für
stark gedrungene Scheiben viel zu niedrige Randspannungen ergibt.

Zusammenfassung.
Bei Vollbelastung sämtlicher Felder erzeugt das Eigengewicht, sowie

die Reibung des Füllguts auf die Silowände die gleichen Biegungs- und
Schubspannungen wie eine gleich große Belastung des unteren Randes,
während die lotrechten Normalspannungen von einer zusätzlichen Zusammenpressung

der ganzen Wand überlagert werden. Für feldweise wechselnde
Belastung, die nur infolge Reibung entstehen kann, wird ein Rechnungsverfahren

angegeben, das für sehr hohe Wände bedeutende Vereinfachungen
zuläßt. Schaulinien zeigen die erhaltenen Biegungs- und Schubspannungen
für verschiedene Schlankheitsgrade der Tragwand. Bei sehr hohen Wänden
entstehen nur nahe dem oberen Rande eine Druckkraft, nahe dem unteren
eine Zugkraft, während der innere Teil praktisch biegungsfrei bleibt; die
Schubspannungen verteilen sich dann fast gleichmäßig über die ganze
Trägerhöhe.

Resume.
A la pleine charge sur tous les panneaux, le poids propre et le frottement

de la charge sur les parois du silo mettent en jeu les memes efforts de
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flexion et de cisaillement qu'une charge elevee uniformement repartie ä la
partie inferieure, tandis qu'aux contraintes normales verticales, se superpose
une contrainte additionnelle de compression sur toute la paroi. En cas de
Variation alternative de la charge d'un panneau ä l'autre, ce qui ne peut se
produire que par suite d'un frottement, l'auteur indique une methode de
calcul qui comporte des simplifications notables dans le cas des parois de
tres grande hauteur. Les diagramrnes mettent en evidence les efforts de
flexion et de cisaillement pour differents degres de finesse de la paroi por-
tante. Pour les parois de tres grandes hauteurs, on ne constate un effort de
compression qu'au voisinage du bord superieur et un effort de traction qu'au
voisinage du bord inferieur, tandis que la partie interieure reste pratique-
ment exempte de flexion; les contraintes de cisaillement se repartissent alors
presqu'uniformement sur toute la hauteur.

Summary.
When all fields are fully loaded, the weight as well as the friction of

the contents produce the same bending and shearing stresses on the silo
walls as an equally great loading of the lower edge, whilst the vertical normal
stresses are supplemented by an additional pressing-together of the whole
wall. For a loading varying from field to field, which can occur only in
consequence of friction, a method of calculation is given that considerably
simplifies the calculations for very high walls. Curves show the bending
and shearing stresses obtained for various degrees of slenderness of the,
supporting wall. In very high walls a compression exists only near the
upper edge and a tension near the lower edge, whilst the inner part remains
practically free from bending; the shearing stresses are then distributed
practically uniformly over the whole supporting height.
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