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CONSIDERATIONS SUR LE CALCUL ET LA SECURITE
DES PIECES FLECHIES. MOMENTS DE RUPTURE.

BETRACHTUNGEN UBER DIE BERECHNUNG UND DIE SICHERHEIT
DER AUF BIEGUNG BEANSPRUCHTEN BAUTEILE. BRUCHMOMENT.

REMARKS ON THE CALCULATION AND SAFETY OF PARTS SUB-
JECTED TO BENDING. MOMENT OF RUPTURE.

R. COPPEE, Ingénieur a Bruxelles.

Il est assez intéressant de constater les errements qui sont a la base des
théories classiques du béton armé et de rechercher les différences pratiques
auxquelles ils peuvent conduire.

Dans ce qui suit nous examinerons brievement la valeur des hypotheses
fondamentales du calcul des piéces fléchies, nous discuterons ensuite les
méthodes d’application courante ou ,,des taux de sécurité‘ et, enfin, nous
étudierons des méthodes nouvelles dites ,,de calcul a la rupture*.

I. Considerations sur le calcul et la sécurité des piéces fléchies

Le calcul classique des pieces fléchies est basé sur trois hypotheses:
1. les sections transversales planes restent planes aprés déformation par
flexion; :
2. les tensions sont proportionnelles aux déformations;
3. la résistance du béton a la traction est a négliger.

La premiere hypothése, ou de la conservation des sections planes, n’est
rigoureuse qu’en ’absence d’effort tranchant et pour des matériaux homo-
genes. Lorsque le matériau est hétérogene, comme le béton armé, les sections
ne restent pas absolument planes apres déformation (sauf les sections de
symétrie a la fois de formes, de liaisons et de sollicitation). Les deux maté-
riaux associés ont en effet des propriétés fort différentes: tandis que la dé-
formation de Pacier, dans les limites de l’élasticité, est pratiquement in-
variable dans le temps, celle du béton croit avec la durée de charge; il en
résulte que les déformations de l'acier et du béton situés au méme niveau
ne sont pas identiques et qu’en conséquence il se produit avec le temps une
décharge partielle du béton comprimé, au détriment de "armature qu’il en-
robe. La constatation est analogue pour la zéne de traction, mais sans intérét
notoire, du fait que, par la troisieme hypothese, le béton est supposé in-
existant dans cette zdne.

La seconde hypothese n’est vraie que pour des matériaux dont le dia-
gramme tensions-déformations comporte une zéne de proportionnalité. Elle
est donc inadmissible pour le béton, dont la courbe tension-déformation se
présente comme a la figure 1. Au diagramme 2 de la méthode classique il
y a lieu de substituer 'un des diagrammes 3, 4 ou 5, dont la forme difféere
selon la grandeur relative de la tension a la fibre extréme du profil. Pour
une piece peu sollicitée (7, égal au quart, par exemple, de la compression
de rupture) on a un diagramme tel que 3, assez peu différent du diagramme
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classique, mais, a la rupture, les tensions se répartissent comme au di-
agramme 5. Par conséquent, si I'on se réfere a la sécurité de rupture, c’est
un diagramme tel que 5 qu’il faut considérer, et c’est une erreur d’introduire,
comme le font les classiques, une fraction du taux de rupture dans des calculs
issus d’un diagramme tel que 2.

La troisieme hypothese, qui suppose le béton inexistant dans la zone de
traction, est acceptable en ce qui concerne la contribution des tractions du
béton i la résistance du profil: nous montrerons plus loin, a ’occasion d’un
calcul, que la prise en compte de ces tractions, autrement dit la suppression
de cette troisieme hypothése, n’augmenterait le moment résistant que d’une
quantité insignifiante. En fait, comme nous P’expliquerons plus loin, la pré-
sence de tractions de béton dans les troncons adjacents a la section de rup-
ture, réduit les compressions dans ces troncons; il en résulte, par plasticité,
une augmentation de résistance du béton a la compression dans la section
de rupture et, en conséquence, un accroissement des moments de rupture
d’autant plus important que dans les troncons voisins non fissurés la contri-

d
Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

bution relative du béton étiré est plus grande. Par ailleurs, la présence de
béton dans la zdne de traction modifie la grandeur des tensions par effet
du retrait; ainsi, dans les sections non fissurées principalement, les tensions
réelles different assez bien des tensions calculées par la méthode classique:
ceci a "avantage de l'acier, comprimé par le retrait du béton, et au dés-
avantage du béton, comprimé dans la zéne comprimée non armée. Il n’est
pas inutile de se rendre compte de I’ordre de grandeur de ces tensions initiales
dues au retrait.
Soit:

o la section d’armature en traction, par unité de largeur de la piece,

7, sa tension de compression par retrait,

1, la traction du béton au niveau de "armature,

7, la compression du béton a Vextrémité du profil,

E, le coéfficient d’élasticité de 1’acier,

E; le coéfficient d’élasticité du béton en compression,

E. le coéfficient d’élasticité du béton en traction,

J une déformation linéaire,

A4 le retrait du béton non armé.
Les tensions de béton par retrait sont d’un ordre qui autorise I’hypothése
d’une répartition triangulaire comme a la fig. 6.

On sait que le coéfficient d’élasticité du béton a traction est environ la

moitié de celui du méme béton en compression: nous posons E, = %’.
\ h—x < (55 Tp
Or L= doll k=t h =0 < h 1
5%~ 5 + 0, w25 M
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La déformation de I"armature sous 'effet du retrait est égale au retrait
total moins la déformation du béton par traction:
0g = A4 — 10, dou 7, =E,A— E,J, (2)
Posons: R = E, A4 (c’est la tension que l’acier prendrait sous une dé-
formation égale au retrait du béton non armé).

? = m, rapport du module d’élasticité de acier au module d’élasticité
du béton sous traction.
(2) peut s’écrire: T = R—mv, (3)

Equation d’équilibre de projection:

X . h—x Tpd?
Tb><—2—+ (()Ta—-—'l;e>“\ ——2—*—~+Ted+27h_——_—x—)-

Introduisons dans cette équation la valeur de x donnée par (1), celle
de 7, donnée par (3), remplacons w par u/ (u = pourcentage) et d par 4. 11
vient:

2
’Eb2(1 —-—%)-——2@2[1 +2u(m—1)+2¢e+¢*+2uRep+4uRr, —

— T, (4)

— 27, tp[u(m—1)+ e+ €2 =0 (5)
Equation d’équilibre de rotation (autour d’un axe situé au niveau de
Parmature) :
x x\ __ (h—x)? d? d®
”7(’”‘3‘) =t Ty T eh—u

Introduisons dans cette équation la valeur de x donnée par (1) et d
par ¢i; il vient, apres simplifications:

3
T3 (2——%) + 3712 (2-62-8%) — 4,2 (1+3e2+6%) —0627,274(2 4 &) = 0.

Pour ¢ = 0,1 cette équation devient:
1,995 742 + 5,967 v, 7% — 0,120 75 7.2 — 4,124 ¢,3 = 0, (6)

qui est satisfaite pour 7z, =~ 0,75 ..

Introduisant cette valeur dans (5), nous obtenons, apres simplifications:
_ uR
*e = 0,368 + u(m—1) ()
. (0,368 — u)R

et Ta = R—=mTe = G368+ 1 (m—1) (8)
La valeur de m a introduire dans ces deux formules est le rapport du
module d’élasticité de ’armature au module d’élasticité , moyen‘ du béton
sous traction. Je dis , moyen‘ parce qu’il s’agit d’'un module intermédiaire
entre celui du début du durcissement, c’est-a-dire zéro, et celui du béton étiré,
a linstant considéré. Nous admettrons que la valeur de m correspondant
au module moyen d’élasticité du béton depuis I’état initial jusqu’a 1’état final

vaut 40: ceci se justifie par le fait que m = g‘f vaut environ 20 a I’état final.

Il en résulte que:
ot 0,368 —

0,368, + 30 " = 0368 +30u N
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Ainsi, pour u = 0,01 et R = 0,0004 x 2.200.000 = 880 k/cmz.

0,01 >< 880 .
Tp = 0,75 >< m‘():ﬁﬁ = 8,7 k. p.cm et
. 0,368 — 0,01 R
Ta—SSOXmm—— 415 k.p.Cm .
7, est d’autant plus petit et 7, d’autant plus grand que le pourcentage est plus

important.

Ces calculs n’ont évidemment pas la prétention d’une absolue rigueur:
ils donnent 'ordre de grandeur des tensions de retrait, et ’on voit que celles-
ci sont loin d’étre négligeables.

Nous en concluons qu’il est peu intéressant de rechercher, comme on le
fait cependant couramment, les tensions de service par sollicitations ex-
térieures si 'on omet d’y ajouter, avec leur signe, les tensions initiales que
le retrait provoque. Ces tensions sont bien un effet de présence du béton en
traction, que la méthode classique néglige.

La compression de ’acier par le retrait du béton est naturellement beau-
coup moindre dans les sections fissurées que dans les sections pleines, du
fait de la détente causée par la fissuration. Il n’en subsiste pas moins des
tensions de retrait dans le béton et dans ’acier des sections non complete-
ment fissurées: nous avons calculé, par un procédé analogue a celui exposé
ci-dessus, que, pour une section fissurée jusqu’a mi-hauteur, un pourcentage
de 0,01 et un retrait de 0,0004, la compression du béton serait: de 9,3 k/cm?
tandis que celle de "armature ne serait que de 46,3 k/cm2. Nous répétons
que ces calculs ne donnent que des ordres de grandeur.

Disons toutefois qu’au point de vue sécurité de rupture les tensions de
retrait n’importent pas, car leur ensemble étant en équilibre de rotation
n’augmente ni ne diminue le moment de rupture, autrement dit la résistance
de rupture de la piéce.

Remarquons aussi qu’en posant comme postulat qu’a toute hauteur du
profil les déformations du métal et du béton sont les mémes, la méthode
classique s’est embarassée d’un module 7, parfois appelé coéfficient d’équi-
valence ou rapport du coéfficient d’élasticité de ’armature au soi-disant
coéfficient d’élasticité du béton comprimé.

Or, ce postulat est inutile et contraire aux réalités: le béton et ’armature
situés au méme niveau ne se déforment pas identiquement; ainsi que nous
I’avons rappelé au début de cette étude, les déformations du béton grandis-
sent, dans une certaine mesure, avec la durée de chargement, tandis que celles
de ’armature restent pratiquement invariables.

Il n’est d’ailleurs guére possible d’assigner une valeur convenable a ce
module m du fait que le coéfficient d’élasticité du béton varie dans de larges
limites et sous de multiples incidences: la granulométrie et la nature des
agrégats et du ciment, le dosage en ciment et en eau, la compacité, le degré
d’humidité, les mises en charges précédentes, ’Age et la charge.

Si le postulat de la méthode classique était admissible, il s’imposerait
d’ailleurs de donner a m une valeur différente & chaque niveau du profil,
parce qu’il n’y a en réalité pas de coéfficient d’élasticité du béton ou que ce
rapport de tension a déformation du béton varie avec la tension, donc avec
la distance a la fibre neutre.

On congoit que la valeur a donner a ce coéfficient m soit fort discutée;
en fait elle difféere beaucoup selon les réglements: d’aucuns la fixent a 10,
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d’autres a 15, d’autres a 20 et, fort heureusement, ces différences ne font
guere varier les résultats pour la flexion simple. Au fait, la valeur attribuée
a m apparait comme un facteur d’aménagement des formules en vue de ré-
sultats en concordance avec les essais de rupture pour les bétons moyens et
les pourcentages ordinaires.

Nous avons dit que introduction de ce coéfficient m dans le calcul des
piéces fléchies était inutile: nous montrerons plus loin que des expressions
fort simples s’obtiennent par la seule résolution des équations d’équilibre
des tensions et de la sollicitation extérieure, sans qu’il soit utile d’admettre
I'identité de déformation de ’acier et du béton situés au méme niveau. Ces
nouvelles théories ont "avantage de mettre en évidence I’'influence du pour-
centage et d’autres propriétés intéressantes qui n’apparaissent pas avec les
anciennes formules.

C Th
T R
J ! 0,442 %
b : x = i
2 ¥ S : \ 0,837 T, *X
H ! 9 1 ' —
\ X S=1| ! !
! i g7l 548 ' R
h . A S=2,3 E 7, a
: / :
! s A=23 |
i ’ !
A :
_; /T, w Ty N
:;/ i 9lp T %
' b
Fig. 6 Fig. 7 Fig. 8

Presque tous les traités de béton armé contiennent des tableaux qui
donnent les sections de béton et d’armature pour une valeur de m et des
taux de travail déterminés du béton et de D’acier: on serait tenté de croire,
a lire ces traités, qu’a des taux déterminés ne correspond qu’une section.
Rien n’est cependant plus faux et plus contraire aux faits expérimentaux.
Les formules qui font abstraction de m mettent ce fait en évidence, que pour
des taux de travail et une sollicitation donnés il y a une infinité de sections
possibles.

Si la méthode classique de calcul est loin d’étre parfaite, I’application
qu'on en fait généralement n’est pas moins mauvaise.

Le fait d’introduire des taux de sécurité ou fractions des taux de rupture
dans les formules classiques fausse la notion de la sécurité car, ainsi que
nous 'avons déja observé ci-dessus, la répartition des tensions est telle qu’au
diagramme 5 a la rupture et non pas comme au diagramme 2 qui est a la
base des formules: le rapport des taux de rupture aux taux de sécurité intro-
duits n’est donc pas le coéfficient de sécurité de la piece.

Par ailleurs, 'introduction de taux de sécurité consiste 2 admettre, pour
toutes les pieces d’une méme construction, la méme sécurité aux charges
permanentes et aux surcharges. Il est cependant incontestable que la sécurité
aux surcharges doit étre plus grande que celle au poids mort, puisque ce
dernier n’est pas susceptible des mémes augmentations que les surcharges:
la sécurité aux surcharges est d’ailleurs surtout celle qui intéresse les usagers.
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Ainsi, dans P’application usuelle, la sécurité aux surcharges varie con-
sidérablement avec le poids mort des pieces; comme, d’autre part, dans une
méme construction le rapport du poids mort aux surcharges peut varier
notablement d’une piéce a 'autre, on a en fait une sécurité aux surcharges
différente en de nombreux endroits de la construction: une méme construction
n’a pas partout la méme sécurité aux surcharges! Le calculateur qui emploie
ce procédé ignore ainsi généralement quelle est la sécurité qu’il donne effec-
tivement aux surcharges et il est dans I’'impossibilité de 'indiquer a 'usager.

Examinons a quelles différenecs cette application usuelle peut conduire
pour la sécurité aux surcharges.

Soit:

g le poids mort ou la charge permanente,

p la surcharge,

s la sécurité désirée au poids mort,

S la sécurité effective aux surcharges,

A le coéfficient de sécurité total, poids mort plus surcharge, soit le rapport
du taux de rupture au taux de sécurité.

Ceci implique: g<s+p><S=A(g+p),
doii S = (A—s)—% ) (1)
Ainsi, pour A=25 et s=15, S= -ﬁi + 25 (1)

Cette expression donne le coéfficient de sécurité effectif aux surcharges lors-
qu’on admet une sécurité de 1,5 aux charges mortes et 2,5 pour ’ensemble
poids mort et surcharges.

Pour g=02p S =27
g=04p S=29
g=2006p S =31
g=08p S =33
g=10p S=35
g=15p S =40

Les rapports g/p = 0,2 et 0,4 se remontrent fréquemment en constructions
métalliques, et ceux de 0,6, 0,8, 1 et 1,5 dans les constructions en béton
armé. Ceci donne la raison pour laquelle des constructions en béton armé,
dont le coéfficient de sécurité total A est moindre que celui de constructions
métalliques, ont en fait des sécurités de méme ordre ou supérieures a celles-
ci pour les surcharges. Le coéfficient de sécurité total des pieces fléchies en
béton armé étant généralement voisin de 2,3 (pour le calcul par la méthode
classique), la sécurité effective aux surcharges, lorsqu’on admet une sécurité
de 1,5 au poids mort, vaut:

pour g=006p S = 2,78
g=08p S =204
g=10p S = 3,10
g=15p S = 3,50

Nous donnons, fig. 7, en un diagramme, les variations de S en fonction de
g/p pour différentes valeurs de s.

Ceci s’applique essentiellement aux piéces qui, par leur position, sont
fléchies sous leur propre poids.
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Pour les piéces en béton armé disposées debout et a flexion prépondé-
rante, le coéfficient de sécurité aux surcharges n’est que le coéfficient total,
soit, avec les taux usuels, 2,3 environ: il en est ainsi pour les poteaux, les
parois de silos, de réservoirs et de murs de souténement.

Par conséquent la méthode des taux de sécurité donne en réalité une
sécurité beaucoup moindre aux piéces verticales sollicitées latéralement
qu’aux pieces horizontales ou inclinées.

Remarquons entre parenthése que la considération qui précede, relative
aux coéfficients de sécurité des pieces fléchies, est également vraie pour les
picces comprimées. Il est absurde d’admettre la méme sécurité aux charges
permanentes qu’aux surcharges, par exemple pour les colonnes des étages
inférieurs des batiments en béton armé a plusieurs étages: généralement,
si 'on désire une sécurité de 3 aux surcharges, une sécurité de 2 paraitra

suffisante aux charges permanentes. Ainsi, pour L - 1,5 (les poids morts
sont généralement prépondérants pour les colonnes inférieures des immeubles
a plusieurs étages), s = 2 et S = 3, le coéfficient de sécurité total résultera
de:2g 4+ 3p=(g -+ p) A et vaudra 2,4. Donc, dans ce cas le taux de travail

pourrait étre les 5174— du taux de rupture. Si ce dernier est de 180 k. p. cm?,

le taux de travail pourra étre de 180: 2,4 = 75 k. p. cm? aux charges mortes
plus surcharges dans les conditions ci dessus et abstraction faite des con-
ditions de flambement et des flexions secondaires.

Pour réaliser une sécurité uniforme aux surcharges, rien de tel que de
fairele calcul austade derupture:introduireles taux de
rupture dans 1’expression du moment de rupture de la
piece, et écrire que ce dernier vaut la somme du moment
dfi au poids mort ou aux charges permanentes multiplié
par s et du moment dit aux surcharges multiplié par S.

Ceci appelle une remarque en ce qui concerne le béton armé.

Les pieces a pourcentage d’armature normal ou faible et & béton de
bonne résistance se rompent dés que la limite d’élasticité du métal est atteinte:
ceci provient de ce que le béton, qui n’est généralement pas capable d’un
allongement supérieur a 1,5/1000, se fend dans la zone étirée dés que le
métal atteint sa limite d’élasticité, et se crevasse lorsqu’au dela de cette limite
le métal s’écoule; P’écrasement du béton comprimé s’éffectue alors immé-
diatement.

Par conséquent, pour le béton armé, les éléments a introduire dans les
formules de rupture sont le taux de rupture du béton par compression et la
limite apparente d’élasticité de P'armature.

II. Moments de rupture.

Les moments de rupture caractérisent la force des pieces fléchies. (Nous
n’examinons pas ici la résistance aux efforts tranchants.)

Nous considérons successivement:

1. les pieces a section rectangulaire armées en traction seulement,
2. les pieéces a section en 7 armées en traction seulement,
3. les piéces a section rectangulaire armées en traction et en compression.
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1. Piéces a section rectangulaire armées en traction
seulement.

Nous admettons qu’au stade de rupture:
1. La section est fendue dans la zone de traction sur une certaine
hauteur db.

2. La section de rupture, primitivement plane, est restée plane sur la
hauteur ac de béton non fissuré: en conséquence, le diagramme tensions-
déformations sera le méme que celui de I’essai de compression sur cubes.

3. Ce dernier diagramme est celui indiqué par M. Schreyer (ler Con-
gres des Ponts et Charpentes 1932. Rapport final pages 502 a 505), traduit
0,63 7¢
1,1-7°
diagramme des compressions de béton a les caractéristiques données a la
fig. 8: la résultante des compressions vaut 0,837 1, X x et elle se trouve
a 0,442 x de la fibre extréme comprimée.

Le point a, d’arrét de la fissure de traction, ne coinciderait avec la fibre
neutre que si la résistance du béton a la traction était nulle. Comme en fait
cette résistance existe, le point a se trouve sous o et les tractions, que nous
supposons reparties selon un triangle sur la hauteur oa, apportent quelque
résistance a la piece.

Nous établirons des formules qui prennent en compte cette contribution
du béton étiré et nous verrons ensuite ce qu’elles deviennent lorsqu’on en
fait abstraction.

Nous admettons que la traction de rupture du béton vaut les 15 o5 de la
compression de rupture: 7, = 0,15 7;, ou E, ., = 0,15 E; J, ou encore, puisque
le coéfficient d’élasticité a traction du béton vaut sensiblement la moitié du
coéfficient d’élasticité du béton comprimé: §, = 0,3 J,.

Or, la premiére hypothése donne

Jb_x . Jb_l_x
3 =% SOIt_d}—@_Efi

I1 en résulte qu’a la rupture le

par la loi hyperbolique: § X 103 =

ou oa =—03x.

Pour simplifier les développements qui suivent, nous considérons une
piéce de largeur unité (6 = 1).

Ecrivons les équations d’équilibre dans le plan de flexion:
Equation de projection sur ’axe de la piece:

0,837 15 >< x = w7, + 9-?1—x—>-<§0—153’ d’oll, si nous posons
u = % (v = pourcentage): x = 68%:—;7; >< h (1)
Equation de rotation autour d’un axe situé au niveau de ’armature:
0.837 v x (H— 0,442 x) —'Qﬂﬁfi;—gﬁ?f [h — (x + % <03 x)] — M,
ce qui donne, apres avoir remplacé x par se; valeur (1): |
(1 — 0516 “TZ) wrah® = M ()

Si nous avions admis que ¢, valait les 10 9% au lieu des 15 9 de 1, nous
aurions obtenu

oa = 0,2x et les équations



Calcul et sécurité des pieces fléchies. Moment de rupture 27

. 0.2x><0,1 7, , s U, ,
0,837y ><x = w7, + — Ty dolt x = 0,827 7, > h (1)
et 0,837v,x(h—0442x) — 017 ;ng l/z — (x + gﬁ >< 0,2 x)] =M
d’ott (1 — 0,522 Hf”) Hrgh: =M 2"
b

Si nous avions négligé le béton en traction, nous aurions en:

08377, <x = w1, dolt x = L% >cp et 0.837z,x(h—0442x) = M

0,837 7,
d’ N . !.l Tll 9 ___ ”
ol: 1 — 0,528 . uteh® =M (27)
2;
Sk
Q
05 ;‘r//
\s"q' Fig. 9
<
4 &
0, ké@l e“‘(‘d\
A Section rectangulaire{ armée en
(ﬁ traction seulement.

03

Einfach armierter Rechteckquer-
02

/F schnitt.
01 A

1 Rectangular section with tensile
reinforcement only. '

~ £
0 0192 03 0% 05 05 07 05 03 1 H T,

Si enfin nous avions négligé les tractions du béton et admis un dia-
gramme rectangulaire des compressions, nous aurions obtenu:

Tp><x = wtr, dou x = ‘“Z"><h, et tb><x><(/l—-%)= M
b .
d’oli en remplagant x pas sa valeur ci-dessus:
(1 — 05" ”") UTah? = M 2"
Tp
D’une facon générale, le moment résistant s’exprime par
(1 ——K“Ta)yta/zz,
Ty

oit K varie depuis 2 dans ’hypothése du diagramme triangulaire de la théorie
classique, jusqu’a 0,5 dans P’hypothése d’un diagramme rectangulaire des
compressions.
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La comparaison des formules (2), (2'), (2”) et (2”) montre que les
tractions de béton au-dessus de la fissure, quelle que soit leur grandeur,
n’apportent qu’une trés faible contribution a la résistance, que ces formules
difféerent peu 'une de autre et que la formule (2”’), la plus commode, peut
les remplacer toutes. Pour fixer les idées:

avec r, = 2600 k. p. cm?, 7, = 200 k. p.cm? et 4 = 0,01 on a:

formule (2) : M = 24,255 h?

formule (2) : M = 24235 h?

formule (27) : M = 24214 p®

formule (2”) : M = 24310 A2.
La distance x, de la fibre neutre o a la fibre extréme comprimée c ne
peut évidemment pas étre plus grande que 4. Ainsi, ’expression =" X h,

Th
dans le cas olt on néglige les tractions de béton et oit I’on admet un diagramme
rectangulaire des compressions, a pour valeur limite 4:

“Tap < osoit e L 3
Tp Ty T M
Dans cette expression, 7, et 7, sont des valeurs simultanées a la rupture.
Cette relation (3) donne la valeur limite du rapport des tensions de I’ar-
mature et du béton a la rupture, en fonction du pourcentage. Ainsi, par
exemple, pour u = 4,5 % et 1., = 100 k. p. cm2, 7, << —()J(())TO5 ou 2220 k. p. cme.
Dans ce cas la limite d’élasticité de ’armature ne pour’ra pas étre atteinte et
la rupture se produira par écrasement du béton: c’est le phénomene courant
de rupture des pieces en béton peu résistant et fortement armées.

Si par contre le pourcentage est relativement faible pour un béton assez

résistant, c’est-a-dire si u<-lb-2—8—/~* les fissures du béton dans la zbne
: Ta limite &’ élasticité

de traction deviennent des fentes dés que le métal atteint sa limite apparente

d’élasticité, et ces fentes deviennent des crevasses qui grandissent des qu’au

dela de cette limite le métal s’écoule sous charge constante tandis que le

béton comprimé s’écrase simultanément.

s e M rla u Ta
2”/ ) . ( ) . b
B La formule ( ) peut s ecrire -———b <7 752 = 1*0,5 i ——b . ; € est une

parabole du 2¢ degré en fonction de u ou de H %a

oo Le sommet de cette para-
b
%: 1 et pour ordonnée bR 0,5. En vertu de

bole a pour abcisse u

la condition (3) cette courbe est valable jusqu’a u g—’: 1, c’est-a-dire jusqu’a
b
son sommet. Nous tracons cette courbe a la fig. 9.

Exemple d’application.

Soit une piece dont les flexions de service sont de 500 kgm pour les
charges permanentes et 750 kgm pour les surcharges. .

On désire une sécurité de 1,5 aux charges permanentes et de 3 aux sur-
charges. La piéce doit avoir 20 cm de largeur; elle sera armée a 0,8 oo et
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son béton sera caractérisé par 7,.;. = 150 k.p.cm? tandis que la hmlte
apparente d’élasticité de P'acier est de 2600 k. p. cm2.

Il s’agit de calculer la hauteur et armature de la piece. Le moment de
rupture sera de 1,5 X 500 - 3 X 750 = 3000 kgm. La formule (2”") donne:

3000,00 _ (1 05 0, 008 >< 2600) 0,008 > 2600
20 >< 150 >< 4?2 ’ 150 150
La valeur du second membre se lit au diagramme de la fig. 9. Cette formule
donne ainsi # = 27,8 cm.
w = 0,008 x 20 x 27,8 = 4,46 cm?, soit 4 & 12 et H = 30 cm.

Autres méthodes.

Parmi les autres méthodes de calcul a la rupture, les plus remarquables
sont celles de Mr. S. Steuermann et de Mr. F. Gebauer. Nous les examinerons
successivement.

Tp
? % % T
/
///
zel=mi . = =—
Te ' ’
a b c
Fig. 10 Fig. 11

a) Méthode de Steuermann (Beton und Eisen, nos. des 20 février et
5 mars 1933).

En partant d’un diagramme trlangulalre des compressions et des tractions
du béton (fig. 10), auteur aboutit a la formule suivante: :

M wpr, + 3ut, vy — 2(uT,)? T _ HT,
bh: 3w+ o Powr K= & ¢= Ty
M K+3¢—2¢
Ty h? 314+ K) ’

expression d’une parabole du 2¢ degré en fonction de ¢ pour une valeur dé-
finie de K. Ces paraboles ont toutes leur sommet sur la verticale o = 0,75
et ne-sont valables que jusqu’a ¢ = 0,50 (valeur pour laquelle x = % et

M 1 quel que soit K).

22y 1+3
_ M 0143¢—2¢"

Pour K = 0,1, on a Wbt = 33
Nous avons tracé cette courbe sur la fig. 9.

Les bases de cette méthode sont critiquables:

10 Au stade de rupture, le diagramme des compressions du béton n’est
pas un triangle comme Mr. Steuermann le suppose.

20 Dans les sections de rupture il n’y a pas de tractions de béton jusqu’a
I’armature: ces sections sont en effet flssurees dans la zOne de tractlon bien
avant la rupture.
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La formule de Mr. Steuermann donne des résultats assez satisfaisants
jusqu’aux pourcentages moyens, et inférieurs a la réalité pour les pour-
centages importants.

Nous considérons par conséquent cette formule comme une recherche,
plus ou moins satisfaisante, d’adaptation des calculs aux résultats.

b) Méthode de Mr. le Dr. Ing. F. Gebauer (Beton und Eisen, 5 mai 1934).

Mr. Gebauer établit 3 formules, chacune pour 'un des trois diagrammes
ci-contre (fig. 11). Ceux-ci different entre eux par la variation des compres-
sions de béton et ils ont ceci de commun qu’ils supposent des tractions de
béton égales a a1, sur une hauteur 2 ¢ dont le centre est ’armature (situé a
la distance ¢ de la fibre extréme de béton étiré).

D’apres Pauteur ces tractions de béton seraient I’équivalent d’une com-
pression initiale dans ’armature sous 1’effet du retrait du béton qui ’enrobe.
Ceci revient a poser que le retrait du béton contribue a la résistance des
pieces fléchies.

2

~N.

=%
<
0s — = —
S ] Fig. 12
.z L
S
Q«»,,%QQ / Profil rectangulaire armé en
/ y traction seulement.
1 “
/ / Einfach armierter Rechteck-
'/ querschnitt.
02 / V
' Rectangular section with tensile
01 reinforcement only.
{ J [Formule de Mr. le Dr. Ing. Gebauer.]
o 7 2 3 4 5 6 7 8 9 10 1 12 13 14 'IS‘uO/o

Mr. Gebauer contréle ses trois formules par de nombreux résultats
d’essais. Malheureusement, la précision des mesures de la résistance du béton
sur cubes et de la limite apparente d’élasticité de ’armature employée, est,
pour la plupart de ces essais (notamment ceux de Moller, Bach, Saliger etc.),
insuffisante pour un bon contréle des formules. Il n’est d’ailleurs permis
de considérer, pour la comparaison a une méme formule, que les essais ef-
fectués de facon identique et notamment avec des charges semblablement
disposées: on enregistre en effet des résistances de rupture supérieures par
charge isolée au milieu d’une piéce que par charges symétriques ou moment
constant sur une certaine longueur (ceci est un effet de la plasticité du ma-
tériau).

La comparaison qu’effectue Mr. Gebauer de ses propres essais et de ses
formules comporte par ailleurs une erreur fondamentale: L’auteur omet de
tenir compte du poids propre dans le calcul par ses formules, alors que ce-
pendant ce poids propre intervient pour 2 a 3 o6 dans I’essai de rupture; de
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ce fait la moyenne des différences est de 2,3 % au lieu de 0,2 9% donné par
Pauteur pour le calcul par sa troisieme formule.

Cependant cette formule issue de 'hypothése d’un diagramme rectangu-
laire des compressions est celle qui donne les chiffres les plus voisins des
résultats expérimentaux.

Elle s’écrit:

M Ta 2e § Ta 2¢e ﬂ
b l" P (/z “*‘M < [1 — 05 {*‘ P (7 —A")“

Pour a = 0,10 (c’est-a-dire des tractions de béton égales au dizieme de
la compression de rupture) et e — 0,15 /, cette formule devient:

M 2 : .
i = [,, % + (0,3 — 1) 0,1] =< [1 —05 {M% + (0,3 —,.)xo,l}]. (4)

La fig. 12 donne ces courbes pour 7, = 2600 k. p. cm? et 7, ,5;. = 100, 150,
200, 250, 300, 350 et 400 k.p.cm2. Les mémes courbes sont applicables a
7, = 3500 k. p. cm? et aux valeurs de 7, ci-dessus multipliées par le rapport
3500
2600’

La limite d’application de la formule de Mr. Gebauer résulte de la con-
dition que x <#, soit :

des limites élastiques des deux nuances d’acier.

o | (2¢_ ) = £ — 0,15:

‘“ch+(/z a<1 ou, pour e«=20,1 et 7 = 0,15:

1 % + (03 —u)><0,1 <1 Cesta-dire u ;— = 0,97 + 0,1 u.
b b

Lu justification des formules de Mr. Gebauer par la considération du
retrait n’est toutefois pas satisfaisante: il est inexact que le retrait inter-
vienne dans la résistance de rupture par flexion.

On peut s’en rendre compte par le calcul élémentaire suivant.
Soit:

7; la compression du béton sous retrait et flexion,

7r la traction de ’armature par flexion simple,

1r, la compression initiale dans ’armature par retrait du béton.

Considérons une section de largeur unité et écrivons les équations d’équi-
libre dans le plan de flexion.

Equation de projection: TpX + WTR = WTF d’ol1, en posant
o= —2}- (pourcentage) : X = ;—((TF—— TR) < h (1)
b

Equation de rotation:

Tp < <h ——;) = M dou, en remplagant x par sa valeur
donnée par (1): (1 —-0,5/1—’[1_?——2) < u(tp—R) h2 = M.
b

La valeur limite de 7 — 7z dans cette formule de rupture est évidemment
la limite apparente d’élasticité de "armature. Par conséquentles valeurs
de 7 et de g considérées isolément n'importent pas;
seule leur différence est 2 considérer et c’estune limite
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déterminée, la limite apparente d’élasticité de I’arma-
ture employée. Lacompressionde l’armature par retrait
dubétonn’augmente donc paslarésistance de la piece.

Cette conclusion est, cela va de soi, indépendante de ’hypothése faite
sur la répartition des compressions du béton.

Elle était d’ailleurs évidente a priori: les tensions de retrait donnant un
moment nul avant chargement ne peuvent non plus donner aucun moment a
la rupture.

Dans une discussion qui a suivi la publication de la théorie de Mr. le
Dr. Ing. Gebauer, Mr. le Dr. Ing. Bittner a tenu le raisonnement suivant: la
compression initiale dans Pacier par retrait de béton est équilibrée par des
tractions de béton; lorsque la piéce est progressivement mise en charge, la
compression dans l’acier diminue progressivement puis l’acier se met en
traction tandis que les tractions du béton qui ’enrobe grandissent; des que
la résistance a traction du ‘béton est atteinte, le béton se fissure: a ce mo-
ment la traction que ce béton supportait se transmet a ’acier et, comme elle
est équivalente a la compression initiale de P’acier, cette derniére se trouve
annulée; le retrait n’a donc rien apporté a la rupture.

“b

1 E;

‘ |

X . ,

! ro b Ty b7
i h . =

/37 A
°":::;ﬁ::e ~H—wr
Wty ——wry ——-Y-- b’ ' baz,
Fig. 13 Fig. 14

Nous pensons que la plasticité du matériau peut seule expliquer que,
pour les pieces a faible pourcentage, les charges de rupture sont plus grandes
que celles données par notre formule et par celle de Mr. Steuermann et assez
voisines de celles calculées par la formule de Mr. Gebauer. Dans une piéce
faiblement armée, la contribution du béton étiré est effective dans les trongons
non fissurés voisins de la section de rupture; il en résulte que, dans ces
troncons, la compression du béton est sensiblement moindre que dans la
section fissurée ou de rupture; ainsi dans les pieces faiblement armées, le
béton comprimé dans la section de rupture est compris entre des bétons
notablement moins sollicités: en conséquence ce béton est capable d’une
compression supérieure a la résistance sur cubes.

Ce phénomene est naturellement d’autant plus marqué que la picce est
plus faiblement armée. Les formules de Mr. Gebauer, qui admettent des
tractions indépendantes du pourcentage, donnent précisément aussi des ex-
cédents d’autant plus grands que le pourcentage est plus petit: c’est pour
cette raison qu’elle concorde particulierement bien avec les résultats d’essais.
Tout se passe donc ,,comme si‘ ’hypothése de Mr. Gebauer sur I’action du
retrait était vraie.

Voyons ce que donnerait 1’application de la formule (4) ou de Mr.
Gebauer a P'exemple traité ci-dessus.

Nous rappelons qu’il s’agit de calculer la hauteur et 'armature d’une
piece de 20 cm. de largeur, armée a 0,8 oo et devant donner 3000 Kgm. a la
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rupture a 28 jours; les taux sont: t,. ;. = 150 k. p. cm? et g umite stastique =
2600 k. p. cm2.
La formule (4) donne:

3000,00 l 2600
205<150/° — | 9908 =55
< [1 05 {0,008 <

+ (0,3 — 0,008) < 0,1] <

2600
150
La valeur du 2¢ membre se lit au diagramme de la fig. 12.

Cette formule donne 2 = 25,5 cm., d’olt w = 0,008 x 20 X 25,5 = 4,08 cm?,
soit 3®12 et 1910 et H = 28cm.

+ (0,3 — 0,008) >< 0,1 }]

2. Profilen 7 armé en traction seulement.

Nous distinguerons deux cas:

A. la partie comprimée sous flexion comprend la table du 7,

B. la partie inférieure de ’ame est seule comprimée, ’armature de traction
se trouvant dans la table (c’est ce qui se présente aux liaisons hyper-
statiques des nervures des planchers).

A. La partie comprimée sous flexion comprend la table du T.

Nous admettrons qu’a la rupture les compressions du béton se répartis-
sent selon un rectangle comme a la fig. 14. Cette hypothese est plus rap-
prochée encore de la réalité pour la section 7 que pour la section rectangu-
laire, du fait de la prépondérance de la table.

Nous admettrons aussi que la plasticité du matériau donne un moment
complémentaire provoqué par le béton des parties non fissurées et par consé-
quent indépendant du pourcentage: cet accroissement de résistance, dit au
voisinage de la section de rupture, sera supposé équivalent a celui que pro-
duiraient des tractions de béton sur une hauteur 2 e dont le centre est ’ar-
mature. Nous reprenons en somme le diagramme donné par Mr. Gebauer
pour la section rectangulaire, mais nous lui donnons une justification diffé-
rente.

Ecrivons les équations d’équilibre dans le plan de flexion.

Equation de projection sur ’axe de la piece:

[do + 0 (x—d)] 1p = w1 + (20 — ) a1y (1)
201: _ W Ta B PP
d’ott: X == b/><'fb+<26 b,)a db, + d (2)
Equation de rotation autour d’un axe situé au niveau de Parmature:
( d ’ x—d
db(h— z)r,, + (x—d)b (\/z—d—@z ~~)rb — M (3)

d’ot, en remplacant dans cette équation x — d par sa valeur extraite de (2):

db (/ _—fi) 40 (h—d) lz(vl CC <ze~“,')a]

2 Ty b b
1 lm Ta b ( m> ]‘3 , M
— a5 2e— — > = —
AV db + {2¢ b ol ><b ™
b d e
Posons: o = ubh, Y= =0 et W =

Introduisons ces valeurs dans I’équation précédente; nous obtenons fi-
nalement:

Abhandlungen IIL 3
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Cette formule est assez compliquée.

Par ailleurs, lorsque la table est relativement large, le pourcentage
d’armature rapporté a ’ame de la poutre est d’une importance telle que la
contribution du béton de I’ame par I’application de notre derni¢re hypothese
ne représente qu’une partie infime du moment de rupture.

On négligera généralement ce petit complément de résistance.

I1 en résultera une formule plus commode, que nous traduirons en
diagrammes pour son application pratique.

On obtient cette formule en faisant a = 0 dans (4):

TS AL 0 O A S

Pour une valeur de o donnée, elle est représentée par des paraboles du

24 degré, fonctions de M?, pour des ¢ donnés.
b

Leur sommet a pour abcisse u %"i — l%p + ¢ et pour ordonnée
b
Mo 99) 1—9)?
bk, ‘p(l 2)t 2,

Les limites d’application de la formule (5) résultent des deux conditions
x>>d et x<<#h; la condition x > 4 donne u ;i’ch, et la condition x <% ou
b

b Ta b (p
. e —— — < — ) OSE
u—rh \ d—+d<h donne y < @ +

La formule (5) est donc applicable depuis Méﬁz @ jusqu’a
b

1—
[u_ — _+__ T(p
abscisse du sommet de la parabole

En deca de la limite © -©= ¢, donnée par la condition v<d c’est-a-dire
Tp

lorsque la fibre neutre se trouve dans la table, c’est notre formule (2") des
pieces rectangulaires qui est d’application. La courbe représentative de notre
formule (2””) est tangente a celle de la formule (5) ci-dessus, au point cor-

respondant a M;—‘; = q.

Nous donnons, fig. 15, 16, 17, 18 et 19, les diagrammes pour o = 2, 3,
4,5 et 6; chacun de ces diagrammes comporte les branches de courbes {for-
mule 5) correspondant a ¢ = 0,10 0,15 0,20 0,30 et 0,40.

Exemples d’application.

Une poutre 7 a une table de largeur 4 = 120 cm. et d’épaisseur 4 = 6 cm.
Son ame a une largeur &’ = 30 cm.
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Poutres T a table comprimée, — Rippenquerschnitt mit gedriickter Platte.

T-beam with flange in compression.
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Les moments sollicitants sont:
15 000 Kgm. pour les charges mortes,
12000 Kgm. pour les surcharges.
La sécurité aux charges mortes sera de 1,5 et celle aux surcharges, de
3. La limite d’élasticité de ’armature est de 2600 k. p. cm? et la compression
de rupture du béton a 28 jours est de 130 k. p. cmz2.
ler probleme.
On s’impose un pourcentage d’armature de 1 op.
Il s’agit de calculer la hauteur et "armature.
Le moment de rupture vaudra:
1,5 X 15000 + 3 x 12000 = 58500 Kgm. ou 58500.00 Kgcm.
b 120

On a g = VT30 4, de sorte qu’on fera usage du diagramme de la
fig. 17.
Ta 2600
u P 0,010 >< 130 = 0,20.

Nous procédons par approximations successives:
supposons que la hauteur qu’on obtiendra donne ¢ = 0,10.

A M:’ﬁ = 0,20 correspond, sur la courbe de ¢ = 0,10, une valeur de
Ty

_— ¢/ 580000
— 0,165, dou #h = lr 120 5 130 -2 0.165 — 47,7 cm,

M
b }lz Ty

hauteur a laquelle correspond ¢ = = 0,126 au lieu de ¢ = 0,10 supposé

0
47,7
a priori.

Supposons ¢ =0,15. A u —(;’Zf = 0,20 correspond, sur la courbe de ¢ = 0,15
Ty

une valeur de

M . ... . 1/ 580000
phre, = 0170 Ao =100 150 < 0,176 = 402 em-
hauteur a laquelle correspond ¢ = 0 = 0,130 au lieu de 0,15 supposé.

. 46,2
Le ¢ réel est donc compris entre les 2 valeurs 0,126 et 0,130.

Nous admettrons ¢ = 0,128, d’olt /i = = 47 cm. et w = 0,01 X

0
0,128
120 X 47 = 56,3 cm? soit 12 @ 25 et H = 53 cm.

2eme probleme.

La hauteur totale est limitée 2 44 cm sous dalle, soit 50 cm. dalle
comprise. Il s’agit de calculer "armature.

Comme ci-dessus, le moment de rupture est de 58 500.00 Kgcm.

Nous admettons que # = 50 cm. — 7 cm. == 43 cm., d’olt ¢ = g _ 0,1395

43
M 58500,00
bh%r, 120 ><43%>< 130
A ces deux valeurs correspond, par interpolation au diagramme de la

fig. 17, M:ZZ: 0,26 d’oit u = 0’226}\0/61@ — 0,013 et w = 0,013 x 120 % 43 —

67,1 cm? soit 14 @ 25,

et — 0,203.
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B. La partie inférieure de ’dme du T est seule comprimée, Parmature de
traction se trouvant dans la table.

C’est la sollicitation courante des nervures des planchers continus aux
raccords a leurs supports, poutres, colonnes ou murs.

La méthode classique dimensionne trop largement ces sections, du fait
qu’elle néglige l'intervention du béton et de 'armature de la dalle.

I1 est évident que le travail a traction du béton de la table, dans les
troncons non fissurés, réduit les compressions du béton plus encore pour le
profil | que pour le profil rectangulaire: la différence entre les compres-
sions dans la section de rupture et celles des sections immédiatement voisines
étant donc plus considérable, I’étreinte transversale 1’est aussi et, en consé-
quence, le profil est capable d’un moment de rupture plus important.

=

g
Q
040 T
035 / =040 -
039 //';a-o,so Fig. 19
025 A N ..
=020 Poutres T a table comprimée.
L )
)20 - . .
° L// pea Rippenquerschnitt mit
/ gedriickter Platte.
=0,70 .
015 |— L —9
/ . T-beam with flange in
0,10 ¢- | compression.
005 / (

I
0 010 020 030 Q40 050 K,

L’accroissement de résistance dit a ,,I’influence des trongons adjacents
est toutefois moindre que celui qui correspondrait a des tractions de béton
s’exercant sur 2 eb ou sur db dans la section de rupture.

Nous n’appliquerons ’hypotheése de Mr. Gebauer qu’a la partie rectangu-
laire &’2 du profil, négligeant donc V'effet des tractions du béton sur la
largeur (b—0’) de la dalle dans les troncons adjacents: ceci donnera quelque
exces de sécurité, pour la raison susdite.

Mais, dans I'expression du moment de rupture, nous ajouterons a ’ar-
mature de traction située au droit de la nervure, ’armature longitudinale de
la dalle sur la largeur (6—0&’), pour autant que cette derniere armature ne
soit pas déja sollicitée a traction du fait des flexions de la dalle.
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Le moment de rupture s’exprimera donc par la formule (4) du calcul
des pieces a section rectangulaire (formule traduite en diagramme a la fig. 12),
sauf a y remplacer & par 0’

Exemple d’application.

Une poutre | dont les dimensions extérieures imposées sont celles de la
fig. 21, est sollicitée a ses liaisons par un moment de rupture de 30000 Kgm.

L’armature longitudinale de la dalle, sur la largeur 120 em. — 30 cm. =
00 cm., est de 1,8 cm2: elle ne travaille pas sous la flexion de la dalle.

» ‘Cb

b = k30 o
X - e L R PR
2y | i j P l e
h 50 57 Db
: . 3 1 : h
L ..... :V—_J-kd g"[:—:r__—__. 1. :
e R "o 120 ------ - ;
T R
Fig. 20 Fig. 21 Fig. 22

La limite d’élasticité de 'armature est dc 2600 k. p.cm? et la compres-
sion du béton sur cubes a 28 jours est de 200 k. p.cme.

Il s’agit de déterminer ’armature de la nervure.

M 3000000

On a: e o EN2 - 0120)
b-h? 1 30 >< 50° >< 200
d’oli, par la courbe 7, = 200 de la fig. 12: u = 1,5% et o = 0,015 X
30 x 50 —1,8 = 20,7 cmz,

3. Profil rectangulaire armé en compression et en
traction.

Nous étudions ce probleme dans deux conditions:
A. Nous faisons abstraction de la contribution des troncons adjacents a la
section de rupture;
B. Nous tenons compte de ’action des troncons adjacents.
Par action des troncons adjacents nous entendons l’accroissement de
résistance dit a Paction de frettage des zo6nes comprimées des trongons non
fissurés adjacents a la section de rupture.

Les compressions dans les troncons adjacents sont moindres que celles
de la section de rupture, du fait de la contribution des tractions du béton
dans les troncons non fissurés. La différence des compressions des troncgons
adjacents et de la section de rupture donne lieu a une étreinte transversale
et, en conséquence, a une augmentation de résistance a compression dans la
section de rupture. Il y correspond un accroissement de moment de rupture.

Il est possible de chiffrer cette majoration de résistance en procédant
par approximations successives.

On détermine d’abord le moment de rupture de la piece pour les ca-
ractéristiques de Pacier et du béton employés: limite apparente d’élasticité
de D’acier et compression du béton sur cubes a I’4ge considéré. On calcule
ensuite la compression maxima qui correspond a ce moment de rupture dans
le troncon non fissuré immédiatement voisin. L’étreinte latérale vaut le pro-
duit par le coéfficient de Poisson, de la différence entre la compression sur
cubes et la compression calculée dans le troncon non fissuré. A cette étreinte
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correspond, par la courbe de résistance intrinséque par exemple, une com-
pression de rupture supérieure a la compression sur cubes admise a priori.
Mais a cette plus grande compression correspond aussi un plus grand moment
de rupture, qu'on détermine, et, dans la section infiniment voisine non fis-
surée, une compression différente de celle calculée d’abord. Le produit par
le coéfficient de Poisson, de la différence entre la compression dans la section
de rupture et la compression dans le troncon non fissuré donne une nouvelle
étreinte transversale et, par suite, une nouvelle compression de rupture et
un nouveau moment de rupture: celui-ci est treés voisin du moment définitif.

Un tel calcul est forcément long et peu pratique.

Q
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Nous mettrons le probleme en formules ,,commodes‘‘, en posant que la
majoration de résistance due a I’action des troncons adjacents est la méme
que celle qui serait procurée par des tractions de béton s’exercant sur une
hauteur 2 e au pourtour de "armature de traction: nous reprenons en somme
Ihypothese de Mr. le Dr. Ing. Gebauer en lui donnant une autre interpré-
tation. Nous avons vu, a 'occasion du calcul des pieces a simple armature,
que les formules issues de cette hypothese sont en bonne concordance avec
les faits d’expériences.

A. 1l est fait abstraction de la contribution des trongcons adjacents a la section
de rupture.

Nous admettons que le diagramme des tensions de compression, au
stade de rupture, est un rectangle.

L’armature de compression w’, travaillant a v/, se trouve a une distance
eh de la fibre extréme comprimée du profil.

Pour simplifier les développements qui suivent, nous considérons une
picce de largeur unité (b = 1).



40 R. Coppée

L’équation d’équilibre de projection sur ’axe de la piece donne:

TpX + 0T, = 01, (1)

oy
WTyg— W T .
" ou, si nous posons w7, = Kwv, et o =uh (u=

d’oll x =
Tp

pourcentage d’armature de traction):
x = u(l—K) fap (2)
Ty

Equation de rotation autour d’un axe situé au niveau de la résultante
des compressions du béton:

x) I
© Ta><(/z——~2~) + o fa(—2——8h> =M 3
) ) X\ ([ x \
ou: ‘u/zra</z~~21)+Ky/z'r,,><k—2————a/z) =M
et, en remplacant dans cette équation x par sa valeur donnée par (2):
T ) 1 —K)2 T M

1

(expression analogue a la formule (2") des picces rectangulaires armées en
traction seulement).

Pour déterminer le pourcentage @’ d’armature comprimée, en fonction
de u, de K et des caractéristiques des matériaux, nous remarquerons que:
7, x—¢eh ; . . el
¢ =" """ si nous supposons que les sections transversales primitive-
Tp h—x
ment planes sont restées planes apres déformation.

Remplacons dans cette équation de condition x par sa valeur donnée

par (2): w(l— K)o —e
Ty = Ty o< — Ty . et, comme W hr, = Kuhrt,:
“a
1——‘ll(1 -_ K);b
T
l—u(1—K)-“ 5
= Ku fa Ku >< «»h‘T”—[i )
fa u(l—K)*—e
.

. . v . T
ou, pour la traduction en diagrammes des valeurs p’ - en fonction de @ -°
(2 Th

et de K pour un ¢ donné:

, 1—u(1—K)-®
.u'/itZ = Kx><u fa < kL (6)
"2 bu(1—K) e —
Ty

Nous donnons au diagramme de la fig. 23, les courbes représentatives
de (4) et (6) pour les valeurs de K = 0,05 0,10, 0,15, 0,20 0,25 0,30 et
e = 0,15.

Les courbes (6) ont une asymptote verticale a ,u? — % . Elles ren-

Tq ;
contrent 'axe des = a u — = )
“oy “02, 1=K
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Les paraboles représentatives de (4) ne sont donc valables qu’entre ces
mémes limites.

D’autre part, comme il n’est pas logique que w’ > u, nous donnerons
comme limite inférieure aux courbes représentatives de (4) et de (6) celles
qui résultent de la condition u’ = u.

Ces diagrammes sont pleins d’enseignements:

aux asymptotes verticales des courbes (6) correspond une fibre neutre
passant au centre des armatures o': x = ¢#;

il est souvent plus économique d’augmenter le pourcentage d’armatures
de traction plutdét que d’armer en compression;

la considération du diagramme rectangulaire des compression (c’est-a-
dire du stade de rupture) fait apparaitre pour les armatures comprimées une
contribution moindre que celle que la théorie classique accuse;

cette contribution n’est réellement intéressante que pour de tres fortes
7, < .
valeurs de u—2, c’est-a-dire pour de gros pourcentages d’armatures de traction
Ty

et des bétons de faible résistance ou pour des aciers a haute limite élastique.
Exemple d’application.

Une piece dont les dimensions extérieures sont limitées a & = 20 cm.,
H totale = 40 cm., est sollicitée par un moment de 2000 Kgm. pour les
charges permanentes et 3000 Kgm. pour les surcharges.

On désire une sécurité de 1,5 aux charges permanentes et de 3 aux sur-
charges.

Les matériaux employés ont pour caractéristiques:
limite apparente d’élasticité de ’acier: 2600 k. p. cm2;
compression du béton sur cubes a 28 jours: 100 k. p. cm2.

Le probléeme consiste a déterminer ’armature la plus économique.
Des données ci-dessus on déduit:

M de rupture = 1,5 x 2000 -+ 3 x 3000 = 12 000 Kgm.
i = 40 cm. — 6 cm. = 34 cm.

M 1200000 o

Chacune des courbes représentatives de (4) donne, sur I’horizontale

57/1—‘;17: 0,52, une valeur de u t" a laquelle correspond, sur les courbes re-
b Tp ;
présentatives de (6) une valeur de y’—[‘—’. L’armature minima est donnée par
) to T4 T,
le minimum de la somme des deux lectures no et o e
z z
On lit successivement:
fa 0,650 y’@ = 0,175 (u+u) :" = 0,65 +0,175 = 0,825
b

Tp Tp

pour K =030 u

T ' Tq

pour K =025 u-%=0675 « *=0115 (u+u) =0,675+0,115=0,790
Tp Ty Tp

pour K=1020 «-==10,700 ‘U'T}z = 0,075 (u+u’)-%=0,700+0,075 = 0,775

Ty Ty Tp

pour K =015 1'% —=0730 ' “=0042 (u+u) ,r —0,730+0,042 = 0,772
‘ 2 _

Ly Tp

T
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pour K = 0,10 ‘LII,:(»ZIO,775 L ;——0020 (u+u) —‘0775+0020_—0795
Ty Th Ty

pour K =005 u : — 0,860 ,u'r;‘? =0,005 (u+u) ; — 0,860+0,005 = 0,865
b Tp b

Le pourcentage minimum résulte donc des lectures faites pour K == 0,15,

s0it u %’ = 0,730 doil u = 0,730 =< 21605)0 = 0,0281
L = 0,042 dout u = 0,042 < 100 _ = 0,00162
: Ty 2500 ’
d’ou w = 0,0281 >< 20 > 34 = 19,10 cm?
et o = 0,00162 >< 20 >=< 34 = 1,10 cm?.
B. 1!l est tenu compte de la contribution des z‘rongons adjacents a la section

de rupzfme

Avec les mémes hypotheses qu’au 10 ci-dessus, nous admettons que la
contribution des troncons adjacents équivaut a celle de traction de béton
sur une hauteur 2e dont le centre est armature de traction, e étant la
distance de I'armature de traction a la fibre extréme du béton étiré.

<
w

A

F1 T 1°5
xI w'ty

J’-&%'-E:Ie—»wzg +(2e-w)a

Fig. 24
L’équation d’équilibre de projection sur ’axe de la piéce donne:
rpX + 0 Tp = i, + (2e— w) ary - (en supposant b = 1) (1)
Posons o T, = Klot, + (2e— w) aty].
En introduisant cette valeur dans (1) nous obtenons:
x:[u;——{—(Ze—u) ] >=< (1 — K). (2)
b

Equation d’équilibre de rotation autour d’un axe situé au niveau de la
résultante des compressions du béton:

[()T,Z—[—(28—(})arb]><</z~?>+u Ta (%—*8/1) =M (3)

et, en remplacant dans cette équation x par sa valeur extraite de (2):

gty = (oo < =BT e (5 )] o]

- Ta
ou, sl nous posons  u— 4+ (— —y) a = X:
Tp h

l)jll;IQ :X[ _LM) *‘SKJX” (4)

expression analogue a celle obtenue au 1 ¢ ci-dessus.
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Pour déterminer le pourcentage u’ d’armatures comprimées, en fonction
de u, de K et des caractéristiques des matériaux, nous remarquerons que
T, Xx—eh . . ..

-4 ="__"— si nous supposons que les sections transversales primitivement
T — X
planes sont restées planes apreés déformation.

e

T

120 ) —; (

|

N

100 /42 Fig. 25
90 // “,_U‘o—‘—‘ . . ’ .
/ Profil rectangulaire armé en traction
K:0,05 et en compression.
0 Z Rechteckquerschnitt mit Zug- und

Druckarmierung.

60

Rectangular section with both tensile
and compressive reinforcement.

50

7, = 2600 k. p. cm?

+0

/ s 7, = 150 k. p. cm?
% EX
30 % e 3 e=20,15; «=0,10;
e (=4 b b b b

’fso T N e

20 _;7.:;;?6\90 \\\ o 7[ == 0.15.

2% \
0 n \\\ \\\\ < 1
[2) 1 2 3 4 5 6 7 M %

Remplacons, dans cette équation de condition, x par sa valeur donnée
par (2):
LT, 2e ) ]
(I_K)["%}Jr('h““ o , (1—K)X—¢

Ty = T4 < , oU 7} = T,>< .

1_(1_K)[“Z+<g/z€““)“] T —K)X

. ’ Ta 2
et, comme g hv, = K[y:—-;— (f—y>a]></l><fb = KX ht,:
Ty R

W= KX (5)

Nous donnons au diagramme de la fig. 25 les courbes représentatives

de (4) et de (5) pour les valeurs de KX = 0,05 0,10 0,15 0,20 0,25 0,30
aix € - 74 20600
e = 0,15, = 0,15, a = 0,10 et v = 150
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Les courbes (5) ont une asymptote verticale pour X = ilg_k_ ou
a )1 : a
‘ui = 015 0,10 (0,30 — u). Elles rencontrent ’axe des yi pour
Tp 1—K Tp
1 . < Tq 1
X = "—'K soit a ILL;b* = i’—:_‘[(—— 0,10 (0,30——"(1,).

Ces diagrammes, semblables aux précédents, conduisent aux mémes con-
clusions. ’
Exemple d’application.
Une piece dont les dimensions extérieures sont limitées a & = 15 cm.,
H totale = 35 cm., est sollicitée par un moment de 2000 Kgm. pour les
charges permanentes et 2200 Kgm. pour les surcharges.
On désire une sécurité de 1,5 aux charges permanentes et de 3 aux sur-
charges.
Les matériaux employés ont pour caractéristiques:
limite apparente d’élasticité de Pacier: 7, = 2600 k. p. cmz;
compressions du béton sur cubes a 28 jours: 7, = 150 k. p. cm?2.
Le probleme consiste a déterminer "armature la plus économique.
Des données ci-dessus on déduit:
M de rupture = 1,5 X 2000 4 3 x 2200 = 9600 Kgm.
h=35cm —6cm = 29 cm.
M 060000
— —— — 76,1
bh*  15><20° ’

Chacune des courbes représentatives de (4) donne, sur I’horizontale

M

b h2

sentatives de (5), une valeur de u'.
Nous lisons successivement:

pour K = 0,30 « = 0,0350 1 = 0,0210 dott w4+ « = 0,0560
pour K = 0,25 w = 0,0360 ¢ = 0,0140 d'oit w4 ¢ = 0,0505
pour K = 0,20 w = 0,0375 u = 0,0000 d'ott .u -+’ = 0,0465
pour K = 0,15 w = 0,0390 u = 0,0055 d'oit w4+ 1’ = 0,0440
pour K = 0,10 u = 0,0415 - = 0,0025 d'olt  u + ' = 0,0440
pour K = 0,05 u = 0,0450 « = 0,0010 d’olt wu + ' = 0,0460

@ -+ @ minimum résulte des lectures faites pour K = 0,10, soit « = 0,0415
et u/ = 0,0025 d’ot1:

(€3]

’

w

= 76,1, une valeur de u a laquelle correspond, sur les courbes repré-

=~

0,0415 x 15 x 29
0,0025 x 15 x 29

18,05 cmz,
1,09 cma2.

Il
Il

Résumé.

L’auteur discute les bases de la théorie classique des piéces tléchies en
béton armé et 'application qu’on en fait ordinairement par introduction de
taux de sécurité ou fractions des taux de rupture des matériaux.

Il propose de faire le calcul au stade de rupture et d’adopter pour le
poids propre une sécurité différente de celle aux surcharges.

En considérant seulement les conditions d’équilibre au stade de rupture
(et faisant abstraction du coéfficient d’équivalence m dont les classiques se
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sont embarrassés par ’adoption d’un postulat superfaitatoire et pratique-
ment faux), il détermine les expressions du moment de rupture successive-
ment pour:

1. les pieces a section rectangulaire armées en traction seulement;
2. les pieces a section en T armées en traction seulement;
3. les pieces a section rectangulaire armées en traction et en compression.

Il admet ’expression donnée par Mr. le Dr. Ing. Gebauer pour les pieces
a section rectangulaire mais il attribue le bon accord de cette expression et
des résultats expérimentaux non pas au retrait mais a ,l'influence des
troncons adjacents a la section de rupture‘‘: 'action de frettage des zbnes
comprimées des troncons non fissurés adjacents a la section de rupture dé-
termine un accroissement du moment de rupture. L’auteur indique une facon
de chiffrer cette majoration de résistance par un calcul d’approximations
successives qui fait usage de la courbe de résistance intrinseque ou de la
courbe des tensions principales.

L’étude est illustrée de diagrammes et d’exemples de calculs en vue de
son application pratique.

Zusammenfassung.

Der Autor befaBt sich mit den Grundlagen der klassischen Theorie der
auf Biegung beanspruchten Eisenbetontriger und deren allgemeiner An-
wendung durch Einfithrung des Sicherheitsgrades oder Verhiltnisse der
Bruchwerte der Baustoffe. '

Er schliagt vor, die Berechnung fiir das Bruchstadium durchzufithren und
fiir das Eigengewicht einen Sicherheitsgrad anzunehmen, der von jenem fiir
die Nutzlasten verschieden ist.

Indem er nur die Gleichgewichtsbedingungen im Bruchstadium betrachtet
(und von der Beriicksichtigung der Verhidltniszahl m der Elastizititsmodule
absieht, mit welcher sich die klassischen Theorien durch eine unzureichende
und praktisch falsche Annahme belastet haben), bestimmt er die Ausdriicke
des Bruchmomentes fiir:

1. Rechteckquerschnitte, nur in der Zugzone armiert; d
2. T-formige Querschnitte, nur in der Zugzone armiert;
3. Rechteckquerschnitte, in der Zugzone und in der Druckzone armiert.

Er pflichtet dem von Dr. Gebauer fiir Rechteckquerschnitte aufgestellten
Ausdruck bei, schreibt aber dessen gute Ubereinstimmung mit Versuchsergeb-
nissen nicht dem Schwinden, sondern ,,dem Einflufl der dem Bruchquerschnitt
benachbarten Teilen‘ zu. Die Wirkung der Umschniirung der gedriickten
Zonen der nicht gerissenen benachbarten Teile des Bruchquerschnittes be-
stimmen eine VergroBerung des Bruchmomentes. Der Autor gibt eine Be-
rechnungsweise als eine fiir diese VergroBerung des Widerstandes fort-
schreitende Annaherungsrechnung, die von der wirklichen Widerstandskurve
oder der Kurve der Hauptspannungen Gebrauch macht.

Der Beitrag weist Diagramme und Rechnungsbeispiele auf, mit der Ab-
sicht, der praktischen Anwendung einen Weg zu 6ffnen.

Summary.

The author discusses the bases of the classical theory of bent members
in reinforced concrete design and the application ordinarily made there of
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by way of introducing safe stresses, safety factors or fractions of the ulti-
mate strengths.

He proposes to make the calculation at the stage of failure and to adopt
for the dead load a measure of safety differing from that for superimposed
loads.-

Considering only the conditions of equilibrium at the stage of rupture
(and not entering the coefficient of equivalence m with which the classical
theories have encumbered themselves by adopting a rather superficial postu-
late and which practically does not hold true) he successively determines the
expressions of the moment of rupture for:

1. rectangular members with compressive reinforcement only;
2. T-beams with tensile reinforcement only;
3. rectangular members with both tensile and compressive reinforcement.
He agrees with Dr. Gebauer’s expression for rectangular beams, but
attributes the good accord of said expression with test-results not to shrinkage
but rather to ,,the influence of fragments adjacent to the section of rupture:
the hooping action of the compressed zones of nonfissured fragments ad-
jacent to the place of rupture giving rise to an increase of the moment of
rupture.
The author indicates a way of calculating this increase of resistance by
a method of successive approximations making use of the curve of intrinsic
resistance or the curve of principal stresses.

The paper is illustrated with diagrams and with numerical examples with
a view of opening a way for practical application.
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