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CONSIDfiRATIONS SUR LE CALCUL ET LA SECURITE
DES PIECES FLECHIES. MOMENTS DE RUPTURE.

BETRACHTUNGEN ÜBER DIE BERECHNUNG UND DIE SICHERHEIT
DER AUF BIEGUNG BEANSPRUCHTEN BAUTEILE. BRUCHMOMENT.

REMARKS ON THE CALCULATION AND SAFETY OF PARTS SUB¬
JECTED TO BENDING. MOMENT OF RUPTURE.

R. COPPEE, Ingenieur ä Bruxelles.

II est assez interessant de constater les errements qui sont ä la base des
theories classiques du beton arme et de rechercher les differences pratiques
auxquelles ils peuvent conduire.

Dans ce qui suit nous examinerons brievement la valeur des hypotheses
fundamentales du calcul des pieces flechies, nous discuterons ensuite les
methodes d'application courante ou „des taux de securite" et, enfin, nous
etudierons des methodes nouvelles dites „de calcul ä la rupture".

I. Consideraiions sur le calcul et la securite des pieces flechies
Le calcul classique des pieces flechies est base sur trois hypotheses:

1. les sections transversales planes restent planes apres deformation par
flexion;

2. les tensions sont proportionnelles aux deformations;
3. la resistance du beton ä la traction est ä negliger.

La premiere hypothese, ou de la conservation des sections planes, n'est
rigoureuse qu'en l'absence d'effort tranchant et pour des materiaux homogenes.

Lorsque le materiau est heterogene, comme le beton arme, les sections
ne restent pas absolumejit planes apres deformation (sauf les sections de
symetrie ä la fois de formes, de liaisons et de sollicitation). Les deux materiaux

associes ont en effet des proprietes fort differentes: tandis que la
deformation de l'acier, dans les limites de l'elasticite, est pratiquement
invariable dans le temps, celle du beton croit avec la duree de charge; il en
resulte que les deformations de l'acier et du beton situes au meme niveau
ne sont pas identiques et qu'en consequence il se produit avec le temps une
decharge partielle du beton comprime, au detriment de l'armature qu'il en-
robe. La constatation est analogue pour la zöne de traction, mais sans interet
notoire, du fait que, par la troisieme hypothese, le beton est suppose in-
existant dans cette zöne.

La seconde hypothese n'est vraie que pour des materiaux dont le
diagramme tensions-deformations comporte une zöne de proportionnalite. Elle
est donc inadmissible pour le beton, dont la courbe tension-deformation se
presente comme ä la figure 1. Au diagramme 2 de la methode classique il
y a lieu de substituer l'un des diagrammes 3, 4 ou 5, dont la forme differe
selon la grandeur relative de la tension ä la fibre extreme du profil. Pour
une piece peu sollicitee (xb egal au quart, par exemple, de la compression
de rupture) on a un diagramme tel que 3, assez peu different du diagramme
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classique, mais, ä la rupture, les tensions se repartissent comme au
diagramme 5. Par consequent, si Ton se refere ä la securite de rupture, c'est
un diagramme tel que 5 qu'il faut considerer, et c'est une erreur d'introduire,
comme le fönt les classiques, une fraction du taux de rupture dans des calculs
issus d'un diagramme tel que 2.

La troisieme hypothese, qui suppose le beton inexistant dans la zöne de

traction, est acceptable en ce qui concerne la contribution des tractions du
beton ä la resistance du profil: nous montrerons plus loin, ä l'occasion d'un
calcul, que la prise en compte de ces tractions, autrement dit la suppression
de cette troisieme hypothese, n'augmenterait le moment resistant que d'une
quantite insignifiante. En fait, comme nous l'expliquerons plus loin, la
presence de tractions de beton dans les trongons adjacents ä la section de
rupture, reduit les compressions dans ces trongons; il en resulte, par plasticite,
une augmentation de resistance du beton ä la compression dans la section
de rupture et, en consequence, un accroissement des moments de rupture
d'autant plus important que dans les trongons voisins non fissures la contri-

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

bution relative du beton etire est plus grande. Par ailleurs, la presence de
beton dans la zöne de traction modifie la grandeur des tensions par l'effet
du retrait; ainsi, dans les sections non fissurees principalement, les tensions
reelles different assez bien des tensions calculees par la methode classique:
ceci ä l'avantage de l'acier, comprime par le retrait du beton, et au des-
avantage du beton, comprime dans la zöne comprimee non armee. II n'est
pas inutile de se rendre compte de l'ordre de grandeur de ces tensions initiales
dues au retrait.

Soit:
cd la section d'armature en traction, par unite de largeur de la piece,
%a sa tension de compression par retrait,
%e la traction du beton au niveau de l'armature,
rb la compression du beton ä l'extremite du profil,
Ea le coefficient d'elasticite de l'acier,
Eb le coefficient d'elasticite du beton en compression,
Ee le coefficient d'elasticite du beton en traction,

d une deformation lineaire,
A le retrait du beton non arme.

Les tensions de beton par retrait sont d'un ordre qui autorise l'hypothese
d'une repartition triangulaire comme ä la fig. 6.

On sait que le coefficient d'elasticite du beton ä traction est environ la
ET

moitie de celui du meme beton en compression: nous posons Ee ~.
Or h- d'oü

ft+<S, Xh n + 2r, Xh 0)
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La deformation de l'armature sous l'effet du retrait est egale au retrait
total moins la deformation du beton par traction:

da — A — de, d'oü ra EaA — Eaöe (2)
Posons: R EaA (c'est la tension que l'acier prendrait sous une

deformation egale au retrait du beton non arme).
-JL my rapport du module d'elasticite de l'acier au module d'elasticite
Ee

du beton sous traction.
(2) peut s'ecrire: xa R — mxe (3)
Equation d'equilibre de projection:

x h — x %ed2 /A.tb X -y + WTfl %e X —"2 r- red + — %e co (4)

Introduisons dans cette equation la valeur de x donnee par (1), celle
de %a donnee par (3), remplagons w par fih (/u pourcentage) et d par eh. II
vient:

r*2(1—?) — 2^2n + 2^(^ — \) + 2e + e2] + 2iiRTb + 4[*RTe —

— 2teTbyt(m — l) + e + €2] 0 (5)

Equation d'equilibre de rotation (autour d'un axe situe au niveau de
l'armature):

x (t x\ (h — x)2 d2 ds

Introduisons dans cette equation la valeur de x donnee par (1) et d
par eh; il vient, apres simplifications:

r63(2— -j£)+ 3Ter62(2-£2-€8) — 4xe3(l + 3«2 + £3) — 6«2re2 r6(2 + «) 0.

Pour e 0,1 cette equation devient:
1,995 t63 + 5,967 %e%b2 — 0,126 t^2 — 4,124 re* 0, (6)

qui est satisfaite pour %b äs 0,75 t„.
Introduisant cette valeur dans (5), nous obtenons, apres simplifications:

T - vR cne~ 0,368 + n{m — \) V}

_ (0,368 — n)R6t T" R-mT< 0,368+ ,(m-l) <8>

La valeur de m ä introduire dans ces deux formules est le rapport du
module d'elasticite de l'armature au module d'elasticite „moyen" du beton
sous traction. Je dis „moyen" parce qu'il s'agit d'un module intermediaire
entre celui du debut du durcissement, c'est-ä-dire zero, et celui du beton etire,
ä l'instant considere. Nous admettrons que la valeur de m correspondant
au module moyen d'elasticite du beton depuis l'etat initial jusqu'ä l'etat final
vaut 40: ceci se justifie par le fait que m -— vaut environ 20 ä l'etat final.

II en resulte que:

"* et ra JS8-^-xR.
0,368;+i39>< " 0,368 +v39/<
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Ainsi, pour /u 0,01 et R 0,0004 X 2.200.000 880 k/cm2.

_ „ 0,01 x 880 _
rÄ 0'75><ö^68Tp9 8'7k-P-Cm Ct

0,368-0,01
,fl 880 X0;368 + 0;3Q 415k.p.cm2.

xa est d'autant plus petit et xb d'autant plus grand que le pourcentage est plus
important.

Ces calculs n'ont evidemment pas la pretention d'une absolue rigueur:
ils donnent l'ordre de grandeur des tensions de retrait, et l'on voit que celles-
ci sont loin d'etre negligeables.

Nous en concluons qu'il est peu interessant de rechercher, comme on le
fait cependant couramment, les tensions de service par sollicitations ex-
terieures si l'on omet d'y ajouter, avec leur signe, les tensions initiales que
le retrait provoque. Ces tensions sont bien un effet de presence du beton en
traction, que la methode classique neglige.

La compression de l'acier par le retrait du beton est naturellement beaucoup

moindre dans les sections fissurees que dans les sections pleines, du
fait de la detente causee par la fissuration. II n'en subsiste pas moins des
tensions de retrait dans le beton et dans l'acier des sections non complete-
ment fissurees: nous avons calcule, par un procede analogue ä celui expose
ci-dessus, que, pour une section fissuree jusqu'ä mi-hauteur, un pourcentage
de 0,01 et un retrait de 0,0004, la compression du beton serait: de 9,3 k/cm2
tandis que celle de l'armature ne serait que de 46,3 k/cm2. Nous repetons
que ces calculs ne donnent que des ordres de grandeur.

Disons toutefois qu'au point de vue securite de rupture les tensions de
retrait n'importent pas, car leur ensemble etant en equilibre de rotation
n'augmente ni ne diminue le moment de rupture, autrement dit la resistance
de rupture de la piece.

Remarquons aussi qu'en posant comme postulat qu'ä toute hauteur du
profil les deformations du metal et du beton sont les memes, la methode
classique s'est embarassee d'un module m, parfois appele coefficient d'equi-
valence ou rapport du coefficient d'elasticite de l'armature au soi-disant
coefficient d'elasticite du beton comprime.

Or, ce postulat est inutile et contraire aux realites: le beton et l'armature
situes au meme niveau ne se deforment pas identiquement; ainsi que nous
l'avons rappele au debut de cette etude, les deformations du beton grandis-
sent, dans une certaine mesure, avec la duree de chargement, tandis que Celles
de l'armature restent pratiquement invariables.

II n'est d'ailleurs guere possible d'assigner une valeur convenable ä ce
module m du fait que le coefficient d'elasticite du beton varie dans de larges
limites et sous de multiples incidences: la granulometrie et la nature des
agregats et du eiment, le dosage en eiment et en eau, la compacite, le degre
d'humidite, les mises en charges precedentes, l'äge et la charge.

Si le postulat de la methode classique etait admissible, il s'imposerait
d'ailleurs de donner ä tn une valeur differente ä chaque niveau du profil,
parce qu'il n'y a en realite pas de coefficient d'elasticite du beton ou que ce
rapport de tension ä deformation du beton varie avec la tension, donc avec
la distance ä la fibre neutre.

On congoit que la valeur ä donner ä ce coefficient m soit fort discutee;
en fait eile differe beaucoup selon les reglements: d'aucuns la fixent ä 10,
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d'autres ä 15, d'autres ä 20 et, fort heureusement, ces differences ne fönt
guere varier les resultats pour la flexion simple. Au fait, la valeur attribuee
ä m apparait comme un facteur d'amenagement des formules en vue de
resultats en concordance avec les essais de rupture pour les betons moyens et
les pourcentages ordinaires.

Nous avons dit que l'introduction de ce coefficient m dans le calcul des
pieces flechies etait inutile: nous montrerons plus loin que des expressions
fort simples s'obtiennent par la seule resolution des equations d'equilibre
des tensions et de la sollicitation exterieure, sans qu'il soit utile d'admettre
Tidentite de deformation de l'acier et du beton situes au meme niveau. Ces
nouvelles theories ont l'avantage de mettre en evidence Finfluence du
pourcentage et d'autres proprietes interessantes qui n'apparaissent pas avec les
anciennes formules.
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Presque tous les traites de beton arme contiennent des tableaux qui
donnent les sections de beton et d'armature pour une valeur de m et des
taux de travail determines du beton et de l'acier: on serait tente de croire,
ä lire ces traites, qu'ä des taux determines ne correspond qu'une section.
Rien n'est cependant plus faux et plus contraire aux faits experimentaux.
Les formules qui fönt abstraction de m mettent ce fait en evidence, que pour
des taux de travail et une sollicitation donnes il y a une infinite de sections
possibles.

Si la methode classique de calcul est loin d'etre parfaite, l'application
qu'on en fait generalement n'est pas moins mauvaise.

Le fait d'introduire des taux de securite ou fractions des taux de rupture
dans les formules classiques fausse la notion de la securite car, ainsi que
nous l'avons dejä observe ci-dessus, la repartition des tensions est teile qu'au
diagramme 5 ä la rupture et non pas comme au diagramme 2 qui est ä la
base des formules: le rapport des taux de rupture aux taux de securite intro-
duits n'est donc pas le coefficient de securite de la piece.

Par ailleurs, l'introduction de taux de securite consiste ä admettre, pour
toutes les pieces d'une meme construction, la meme securite aux charges
permanentes et aux surcharges. II est cependant incontestable que la securite
aux surcharges doit etre plus grande que celle au poids mort, puisque ce
dernier n'est pas susceptible des memes augmentations que les surcharges:
la securite aux surcharges est d'ailleurs surtout celle qui interesse les usagers.
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Ainsi, dans l'application usuelle, la securite aux surcharges varie con-
siderablement avec le poids mort des pieces; comme, d'autre part, dans une
meme construction le rapport du poids mort aux surcharges peut varier
notablement d'une piece ä l'autre, on a en fait une securite aux surcharges
differente en de nombreux endroits de la construction: une meme construction
n'a pas partout la meme securite aux surcharges! Le calculateur qui emploie
ce procede ignore ainsi generalement quelle est la securite qu'il donne effec-
tivement aux surcharges et il est dans 1 impossibilite de l'indiquer ä l'usager.

Examinons ä quelles differenecs cette application usuelle peut conduire
pour la securite aux surcharges.

Soit:
g le poids mort ou la charge permanente,
p la surcharge,
s la securite desiree au poids mort,
5 la securite effective aux surcharges,
A le coefficient de securite total, poids mort plus surcharge, soit le rapport

du taux de rupture au taux de securite.

Ceci implique: gx $ + p x. S ~ A{g -{-p),

d'oü S=(A — s)£- + A (1)

Ainsi, pour A 2,5 et 5 1,5, S ~ + 2,5 (1')

Cette expression donne le coefficient de securite effectif aux surcharges lors-
qu'on admet une securite de 1,5 aux charges mortes et 2,5 pour l'ensemble
poids mort et surcharges.

Pour g 0,2p 5 2,7
g 0,4p S 2,9
g 0,6p 5 3,1

g 0,8p 5 3,3
g=hOp S 3,5
g 1,5 p S 4,0

Les rapports glp 0,2 et 0,4 se remontrent frequemment en constructions
metalliques, et ceux de 0,6, 0,8, 1 et 1,5 dans les constructions en beton
arme. Ceci donne la raison pour laquelle des constructions en beton arme,
dont le coefficient de securite total A est moindre que celui de constructions
metalliques, ont en fait des securites de meme ordre ou superieures ä celles-
ci pour les surcharges. Le coefficient de securite total des pieces flechies en
beton arme etant generalement voisin de 2,3 (pour le calcul par la methode
classique), la securite effective aux surcharges, lorsqu'on admet une securite
de 1,5 au poids mort, vaut:

pour g 0ßp S — 2,78
g 0,8 p S 2,94
g=1,0p S 3,10
g 1,5 p S 3,50

Nous donnons, fig. 7, en un diagramme, les variations de 5 en fonetion de
g/p pour differentes valeurs de s.

Ceci s'applique essentiellement aux pieces qui, par leur position, sont
flechies sous leur propre poids.



Calcul et securite des pieces flechies. Moment de rupture 25

Pour les pieces en beton arme disposees debout et ä flexion preponde-
rante; le coefficient de securite aux surcharges n'est que le coefficient total,
soit, avec les taux usuels, 2,3 environ: il en est ainsi pour les poteaux, les
parois de silos, de reservoirs et de murs de soutenement.

Par consequent la methode des taux de securite donne en realite une
securite beaucoup moindre aux pieces verticales sollicitees lateralement
qu'aux pieces horizontales ou inclinees.

Remarquons entre parenthese que la consideration qui precede, relative
aux coefficients de securite des pieces flechies, est egalement vraie pour les
pieces comprimees. II est absurde d'admettre la meme securite aux charges
permanentes qu'aux surcharges, par exemple pour les colonnes des etages
inferieurs des batiments en beton arme ä plusieurs etages: generalement,
si l'on desire une securite de 3 aux surcharges, une securite de 2 paraitra

er
süffisante aux charges permanentes. Ainsi, pour — 1,5 (les poids morts

sont generalement preponderants pour les colonnes inferieures des immeubles
ä plusieurs etages), 5 2 et S 3, le coefficient de securite total resultera
de: 2g -f- 3p (g + p) A et vaudra 2,4. Donc, dans ce cas le taux de travail

pourrait etre les =-j du taux de rupture. Si ce dernier est de 180 k. p. cm2,
2,4

le taux de travail pourra etre de 180:2,4 75 k. p. cm2 aux charges mortes
plus surcharges dans les conditions ci dessus et abstraction faite des
conditions de flambement et des flexions secondaires.

Pour realiser une securite uniforme aux surcharges, rien de tel que de
faire le calcul au stade de rupture: introduire les taux de
rupture dans l'expression du moment de rupture de la
piece, et ecrire que ce dernier vaut la somme du moment
du au poids mort ou aux charges permanentes multiplie
par 5 et du moment du aux surcharges multiplie par 5.

Ceci appelle une remarque en ce qui concerne le beton arme.
Les pieces ä pourcentage d'armature normal ou faible et ä beton de

bonne resistance se rompent des que la limite d'elasticite du metal est atteinte:
ceci provient de ce que le beton, qui n'est generalement pas capable d'un
allongement superieur ä 1,5/1000, se fend dans la zöne etiree des que le
metal atteint sa limite d'elasticite, et se crevasse lorsqu'au delä de cette limite
le metal s'ecoule; l'ecrasement du beton comprime s'effectue alors imme-
diatement.

Par consequent, pour le beton arme, les elements ä introduire dans les
formules de rupture sont le taux de rupture du beton par compression et la
limite apparente d'elasticite de l'armature.

IL Moments de rupture.
Les moments de rupture caracterisent la force des pieces flechies. (Nous

n'examinons pas ici la resistance aux efforts tranchants.)
Nous considerons successivement:

1. les pieces ä section reetangulaire armees en traction seulement,
2. les pieces ä section en T armees en traction seulement,
3. les pieces ä section reetangulaire armees en traction et en compression.
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1. Pieces ä section reetangulaire armees en traction
seulement.

Nous admettons qu'au stade de rupture:
1. La section est fendue dans la zone de traction sur une certaine

hauteur ab.
2. La section de rupture, primitivement plane, est restee plane sur la

hauteur ac de beton non fissure: en consequence, le diagramme tensions-
deformations sera le meme que celui de l'essai de compression sur cubes.

3. Ce dernier diagramme est celui indique par M. Schreyer (1er Con-
gres des Ponts et Charpentes 1932. Rapport final pages 502 ä 505), traduit

063 t;
par la loi hyperbolique: ö X 103 J-—'. II en resulte qu'ä la rupture le

diagramme des compressions de beton a les caracteristiques donnees ä la
fig. 8: la resultante des compressions vaut 0,837 xb x x et eile se trouve
ä 0,442 x de la fibre extreme comprimee.

Le point a, d'arret de la fissure de traction, ne coi'nciderait avec la fibre
neutre que si la resistance du beton ä la traction etait nulle. Comme en fait
cette resistance existe, le point a se trouve sous o et les tractions, que nous
supposons reparties selon un triangle sur la hauteur oa, apportent quelque
resistance ä la piece.

Nous etablirons des formules qui prennent en compte cette contribution
du beton etire et nous verrons ensuite ce qu'elles deviennent lorsqu'on en
fait abstraction.

Nous admettons que la traction de rupture du beton vaut les 15 o/o de la
compression de rupture: xe 0,15 xb, ou Ee 3e 0,15 Eb öb ou encore, puisque
le coefficient d'elasticite ä traction du beton vaut sensiblement la moitie du
coefficient d'elasticite du beton comprime: de 0,3 öb.

Or, la premiere hypothese donne
db x db \ x no-r — solt -T-. nö — ou oa — 0,3 x.
oe oa öe U,J oa

Pour simplifier les developpements qui suivent, nous considerons une
piece de largeur unite (b 1).

Ecrivons les equations d'equilibre dans le plan de flexion:
Equation de projeetion sur l'axe de la piece:

r.OOF7 0.3 x X 0.15 r6
0,837 xb x x cora H ^ d ou, si nous posons

1* T ^ P°urcentage): * MR^ö><h ^
Equation de rotation autour d'un axe situe au niveau de l'armature:

0.837 n x(ti— 0,442 x) — 0jl5l^°^c[a — (x + ^X0,3*)] M,

ce qui donne, apres avoir remplace x par sa valeur (1):

(l — 0,516^)^^ M (2)

Si nous avions admis que xe valait les 10 o/o au lieu des 15 <y0 de xb, nous
aurions obtenu

öä 0,2 x et les equations
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0.2 x X 0,1 rb A,^t _ jLl Ta
-, d ou x

0,827 Tb

0,1 rbx 0,2x1 / 2 \]

1 — 0,522^? /.r,A8 VW

27

xh (V)

M

(2')

Si nous avions neglige le beton en traction, nous aurions en:

0.837 %b x x wt„ d'oü * ^j— X A et 0.837 %bx{h — 0,442*) Af
0,0J / Tb

d'oü: 1 — 0,528 ^Lf,i« VW (2")

• -C

i

>

//
//

//
/

Fig. 9

Section rectangulairej armee en
traction seulement.

Einfach armierter Rechteckquer¬
schnitt.

Rectangular section with tensile
reinforcement only.

0,1 0,2 03 0* 0,5 0,6 0,7 0,8 03 i^n
Si enfin nous avions neglige les tractions du beton et admis un

diagramme reetangulaire des compressions, nous aurions obtenu:

rb x x co ra d ou x — xh, et Tbxxx\nxb \ 2 / -*b

d'oü en remplagant x pas sa valeur ci-dessus:

\—0.5^]^Tah2
Tb /

M

M (21
D'une fagon generale, le moment resistant s'exprime par

[\-K^)VTah2,rb
oü K varie depuis f dans l'hypothese du diagramme triangulaire de la theorie
classique, jusqu'ä 0,5 dans l'hypothese d'un diagramme reetangulaire des
compressions.
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La comparaison des formules (2), (2'), (2") et (2"') montre que les
tractions de beton au-dessus de la fissure, quelle que soit leur grandeur,
n'apportent qu'une tres faible contribution ä la resistance, que ces formules
different peu l'une de l'autre et que la formule (2"'), la plus commode, peut
les remplacer toutes. Pour fixer les idees:

avec xa 2600 k. p. cm2, xb 200 k. p. cm2 et /u 0,01 on a:
formule (2) : M 24,255 h2
formule (2') : M 24,235 h2

formule (2") : M 24,214 h2
formule (2'") : M 24,310 h2.

La distance x, de la fibre neutre o ä la fibre extreme comprimee c ne
LI T

peut evidemment pas etre plus grande que h. Ainsi, l'expression # —- Xh,
Tb

dans le cas oü on neglige les tractions de beton et oü l'on admet un diagramme
reetangulaire des compressions, a pour valeur limite h\

^h<h soit ^<-i (3)
Tb Tb ]"

Dans cette expression, xa et xb sont des valeurs simultanees ä la rupture.
Cette relation (3) donne la valeur limite du rapport des tensions de
l'armature et du beton ä la rupture, en fonetion du pourcentage. Ainsi, par

100
exemple, pour ju 4,5 o/o et xb 28/. 100 k. p. cm2, xa < ttt™ ou 2220 k. p. cm2.

Dans ce cas la limite d'elasticite de l'armature ne pourra pas etre atteinte et
la rupture se produira par ecrasement du beton: c'est le phenomene courant
de rupture des pieces en beton peu resistant et fortement armees.

Si par contre le pourcentage est relativement faible pour un beton assez

resistant, c'est-ä-dire si ^< ~^i les fissures du beton dans la zöne
Ta limite d'elasticite

de traction deviennent des fentes des que le metal atteint sa limite apparente
d'elasticite, et ces fentes deviennent des crevasses qui grandissent des qu'au
dela de cette limite le metal s'ecoule sous charge constante tandis que le
beton comprime s'ecrase simultanement.

La formule (2") peut s'ecrire ^^ (l_0,5ji—) —; c'est une
Tb ><C u ti V Tb' Tb

parabole du 2d degre en fonetion de fi ou de ^——. Le sommet de cette para-
tb

x Mbole a pour abeisse u — 1 et pour ordonnee ~~ 0,5. En vertu de
1

xb l Tbxbh2
la condition (3) cette courbe est valable jusqu'ä <a — 1, c'est-ä-dire jusqu'ä

vb
son sommet. Nous tragons cette courbe ä la fig. 9.

Exemple d'application.
Soit une piece dont les flexions de service sont de 500 kgm pour les

charges permanentes et 750 kgm pour les surcharges.
On desire une securite de 1,5 aux charges permanentes et de 3 aux

surcharges. La piece doit avoir 20 cm de largeur; eile sera armee ä 0,8 «/o et
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son beton sera caracterise par xb 28/ 150 k. p. cm2 tandis que la limite
apparente d'elasticite de l'acier est de 2600 k. p. cm2.

II s'agit de calculer la hauteur et l'armature de la piece. Le moment de
rupture sera de 1,5 x 500 + 3 x 750 3000 kgm. La formule (2"') donne:

3000,00
1 - 0,5 x 0,008 x 2600 \ 0,008 x 2600

X-20xl50x/z2 \ ' 150 / 150

La valeur du second membre se lit au diagramme de la fig. 9. Cette formule
donne ainsi h 27,8 cm.

co 0,008 X 20 x 27,8 4,46 cm2, soit 4 0 12 et H 30 cm.

Autres methodes.
Parmi les autres methodes de calcul ä la rupture, les plus remarquables

sont celles de Mr. S. Steuermann et de Mr. F. Gebauer. Nous les examinerons
successivement.

ze
tre

a b c

Fig. 10 Fig. 11

a) Methode de Steuermann (Beton und Eisen, nos. des 20 fevrier et
5 mars 1933).

En partant d'un diagramme triangulaire des compressions et des tractions
du beton (fig. 10), l'auteur aboutit ä la formule suivante:

M TbTe -r~3LlTaTb 2(jLlXa)2 Te U Ta
~~r~2 £-—- r-^—'- ou, pour K=— et q :
bk2 3(Te+ Tb) Tb Tb

M
___ /C+3^ — 2q2

%bbh2~~ 3(1 + K) J

expression d'une parabole du 2d degre en fonetion de q pour une valeur
definie de K. Ces paraboles ont toutes leur sommet sur la verticale q -= 0,75
et ne sont valables que jusqu'ä o 0,50 (valeur pour laquelle x h et

\ quel que soit K).
M 0,l + 3?-2e*

xbbh2

Pour K 0,1, on a uu9— Q Q%bbh2 3,3
Nous avons trace cette courbe sur la fig. 9.

Les bases de cette methode sont critiquables:
1° Au stade de rupture, le diagramme des compressions du beton n'est

pas un triangle comme Mr. Steuermann le suppose.
2° Dans les sections de rupture il n'y a pas de tractions de beton jusqu'ä

l'armature: ces sections sont en effet fissurees dans la zöne de traction bien
avant la rupture.
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La formule de Mr. Steuermann donne des resultats assez satisfaisants
jusqu'aux pourcentages moyens, et inferieurs ä la realite pour les pour-
centages importants.

Nous considerons par consequent cette formule comme une recherche,
plus ou moins satisfaisante, d'adaptation des calculs aux resultats.

b) Methode de Mr. le Dr. Ing. F. Qebauer (Beton und Eisen, 5mai 1934).
Mr. Qebauer etablit 3 formules, chacune pour l'un des trois diagrammes

ci-contre (fig. 11). Ceux-ci different entre eux par la Variation des compressions
de beton et ils ont ceci de commun qu'ils supposent des tractions de

beton egales k axb sur une hauteur 2e dont le centre est l'armature (situe ä

la distance e de la fibre extreme de beton etire).
D'apres l'auteur ces tractions de beton seraient l'equivalent d'une

compression initiale dans l'armature sous Teffet du retrait du beton qui l'enrobe.
Ceci revient ä poser que le retrait du beton contribue ä la resistance des
pieces flechies.

¥\ z/
l7\\iy

o
i1i////

11
W

10 11 12 13 n 1s^°

Fig. 12

Profil reetangulaire arme en
traction seulement.

Einfach armierter Rechteck¬
querschnitt.

Rectangular section with tensile
reinforcement only.

[Formule de Mr. le Dr. Ing. Qebauer.]

Mr. Qebauer controle ses trois formules par de nombreux resultats
d'essais. Malheureusement, la precision des mesures de la resistance du beton
sur cubes et de la limite apparente d'elasticite de l'armature employee, est,
pour la plupart de ces essais (notamment ceux de Moller, Bach, Saliger etc.),
insuffisante pour un bon controle des formules. II n'est d'ailleurs permis
de considerer, pour la comparaison ä une meme formule, que les essais
effectues de fagon identique et notamment avec des charges semblablement
disposees: on enregistre en effet des resistances de rupture superieures par
charge isolee au milieu d'une piece que par charges symetriques ou moment
constant sur une certaine longueur (ceci est un effet de la plasticite du
materiau).

La comparaison qu'effectue Mr. Qebauer de ses propres essais et de ses
formules comporte par ailleurs une erreur fundamentale: L'auteur omet de
tenir compte du poids propre dans le calcul par ses formules, alors que
cependant ce poids propre intervient pour 2 ä 3 o/0 dans l'essai de rupture; de
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ce fait la moyenne des differences est de 2,3 o/0 au lieu de 0,2 o/0 donne par
l'auteur pour le calcul par sa troisieme formule.

Cependant cette formule issue de l'hypothese d'un diagramme reetangulaire
des compressions est celle qui donne les chiffres les plus voisins des

resultats experimentaux.
Elle s'ecrit:

M \ xa (2eV'rAi-MA'-^V^-i-M]Tbbh2 V %b
' VA rJ \ L ' r n

Pour a 0,10 (c'est-ä-dire des tractions de beton egales au dizieme de
la compression de rupture) et e 0,15 h, cette formule devient:

tik [" %+(°>3- "> °A >< b - °'5 (" %+(o'3 - ">x °'1)] • (4)

La fig. 12 donne ces courbes pour xa 2600 k. p. cm2 et xb 28/. -= 100, 150,
200, 250, 300, 350 et 400 k. p. cm2. Les memes courbes sont applicables ä

xa 3500 k. p. cm2 et aux valeurs de xb ci-dessus multipliees par le rapport

^——, des limites elastiques des deux nuances d'aeier.
2600 M

La limite d'application de la formule de Mr. Gebauer resulte de la
condition que x<Ch, soit

t 12 e \ e
u — + Li) a < 1 ou, pour a — 0,\ et — 0,15:

xb \ fi I h

V— + (0,3 — p) x0,1 < 1 c'est-ä-dire ^ — 0,97 + 0,1 li.
Tb Tb

La justification des formules de Mr. Gebauer par la consideration du
retrait n'est toutefois pas satisfaisante: il est inexaet que le retrait inter-
vienne dans la resistance de rupture par flexion.

On peut s'en rendre compte par le calcul elementaire suivant.
Soit:

xb la compression du beton sous retrait et flexion,
xF la traction de l'armature par flexion simple,
xR la compression initiale dans l'armature par retrait du beton.

Considerons une section de largeur unite et ecrivons les equations d'equilibre

dans le plan de flexion.
Equation de projeetion: xbx -\- coxR — torF d'oü, en posant

fx — (pourcentage): x — ^—(tf—TR)xh (1)
ri Tb

Equation de rotation:
x

Tbx[h—7y) M d'oü, en rempla<jant x par sa valeur

donnee par (1): (1 — 0,5 li -^ —) x ^ (tf — t#) h
\ Th

2 M.
Tb

La valeur limite de xF — xR dans cette formule de rupture est evidemment
la limite apparente d'elasticite de l'armature. Par consequent les valeurs
de xF et de xR considerees isolement n'importent pas;
seule leur difference est ä considerer et c'est une limite
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determinee, la limite apparente d'elasticite de l'armature
employee. La compression de l'armature par retrait

du beton n'augmente donc pas la resistance de la piece.
Cette conclusion est, cela va de soi, independante de l'hypothese faite

sur la repartition des compressions du beton.
Elle etait d'ailleurs evidente a priori: les tensions de retrait donnant un

moment nul avant chargement ne peuvent non plus donner aucun moment ä

la rupture.
Dans une discussion qui a suivi la publication de la theorie de Mr. le

Dr. Ing. Gebauer, Mr. le Dr. Ing. Bittner a tenu le ralsonnement suivant: la
compression initiale dans l'acier par retrait de beton est equilibree par des
tractions de beton; lorsque la piece est progressivement mise en charge, la
compression dans l'acier diminue progressivement puis l'acier se met en
traction tandis que les tractions du beton qui l'enrobe grandissent; des que
la resistance ä traction du beton est atteinte, le beton se fissure: ä ce
moment la traction que ce beton supportait se transmet ä l'acier et, comme eile
est äquivalente ä la compression initiale de l'acier, cette derniere se trouve
annulee; le retrait n'a donc rien apporte ä la rupture.

j__
3=±~> t

brb

*-Ö—*o>t6

Fig. 13

b'dih

Fig. 14

Nous pensons que la plasticite du materiau peut seule expliquer que,
pour les pieces ä faible pourcentage, les charges de rupture sont plus grandes
que celles donnees par notre formule et par celle de Mr. Steuermann et assez
voisines de celles calculees par la formule de Mr. Gebauer. Dans une piece
faiblement armee, la contribution du beton etire est effective dans les trongons
non fissures voisins de la section de rupture; il en resulte que, dans ces
trongons, la compression du beton est sensiblement moindre que dans la
section fissuree ou de rupture; ainsi dans les pieces faiblement armees, le
beton comprime dans la section de rupture est compris entre des betons
notablement moins sollicites: en consequence ce beton est capable d'une
compression superieure ä la resistance sur cubes.

Ce phenomene est naturellement d'autant plus marque que la piece est
plus faiblement armee. Les formules de Mr. Gebauer, qui admettent des
tractions independantes du pourcentage, donnent precisement aussi des ex-
cedents d'autant plus grands que le pourcentage est plus petit: c'est pour
cette raison qu'elle concorde particulierement bien avec les resultats d'essais.
Tout se passe donc „comme si" l'hypothese de Mr. Gebauer sur l'action du
retrait etait vraie.

Voyons ce que donnerait l'application de la formule (4) ou de Mr.
Qebauer ä l'exemple traite ci-dessus.

Nous rappelons qu'il s'agit de calculer la hauteur et l'armature d'une
piece de 20 cm. de largeur, armee ä 0,8 o/0 et devant donner 3000 Kgm. ä la
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rupture ä 28 jours; les taux sont: xb28} =150 k. p. cm2 et caumiteelastique
2600 k. p. cm2.

La formule (4) donne:
3000>00

[0,008 x *°° + (0,3- 0,008) X 0,l] x20xl50A2

xfl- 0,5 J0,008 x^ + (0,3 — 0,008) x 0,1}]

La valeur du 2d membre se lit au diagramme de la fig. 12.
Cette formule donne h 25,5 cm., d'oü co 0,008 X 20 X 25,5 4,08 cm2,

soit 3<£12 et 1<2>10 et H 28 cm.

2. Profil en T arme en traction seulement.
Nous distinguerons deux cas:

A. la partie comprimee sous flexion comprend la table du T,
B. la partie inferieure de l'äme est seule comprimee, l'armature de traction

se trouvant dans la table (c'est ce qui se presente aux liaisons
hyperstatiques des nervures des planchers).

A. La partie comprimee sous flexion comprend la table du T.
Nous admettrons qu'ä la rupture les compressions du beton se repartis-

sent selon un rectangle comme ä la fig. 14. Cette hypothese est plus rap-
prochee encore de la realite pour la section T que pour la section reetangulaire,

du fait de la preponderance de la table.
Nous admettrons aussi que la plasticite du materiau donne un moment

complementaire provoque par le beton des parties non fissurees et par consequent

independant du pourcentage: cet aecroissement de resistance, du au
voisinage de la section de rupture, sera suppose equivalent ä celui que pro-
duiraient des tractions de beton sur une hauteur 2 e dont le centre est l'ar-
mattfre. Nous reprenons en somme le diagramme donne par Mr. Qebauer
pour la section reetangulaire, mais nous lui donnons une justification diffe-
rente.

Ecrivons les equations d'equilibre dans le plan de flexion.
Equation de projeetion sur Paxe de la piece:

[db + b'(x — d)\ rb — oTa 4- (2eb' — co)aib (1)

d'oü: x= " ><Ta + (2e—",)a — d-~ +-d (2)
b rb \ b I b

Equation de rotation autour d'un axe situe au niveau de l'armature:

db(h— d2)rb + (X-d)b'(h-d-X~d]jTb M (3)

d'oü, en remplagant dans cette equation x — d par sa valeur extraite de (2):

- i 1-; 7;-'j+(*-£)«]'-*¦= M
rb 0 \ b J J xb

Posons: co ubh, ~ n, z= w et —- e.
b h h

Introduisons ces valeurs dans Pequation precedente; nous obtenons fi-
nalement:

Abhandlungen III. 3
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ou:

-('-f)4^-+(2f-)»]-l'--|(^-H7-)»)]=^'4>
Cette formule est assez compliquee.
Par ailleurs, lorsque la table est relativement large, le pourcentage

d'armature rapport^ ä Päme de la poutre est d'une importance teile que la
contribution du beton de Päme par l'application de notre derniere hypothese
ne represente qu'une partie infime du moment de rupture.

On negligera generalement ce petit complement de resistance.
II en resultera une formule plus commode, que nous traduirous en

diagramrnes pour son application pratique.
On obtient cette formule en faisant a 0 dans (4):

Pour une valeur de q donnee, eile est representee par des paraboles du

2d degre, fonctions de li — pour des cp donnes.
Tb

Leur sommet a pour abcisse p,— + <p et pour ordonnee
Tb Q

» -„(,_iW<'-»>¦bh2xb M 2) [ 2q '

Les limites d'application de la formule (5) resultent des deux conditions

x>d et x <h; la condition x>d donne p ~>cp, et la condition x<h ou
Tb

b T„ b ^ t Ta ^ 1 CD

a~r h — —d-jr + d< h donne u~ <cp +b xb b %b
T

q

La formule (5) est donc applicable depuis ^ — =99 jusqu'ä
Tb

Ta 1 — Cf
p— cp -]

Tb Q

abscisse du sommet de la parabole.

En derjä de la limite fx —= cp, donnee par la condition x<Ld, c'est-ä-dire
Tb

lorsque la fibre neutre se trouve dans la table, c'est notre formule (2,,/) des
pieces rectangulaires qui est d'application. La courbe representative de notre
formule (2"') est tangente ä celle de la formule (5) ci-dessus, au point

correspondant ä fx-^ cp.
Tb

Nous donnons, fig. 15, 16, 17, 18 et 19, les diagramrnes pour o 2, 3,
4, 5 et 6; chacun de ces diagramrnes comporte les branches de courbes
(formule 5) correspondant ä cp 0,10 0,15 0,20 0,30 et 0,40.

Exemples d'application.
Une poutre T a une table de largeur b 120 cm. et d'epaisseur d 6 cm.

Son äme a une largeur bf 30 cm.
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Fig. 18
Poutres T ä table comprimee. — Rippenquerschnitt mit gedrückter Platte

T-beam with flanke in mmnrpqcinnwith flange in compression.
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Les moments sollicitants sont:
15 000 Kgm. pour les charges mortes,
12 000 Kgm. pour les surcharges.

La securite aux charges mortes sera de 1,5 et celle aux surcharges, de
3. La limite d'elasticite de l'armature est de 2600 k. p. cm2 et la compression
de rupture du beton ä 28 jours est de 130 k. p. cm2.

1er probleme.
On s'impose un pourcentage d'armature de 1 o/0.

II s'agit de calculer la hauteur et l'armature.
Le moment de rupture vaudra:

1,5 X 15 000 + 3 x 12 000 =- 58 500 Kgm. ou 58 500.00 Kgcm.

On a @ -= -^- 4, de sorte qu'on fera usage du diagramme de la

fig. 17.

u- 0,010 x —0,20.
zb Uu

Nous procedons par approximations successives :

supposons que la hauteur qu'on obtiendra donne cp 0,10.

A /li ß= 0,20 correspond, sur la courbe de cp 0,10, une valeur de
Tb

M m« ^> - / 1 58500,00
-ryy- - 0,165, d'ou h 1

rork röTT—T^TÄ^- 47>7 Cm >bh2rb \ 120 x 130 x 0,165

hauteur ä laquelle correspond cp -= j^j 0,126 au lieu de cp 0,10 suppose

a priori.

Supposons cp 0,15. A p
a 0,20 correspond, sur la courbe de cp -= 0,15

rb
une valeur de

M ni7fi j,^ fc i/ 58500,00
—U) =0,176, d'ou h=\ -T^~. .--= 46,2 cm.bhlrb 120x130x0,176

hauteur ä laquelle correspond cp — 0,130 au lieu de 0,15 suppose.

Le cp reel est donc compris entre les 2 valeurs 0,126 et 0,130.

Nous admettrons cp 0,128, d'oü h -= 47 cm. et co -- 0,01 X
0,1 zo

120 X 47 56,3 cm^ soit 12 0 25 et H 53 cm.
2eme probleme.
La hauteur totale est limitee ä 44 cm sous dalle, soit 50 cm. dalle

comprise. II s'agit de calculer l'armature.
Comme ci-dessus, le moment de rupture est de 58 500.00 Kgcm.

Nous admettons que h 50 cm. — 7 cm. — 43 cm., d'oü cp 0,1395

et ^__ 58500,00 _/>ä2t* 120X432X130 '

A ces deux valeurs correspond, par interpolation au diagramme de la

ng.i7,fiTab= 0,26 d'oü n =0,2%2Jq13° 0,013 et co 0,013 X 120 X 43-
67,1 cm2 soit 14 <Z> 25.
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B. La partie inferieure de Väme du T est seule comprimee, Varmature de
traction se trouvant dans la table.

C'est la sollicitation courante des nervures des planchers Continus aux
raccords ä leurs supports, poutres, colonnes ou murs.

La methode classique dimensionne trop largement ces sections, du fait
qu'elle neglige Pintervention du beton et de l'armature de la dalle.

II est evident que le travail ä traction du beton de la table, dans les
trongons non fissures, reduit les compressions du beton plus encore pour le
profil J_ que pour le profil reetangulaire: la difference entre les compressions

dans la section de rupture et celles des sections immediatement voisines
etant donc plus considerable, Petreinte transversale Pest aussi et, en
consequence, le profil est capable d'un moment de rupture plus important.

(p=0,<*0

0,25

0,20

-(p-0,30

£9=0, ?0

(p=0,15

0,15
^<p^ 1,10

0,10

0,0S

Q-6

1
1

Fig. 19

Poutres T ä table comprimee.

Rippenquerschnitt mit
gedrückter Platte.

T-beam with flange in
compression.

0,30 !*%

L'accroissement de resistance du ä „Pinfluence des trongons adjacents"
est toutefois moindre que celui qui correspondrait ä des tractions de beton
s'exergant sur 2 eb ou sur db dans la section de rupture.

Nous n'appliquerons l'hypothese de Mr. Qebauer qu'ä la partie reetangulaire
b'h du profil, negligeant donc Peffet des tractions du beton sur la

largeur (b—b') de la dalle dans les trongons adjacents: ceci donnera quelque
exces de securite, pour la raison susdite.

Mais, dans Pexpression du moment de rupture, nous ajouterons ä
l'armature de traction situee au droit de la nervure, l'armature longitudinale de
la dalle sur la largeur (b—b'), pour autant que cette derniere armature ne
soit pas dejä sollicitee ä traction du fait des flexions de la dalle.
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Le moment de rupture s'exprimera donc par la formule (4) du calcul
des pieces ä section reetangulaire (formule traduite en diagramme ä la fig. 12),
sauf ä y remplacer b par b'.

Exemple d'application.
Une poutre J_ dont les dimensions exterieures imposees sont celles de la

fig. 21, est sollicitee ä ses liaisons par un moment de rupture de 30000 Kgm.
L'armature longitudinale de la dalle, sur la largeur 120 cm. — 30 cm.

90 cm., est de 1,8 cm2: eile ne travaille pas sous la flexion de la dalle.

c-£-*

?i:i
V30^\

£
57

- r
X

*b
tL

k eh
--v

1

'

1 4,.

h

COTa

TT-W'T'

Fig. 20 Fiff. 21 Fig. 22

La limite d'elasticite de l'armature est de 2600 k. p. cm2 et la compression
du beton sur cubes ä 28 jours est de 200 k. p. cm2.

II s'agit de determiner l'armature de la nervure.

^ M 3000000 nonOn a; — r— ——-^—-^: 0,20,
b-h2-xb

d'oü, par la courbe xb 200
30 X 50 —1,8 20,7 cm2.

30 X 502 x 200
de la fig. 12: p 1,5 o/o et co 0,015

3. Profil reetangulaire arme en compression et en
traction.

Nous etudions ce probleme dans deux conditions:
A. Nous faisons abstraction de la contribution des trongons adjacents ä la

section de rupture;
B. Nous tenons compte de l'action des trongons adjacents.

Par action des trongons adjacents nous entendons Paccroissement de
resistance du ä l'action de frettage des zones comprimees des trongons non
fissures adjacents ä la section de rupture.

Les compressions dans les trongons adjacents sont moindres que celles
de la section de rupture, du fait de la contribution des tractions du beton
dans les trongons non fissures. La difference des compressions des trongons
adjacents et de la section de rupture donne lieu ä une etreinte transversale
et, en consequence, ä une augmentation de resistance ä compression dans la
section de rupture. II y correspond un aecroissement de moment de rupture.

II est possible de chiffrer cette majoration de resistance en procedant
par approximations successives.

On determine d'abord le moment de rupture de la piece pour les
caracteristiques de l'acier et du beton employes: limite apparente d'elasticite
de l'acier et compression du beton sur cubes ä Page considere. On calcule
ensuite la compression maxima qui correspond ä ce moment de rupture dans
le trongon non fissure immediatement voisin. L'etreinte laterale vaut le produit

par le coefficient de Poisson, de la difference entre la compression sur
cubes et la compression calculee dans le trongon non fissure. A cette etreinte
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correspond, par la courbe de resistance intrinseque par exemple, une
compression de rupture superieure ä la compression sur cubes admise a priori.
Mais ä cette plus grande compression correspond aussi un plus grand moment
de rupture, qu'on determine, et, dans la section infiniment voisine non fis-
suree, une compression differente de celle calculee d'abord. Le produit par
le coefficient de Poisson, de la difference entre la compression dans la section
de rupture et la compression dans le trongon non fissure donne une nouvelle
etreinte transversale et, par suite, une nouvelle compression de rupture et
un nouveau moment de rupture: celui-ci est tres voisin du moment definitif.

Un tel calcul est forcement long et peu pratique.

Oß
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o,s

f

0,2°
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S^X
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0,2

0,1

-1
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-0,2-
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Fig. 23

Profil reetangulaire arme en
traction et en compression.

e 0,15.

Rechteckquerschnitt mit Zug-
und Druckarmierung.

s 0,15.

Rectangular section with both
tensile and compressive rein¬

forcement.
e 0,15.

0 0,1 0,2 0,3 0> 0,5 0,6 0,7 Oß 0,9 1,0 1,1 1,2 1,3 1h- 1,5 f* Zb

Nous mettrons le probleme en formules „commodesa, en posant que la
majoration de resistance due ä l'action des trongons adjacents est la meme
que celle qui serait procuree par des tractions de beton s'exergant sur une
hauteur 2 e au pourtour de l'armature de traction: nous reprenons en somme
l'hypothese de Mr. le Dr. Ing. Gebauer en lui donnant une autre interpre-
tation. Nous avons vu, ä Poccasion du calcul des pieces ä simple armature,
que les formules issues de cette hypothese sont en bonne concordance avec
les faits d'experiences.

A. II est fait abstraction de la contribution des trongons adjacents ä la section
de rupture.

Nous admettons que le diagramme des tensions de compression, au
stade de rupture, est un rectangle.

L'armature de compression co'', travaillant ä x'a se trouve ä une distance
eh de la fibre extreme comprimee du profil.

Pour simplifier les developpements qui suivent, nous considerons une
piece de largeur unite (b 1).
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L'equation d'equilibre de projection sur Paxe de la piece donne:

Tb'X + CO Xa — C0Ta (1)
t % v co Xd CO X(i _._. _

d'ou x ou, si nous posons cd x'a K coxa et co juh (p
Tb

pourcentage d'armature de traction) :

x p(\~K)-h (2)
rb

Equation de rotation autour d'un axe situe au niveau de la resultante
des compressions du beton:

raX (ä—y) + cox^-ehj M (3)

OU : p hxa\h — |-1 + ICp hraxi~ — eh\ M

et, en remplagant dans cette equation x par sa valeur donnee par (2):

,*x|,_<i^*/l._,*l * ,4)
xb L 2 tö \ h2rb

(expression analogue ä la formule (2'") des pieces rectangulaires armees en
traction seulement).

Pour determiner le pourcentage p' d'armature comprimee, en fonetion
de p, de K et des caracteristiques des materiaux, nous remarquerons que:

~~ — si nous supposons que les sections transversales primitivere
h — x

ment planes sont restees planes apres deformation.
Remplagons dans cette equation de condition x par sa valeur donnee

Pdr<2>: u(\-IQ±-e
xfa xa x et, comme u h va — r\p h xa :

1_„(1_A0
T̂b

\-u{\-K)Ta l5)
r^ Ta Xb [3)

p Kp — f(p X
^x~K)vb-e

ou, pour la traduetion en diagramrnes des valeurs p' — en fonetion de p ~a
Tb Xb

et de K pour un e donne:

\-p(\-K)~ti^ Kxp^x ^ (6)
Tb %b uiX—K)--*

Tb

Nous donnons au diagramme de la fig. 23, les courbes repräsentatives
de (4) et (6) pour les valeurs de K 0,05 0,10, 0,15, 0,20 0,25 0,30 et
e =0,15.

Les courbes (6) ont une asymptote verticale k p — =- -. Elles ren-
x x 1 r 1 — K

contrent Paxe des a - ä p —
rb rb \ — K
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Les paraboles repräsentatives de (4) ne sont donc valables qu'entre ces
memes limites.

D'autre part, comme il n'est pas logique que pf^>p, nous donnerons
comme limite inferieure aux courbes repräsentatives de (4) et de (6) celles
qui resultent de la condition p' p.

Ces diagramrnes sont pleins d'enseignements:
aux asymptotes verticales des courbes (6) correspond une fibre neutre

passant au centre des armatures cd'\ x eh;
il est souvent plus economique d'augmenter le pourcentage d'armatures

de traction plutöt que d'armer en compression;
la consideration du diagramme reetangulaire des compression (c'est-ä-

dire du stade de rupture) fait apparaitre pour les armatures comprimees une
contribution moindre que celle que la theorie classique aecuse;

cette contribution n'est reellement interessante que pour de tres fortes

valeurs de p—, c'est-ä-dire pour de gros pourcentages d'armatures de traction

et des betons de faible resistance ou pour des aciers ä haute limite elastique.
Exemple d'application.
Une piece dont les dimensions exterieures sont limitees ä b 20 cm.,

H totale 40 cm., est sollicitee par un moment de 2000 Kgm. pour les
charges permanentes et 3000 Kgm. pour les surcharges.

On desire une securite de 1,5 aux charges permanentes et de 3 aux
surcharges.

Les materiaux employes ont pour caracteristiques:
limite apparente d'elasticite de l'acier: 2600 k. p. cm2;
compression du beton sur cubes ä 28 jours: 100 k. p. cm2.

Le probleme consiste ä determiner l'armature la plus economique.
Des donnees ci-dessus on deduit:

M de rupture 1,5 X 2000 + 3 X 3000 12 000 Kgm.
h 40 cm. — 6 cm. 34 cm.

M 1200000 ^c„— U,52.
bh2rb 20X342X100

Chacune des courbes repräsentatives de (4) donne, sur Phorizontale

-j-j-2—= 0,52, une valeur de p
a ä laquelle correspond, sur les courbes

repräsentatives de (6) une valeur de p'—. L'armature minima est donnee par
Tb T T

le minimum de la somme des deux lectures p
a c±t p' a.

Tb Tb
On lit successivement:

pour K= 0,30 p^ 0,650 u~ 0,175 (p + u) — 0,65 + 0,175 0,825
Tb 1b Tb

pour K= 0,25 fi - 0,675 ,«'- 0,115 (« + u) -a 0,675+0,115 0,790
tb rb Tb

pour K= 0,20 uCa 0,700 /i'-fl 0,075 (u + i-'Y" ^0,700+0,075 0,775
Tb Tb Ib

pour K — 0,15 ii r" - 0,730 u
r° 0,042 (» \-u) "" 0,730+0,042 0,772

i b rb ib
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Ta >Ta
pour K 0,10 p^ 0,775 p-a 0,020 ((n + //)-? 0,775 + 0,020 0,795

Xb Tb Tb

pour K= 0,05 u ^ 0,860 *//rß 0,005 (u+p) — 0,860+0,005 0,865
rö T£ 77/,

Le pourcentage minimum resulte donc des lectures faites pour K 0,15,

soit i" — 0,730 d'oü 0,730 x 0^ 0,0281
/:# ZOUU

p
Ta

0,042 d'oü j«' 0,042 x -^ 0,00162
r^ 2500

d'oü co 0,0281 x 20 X 34 19,10 cm2
et co 0,00162 x 20 x 34 1,10 cm2.

B. II est tenu compte de la contribution des trongons adjacents ä la section
de rupture.

Avec les memes hypotheses qu'au 1 ° ci-dessus, nous admettons que la
contribution des trongons adjacents equivaut ä celle de traction de beton
sur une hauteur 2 e dont le centre est l'armature de traction, e etant la
distance de l'armature de traction ä la fibre extreme du beton etire.

4 l
x i 'S

^dj« "* wTa '¦fa-fMzb

Fig. 24

L'equation d'equilibre de projection sur Taxe de la piece donne:
rbx + to r'a o)-Ta -+- (2e—co) avb • (en supposant h 1)

PoSOnS OJ T„ K[(>*a + (2 e—Cü) CCTb].

En introduisant cette valeur dans (1) nous obtenons:

[w^ + (2e— w)alx(l— K).

0)

(2)

Equation d'equilibre de rotation autour d'un axe situe au niveau de la
resultante des compressions du beton:

[coxa + (2e— co)axb] X (*—£-) + "'*« (-J — eh}=M (3)

et, en remplagant dans cette equation x par sa valeur extraite de (2):

x [2e \
ou, si nous posons p— + — p) a X:

Tb h

Jh2 =4- (\-KY X-EK\Xrb (4)

expression analogue ä celle obtenue au 1 ° ci-dessus.
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Pour determiner le pourcentage p' d'armatures comprimees, en fonetion
de p, de K et des caracteristiques des materiaux, nous remarquerons que
x' x — € h
— — ¦, si nous supposons que les sections transversales primitivement
r h — x
planes sont restees planes apres deformation.

^•Q
120

110

WO

\-¦*=>

-> -

P7t

Fig. 25

Profil reetangulaire arme en traction
et en compression.

Rechteckquerschnitt mit Zug- und
Druckarmierung.

Rectangular section with both tensile
and compressive reinforcement.

ra 2600 k. p. cm2

rb 150 k. p. cm2

£ 0,15; « 0,10;

4=0.15.h

Remplagons, dans cette equation de condition, x par sa valeur donnee
par (2):

l—(l —/o[^-+^—^j«j
et, comme n'hr'a K\h — + (-r /.t\a\xhXTb KXhtb:

(5)

Nous donnons au diagramme de la fig. 25 les courbes repräsentatives
de (4) et de (5) pour les valeurs de K 0,05 0,10 0,15 0,20 0,25 0,30

^ -, ^ e ^ * r ^ -i ^ i ra 2600
f 0,15, t 0,15, a 0,10 et - -h t b 150
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£
Les courbes (5) ont une asymptote verticale pour X — ou

1 — J\
x 015 x

p~ — T-L—^7r — 0,10 (0,30 — p). Elles rencontrent Paxe des p— pour
xb 1 — K r#

X — *— soit ä ^— —1—— 0,10 (0,30 — ^).
1 — A t^ 1 — A

Ces diagramrnes, semblables aux precedents, conduisent aux memes con-
clusions.

Exemple d'application.
Une piece dont les dimensions exterieures sont limitees ä b 15 cm.,

H totale 35 cm., est sollicitee par un moment de 2000 Kgm. pour les
charges permanentes et 2200 Kgm. pour les surcharges.

On desire une securite de 1,5 aux charges permanentes et de 3 aux
surcharges.

Les materiaux employes ont pour caracteristiques:
limite apparente d'elasticite de l'acier: xa 2600 k. p. cm2;
compressions du beton sur cubes ä 28 jours: xb 150 k. p. cm2.

Le probleme consiste ä determiner l'armature la plus economique.
Des donnees ci-dessus on deduit:

M de rupture 1,5 X 2000 + 3 x 2200 9600 Kgm.
h 35 cm — 6 cm =29 cm.

M
__

960000 _Th2 ~ 15X292 _ '

Chacune des courbes repräsentatives de (4) donne, sur Phorizontale

—-— 76,1, une valeur de p ä laquelle correspond, sur les courbes

representatives de (5), une valeur de p\
Nous lisons successivement:

pour K 0,30 p 0,0350 p 0,0210
pour K 0,25 p 0,0360 p 0,0140
pour K 0,20 p 0,0375 u 0,0090
pour K 0,15 p 0,0390 p 0,0055
pour AT=:0,10 ,« 0,0415 //= 0,0025
pour /C=0,05 ^ 0,0450 u= 0,0010

p -{- p' minimum resulte des lectures faites pour K 0,10, soit p 0,0415
et p' 0,0025 d'oü:

co 0,0415 X 15 X 29 18,05 cm2,
cd' 0,0025 X 15 X 29 1,09 cm2.

Resume.
L'auteur discute les bases de la theorie classique des pieces ilechies en

beton arme et Papplication qu'on en fait ordinairement par introduction de
taux de securite ou fractions des taux de rupture des materiaux.

II propose de faire le calcul au stade de rupture et d'adopter pour le
poids propre une securite differente de celle aux surcharges.

En considerant seulement les conditions d'equilibre au stade de rupture
(et faisant abstraction du coefficient d'equivalence m dont les classiques se

d'oü ,t< + fZ 0,0560
d'oü 11 -f |U' 0,0505
d'oü 41 + n' 0,0465
d'oü f.1 + u 0,0440
d'oü M + /Z 0,0440
d'oü ," + 1"' 0,0460
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sont embarrasses par Padoption d'un postulat superfaitatoire et pratique-
ment faux), il determine les expressions du moment de rupture successive-
ment pour:

1. les pieces ä section reetangulaire armees en traction seulement;
2. les pieces ä section en T armees en traction seulement;
3. les pieces ä section reetangulaire armees en traction et en compression.

II admet Pexpression donnee par Mr. le Dr. Ing. Gebauer pour les pieces
ä section reetangulaire mais il attribue le bon aecord de cette expression et
des resultats experimentaux non pas au retrait mais ä „Pinfluence des
trongons adjacents ä la section de rupture": l'action de frettage des zönes
comprimees des trongons non fissures adjacents ä la section de rupture
determine un aecroissement du moment de rupture. L'auteur indique une fagon
de chiffrer cette majoration de resistance par un calcul d'approximations
successives qui fait usage de la courbe de resistance intrinseque ou de la
courbe des tensions principales.

L'etude est illustree de diagramrnes et d'exemples de calculs en vue de
son application pratique.

Zusammenfassung.
Der Autor befaßt sich mit den Grundlagen der klassischen Theorie der

auf Biegung beanspruchten Eisenbetonträger und deren allgemeiner
Anwendung durch Einführung des Sicherheitsgrades oder Verhältnisse der
Bruchwerte der Baustoffe.

Er schlägt vor, die Berechnung für das Bruchstadium durchzuführen und
für das Eigengewicht einen Sicherheitsgrad anzunehmen, der von jenem für
die Nutzlasten verschieden ist.

Indem er nur die Gleichgewichtsbedingungen im Bruchstadium betrachtet
(und von der Berücksichtigung der Verhältniszahl m der Elastizitätsmodule
absieht, mit welcher sich die klassischen Theorien durch eine unzureichende
und praktisch falsche Annahme belastet haben), bestimmt er die Ausdrücke
des Bruchmomentes für:

1. Rechteckqüerschnitte, nur in der Zugzone armiert; *
2. T-förmige Querschnitte, nur in der Zugzone armiert;
3. Rechteckquerschnitte, in der Zugzone und in der Druckzone armiert.

Er pflichtet dem von Dr. Gebauer für Rechteckquerschnitte aufgestellten
Ausdruck bei, schreibt aber dessen gute Übereinstimmung mit Versuchsergebnissen

nicht dem Schwinden, sondern ,,dem Einfluß der dem Bruchquerschnitt
benachbarten Teilen" zu. Die Wirkung der Umschnürung der gedrückten
Zonen der nicht gerissenen benachbarten Teile des Bruchquerschnittes
bestimmen eine Vergrößerung des Bruchmomentes. Der Autor gibt eir\2
Berechnungsweise als eine für diese Vergrößerung des Widerstandes
fortschreitende Annäherungsrechnung, die von der wirklichen Widerstandskurve
oder der Kurve der Hauptspannungen Gebrauch macht.

Der Beitrag weist Diagramme und Rechnungsbeispiele auf, mit der
Absicht, der praktischen Anwendung einen Weg zu öffnen.

Summary.
The author discusses the bases of the classical theory of bent members

in reinforced concrete design and the application ordinarily made there of
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by way of introducing safe stresses, safety factors or fractions of the
ultimate strengths.

He proposes to make the calculation at the stage of failure and to adopt
for the dead load a measure of safety differing from that for superimposed
loads.

Considering only the conditions of equilibrium at the stage of rupture
(and not entering the coefficient of equivalence m with which the classical
theories have encumbered themselves by adopting a rather superficial postu-
late and which practically does not hold true) he successively determines the
expressions of the moment of rupture for:

1. rectangular members with compressive reinforcement only;
2. T-beams with tensile reinforcement only;
3. rectangular members with both tensile and compressive reinforcement.

He agrees with Dr. Gebauer's expression for rectangular beams, but
attributes the good aecord of said expression with test-results not to shrinkage
but rather to „the influence of fragments adjacent to the section of rupture":
the hooping action of the compressed zones of nonfissured fragments
adjacent to the place of rupture giving rise to an increase of the moment of
rupture.

The author indicates a way of calculating this increase of resistance by
a method of successive approximations making use of the curve of intrinsic
resistance or the curve of principal stresses.

The paper is illustrated with diagrams and with numerical examples with
a view of opening a way for practical application.
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