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KNICKUNG DER RECHTECKIGEN PLATTE BEI
VERÄNDERLICHER RANDBELASTUNG

FLAMBAGE D'UNE PLAQUE RECTANGULAIRE SOLLICITEE AUX
BORDS PAR UNE CHARGE VARIABLE.

BUCKLING OF A RECTANGULAR SLAB SUBJECTED TO VARIABLE
MARGINAL LOADING.

Prof. SHIZUO BAN, Kioto (Japan).

Einleitung.
Wenn es sich um die Knickung der Platte handelt, so beschränkt sich die

Untersuchung stets auf das Problem, das hauptsächlich mit der lokalen Sicherheit

der eisernen Bauteile zu tun hat. Neuerdings wird aber eine Schale oder
Scheibe als neues Tragwerk in die Eisenbetonkonstruktion eingeführt,
wodurch ermöglicht wird, einen großen Raum mit einer außergewöhnlich
leichten Konstruktion zu überdecken. Da diese Tragwerke sehr dünnwandig
gebaut werden können, verlangt bei deren Entwurf die Frage der Stabilität
besondere Beachtung, indem zuweilen Knickungsfälle zu berücksichtigen sind,
die bei der eisernen Konstruktion selten vorkommen. Zum Beispiel werden
in einer Teilscheibe des Faltwerks Normalspannungen und Schubspannungen,
deren Verteilung in Längs- und Querrichtung eine andere ist1), zugleich her-
voigerufen. Um die Stabilität des Faltwerks theoretisch verfolgen zu können,
haben wir noch viele Knickprobleme in bezug auf die Platte unter verschiedenen

Spannungszuständen und Randbedingungen in Betracht zu ziehen. Der
Verfasser gibt vorliegend eine angenäherte Lösung für eine rechteckige Platte,
die an einem Seitenpaar linear veränderlich belastet ist. Die Stützung der
Platte ist so angenommen, daß sie an drei Seiten x 0, y 0 und y b
unbeweglich und an der vierten, der Belastung parallel laufenden Seite
elastisch gestützt ist.

Erster Abschnitt. Lösung durch die Differenzengleichung.
1. Die Differentialgleichung der Knickfläche und ihre

Anwendung auf die gleichmäßig gedrückte Platte.
Wir verlegen den Koordinatenursprung in eine Ecke der Platte und lassen

die Platte von den Seiten x 0, x a, y 0 und y b begrenzt sein.
Bezeichnen wir mit w die Durchbiegung der Platte, mit N die Plattensteifig-
keit2) und ferner mit ny (x) die Belastung, die auf den Rändern y 0 und
y b in x-Richtung wirkt, so lautet bekanntlich die Differentialgleichung

1) Über die Verteilung der Spannung in Faltwerk geben folgende Aufsätze
Auskunft: Ehler, Beton und Eisen, 1930, S. 281. Craemer, Beton und Eisen, 1930, S. 276.
Gruber, I. Abhandlung d. I.V.B.H, 1932.

2) Nädai, Elastische Platten.
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der Knickfläche

NAAw -ny(x)7-¥, (1)
62w

wobei die Druckspannung als positiv gerechnet ist.
Da die Platte an den Rändern y 0 und y b gestützt ist, machen

wir den Ansatz
w X • sin ly, (2)

wo

* ™ 0)
und X eine Funktion von x ist. Die Fläche (2) befriedigt für das Seitenpaar
y 0 und y b die Grenzbedingungen. Die neu eingeführte Funktion X
ist so zu wählen, daß sie der gewöhnlichen Differentialgleichung

^4-21* ^4 + *4*= + ^#*2* (4)dx4- dx2 N v '
und den Grenzbedingungen für das Seitenpaar x 0 und x a genügt.
Da die Platte an der Seite x 0 aufliegend gestützt ist, folgen nachstehende
Bedingungen:

1*1^0 0
1 d2X
I dx2

Wir stellen uns vor, daß die Platte bei x a mit einer Randversteifung
eingefaßt ist und die letztere bei der Knickung elastischen Widerstand leistet.
Ferner nehmen wir an, daß sowohl die Randversteifung als auch die Platte
an dem Rand x a in dieselbe Sinuslinie

C Xsm ly
verbogen werde. Aus der Differentialgleichung der elastischen Linie eines
Balkens

erhalten wir die Belastung auf die Randversteifung:
q(y) EJb-X.l*sinly,

wobei Jb das Trägheitsmoment der Randversteifung bedeutet. Diese
Belastung muß mit der Stützkraft in dem Plattenschnitt x a im Gleichgewicht
sein, woraus folgt

0' <5>

x 0

oder mit dem Ansatz (2)
//3 Y rl Y I

^_jt«(2_y)-^L yl*\X\x=a (6)
dx3 v ' dx U=a / i i* « \ /

worin y EJb:N ist.
Zu der Voraussetzung, daß die Platte mit der Randversteifung biegungsfrei
verbunden sei, tritt noch die Bedingung hinzu

d2X I

— vl*X\ =0 (7)dx2
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Um eine Vergleichsmöglichkeit zu bieten, gibt der Verfasser zuerst die
strenge Lösung für eine gleichmäßig gedrückte Platte. Falls die
Randbelastung gleichmäßig verteilt ist, erhalten wir aus Gl. (4) eine lineare
Differentialgleichung mit konstanten Koeffizienten:

^--2l2^ + (l2-^)l2X=0 (8)

worin u2 -£ (9)

ist. Mit den Abkürzungen

«i iHj* + *)> a2 V^ —A) (10)
läßt sich die Lösung von Gl. (8) in der Form

X A ©of o?! x + B ©in ax x + C cos a2 x + D sin a2 x

ausdrückens). Infolge der Randbedingungen auf der Seite x 0 verschwinden
die Koeffizienten A und C. Der Ausdruck vereinfacht sich demnach zu

X B <Bin atx + D sin a2 x
Eliminiert man die übrigen Koeffizienten B und D an Hand der beiden

Grenzbedingungen (6) und (7), so erhält man die Knickbedingung:

(a?-vi2) @in ax a (a22 + vl2) sin a2 a

[a13-A2a1(2-i')](£ofa1a-yA4@itta1a [ccef+l2a2(2-v)]cosa2a+yl4s'ma2a
Setzen wir y oo in Gl. (11) ein, so erhalten wir die bekannte

Knickbedingung für eine ringsum frei gestützte Platte:
sin a2a =z 0,

woraus sich für die Knickkraft

ATa, w>U + l) (l2)

ergibt. Falls die Seite x a ganz frei ist, setzen wir einfach y 0 in
Gl. (11) ein4).

Die numerische Rechnung mit v 0 und a: b 1 liefert

-— a2 An2 für y oo
Af

-^-a2 15,16 für y 0

und -^ö2 24,00 für y 0,558a.

2. Übergang zum Differenzenausdruck.
Sehen wir von der gleichmäßig verteilten Belastung ab, so stoßen wir

auf Schwierigkeiten, die Grundgleichung (4) zu lösen. In diesem Fall
empfiehlt es sich, die Gl. (4) in Differenzenform zu bringen, wie man sie bei

0 (11)

3) Nädai, Elastische Platten.
4) Dieselbe Bedingung wurde 1913 von Timoshenko aufgestellt. Vgl. Z. Math. u.

Phys. 1913.
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Platten- oder Scheibenproblemen seit Jahren verwendet5). Mit diesem
Ausdruck läßt sich die Knicklast nach der Methode der elastischen Gelenkkette
errechnen, die Henky für die Knickung des Stabwerkes benutzt hatte6). Da
wir nur mit der Grundgleichung (4) zu tun haben, brauchen wir keine partielle
Differenzengleichung zu nehmen, und die Berechnung wird deshalb so
einfach wie bei der Stabknickung.

Für eine linear veränderliche Belastung

ny(x) n0 + n • x
entsteht

d*x
2%2

d*X
dx± dx2 + x*[i*-?o+JbJ^x o

(13)

(14)

-d=Sf
\*S+\*-S-*\*S*\+S*\^S-*$*S -*h-S-*j* sH*-5-*H-5H
/ o
L__. T -j 1 rXr-1 %r Xr+7

„1-J
^L-¥ Fig. i

*m*
pnno

ng

n0
wi

'S ^a ->L-d
S-3&5£ä.5

Ü̂ «9

£ ^>A
Q, <j m

«O.fJ

iJ'S'S

T) <lt ^>

Fig. 2

Um den Differentialquotienten als Differenzenquotienten ausdrücken
zu können, teilen wir die ganze Strecke a in t gleiche Intervalle 5 ein, und
ersetzen eine beliebige Strecke der X-Kurve Xr-U xn Xr + i durch eine
Parabel, deren Gleichung lautet (Fig. 2)

Xr+i — 2 Xr -f- Xr_i
2 s2

x2 +
Xr~\

2s X+Xr.

&) H. Marcus, Elastische Gewebe, 1924. H. Bav, über den Spannungszustand in
hohen Trägern, 1931.

e) Henky, Der Eisenbau, 1920.
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Die ersten und zweiten Differenzenkoeffizienten dieser Ersatzkurve an der
Stelle r sind angenähert

j dX Xr+i Xr-i /irr\X =-dx~== 2^ (15)

yff ^X Xr+\ 2 Xy + Xy-\ ,-fiv~~ dx2 ~ s2
K }

Eine analoge Überlegung führt weiter zu

yin d X Xr+2 — 2Xr+1 — 2XM + Xr_2
~~dx*~~ 2s3

v/y d X Xr+2 4 Xr+i + 0 Xr 4A/'_1 + Xr-
j^ — —;—t — adx4 s4

Damit ist es gelungen, die notwendigen Differentialquotienten als
Differenzenausdruck zu geben.

Setzen wir Gl. (16) und (18) in Gl. (14) ein, so geht letztere in eine
Differenzengleichung über:

Xr_2 - k± Xr^ + (k2 - l2 S4 *L±Jj±I^ Xr- K Xr+1 + Xr+2 =0 (19)

wo *! 4 + 2l2s2
und k2 6 + 4l2s2 + l4

ist. In vorliegenden Untersuchungen werden wir stets die mittlere
Druckspannung nm berechnen, und es empfiehlt sich demnach, folgenden Ansatz

st

(17)

(18)

1 (20)
l4s4 J

V '

(21)

nm n0 + nx -^~

stund p • nm rii-j
oder umgekehrt nt -~^-
und n0 (1 — p) nn

einzuführen. Wir bezeichnen mit p die Ungleichförmigkeit der Belastung:
Unter p 0 verstehen wir eine gleichmäßige und unter p 1 bezw.
p ==¦ — 1 eine Verteilung der Belastung so, daß sie längs des Randes x 0
bezw. x a verschwindet. Mit den Ansätzen (22) und ferner mit

^ ^ (23)

erhalten wir aus Gl. (19)

t r 1, 2, t.
Zunächst wollen wir die Randbedingungen als Differenzenausdruck

angeben. Wir denken uns die Knickfläche über die Grenzlinien x 0 und
x a ausgedehnt und fügen noch die Teilpunkte — 1, t + 1 und t -f- 2
hinzu. Die Grenzbedingungen am Rand x 0 fordern
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Xo=0 und X-1~2JCo+-^-l'vX0 0

oder X0 0 und X^ — X± (25)
Am anderen Rand x a soll das Biegungsmoment verschwinden, d. h.

d2X I

±±-.vtfX\ =0dx2 \x=a

oder Xt+l-2Xt+Xt.k _ ^ y Xf Q
s*

woraus folgt
Xt+1 (2 + vi2 s2) Xt + Xt-! (26)

Das Gleichgewicht der Stützkraft am Plattenende x a bedingt

Xt+2-2Xt+1 + 2Xt_1-Xu2-(2-v)l2s2(Xt+1-Xt_1) 2vs*l*Xt
Setzen wir Gl. (26) in die obige ein, so ergibt sich

Xt+2 ^Xu2-2(kl-2 + vl2s2)Xt_1 + [2k1-4 + v(2-v)l*s± + 2rsn±]Xt (27)

Nun schreiben wir Gl. (24) für jeden Teilpunkt r 1, 2, t an und
erhalten dadurch t Gleichungen, die jedoch t + 4 Unbekannte einschließlich

X_u X0, Xt + 1 und Xi + 2 enthalten. Die vier Unbekannten lassen sich
ohne weiteres an Hand der Gleichungen (25), (26) und (27) eliminieren.
Es entstehen nun t Gleichungen mit t Unbekannten Xly X2, Xt, deren
Elimination die Knickbedingung liefert.

3. Berechnung der Knickkraft.
Wir zeigen hier beispielsweise eine Anwendung des oben erwähnten

Verfahrens mittels der Differenzengleichung, indem wir die Breite a in vier

Teile zerlegen. Wir setzen demnach 5 — und t 4 in Gl. (24) ein und

wenden dieselbe auf die Teilpunkte 1, 2, 3 und 4 an.
Für r 1 :

Ali —k1X0 + [k2—l2s^t2 (1 —0,5/7)] Xx — ktX2 + X3 0.

Wegen X0 0 und X _ t — Xt erhalten wir
[k2—\—l2s^i2{\—0,5p)]X1 — k1X2 + Xz =0. (a)

Für r 2:
— k1X1 + (k2 — l2s^2)X2 — kx X3 + X4 0. (b)

Für r 3 und r 4:

Xi— kxX2 + [k2 — l2s^t2(\+ 0,5/7)]X3 —^ X4 + X5 =0
x2 — k x* + [*t - *2sV(i + />)] x± — ki xb + xQ o.

Durch Einsetzung der Randbedingungen gemäß Gl. (26) und (27) gehen
die letzten zwei Gleichungen über in

X1-k1X2-r[k2-\-l2s±fi2(\+0,5p)]X$-(k1-2 + vs2l2)X4[ 0 (c)

2X2-2(k1-2 + vs2l2)Xs
+ [k2-4-l2s±f.i2(l+p)~k1s2l2v + v(2-v)l4<s4< + 2rsn±]Xt==0 (d)

Durch Elimination der Unbekannten Xu X2, X3 und X^ in den Gl. (a), (b),
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(c) und (d) erhalten wir die gesuchte Knickbedingung:

Aj-l-©! -£x 1 0

ki kz-W* -kt 1

1 -kx k2-l-Vs -(kt-2+vsn2)
0 1 -(Äx-2+vsU2) i[k2-4-Wi-klvSn2+v(2-v)^s*+2rsni]

worin die Abkürzungen
«Ft A254^2(l— 0,5 p),
W2 X2S^l2,
Vs X2s*H2(\+0,5p),

kx 4 + 2l2s2,
und k2 6 + 4/l2s2 + A4s4

eingeführt sind.

0

(28)

(29)

t*4-

l t Effort min. de Ffambage pour
** i<o Weinsfe KnickkraFt Für

Sit1

Y* jma/fesr oucK/zng zo&a/ar

\\ ^"\ '
><

--"""

3*z

V
->- b.
L

<3

Fig, 3

Die numerische Berechnung mit v 0, a.-& 1 und A 7t: b liefert die
Bedingung

7,8479- (1 -0,5/;) A2sV -5,2337 1 0
-5,2337 8,8479 -Ä2sV -5,2337 1

1 -5,2337 7,8479-(l+0,5/?)A2sV2 -3,2337
0 1 -3,2337 2,4240-%(\+p)l2sifi2+rs3Xi

aus der die nachstehende Knickkraft errechnet wird.
n,

P

0,

Für y 0:

y 0, p 0:
y 0, /> 1:

y 0,555a, p 0:
y 0,12575a, ^ 1:

N
o2 3,801 n2 37,51

15,04

10,06

24,00
24,00
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Durch Vergleich mit den genauen Werten ist zu ersehen, daß der Unterschied

gegenüber der allseitig gestützten Platte ziemlich groß ist, was darauf

beruht, daß die vierzeilige Determinante in diesem Fall in die dreizeilige
übergeht. Für eine allseitig gelagerte Platte ist es empfehlenswert, die Breite
in fünf gleiche Intervalle zu teilen, weil die Knicklast ohne erhöhten
Rechnungsaufwand erhältlich ist. Mit y =¦ oo und t 5 erhalten wir die
Knickbedingung:

0

(29)

k,-l-l*s*t**(\-0fip) -h 1 0

-kx k2-l2s*^\\-0,2p) -kt 1

1 -kx k2~l2s^i2(l+0,2p) ~kx
0 1 -kt k2-\-l2s^2(n0fip)

Nehmen wir a:b =- 1 und demnach auch

kt 4 + 2l2s2 4,78957 und k2 6 + 4l2s2 + l*s± 7,73500

an, so berechnet sich die bessere Annäherung der Knicklast zu

^a2 3,870 ti2 für p 0
N

und — <*2 3,762 ti2 für p 1.
TV

Bemerkenswert ist, daß bei der allseitig gestützten Platte die mittlere
Knicklast durch die Verteilung der Belastung nicht wesentlich beeinflußt
wird.

Zweiter Abschnitt. Lösung nach der Arbeitsmethode.
4. Bedingungsgleichung der kleinsten Arbeit.

Um die Arbeitsmethode durchführen zu können, muß man zuerst die
Biegungsfläche in nachstehender Form voraussetzen:

w cx wx(xy) + c2 w2(xy) + (30)
Die in ihr auftretende Funktion wk (xy) wird zweckmäßig so gewählt, daß
sie für sich den Randbedingungen der Platte bereits genügt. Die Anwendung
des Prinzips der kleinsten Arbeit führt bekanntlich zu der Bedingung7):

In Gl. (31) ist wiederum die Druckkraft als positiv bezeichnet; ea stellt die
Energie der Randscherkräfte und Randmomente dar.

Wir kehren zu unserem Problem zurück und machen den Ansatz

w — Xsmly, (32)

worin
X cx X1 + c2 X2 +

ist. Xk ist mithin eine Funktion von x, die die Randbedingungen an der
Stelle x 0 und x a befriedigt. Führt man den Ansatz in Gl. (31) ein,

7) Nädai, Elastische Platten, S. 277.
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so tritt j" sin2 ly dy oder J cos2 ly dy aus jedem Doppelintegral aus. Da die
o

* 0

Stützkraft für x a EJbX\x=alA sin ly und die Bewegung.der Platte in
der Kraftrichtung X \x a sin ly ist, so berechnet sich die Arbeit der Stützkraft

zu

eä ~EJbl±\X2\x=a fsmnydy.

Wegen j* sin2 ly dy J cos2 ly dy wird das Integral in bezug auf y aus der
Gleichung (31) ausgeschaltet und es verbleibt

OlA±-^l2X2dx

dU~(X''-l2X)2dx + (l-v)l2[xX''dx + (l-v)l2^(X'y

Die Bedingung (33) dient zur Bestimmung der Knicklast.
7n*

appizz eJastzque — eldstzsch gestutzr
etast/caUy supported

EFFort min. de Flambagepout
Kleinste KnickkraFf Für

5maliest buckling loadFor

lim

Sit1

ßJLQ.
fr:a*°°W TF:3=32

3%z

<?*
2*2 -TJ

$te

$=o

b:a

Fig. 4

5. Anwendung der Arbeitsmethode.
Als Biegungsfläche nehmen wir eine Näherungsfunktion

w c [x + ßasin—x) sin ly (34)

an, die den Randbedingungen längs den Seiten x 0, y 0 und y b
völlig genügt. Die Randbedingungen für Seite x a werden durch eine
passend ausgewählte Größe von ß hinreichend genau befriedigt.

Das Gleichgewicht der Randscherkräfte bedingt
d3W ._ d3w

+ (2 — v)N dx3

oder dx3
'

dx dy2 x=a

l2(2 — v)X



10 Shizuo Ban

woraus folgt
l2a2_L+ 2 — V

(35)

(Ä + 2-

Aus der Gleichung für die Fläche (34) geht hervor, daß wir an der
Seite x a noch ein unausgeglichenes Randmoment —v l2 a haben, das
durch die Krümmung Cx sin ly verursacht wird. Um diese verbleibenden
Spannungen auszugleichen, müssen wir an demselben Rand eine Zusatzkraft
anbringen. Unter der Voraussetzung, daß die Zusatzkraft keinen Einfluß
ausübt, kann die Knicklast berechnet werden. Dabei ist zu beachten, daß
die Arbeit der Zusatzkraft nicht in Rechnung gezogen wird, weil sie stets
an Ort und Stelle ausgeglichen ist.

Da unsere Fläche (34) nur eine Konstante c enthält, reicht an Stelle
der Gl (33) die Stabilitätsbedingung in der Form

~\(X"-l2X)2dx + (\-v)l2\XX"dx + {\-v)l2 (36)

aus. Die Funktion X lautet aus Gl. (34)

X cix + ßasin — x)

und kann in die Form

X=c(Xx + ßaX2) (37)
umgeschrieben werden, wo

Xx x \

a • ** (38)und X2 sin — x \
v '

a j

ist. Durch Einsetzung der Gl. (37) läßt sich die rechte Seite der Gl. (36)
in die Form

ex ^\{X"-l2X)2dx + {\-v)l2[xX''dx + {\-v)l2^
c\A+Bßa + C(ßa)2+~ra2lA

bringen, wo

A yf (Xl-VXJ* dx + (\-v)l2\ j XlX[dx+ [ (XI)* dx\

(X"x-X2Xl){X',2-X2Xi)dx + {\-v)X2\ (XlXl+X"lXi)dx+2(\-v)\ (X[X%dx
J o J o J o

B

und

C -1- j {XI- X2X2)2dx + (\-v) X2 \ I X*X\dx + f (X,)* dx\
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ist. Führt man die Ansätze (38) in obige Gleichungen ein, so erhalten wir

A ^-asXi + (\ — v)X2a,

L^^an* + (\-v)l2a+^(l2+v^^
und demnach

e

c

7n*

6%l

SK*

4TL*

appui e/astique — elastisch gestützt
3* e/astzca/fy supported

7Effortmm. de Flambagepour
Kleinste KnickkraFf für_

Smat/est buck/zng loadfön
L

R.

r.a**

nz

b:a

311*

2%z ¦

Fig. 5

Anschließend berechnen wir die linke Seite der Gl. (36). Da die
Belastung ny n0 + *hx ist, läßt sie sich in der Form

i-\±-%X2(X)2dx

^^X2[D+Eßa+F(ßa)2] + -^^X2[D'+E'ßa+F'(ßa)2}

ausdrücken, worin D, E usw. nachstehende Abkürzungen sind:

D | X?dx f x2 dx y ß3

E 2 \ Xx X2 dx \ x sin — x dx 2 —

D' f x3 dx 4- a*
Ja 4
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E' 2 [ x2 sin — xdx 2 (—Y' {n2 — 4)

Es ergibt sich demnach

c
~~~

2 N Mt4>4')4^*'',[t + ;>-4>''44

(30)

¦-"ü+^+i^^^-m-

Ersetzt man die Belastungen n0 und nta vermöge der Beziehungen

n0 (\—p)n„
nxa 2 p nm

durch nm und py so entsteht

c ~ 2 Af

Aus der Bedingung e1 e2 folgt der Näherungswert der Knickkraft:

4-ß2A2 + 2(l-^) + —(A2a2 + ^2)/? + 4-öU2f4^ + 0V + /^2«

i4^>4^('44]
Denken wir uns den Fall, in dem y oo, somit auch ß oo ist, so

erhalten wir aus Gl. (40) die mittlere Knickkraft:

£-=..».(;£, + l)\
Diese Gleichung zeigt, daß die Knickkraft einer allseitig gestützten Platte
unabhängig vom Ungleichförmigkeitsgrad p ist, was jedoch nur in erster
Annäherung der Fall ist. Hätten wir die verbogene Fläche in der Form

/ .71 [2 TT \
Q

w [c, sin — x + Co sin -— x sin ly
angenommen, so würde sich eine bessere Annäherung der Knickkraft aus8)

+ & + ^)(4^ + ^) =° <42>

berechnen.
Die so errechnete Knickkraft ist, wie nachstehender Vergleich zeigt,

genau genug dem Wert

£46+ifli-(o-o,+o'ol5!M <43>

angenähert.

8) Eine analoge Gleichung wurde von Timoshenko veröffentlicht. Vgl. Der Eisenbau,

1921.
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Tabelle I

b : a

^Ä aus Ol. (42)

nm a2

N n* aus Gl (43)

0,4 0,6 0,8 1,0 1,2 1,4

7,59 4,88 4,06 3,91 4,05 4,39

7,54 4,87 4,06 3,90 4,04 4,39

13

7nz

Gl*

5*2

<*%*

3*2

27[2

m

-+inmuz* appui e/astique— e/astisch gestutzt^ nt e/asf/ca/// supported

-r* EFFort mm. de Flambagepour
Kleinste KnickkraFf für

Smaf/esf buck/ing loadfor

ra=<*>
:a 32

\
¦

b.a

Fig. 6

Aus diesem Grund empfiehlt es sich, den Faktor

2fl'A,U«A» + 1 ß

in Gl. (40) mit dem Koeffizienten

* 1 — (0,01 + 0,015^ \p*

zu multiplizieren. Die mittlere Knickkraft wird demnach aus
r2 \2

TV
a* =r

LuH2(H+~(^H^2)^^ßU2(^+I) ß2k-hrl2

(44)

(45)

ermittelt
Sonderfall 1. Falls y oo und p 0 ist, stimmt die aus Gl. (45)

erhaltene Knickkraft mit dem genauen Wert
TT2 \2

iiii + V <46>^a2 a2X2

überein.
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Sonderfall 2. Für y oo erhalten wir die Knickkraft

fö2-öU2(aÄ + 1)2[1-(0'01+°'015ÄH'
die eine verläßliche Genauigkeit besitzt.

(47)

Sonderfall 3. Falls die Platte an drei Rändern aufliegt, während sie an
einem zur Belastung parallel laufenden Rand ganz frei gestützt ist, braucht
man in Gl. (35) und (45) einfach y 0 einzusetzen. Mit dem Beiwert

ß
2 — v

berechnet sich die Knickkraft aus

~a2X2 + 2(\-v)+^(X2a2 + vn2)ß + ^a2X2(^ + \)*ß2k

(48)

— a2
N I4'4^4m>44]

(49)

Für p 0 gibt Gl. (49) eine bessere Annäherung als die von Timoshenko
abgeleitete Formel:

^a2 a2l2 + f>(\ — v) (50)»)

Die nach der Arbeitsmethode ermittelten Knickkräfte sind nebst den auf
anderem Wege berechneten Werten in Tabelle II und III zusammengestellt.

Tabelle II. Mittlere Knickkraft (nma2/N) der quadratischen Platte (v 0).

p 7
Genaue
Werte
(Gl. 11)

Nach der Gelenk-
kettenmethode

(Ol. 28)

Nach der
Arbeitsmethode

(Gl. 45)

0 0
0,558 a
0,555 a

4 71*

15,16
24,00

3,85 ?r2 *

15,04

24,00

4 TT2

15,87

24,31

1 0
1,248 a

—
37,31 *

10,07
24,00

38,50
10,58
25,10

-1
0
0,64 a .—•

37,31 *

23,95
30,00

38,50
25,00
31,90

* Berechnet aus Gl. (28 a).

9) Nädai, Elastische Platte, S. 284.
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6. Kleinste Knickkraft und zugehörige Anzahl der Halb¬
wellen.

Bei der allseitig gestützten, gleichmäßig gedrückten Platte geschieht die
Knickung nicht immer in Halbwellen-Form. Für b:a= ^2 werden sich zwei,
für b:a= ^6 drei Halbwellen bilden usw., und zwar auch in guter Annäherung,

wenn die Belastung linear veränderlich verteilt ist. Falls dagegen eine
zur Belastung parallel laufende Seite ganz frei ist, kommt die mehrwellige
Knickform gar nicht in Betracht. Demnach ist zu schließen, daß die Wellenform,

die die kleinste Knickkraft bestimmt, nicht nur von dem Seitenverhältnis
b:a, sondern auch von der Steifigkeit der elastischen Stützung^ abhängig

ist. Eine analoge Abhängigkeit wurde bereits bei der Stabknickung mit elastischen

Zwischenstützen nachgewiesen10). Um diese verwickelte Beziehung
näher verfolgen zu können, berechnete der Verfasser zuerst die erste Knickkraft

aus Gl. (45) für verschiedene Seitenverhältnisse und y:a. Da es sich
hier um eine Eisenbetonplatte handelt, nimmt der Verfasser y=0,15 an11).

tt a2
Die errechneten Werte von -^—tt für p 0, p 1 und p — 1 sind

in Tabelle IV zusammengestellt. Die fettgedruckten Werte unterscheiden
sich von den anderen dadurch, daß sie nicht kleinste Knicklasten darstellen.

n a2
Die Kurve I in Fig. 3 zeigt, wie sich der Wert -^—v für p 0 und y 8 a

bei wachsendem Seitenverhältnis b:a verhält. Wird dieselbe Kurve mit 2, 3,
...fachen Abszissen eingetragen, so erhalten wir die Kurven II, III usw.,
die je der 2., 3., Knicklast entsprechen. Aus Fig. 3 ist zu ersehen, daß

für b\a <C 1,52 die erste Knicklast,
für 1,52 < b\a < 2,60 die zweite,
für 2,60 < b\a < 3,46 die dritte

und für 3,46 «< b\a die erste Knicklast wiederum die

kleinste und somit die bestimmende ist. Auf diese Weise läßt sich die kleinste
Knickkraft feststellen. In Fig. 4, 5 und 6 ist die kleinste Knickkraft bildlich
veranschaulicht. Aus den Abbildungen geht hervor, daß die zweite oder eine
noch höhere Knickkraft gar nicht in Betracht kommt, solange nicht y/a ca. 4
überschreitet. Bei gewöhnlicher Randversteifung überschreitet y/a keinesfalls

diese Grenzzahl, und die Berechnung der ersten Knicklast reicht zur
Bestimmung der kleinsten Knicklast aus.

Zusammenfassung.
Bei Anwendung der Arbeitsmethode ist es in erster Linie notwendig,

eine passende Krümmungsfläche anzunehmen, die den Randbedingungen
genügt. Bei komplizierten Randbedingungen muß man sich aber damit
begnügen, eine den Randbedingungen möglichst entsprechende Fläche
anzunehmen. Obwohl die vom Verfasser angenommene Krümmungsfläche nicht
ganz den Randbedingungen angepaßt war, gelang es, die Knickkraft einer
linear veränderlich gedrückten Platte mit elastischer Stützung hinreichend

10) S. Ban, Kenchiku Zasshi, Bd. 45, Nr. 551, 1931. B. Klemperer and H. B.
Gibbons, Z. f. angew. Math. u. Mech. 1933, H. 4.

n) Im Bereich der zulässigen Beanspruchung ist m v~1 6 bis 7 für
Druckbeanspruchung und m — 9^ 10 für Zugbeanspruchung. Vgl. Kongreßbericht der I.V.
f. M., Zürich, 1931. Gehler, Festigkeit, Elastizität und Schwinden von Beton.
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genau zu ermitteln. Es ist aber noch darauf hinzuweisen, daß die nach der
Arbeitsmethode ermittelte Knickkraft für kleine Seitenverhältnisse b/a von
dem genauen Wert abweicht. Bei der Methode der elastischen Gelenkkette
nach Henky bedarf es keiner Voraussetzung bezüglich der Krümmungsfläche
und stets führt dieselbe zu einer guten Annäherung.

Auf Grund seiner Studien über den hier behandelten Knickfall gelangt
der Verfasser zu folgenden Schlußfolgerungen:

1. Bei einer allseitig gelagerten Platte ist in erster Annäherung die mittlere

Knickkraft nm unabhängig von der Ungleichförmigkeit der Belastung.
2. Falls ein zur Belastung parallel laufender Rand ganz frei ist,

vergrößert oder verkleinert sich die mittlere Knickkraft, je nachdem die
Ungleichförmigkeit p negativ oder positiv ist.

3. Die Versteifung eines freien Randes erhöht die Knickkraft um so mehr,
je größer deren Abmessung und je kleiner das Seitenverhältnis b/a wird. Ist
aber die Randversteifung sehr groß, so entscheidet die zweite oder dritte
Knickung die kleinste Grenzlast und eine weitere Erhöhung der Steifigkeit
der Randversteifung vergrößert die Knickkraft nicht.

4. Die Anzahl der Halbwellen der Knickungsform, die die kleinste Knickkraft

entscheidet, hängt vom Seitenverhältnis b/a und ferner von der Steifigkeit
des Randes und der Ungleichförmigkeit der Belastung ab.
5. Über die zahlenmäßige Wiedergabe der Knickkraft für verschiedene

Seitenverhältnisse, Randversteifungen und Ungleichförmigkeiten der
Belastung geben die Fig. 4, 5 und 6 Auskunft.

Resume.
Pour la mise en application de la methode de travail indiquee, il est

necessaire, en premier lieu, d'adopter une surface de courbure appropriee, qui
satisfasse aux conditions en bordure. Lorsque ces dernieres conditions sont
complexes, on peut toutefois se contenter de considerer une surface satis-
faisant ä ces conditions dans toute la mesure du possible.

Quoique les surfaces de courbure adoptees par l'auteur ne correspondent
pas d'une maniere absolue aux conditions peripheriques, il a neanmoins ete
possible de determiner avec une precision süffisante, Peffort de flambage
d'une dalle soumise ä une compression variant lineairement et reposant sur
un appui elastique.

II importe d'attirer toutefois ^attention sur le fait que l'effort de
flambage determine au moyen de la methode indiquee, pour des rapports
faibles entre les cotes, soit b/a, s'ecarte de la valeur exacte. La methode de
la chaine articulee elastique de Henky ne rend necessaire aucune hypothese
au sujet de la surface de courbure et conduit toujours ä une bonne approximation.

En se basant sur les etudes qu'il a effectuees dans le cas de flambage
considere, l'auteur a pu arriver aux conclusions suivantes:

1. Dans une dalle appuyee sur tous ses cötes, et en premiere approximation,

l'effort moyen de flambage nm est independant de la non-uniformite
de la charge.

2. Dans le cas Fun des bords parallele ä la direction de l'application de
la charge est entierement libre, l'effort de flambage se trouve augmente ou
diminue suivant que la non-uniformite p est negative ou positive.

3. Le renforcement d'un bord libre eleve l'effort de flambage dans des
proportions d'autant plus grandes que les propres dimensions de ce bord sont

Abhandlungen III 2
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plus grandes et que le rapport b/a entre les cotes est lui-meme plus faible.
Si toutefois ce renforcement est tres important, c'est la deuxieme ou la
troisieme ondulation de flambage qui determine la charge limite inferieure;
une accentuation du renforcement de la rigidite en bordure n'ameliore pas
l'effort de flambage.

4. Le numero d'ordre des demi-ondes de flambage qui determinent l'effort
minimum de flambage depend du rapport b/a entre les cotes, ainsi que de la
rigidite en bordure et de la non-uniformite de la charge.

5. Les figures 4, 5 et 6 donnent des indications sur les valeurs nume-
riques de l'effort de flambage pour differents rapports entre les cotes,
differentes valeurs du renforcement en bordure et differents regimes d'hetero-
geneite de repartition de la charge.

Summary.
In applying the method of work it is first of all necessary to assume a

suitable surface of curvature that satisfies the conditions at the edges. With
complicated conditions at the edges, however, one must be content with a
surface complying as far as possible with these conditions. Although the
surface of curvature assumed by the author does not quite comply with the
conditions at the edges, he has nevertheless succeeded in determining the buckling

load for an elastically supported slab submitted to linearly varying pressure.

It must, however, be pointed out that the buckling load determined
according to the method of work differs from the exact value when the ratio
between the lengths of the sides, i. e. b/a, is small. Henky's method of the
flexible articulated chain requires no assumption with regard to the curvature
of the buckling surface and always gives a good approximation.

Based on his investigations of the case of buckling dealt with here, the
author comes to the following conclusions:

1. In a slab supported on all sides, the mean buckling load nm is inde-
pendent, in a first approximation, of the non-uniformity of the loading.

2. When one edge parallel to the direction of loading is quite free, the
mean buckling load increases or diminishes according to the non-uniformity
p being negative or positive.

3. With a stiffened free edge, the greater its dimensions and the smaller
the ratio b/a of the sides, the greater will be the buckling load. But if the
marginal stiffening is very great, the second or third buckling determines
the minimum limiting load, and a further increase of the stiffening does not
allow the buckling load to be increased.

4. The number of half waves of the buckling form that determines the
smallest buckling load, depends on the ratio b/a of the sides and also on the
marginal stiffness and on the non-uniformity of the loading.

5. Figs. 4, 5 and 6 give information regarding the numerical values of
the buckling load for different ratios of sides, marginal stiffenings and non-
uniformities of loading.
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