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KNICKUNG DER RECHTECKIGEN PLATTE BEI
VERANDERLICHER RANDBELASTUNG

FLAMBAGE D’UNE PLAQUE RECTANGULAIRE SOLLICITEE AUX
BORDS PAR UNE CHARGE VARIABLE.

BUCKLING OF A RECTANGULAR SLAB SUBJECTED TO VARIABLE
MARGINAL LOADING.

Prof. SHIZUO BAN, Kioto (Japan).

Einleitung.

Wenn es sich um die Knickung der Platte handelt, so beschrinkt sich die
Untersuchung stets auf das Problem, das hauptsichlich mit der lokalen Sicher-
heit der eisernen Bauteile zu tun hat. Neuerdings wird aber eine Schale oder
Scheibe als neues Tragwerk in die Eisenbetonkonstruktion eingefiihrt, wo-
durch ermoéglicht wird, einen groBen Raum mit einer auBergewohnlich
leichten Konstruktion zu iiberdecken. Da diese Tragwerke sehr diilnnwandig
gebaut werden konnen, verlangt bei deren Entwurf die Frage der Stabilitit
besondere Beachtung, indem zuweilen Knickungsfille zu beriicksichtigen sind,
die bei der eisernen Konstruktion selten vorkommen. Zum Beispiel werden
in einer Teilscheibe des Faltwerks Normalspannungen und Schubspannungen,
deren Verteilung in Lings- und Querrichtung eine andere ist!), zugleich her-
vorgerufen. Um die Stabilitat des Faltwerks theoretisch verfolgen zu kénnen;
haben wir noch viele Knickprobleme in bezug auf die Platte unter verschie-
denen Spannungszustinden und Randbedingungen in Betracht zu ziehen. Der
Verfasser gibt vorliegend eine angeniherte Losung fiir eine rechteckige Platte,
die an einem Seitenpaar linear verdnderlich belastet ist. Die ‘Stiitzung der
Platte ist so angenommen, daB sie an drei Seiten x = 0, y =OQund y = &
unbeweglich und an der vierten, der Belastung parallel laufenden Seite
elastisch gestiitzt ist.

Erster Abschnitt. Losung durch die Differenzengleichung.

1. Die Differentialgleichung der Knickflache und ihre
Anwendung agf die gleichmiaBig gedriickte Platte.

Wir verlegen den Koordinatenursprung in eine Ecke der Platte und lassen
die Platte von den Seiten x = 0, x = a, y = 0 und y = & begrenzt sein.
Bezeichnen wir mit w die Durchbiegung der Platte, mit N die Plattensteifig-
keit2) und ferner mit n, (x) die Belastung, die auf den Rindern y =0 und
y = b in x-Richtung wirkt, so lautet bekanntlich die Differentialgleichung

- 1) Uber die Verteilung der Spannung in Faltwerk geben folgende Aufsitze Aus-
kunft: EnLEr, Beton und Eisen, 1930, S. 281. Craemer, Beton und Eisen, 1930, S. 276.
Grueer, 1. Abhandlung d. 1. V. B. H., 1932.

?) NApal, Elastische Platten.
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der Knickflache
A — 0w '
NA W——‘—”y(x)é—};)f: (1)

wobei die Druckspannung als positiv gerechnet ist.
Da die Platte an den Rindern y = 0 und y = & gestiitzt ist, machen
wir den Ansatz

w= X-sinly, (2)
woO ,
mam
A= 3)

und X eine Funktion von x ist. Die Flache (2) befriedigt fiir das Seitenpaar
y =0 und y = & die Grenzbedmgungen Die neu eingefiihrte Funktion X
ist so zu wihlen, daB sie der gewohnlichen Differentialgleichung
4 2 .
%g_zvdx+mx + 20 x @)
und den Grenzbedingungen fiir das Seitenpaar x = 0 und x = & geniigt.

Da die Platte an der Seite x = 0 aufliegend gestiitzt ist, folgen nachstehende
Bedingungen:

| X|x=0 =10
] )

| a2 X

’ dx? |x=0 b

Wir stellen uns vor, da die Platte bei x = a mit einer Randversteifung

eingefaBt ist und die letztere bei der Knickung elastischen Widerstand leistet.

Ferner nehmen wir an, da sowohl die Randversteifung als auch die Platte
an dem Rand x = « in dieselbe Sinuslinie

C = Xsin }.,y
verbogen werde. Aus der Differentialgleichung der elastischen Linie eines
Balkens

4

d*
EJs E}—[ =q(y)
erhalten wir die Belastung auf die Randversteifung:

g(y) = EJp - X-Atsindy,

wobei /J, das Triagheitsmoment der Randversteifung bedeutet. Diese Be-
lastung mufl mit der Stiitzkraft in dem Plattenschnitt x = a im Gleichgewicht
sein, woraus folgt

03w
N 6x3+( _v)

oder mit dem Ansatz (2)

a X
d x? (Z_v)d

}—~E_]b X-Atsindy

= yA* | X]x=a (6)

worin y = EJ,: N ist.
Zu der Voraussetzung, daB die Platte mit der Randversteifung biegungs-
frei verbunden sei, tritt noch die Bedingung hinzu

arx
d x? =0 ) (7)

x=a
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Um eine Vergleichsmoglichkeit zu bieten, gibt der Verfasser zuerst die
strenge Losung fiir eine gleichmiBig gedriickte Platte. Falls die Rand-
belastung gleichmiBig verteilt ist, erhalten wir aus Gl. (4) eine lineare Diffe-
rentialgleichung mit konstanten Koeffizienten:

d4X 2 d X 2 2 2 J—
G —2M g T M) X =0 (8)
: . ny 0
WOI’ln U :‘N“ ( )

ist. Mit den Abkiirzungen
Vi D, e = Vila—A) (10)
148t sich die Losung von Gl. (8) in der Form
X=ACjeyx+ BGSina;x+ Ccosayx + Dsineg, x

ausdriicken 3). Infolge der Randbedingungen auf der Seite x = 0 verschwinden
die Koeffizienten A und C. Der Ausdruck vereinfacht sich demnach zu

X =BGina; x + Dsina, x
Eliminiert man die iibrigen Koeffizienten B und D an Hand der beiden
Grenzbedingungen (6) und (7), so erhidlt man die Knickbedingung:

(ef-v2%) Gine,a (ef+vA2)sin eya —0 (11
[af-22a,(2—7)] Cojea-y M Binea  [ad+A ay(2-v)]cose,atyAisine,a|

Setzen wir y = oo in Gl. (11) ein, so erhalten wir die bekannte Knick-
bedingung fiir eine ringsum frei gestiitzte Platte:

sina,a = 0,
woraus sich fiir die Knickkraft
n a2 b2 2

ergibt. Falls die Seite x = a ganz frel ist, setzen wir einfach y = 0 in
Gl (11) ein*).

Die numerische Rechnung mit » = 0 und 4:& = 1 liefert

n

—ﬁaz = 4n? fiir y = oo
n 9 15.1 f
N = 5,16 iiry=20
und %(ﬂ — 24,00 fiir y = 0,558 a.

2. Ubergang zum Differenzenausdruck.

Sehen wir von der gleichmiBig verteilten Belastung ab, so stoBen wir
auf Schwierigkeiten, die Grundgleichung (4) zu lésen. In diesem Fall emp-
fiehlt es sich, die Gl. (4) in Differenzenform zu bringen, wie man sie bei

3) NApai, Elastische Platten.

1) Dieselbe Bedingung wurde 1913 von TimosHENKO aufgestellt. Vgl. Z. Math u.
Phys. 1913,
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Platten- oder Scheibenproblemen seit Jahren verwendet?). Mit diesem Aus-
druck 148t sich die Knicklast nach der Methode der elastischen Gelenkkette
errechnen, die Henky fiir die Knickung des Stabwerkes benutzt hatte¢). Da
wir nur mit der Grundgleichung (4) zu tun haben, brauchen wir keine partielle
Differenzengleichung zu nehmen, und die Berechnung wird deshalb so ein-
fach wie bei der Stabknickung. o

Fiir eine linear verdnderliche Belastung

ny(x) =ny, +n-x (13)
entsteht
4 2
%~2l2 ‘;x)g(n%?(\l?—”—‘—’iﬁ—”"‘)xzo (14)

je—————3 =5/ ———————>
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Um den Differentialquotienten als Differenzenquotienten ausdriicken
zu konnen, teilen wir die ganze Strecke a in ¢ gleiche Intervalle s ein, und
ersetzen eine beliebige Strecke der X-Kurve X, _ ., X,, X, durch eine Pa-
rabel, deren Gleichung lautet (Fig. 2)

Xr+1 - 2Xr + X, -1 .9 Xr+1 — Xr-l

X = 5 5% X —|—-———2—s——x+X,..

5) H. Marcus, Elastische Gewebe, 1924. H. Bayv, Uber den Spannungszustand in
hohen Triagern, 1931,
6) Henky, Der Eisenbau, 1920.
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Die ersten und zweiten Differenzenkoeffizienten dieser Ersatzkurve an der
Stelle r sind angenihert

dX Xy — Xoy

Xt = dx 2s (13)
2 R
x7 = &K = T 228 & Xeo | (16)

Eine analdge Uberlegung fithrt weiter zu v
dﬁX . Xr+2 —_— 2Xr+1 - 2X}‘—-i + Xr_2

ur .
XU =g = 258 (In
d*X Xy — 44X, +6X,—4X,_, + X,_ '
XIV: dxt = +2 +1 S4r ! 2 (18)

‘Damit ist es gelungen, die notwendigen Differentialquotienten als Diffe-
renzenausdruck zu geben.

Setzen wir Gl. (16) und (18) in GI. (14) ein, so geht letztere in eine
Differenzengleichung iiber:

Xpyg— by Xpy + (k2 —Azst @1’\’;15) Xy — by Xpyy + Xpyp = 0 (19)

20
und ky = 6 + 41252 f A4st (20)

ist. In vorliegenden Untersuchungen werden wir stets die mittiere Druck-
spannung 7, berechnen, und es empfiehlt sich demnach, folgenden Ansatz

st
’zm:’lo‘!"ll"z“

wo ky = 4 + 21252 }

57 (21)
und p ¢ ,lm = ’2] ‘_2“
oder umgekehrt n = 2;2,;,/) (22)
und ny = (1—p) ftm

einzufithren. Wir bezeichnen mit p die Ungleichférmigkeit der Belastung:
Unter p = 0 verstehen wir eine gleichmiaBige und unter p = 1 bezw.
p = — 1 eine Verteilung der Belastung so, dafBl sie lings des Randes x = 0
bezw. x = a verschwindet. Mit den Ansdtzen (22) und ferner mit

m __ o
N = (23)
erhalten wir aus Gl. (19)

Xr_o —ky Xr_y +{k2 —A%-st-u? [1 "(1“2'§)P]}Xr—k1'xr+1 + Xy = 0,

r=1,2 ....t¢.

Zunichst wollen wir die Randbedingungen als Differenzenausdruck an-
geben. Wir denken uns die Knickfliche iiber die Grenzlinien x = 0 und
x = a ausgedehnt und fiigen noch die Teilpunkte —1, £ + 1 und £ -+ 2
hinzu. Die Grenzbedingungen am Rand x = 0 fordern

(24)
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X4 —2X, + X

XO = O Urld 52 —— }uzvXO = 0
oder X,=0 und X_, =—X, (25)
Am anderen Rand x = a soll das Biegungsmoment verschwinden, d. h.
arx 12 .
PP Rk Xx:a = B
oder Xeer — 285(‘4_ Xir My Xy =0,
woraus folgt
Xev1 = 2+ v225) X + X¢_y (26)

Das Gleichgewicht der Stiitzkraft am Plattenende x = a bedingt

Xt+2 - 2Xt+1 +2X;4 - X9 — (2—1’) A2 s? (Xt+1 "‘Xt—1) = 2vs3At Xy
Setzen wir Gl. (26) in die obige ein, so ergibt sich

Xtvg = Xpo =2k —24vA28) Xy + (28 —4+v(2-9)A4s* + 2753 A4 X (27)

Nun schreiben wir Gl. (24) fiir jeden Teilpunkt » = 1, 2, ... £ an und
erhalten dadurch ¢ Gleichungen, die jedoch ¢ + 4 Unbekannte einschlie8-
lich X _,, X,, X¢4+, und X;,, enthalten. Die vier Unbekannten lassen sich
ohne weiteres an Hand der Gleichungen (25), (26) und (27) eliminieren.

Es entstehen nun ¢ Gleichungen mit # Unbekannten X,;, X,, ... X;, deren
Elimination die Knickbedingung liefert.

3. Berechnung der Knickkraft.

Wir zeigen hier beispielsweise eine Anwendung des oben erwihnten
Verfahrens mittels der Differenzengleichung, indem wir die Breite a in vier

Teile zerlegen. Wir setzen demnach s —2 und ¢ = 4 in Gl (24) ein und

wenden dieselbe auf die Teilpunkte 1, 2, gund 4 an.
Firr = 1:
Xy — kb Xo+ [kg —22s*u2(1 —05p)] Xy, — by X, + X5 = 0.
Wegen Xo =0und X _;, = — X, erhalten wir
[k —1 — A2s*u2(1 —05p)] X; — &y Xy + X5 = 0. (@)
Fiir r = 2: :
—ky Xy + (kg — 225t u) X, — by X3 + X, = 0. (b)

Fiir r = 3 und r = 4:
X, — ki Xy + [ke— 2252 (1 4+ 05p) Xs— b Xy + X; =0
Xe— b Xy + ks — L2512 (1 + p)] Xy — by Xy + X = 0.
Durch Einsetzung der Randbedingungen gemidB Gl. (26) und (27) gehen
die letzten zwei Gleichungen iiber in
Xy ks Xy + [l =1 - 1252 (1405 p)] Xy — (b~ 2475240 X, =0 (c)
2Xy-2(k —2+v5%0%) X,
+ [k —4-A2s4 1 2(14+p) b SEA2v+v(2—9) A4st+2rs304) X, =0 (d)
Durch Elimination der Unbekannten X;, X,, X; und X, in den Gl. (a), (b),
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(c) und (d) erhalten wir die gesuchte Knickbedingung:

hy-1-0, —k, 1 0 =0
B, k-,  —k 1
1 —ky ky—1-1, (b~ 2+ 52 A2) (28)
0 1 —(k=2495242)  §[ksd—Phyrshoev(2-9) Mst42rs3h4]
worin die Abkiirzungen
W, = Astu2(1—05p),
P, = A2stu?,
Py = A2stu?(1 +05p),
P, = A2stu2(1 + p), ( (29)
k, =4 4 2A%s2,
und ky = 6 + 4A%s? 4 Atst

eingefiihrt sind.

7a? ‘\

Effort min. de flambage pour

2
i€

o - B OR f/e/?;/sfef /Zﬂ/'c;:f/@/’a[z /2;/; "
3 \{%(; \\.; mallest buckling load fo.
- \E \‘;% Pz0etund,and &3 =76
51 3 —\3 ST~ 4 ===
& N7 \\\ \“> -
um? \_//\\ it S S
2 \
3n ~
\
2nit ’f‘b
&
T
—> b:a
o - 1 2 3 4 5
Fig, 3
Die numerische Berechnung mit» = 0,a:56 = 1 und 1 = =n: b liefert die
Bedingung
7,8479-(1-0,5p) A%s*u? —5,2337 1 0 =0,
—-5,2337 8,8479 - A2s4p? -5,2337 1
1 v —-5,2337 7,8479-(1+0,5p) A2s4u? -3,2337
0 1 -3,2337 2,4240-4 (14p) A2s4u?+rsdi*
aus der die nachstehende Knickkraft errechnet wird.
Fir y=oo p=0: 7”v'£a2 — 3,801 a2 = 37,51
: y =0, p =0: = 15,04
y = 0, p=1: = 10,06
y = 0,555a¢, p =0: = 24,00

y = 0,12575q, p = 1: == 24,00
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Durch Vergleich mit den genauen Werten ist zu ersehen, daB der Unter-
schied gegeniiber der allseitig gestiitzten Platte ziemlich groB ist, was dar-
auf beruht, daB die vierzeilige Determinante in diesem Fall in die dreizeilige
iibergeht. Fiir eine allseitig gelagerte Platte ist es empfehlenswert, die Breite
in fiinf gleiche Intervalle zu teilen, weil die Knicklast ohne erhéhten Rech-
nungsaufwand erhiltlich ist. Mit y = oo und ¢# = 5 erhalten wir die Knick-
bedingung:

ky—1-1A25412(1-0,6p) —k, 1 0 =0
—ky ky—A254u%(1-0,2p) —ky 1 ‘ (20)
1 —k ko254 2(140,2p) —k
0 1 ~ky ky—1-2254u%(140,6p)

Nehmen wir a:5 = 1 und demnach auch
ky = 4+224%s* =4,78057 und %k, = 6+4A2s% + Atst = 7,73500
an, so berechnet sich die bessere Anndherung der Knicklast zu

%ﬁaz*ssmﬁ fir p=0
und —nNTaZ——?ﬂﬁZ:rz2 fiir p=1.

Bemerkenswert ist, daB bei der allseitig gestiitzten Platte die mittlere
Knicklast durch die Verteilung der Belastung nicht wesentlich beeinfluft
wird.

Zweiter Abschnitt. Losung nach der Arbeitsmethode.
4. Bedingungsgleichung der kleinsten Arbeit.

Um die Arbeitsmethode durchfithren zu kénnen, mufBl man zuerst die
Biegungsfliche in nachstehender Form voraussetzen:

w= ¢, wi(xy) + cawo(xy) + . . ... (30)

Die in ihr auftretende Funktion w, (xy) wird zweckmaBig so gewihlt, daB

sie fiir sich den Randbedingungen der Platte bereits geniigt. Die Anwendung
des Prinzips der kleinsten Arbeit fithrt bekanntlich zu der Bedingung?):

o\ (&) awar = wa[[47 -Gz G- (54 0a @

In Gl. (31) ist wiederum die Druckkraft als positiv bezeichnet; e, stellt die
Energie der Randscherkrifte und Randmomente dar.
Wir kehren zu unserem Problem zuriick und machen den Ansatz

w= Xsinly, (32)

worin
X261X1+62X2+. P

ist. X, ist mithin eine Funktion von ¥, die die Randbedingungen an der
Stelle x = 0 und x = a befriedigt. Fiihrt man den Ansatz in Gl. (31) ein,

7) NAbai, Elastische Platten, S. 277.
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so tritt j'b sinz 1y dy oder j'[; cos? 1y dy aus jedem Doppelintegral aus. Da die

Stiitzkraft fir x = a EJy X |, —oAtsinly und die Bewegung.der Platte in
der Kraftrichtung X |, — ,sinly ist, so berechnet sich die Arbeit der Stiitz-
kraft zu

b
o = %Ej,,/l‘i{XQ]x:aj sin®Ay dy.

o
Wegen jj sin2 ly dy = jb cos? 1y dy wird das Integral in bezug auf y aus der
Gleichung (31) ausgeschaltet und es verbleibt |

1 7y 05y

—p U% (X”—NX)deqL(l—v)AQJXX”dx+(1—v)12.“(X')2dx+%r’xlx=al4] (33)

Die Bedingung (33) dient zur Bestimmung der Knicklast.

7 elastHoue —elastisch gesfutzf
“Y C e as 7ee slgjf/!:ac}/y%u,aparfeo’
i m l EFfort min. de flambagepout
| Kleinste Knrckkraft fur
: Imallest buckling load for
st b
|
e J:a=0°
ot _/% = o
\\\ - \ N{‘% .
32 \ \ \ i
\\ \ \\ 9. \\
2r2} & \ a".eig
Slz \ \ 7 r.‘e* \1’\\\
zzh T \ \j‘.ﬁi\ : I
QD=0 — [ |
TR
0 - 1 2 3 4 5

Fig. 4

5. Anwendung der Arbeitsmethode.
Als Biegungsfliche nehmen wir eine Niherungsfunktion

w = c(x—f—{)’asin%x)sin Ly (34)

an, die den Randbedingungen lings den Seiten x = 0, y = 0 und y = &
vollig geniigt. Die Randbedingungen fiir Seite x = a werden durch eine
passend ausgewaihlte GroBe von § hinreichend genau befriedigt.

Das Gleichgewicht der Randscherkrifte bedingt
G o3 w
e TG

da’ X
o 12(2—V)Xix=a: 7 Ata,

N

a: Ejb[Xlx:al‘iSiﬂ l_y

X ==

oder
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woraus folgt

}ﬂa?—g—-}- 2—vy

JIZ
(W + 2— 1’) JT
Aus der Gleichung fiir die Fliache (34) geht hervor, daB wir an der
Seite x = a noch ein unausgeglichenes Randmoment —» A2a haben, das
durch die Kriimmung C xsinly verursacht wird. Um diese verbleibenden
Spannungen auszugleichen, miissen wir an demselben Rand eine Zusatzkraft
anbringen. Unter der Voraussetzung, daB die Zusatzkraft keinen EinfluB
ausiibt, kann die Knicklast berechnet werden. Dabei ist zu beachten, daB
die Arbeit der Zusatzkraft nicht in Rechnung gezogen wird, weil sie stets
an Ort und Stelle ausgeglichen ist.

Da unsere Fliche (34) nur eine Konstante ¢ enthilt, reicht an Stelle
der Gl. (33) die Stabilititsbedingung in der Form

p= (35)

T (7550
1

— 7j(x”—l2X)2dx +(1-7) IZIXX" dx+(1-») lgj(X')zdx+—;»r‘X2]al4 (36)

aus. Die Funktion X lautet-aus Gl. (34)
X = c(x + ﬂasin%x)

und kann in die Form

X = c(X, + faXy) (37)
umgeschrieben werden, wo
‘ Xl = X
und X, = sin%x } (38)

ist. Durch Einsetzung der Gl. (37) 14Bt sich die rechte Seite der Gl. (36)
in die Form

_ 1
— 2

= c[A +Bfa+C(Ba)? +%ra2l4]

e j(X”—l“X)“’der(l—v)lszX”dx + (1-») l?J(X’)gdx+—;—r | X3 A%
bringen, wo
1 a a a
A= ?L(X{—MXI)Z dx+(1—v)l2U )‘(1X'{abc+L(X1')2 dx]

a a a
B = J (X1"~112X1)(X;'—/12X2)dx+(1—v)l2j (xlxg+x;'x2)dx+2(1—v)j (X, X}) dx
o [ ) o

und

C 1j'(X;—mxz)zd“(l'—y)xzuxzx;dx'+f(x;)wx]

:70
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ist. Fiithrt man die Ansidtze (38) in obige Gleichungen ein, so erhalten wir

A= %a3x4'+ (1—») A2a,

und demnach
ey 1 Ala

1 (=2 2 1
1 894 2 2 ; 2 2 2 274
- 6al+(1 V) A2a+ —— (l+v )ﬂ’a+4 (2+Z>ﬁa+2ral

702
appui elastigue — elastisch gestutzf
e Ll il Tpﬂ 7 e/asf/ca//ygsu,o,oorfed
ext =3 ?f/‘aﬁ min. de flambage pour
2 l Kleinste Knickkraft fur.
su? b Jmakest buckiing load for
AR
S & ,ﬁ —— Tigaoo
\\\ S — | e
3n2 \\ \\ \z« . \
\\ \ 2l ﬁ&l\
M2} r“'ﬂ - N \ i\(\ \
n2} M & S \\\ \
t e S et S e S
- o2 S
- I

0 1 2 3 4 5
Fig. 5

AnschlieBend berechnen wir die linke Seite der Gl. (36). Da die Be-
lastung n, = n, + n,x ist, 148t sie sich in der Form

e 1”)’2 2
ez__jz Nl(X) dx

= £ 013D+ Efat FBa)]+ 5 M2 [D+EBatF(Ba)]

ausdriicken, worin D, E usw. nachstehende Abkiirzungen sind:

a 4
D_—:J’Xlza'x—_—jx?dx;—_%,—a3
(o T 7 a?
E = 2jX1X2dx::J‘xsin#~xdx:2—~
F::JX dx*jsin2(£x>dx:i
0 a 2
“ 1
S 3 — 4
D——Jx dx = 4a

a
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E ~—2jx2sm-—xdx:2( ) (7?2 — 4)

aQ
F = stm2 (wx) dx —
a

o

a2
4
Es ergibt sich demnach

e _ 1 14, 3(1_ 2, 1 ) 1 ma,, 3[l _ L ]
Pl I VA e sttt S R el G 4””

Ersetzt man die Belastungen n, und n,a vermége der Beziehungen

= (1 —p) m
na=2pny,

durch 7, und p, so entsteht

e _ 1 nmy, 3[_1_ 245,015 {L ( Mi)ﬁ}]

R 2 VI Sl ool U= =g
Aus der Bedingung e, = e, folgt der Niherungswert der Knickkraft:

La%?+2(1—v)+—2—(},2a2+vn2)ﬂ+—1—a2l2( +1)ﬂ2+/l2a
m 3 7 2 2)2
A= ) ] (40)

cegolgr2(-2) 0
LA 14 T U=

Denken wir uns den Fall, in dem y = oo, somit auch g = oo ist, so er-
halten wir aus Gl. (40) die mittlere Knickkraft:

im0 e 2( L )2,
N ¢ a2k pYE +1) .
Diese Gleichung zeigt, daB die Knickkraft einer allseitig gestiitzten Platte
unabhingig vom Ungleichformigkeitsgrad p ist, was jedoch nur in erster
Anniéherung der Fall ist. Hétten wir die verbogene Fliche in der Form
| b, ( @ E ) -
= |¢, sin 7‘—x + ¢ smj;—x’ sin Ay

angeriommen, so wiirde sich eine bessere Annidherung der Knickkraft aus #)

) 1= lozeo) | =22 G )+ (54 2]
+ (% + 12)2<4i; + 2,2) =0 (42)

berechnen.

Die so errechnete Knickkraft lst wie nachstehender Verglelch zeigt, ge-
nau genug dem Wert

nm 1

12( +),2)|1—-(001+0015 ) ] 43)
angenihert. ‘

b 8) Eine analoge Gleichung wurde von TIMOSHENKO verdffentlicht. Vgl. Der Eisen-
au, 1921.
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Tabelle I
b:a 04 06 08 1,0 1,2 1,4
nm a?
N oz aus OlL(42) | 759 488 406 391 405 439
2
| %"%2 aus Gl (43) | 7,54 487 406 390 404 439
7n2 e . -
Nmiel GPPUI el3stigue— elasfisch gesturzt
elastically sypported
612
29 Effort mun. de Flambage pour
2 l Aleinste Arnickkraft fur
sa2 el Jmallest buckling load for
A=10
W sy
3x2 \ \ \ \\ \
NS iy S
s,
2n2 ~ \\\\ 7 "ee\g- \\\
‘E’ "e.als [ —_ e ——
Q \?".-ato \__\\\\
§ Mo
ool . — ] —
T —_— b a

o 1 2
Fig. 6

w
-+
n

Aus diesem Grund empfiehlt es sich, den Faktor

2

l~a2;t2( +1)252
2 a? A?
in Gl. (40) mit dem Koeffizienten
a?
b= 1o (0,01 + 0,015 ﬁ) p* (44)

zu multiplizieren. Die mittlere Knickkraft wird demnach aus

1 ‘ 2 1, (a \
§a2x2+2(1-v)+}_(z2a2+m2)ﬁ+§aw(__+1 B2k +rita

oy a>1?

Na B _1_+_% +J. 32 4 li.f_z(]__s_)ﬁ] (45)
3 =& # 3Pt n? n

ermittelt.

Sonderfall 1. Falls y = oo und p = 0 ist, stimmt die aus Gl. (45) er-
haltene Knickkraft mit dem genauen Wert
Rm

A 712 2 V :
et = am(aw + 1) (46)

iiberein.
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Sonderfall 2. Fiir y = oo erhalten wir die Knickkraft
7T 2 . a2
N a® = a2“(a—2ﬁ + 1) [1 — (0,0l + 0,015 32—) pz], 47
die eine verlaBliche Genauigkeit besitzt. |

Sonderfall 3. Falls die Platte an drei Rindern aufliegt, wihrend sie an
einem zur Belastung parallel laufenden Rand ganz frei gestiitzt ist, braucht
man in Gl. (35) und (45) einfach y = 0 einzusetzen. Mit dem Beiwert

g = ; (48)

berechnet sich die Knickkraft aus

1 ; 2 R 1 n? 2

@212 +2(1-9) + = (R2a2+va?) B + - a2 22 2+1) Btk
Nm o 3 7 2 a?h (49)
N 1 2 1 8\ 8

gty enlgra(i- ) L]

Fiir p = 0 gibt GI. (49) eine bessere Anndherung als die von Timoshenko
abgeleitete Formel: :

_;Z\/ﬁazza‘ll?-{—ﬁ(l—-—v) 4 . (50)°)

Die nach der Arbeitsmethode ermittelten Knickkriafte sind nebst den auf
anderem Wege berechneten Werten in Tabelle II und III zusammengestellt.

Tabelle II. Mittlere Knickkraft (7, a?/N) der quadratischen Platte (» = 0).

Genaue | Nach der Gelenk- Nach der

p Y Werte . kettenmethode Arbeitsmethode

(Gl 11) (Gl. 28) (Gl 45)
4 n? 3,85 n2* 4 n?

0 0 - 15,16 15,04 15,87
0,558a 24,00 — —
0,555a = 24,00 ( 24,31

== 37,31 * 38,50
1 0 = 10,07 10,58
1,248a . 24,00 25,10
-1 e 37,31 * 38,50
0 — 23,95 25,00
0,64a . 30,00 31,90

* Berechnet aus Gl. (28a).

9) NApai, Elastische Platte, S. 284.
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Tabelle 11I. Mittlere Knickkraft (7, a2/N) der rechteckigen Platte mit einem
freien Rand (v = 0).

Werte fiir
Method
P ethode bla=2 | bla=1 | bjla=05
Nach Timoshenko  Gl. (50) 8,467 15,87 45,48
0 Arbeitsmethode Gl. (49 8,210 15,30 4470
Differentialgleichung Gl. (11 8,006 15,16 4450
1 Arbeitsmethode Gl (49; 5,965 10,95 32,80
Differenzengleichung Gl. (28 5,240 10,07 28,72
-1 Arbeitsmethode Gl. (49) 14,69 25,00 69,7 *
Differenzengleichung Gl. (28) 14,25 23,95 53,3

(* GroBer als die Knickkraft der allseitig gelagerten Platte.)
Der Tabelle III ist zu entnehmen, daB die Abweichung der Knickkraft nach der

Arbeitsmethode insbesondere fiir die negativen Werte von p an Wichtigkeit gewinnt,
wenn das Seitenverhiltnis b/a sehr klein wird.

Tabelle 1V. Erste Knickkraft der rechteckigen Platte (v = 0,15).

Werte nma2/Nn? fir b:a =
p | 7la
04 | 05 | 06 | 038 | 1,0 | 1,25] 15 20 |30 | 40 | 50
o | 677] 452 | 331 ] 200] 1,53 | 1,17 | 097 | 0,78 | 0,64 | 0,58 | 0,56
05| 819 | 587 | 458 | 320 | 2146 | 1,80 | 153 | 1,13 | 0,80 | 0,68 | 0,62
1| 830 | 605| 483 | 357 291 | 237 | 1,98 | 1,45 | 096 | 0,77 | 0,68
2 | 836 | 614 | 497 | 3,84 | 333 | 294 | 2,60 | 2,00 | 1,27 | 095 | 0,80
0] 4 | 839 620 506 | 401 3,62 | 343 | 330 | 2,85 | 1,86 | 1,32 | 1,04
8 | 841 622 | 510 4,11 | 380 | 3,78 | 3,88 | 393 | 2,91 | 201 | 1,50
16 | 841 | 624 | 512 | 415| 390 | 3,98 | 4,25 | 4,81 | 452 | 331 | 241
32 | 842 | 624 | 513 | 4,19 | 3,95 | 4,00 | 447 | 545 | 6,50 | 549 | 4,12
oo | 842 | 625 | 514 | 420 | 4,00 | 4,20 | 4,70 | 6,25 | 11,11 | 18,07 | 27,04
0 | 493] 320 2,40 | 1,51 | 1,09 | 0,83 | 0,68 | 054 | 043 | 039 | 0,38
05| 716 | 519 | 4,02 | 2,69 | 1,97 | 1,44 | 1,13 | 0,80 | 055 | 0,46 | 0,42
1| 735 | 547 | 439 | 316 2,47 | 1,91 | 1,52 | 1,04 | 0,66 | 052 | 0,46
2 | 745 | 563 | 461 | 354 | 298 | 251 | 2,11 | 1,50 | 0,89 | 0,65 | 0,54
1| 4 | 749 573 | 474 | 378 337 | 3,10 | 285 | 225 | 1,32 | 090 | 0,70
8 | 753 | 577 | 480 | 3,92 | 3,62 | 3,54 | 354 | 327 | 2,15 | 140 | 1,03
16 | 753 | 579 | 484 | 399 | 375 | 3,82 | 4,02 | 4,32 | 353 | 237 | 1,67
32 | 755 | 5.80 | 486 | 4,03 | 3,83 | 3,97 | 431 | 517 | 545 | 4,12 | 2,02
oo | 755 5,81 | 4,88 | 4,06 | 3,90 | 4,12 | 462 | 6,16 | 10,98 | 17,87 | 26,77
0 |1045| 7,06 | 521 | 336 | 251 | 1,97 | 1,68 | 1,40 | 1,20 | 1,13 | 1,09
05| 7.87 | 6,00 | 494 | 379 | 3,18 | 2,69 | 235 | 1,91 | 148 | 1,30 | 1,21
1 | 772 | 591 | 491 | 3,80 | 3,42 | 3,06 | 2,79 | 2,33 | 1,75 | 1,47 | 1,32
2 | 763 | 586 489 | 397 | 3,62 | 3,44 | 332 | 2,98 | 2,25 | 1,79 | 1,54
1| 4 | 759 584 488 | 401 | 3,74 | 3,72 | 3,80 | 381 | 3,12 | 242 | 198
8 | 757 | 583 | 4,88 | 4,04 | 3,82 | 3,01 | 4,16 | 465 | 448 | 355 | 281
16 | 755| 582 | 488 | 4,05 | 3586 | 4,01 | 438 | 530 | 620 | 544 | 435
32 | 755 | 581 | 488 | 4,07 | 3,88 | 4,07 | 450 | 577 | 792 | 812 | 697
oo | 755 581 | 4,88 | 406 | 390 | 4,12 | 4,62 | 6,16 | 10,98 | 17,87 | 26,77
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6. Kleinste Knickkraft und zugehorige Anzahl der Halb-
wellen.

Bei der allseitig gestiitzten, gleichméBig gedriickten Platte geschieht die
Knickung nicht immer in Halbwellen-Form. Fiir 6:a = {2 werden sich zwei,

fiir 5:a = 16 drei Halbwellen bilden usw., und zwar auch in guter Annihe-
rung, wenn die Belastung linear verinderlich verteilt ist. Falls dagegen eine
zur Belastung parallel laufende Seite ganz frei ist, kommt die mehrwellige
Knickform gar nicht in Betracht. Demnach ist zu schlieBen, daB die Wellen-
form, die die kleinste Knickkraft bestimmt, nicht nur von dem Seitenverhalt-
nis b:a, sondern auch von der Steifigkeit der elastischen Stiitzung y abhiangig
ist. Eine analoge Abhingigkeit wurde bereits bei der Stabknickung mit elasti-
schen Zwischenstiitzen nachgewiesen ). Um diese verwickelte Beziehung
naher verfolgen zu konnen, berechnete der Verfasser zuerst die erste Knick-
kraft aus Gl. (45) fiir verschiedene Seitenverhiltnisse und y:a. Da es sich

hier um eine Eisenbetonplatte handelt nimmt der Verfasser » = 0,15 an).

Die errechneten Werte von m— fir p =0, p=1 und p = — 1 sind

in Tabelle IV zusammengestellt. Die fetigedruckten Werte unterscheiden
sich von den anderen dadurch, daB8 sie nicht kleinste Knicklasten darstellen,

Die Kurve I in Fig. 3 zeigt, wie sich der Wert 2% N fur p=0und y = 8a

bei wachsendem Seitenverhiltnis &.:« verhilt. Wird dleselbe Kurve mit 2, 3,
...fachen Abszissen eingetragen, so erhalten wir die Kurven II, III usw.,
die je der 2., 3., ... Knicklast entsprechen. Aus Fig. 3 ist zu ersehen, da8
fir &la < 1,52 die erste Knicklast,
fir 1,52 < bla << 2,60 die zweite,
fir 2,60 << b/a < 3,46 die dritte
und fir 3,46 < &/a die erste Knicklast wiederum die

kleinste und somit die bestimmende ist. Auf diese Weise 148t sich die kleinste
Knickkraft feststellen. In Fig. 4, 5 und 6 ist die kleinste Knickkraft bildlich
veranschaulicht. Aus den Abbildungen geht hervor, dafl die zweite oder eine
noch hohere Knickkraft gar nicht in Betracht kommt, solange nicht y/a ca. 4
itberschreitet. Bei gewohnlicher Randversteifung iiberschreitet y/a keines-
falls diese Grenzzahl, und die Berechnung der ersten Knicklast reicht zur
Bestimmung der kleinsten Knicklast aus.

Zusammenfassung.

Bei Anwendung der Arbeitsmethode ist es in erster Linie notwendig,
eine passende Kriimmungsflache anzunehmen, die den Randbedingungen ge-
niigt. Bei komplizierten Randbedingungen muB man sich aber damit be-
gniigen, eine den Randbedingungen moglichst entsprechende Fliche anzu-
nehmen. Obwohl die vom Verfasser angenommene Kriimmungsfliche nicht
ganz den Randbedingungen angepaBt war, gelang es, die Knickkraft einer
linear verdnderlich gedriickten Platte mit elastischer Stiitzung hinreichend

10) S, BAN Kenchiku Zasshi, Bd. 45, Nr. 551, 1931. B. KLemperer and H. B. Gis-
BoNs, Z, f. angew Math. u. Mech. 1933, 'H. 4.

11) [m Bereich der zulissigen Beanspruchung ist m = v~ = 6 bis 7 fiir Druck-
beanspruchung und m = 9~ 10 fiir Zugbeanspruchung. Vgl. Kongrefibericht der 1. V.
f. M., Ziirich, 1931. GeHLER, Festigkeit, Elastizitit und Schwinden von Beton.
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genau zu ermitteln. Es ist aber noch darauf hinzuweisen, daB die nach der
Arbeitsmethode ermittelte Knickkraft fiir kleine Seitenverhiltnisse &/a von
dem genauen Wert abweicht. Bei der Methode der elastischen Gelenkkette
nach Henky bedarf es keiner Voraussetzung beziiglich der Kriimmungsfliache
und stets fithrt dieselbe zu einer guten Anndherung.

Auf Grund seiner Studien iiber den hier behandelten Knickfall gelangt
der Verfasser zu folgenden SchluBfolgerungen:

1. Bei einer allseitig gelagerten Platte ist in erster Anndherung die mitt-
lere Knickkraft #,, unabhiangig von der Ungleichformigkeit der Belastung.

2. Falls ein zur Belastung parallel laufender Rand ganz frei ist, ver-
groBert oder verkleinert sich die mittlere Knickkraft, je nachdem die Un-
gleichférmigkeit p negativ oder positiv ist.

3. Die Versteifung eines freien Randes erhéht die Knickkraft um so mehr,
je groBer deren Abmessung und je kleiner das Seitenverhiltnis /e wird. Ist
aber die Randversteifung sehr groB, so entscheidet die zweite oder dritte
Knickung die kleinste Grenzlast und eine weitere Erhohung der Steifigkeit
der Randversteifung vergroBert die Knickkraft nicht.

4. Die Anzahl der Halbwellen der Knickungsform, die die kleinste Knick-
kraft entscheidet, hingt vom Seitenverhiltnis &/a und ferner von der Steifig-
keit des Randes und der Ungleichférmigkeit der Belastung ab.

5. Uber die zahlenmiBige Wiedergabe der Knickkraft fiir verschiedene
Seitenverhiltnisse, Randversteifungen und Ungleichférmigkeiten der Be-
lastung geben die Fig. 4, 5 und 6 Auskunit.

Résumé.

Pour la mise en application de la méthode de travail indiquée, il est né-
cessaire, en premier lieu, d’adopter une surface de courbure appropriée, qui
satisfasse aux conditions en bordure. Lorsque ces dernieres conditions sont
complexes, on peut toutefois se contenter de considérer une surface satis-
faisant a ces conditions dans toute la mesure du possible.

Quoique les surfaces de courbure adoptées par 'auteur ne correspondent
pas d’'une maniére absolue aux conditions périphériques, il a néanmoins été
possible de déterminer avec une précision suffisante, I'effort de flambage
d’une dalle soumise a une compression variant linéairement et reposant sur
un appui élastique.

Il importe d’attirer toutefois ’attention sur le fait que I’effort de
flambage déterminé au moyen de la méthode indiquée, pour des rapports
faibles entre les cdtés, soit b/a, s’écarte de la valeur exacte. La méthode de
la chaine articulée élastique de Henky ne rend nécessaire aucune hypotheése
au sujet de la surface de courbure et conduit toujours a une bonne approxi-
mation.

En se basant sur les études qu’il a effectuées dans le cas de flambage
considéré, I'auteur a pu arriver aux conclusions suivantes:

1. Dans une dalle appuyée sur tous ses cOtés, et en premiere approxi-
mation, ’effort moyen de flambage n,, est indépendant de la non-uniformité
de la charge.

2. Dans le cas 'un des bords parallele a la direction de I’application de
la charge est entierement libre, Peffort de flambage se trouve augmenté ou
diminué suivant que la non-uniformité p est négative ou positive.

3. Le renforcement d’un bord libre éleve effort de flambage dans des
proportions d’autant plus grandes que les propres dimensions de ce bord sont

Abhandlungen III 2
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plus grandes et que le rapport 5/a entre les cotés est lui-méme plus faible.
Si toutefois ce renforcement est trés important, c’est la deuxiéme ou la
troisieme ondulation de flambage qui détermine la charge limite inférieure;
une accentuation du renforcement de la rigidité en bordure n’améliore pas
Peffort de flambage.

4. Le numéro d’ordre des demi-ondes de flambage qui déterminent I’effort
minimum de flambage dépend du rapport 6/a entre les cotés, ainsi que de la
rigidité en bordure et de la non-uniformité de la charge.

5. Les figures 4, 5 et 6 donnent des indications sur les valeurs numé-
riques de Peffort de flambage pour différents rapports entre les cotés, diffé-
rentes valeurs du renforcement en bordure et différents régimes d’hétéro-
généité de répartition de la charge.

Summary.

In applying the method of work it is first of all necessary to assume a
suitable surface of curvature that satisfies the conditions at the edges. With
complicated conditions at the edges, however, one must be content with a
surface complying as far as possible with these conditions. Although the sur-
face of curvature assumed by the author does not quite comply with the con-
ditions at the edges, he has nevertheless succeeded in determining the buck-
ling load for an elastically supported slab submitted to linearly varying pres-
sure. It must, however, be pointed out that the buckling load determined
according to the method of work differs from the exact value when the ratio
between the lengths of the sides, i.e. &/a, is small. Henky’s method of the
flexible articulated chain requires no assumption with regard to the curvature
of the buckling surface and always gives a good approximation.

Based on his investigations of the case of buckling dealt with here, the
author comes to the following conclusions:

1. In a slab supported on all sides, the mean buckling load 7, is inde-
pendent, in a first approximation, of the non-uniformity of the loading.

2. When one edge parallel to the direction of loading is quite free, the
mean buckling load increases or diminishes according to the non-uniformity
p being negative or positive.

3. With a stiffened free edge, the greater its dimensions and the smaller
the ratio &/a of the sides, the greater will be the buckling load. But if the
marginal stiffening is very great, the second or third buckling determines
the minimum limiting load, and a further increase of the stiffening does not
allow the buckling load to be increased.

4. The number of half waves of the buckling form that determines the
smallest buckling load, depends on the ratio &/a of the sides and also on the
marginal stiffness and on the non-uniformity of the loading. ‘

5. Figs. 4, 5 and 6 give information regarding the numerical values of
the buckling load for different ratios of sides, marginal stiffenings and non-
uniformities of loading.
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