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DIE STABILITAT
DES AUF BIEGUNG BEANSPRUCHTEN TRAGERS.

LA STABILITE DE LA POUTRE SOLLICITEE A LA FLEXION
STABILITY OF A GIRDER SUBJECT TO BENDING

Dr. sc. techn. Fritz StUssi, Privatdozent an der Eidg. Technischen Hochschule, Ziirich.

1. Grundgleichungen.

Das Stabilititsproblem des auf Biegung beanspruchten Trigers ist fiir
einige einfache Belastungsfille von Prandtl®) fiir Triger mit Rechteckquer-
schnitt und von Timoshenko 2) fiir [-Trager gel6st worden. Das hier vor-
gelegte baustatische Verfahren beruht auf der Berechnung von elastischen
Formanderungen und ist bei beliebiger Belastungsanordnung und bei be-
liebiger Auflagerung anwendbar. Es liefert die Kipplast, wie die kritische
Belastung nach Prandtl bezeichnet wird, dhnlich wie beim bekannten Ver-
fahren von Vianello 8) fiir Knickstibe, mit fortgesetzter Annaherung aus dem
Vergleich zweier Forminderungskurven. Die Genauigkeit kann beliebig ge-
steigert werden.

Bei Stabilitatsproblemen ist die kritische Belastung durch den Ubergang
vom stabilen zum labilen Gleichgewicht gekennzeichnet. Ist die Belastung
gleich der kritischen, so verursacht eine beliebig kleine Stérung des Gleich-
gewichtszustandes das Unstabilwerden des gedriickten Stabes (,,Knicken*‘)
oder des auf Biegung beanspruchten Balkens (,,Kippen‘). Nehmen wir bei-
spielsweise an, die Gleichgewichtsstéorung werde durch eine kleine Aus-
biegung ¢, der Stab- oder Tragermitte verursacht, so kénnen wir die kritische
Belastung als diejenige definieren, unter welcher die kleine Ausbiegung ,,un-
endlich groB‘+) wird. :

In Fig.1 ist ein urspriinglich gerader Balken in verformtem Zustan
skizziert. Infolge der gedachten kleinen Ausbiegung y, treten Torsions-
momente 7 auf, die ihrerseits eine Verdrehung ¢ der Balkenquerschnitte be-
wirken. Dadurch liefert nun das Biegungsmoment M; der auBern Krafte
eine Komponente M,, die die seitliche Ausbiegung um den Betrag

e J1=1¢&"J)o (1)

1) L. PranpTL: Kipperscheinungen. Ein Fall von instabilem elastischem Gleich-
gewicht. Diss. Miinchen, 1899.

2) S. TimosHENKO: Einige Stabilititsprobleme der Elastizititstheorie. Zeitschrift fiir
Mathematik und Physik, 1910. — S. TimosHENKO: Sur la Stabilité des Systémes élastiques.
Annales des Ponts et Chaussées, 1913. — S. TimosHENKO: Stability of plate girders sub-
jected to bending. Internationale Vereinigung fiir Briickenbau und Hochbau, Kongref
Paris 1932, Vorbericht. — S. TimosHENKO: Strength of Materials. New York, Van Nostrand
Co., 1930. _ ~

3) L. VianerLo: Z. d. Ver. deutsch. Ing., 1898.

4) Selbstverstindlich wird die Ausbiegung nicht unendlich groB, sondern nur so
grofB3, daB der Stab zerstort wird.
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402 F. Stiissi

vergroBert. War die Form der Ausbiegung y, passend gewihlt, niamlich so,
daB y, zu y, dhnlich verlidufts), so muBl die durch y, verursachte VergroBe-
rung der Ausbiegung den Wert y, = a-y, erreichen. Der Endwert y kann
somit angeschrieben werden zu

.V:.Vo'(l—f"a-f-az-l—ag—!-a“ ----- ):yo.m_,ﬁ_ (2)

Das Tragwerk ist unstabil fiir « = 1, weil dafiir, auch bei sehr kleiner
anfianglicher Ausbiegung y,, der Endwert y sehr groBe Werte erreicht. Analog
ergibt sich die Beziehung zwischen einer angenommenen Querschnittsver-
drehung ¢, und ihrem Endwert ¢:

1

(2a)

Fig. 1.

In Fig. 2 ist ein durch die Schnitte x und x -+ dx begrenztes Balken-
element, bezogen auf ein Hilfskoordinatensystem &, u, {, herausgezeichnet,
wobei die angreifenden Momente durch ihre Achsen dargestellt sind. Die
Belastung ist auf Trigeroberkante angreifend angenommen; der davon her-
rithrende Beitrag wird sein Vorzeichen wechseln, wenn die Last am untern
Tragerrand angreift, bezw. verschwinden bei Lastangriff im Schwerpunkt.
Da die vorkommenden Winkel im betrachteten Zustand klein sind, setzen
wir ihren Cosinus gleich eins und den Sinus gleich dem Tangens, bezw. gleich
dem Winkel und lesen folgende Momentengleichgewichtsbedingung beziig-
lich der £-Achse ab:

— T4+ (TH+dT) + My + dM,) - dy*— (M, + dM,) - dd — (Q + Q) - dy;
h
+(Q+dQ).¢.d§+p-a~-¢-dx:0.

Die Werte dn und ¢ -d{ sind kleine GroBen hoherer Ordnung. Wir lassen
Produkte mit ihnen und die iibrigen vernachlissigten GroBen weg und er-
halten mit

dy =L("-d¢, dd =" -d¢&
den Zuwachs des Torsionsmomentes von x bis x -+ dx zu

AT = — My ' ds+ My as =P g ar. (3)

5) D.h. in diesem Fall entspricht die gewihlte Ausbiegung der Losung der Diffe-
rentialgleichung des Stabilititsproblems. Sind y, und y, einander nicht dhnlich, so ergibt
sich die charakteristische Ausbiegungskurve durch eine geniigend oft durchgefiihrte
Wiederholung der im Abschnitt 2 dargestellten Berechnung.
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Die Differentialgleichung der elastischen Linie liefert uns den Wert der
zweiten Differentialquotienten von { und % zu

s= 1 __Ml o M‘?.

¢ = Bl. ’ VEEES —"Bg ’ (4)

wenn der einfacheren Schreibweise wegen die Biegungssteifigkeiten mit
B — E -J bezeichnet werden. Setzen wir df = dx, so erhalten wir mit der
Abkiirzung

. i B, 5
B, —BQ'BT——BQ ) )
die folgende Grundgleichung des betrachteten Problems:
dT M, - M, - h
T e =0 (6)

B.) 2

ot

Fig. 2.

Den Wert des seitlichen Biegungsmomentes M, erhalten wir durch Be-
trachtung des Momentengleichgewichts beziiglich der z-Achse am Teil
A—x des verformten Balkenfeldes A--B (Figur 3). Um die gesuchten
Grundgleichungen in moglichst allgemeiner Form zu erhalten, wurde an-
genommen, daf auf den Auflagerquerschnitt 4 Einspannmomente M, ,
und M,, einwirken sollen, die entweder als duBere Belastungen oder
infolge (starrer oder elastischer) Einspannung des Balkenendes auftreten
kénnen. Im letzteren Fall stehen fiir die Bestimmung dieser Einspann-
momente die entsprechenden Elastizititsbedingungen zur Verfiigung. Im
Gegensatz zu diesen Einspannmomenten M,, und M,, ist das Torsions-
moment 7, unerldBlich zur Herstellung des Gleichgewichts des ausgebogenen
Balkens; bei Symmetrie in Belastung und Konstruktion geniigt eine Gleich-
gewichtsbedingung zur Bestimmung von 7T, == 7T, wihrend in unsymme-

6) Durch Einfithrung von B’, statt B, wird die lotrechte Durchbiegung (Haupt-
biegung) beriicksichtigt. Dieser EinfluBl, der iibrigens schon von PranpTL untersucht
wurde, ist bei schmalen Trigern nicht grof: fiir INP 20 ist z. B. B’y == E - 124 cm*
gegenitber B, = E - 117 cm*. :
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trischen Belastungsfillen eine Elastizititsbedingung beigezogen werden mu8.
Der Auflagerquerschnitt 4 soll durch Torsionsmomente 7 4 elastisch um den
Winkel ¢ 4 verdreht werden konnen. Beachten wir, daf3 die Winkel klein sind,
so liefert Fig. 3 die Beziehung:

—Moa—Ta-za+Ma - ga+ My +T -2 —M,-9p=0,

wenn wir mit M4 = M, -+ Quap - x die Ordinate im Schnitt x des durch die
Einspannmomente M, und Mz bestimmten Trapezes bezeichnen. Die Mo-
mente M, und 7 sind kleine GréBen, weil sie durch die als klein voraus-
gesetzten Verformungen y und ¢ entstehen. Im allgemeinen sind auch die
lotrechten Durchbiegungen z und ihre Ableitungen klein; sie besitzen je-
doch gegeniiber y und ¢ bestimmte endliche Werte, sodaB die Produkte 7 - 2’
nicht von vornherein vernachlissigt werden diirfen. Dagegen zeigt eine ein-
fache Uberlegung, daB die Produkte 7 - z vom Verhaltnis der Torsionssteifig-
keit C = G-/, zur Biegungssteifigkeit B, = E -/, abhingig ist; da fiir die

| /{g -

Z

Fig. 3.

in der Konstruktionspraxis verwendeten Trigerquerschnitte in der Regel C
kleiner ist als 1 9% von B, und da dieses Verhiltnis C: B, zugleich die obere
Grenze fiir den EinfluB der Produkte 7 -z’ auf den Wert der kritischen Be-
lastung darstellt, sollen diese vernachlissigt werden. Damit ergibt sich M, zu

My = Moa— Mya-pa+ M- ¢. (7)

Das Biegungsmoment M, ist, abgesehen von vernachliassigbar kleinen Neben-
einfliissen, gleich dem Moment der duBern Lasten.

Die Gleichungen (6) und (7) bilden die Grundlage zur Bestimmung der

kritischen Belastung von beliebig gelagerten und durch beliebig angeordnete,

jedoch in der Haupttrigheitsebene wirkende Belastungen beanspruchten
Balken.

2. Balken mit Rechteckquerschnitt.

Bei Torsionsaufgaben haben wir zu unterscheiden zwischen Querschnitts-
formen, bei denen, wenigstens angenihert, eine ,reine‘* Verdrehung méglich
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ist, und andern, zu denen vornehmlich die I-Querschnitte gehoren, bei denen
durch die Verdrehung in einzelnen Querschnittsteilen Biegungsmomente, sog.
Flanschbiegungsmomente auftreten, wodurch der Verdrehungswinkel gegen-
iiber reiner Torsion oft wesentlich vermindert wird. Zu der ersten Gruppe
gehoren erfahrungsgemiB die Rechteckquerschnitte, bei denen die gegen-
seitige Verdrehung de zweier benachbarter Querschnitte infolge eines Tor-
sionsmomentes 7 dargestellt wird durch die Beziehung:
T dg-_ T
dQQ—?'dx, E—‘C (8)
Hierbei ist C die Verdrehungssteifigkeit, C = G-/, wobei fiir Baustahl und
geniigend schmale Rechtecke gesetzt werden kann:
3 1
= . — . h 48T
= 3 E, Ji 3 h-d3. 7
Durch Differentiation der Gleichung (8) folgt bei konstantem Balken-
querschnitt
d*¢ 1 dT
@ T Car (82)

setzen wir daraus %xz in Gleichung (6) ein, so erhalten wir die Differential-

gleichung des Stabilitatsproblems fiir Balken mit konstantem Rechteckquer-
schnitt:

d*¢ M- My  p-h _ .

dx? + By - C + 2¢c ¥~ 0. )

Dabei ist M, durch Gleichung (7) bestimmt.

" Der Rechnungsgang zur Bestimmung der kritischen Belastung ist nun
einfach folgender: Wir nehmen eine mit den Auflagerbedingungen vertrag-
liche Verdrehungskurve ¢, an, deren groBte Ordinate wir mit ¢, bezeichnen
wollen, und berechnen damit die Kurve der Werte M, und daraus das zweite
Glied der Gleichung (9). Das dritte Glied ist nur vorhanden, sofern die Be-
lastung nicht in Balkenachse angreift. Daraus erhalten wir durch zweimalige
Integration eine Kurve ¢,, aus deren Ordinatenverhdltnis zur angenommenen
@o-Kurve der Wert a und damit aus a =1 der Wert der kritischen Belastung
bestimmt ist. Sind angenommene und erhaltene ¢-Kurve einander nicht dhn-
lich, so ist der berechnete Wert der Kipplast eine erste Annaherung, der durch
Wiederholung der Berechnung mit der erhaltenen ¢-Kurve beliebig verbessert
werden kann.

Die zweimalige Integration wird mit den Mitteln der Baustatik derart
durchgefithrt, daB man die zu integrierende Funktion als Belastung auffaBt
und zu ihr ein Seilpolygon zeichnet, bezw. rechnet. Die Lage der SchluB-
linie hat dabei den Randbedingungen zu entsprechen. Die Balkenlinge wird
in eine mehr oder weniger groBe Anzahl von gleichen Feldern 4x eingeteilt,
iiber welche gewohnlich ein geradliniger Verlauf der Belastungsfunktion an-
genommen wird. Eine wesentliche Verbesserung gegeniiber dieser Trapez-
methode wird dadurch erhalten, dal man nidherungsweise ein iiber zwei Felder
verlaufendes Kurvenstiick durch eine Parabel ersetzt und daraus die Knoten-
last fiir den mittleren Teilpunkt als Auflagerkraft der Belastungsfldche be-
stimmt. Die Ordinaten des Seilpolygons zu diesen Knotenlasten entsprechen

7) Genauer J; = (h— 0,63 d) - d5: 3 fiir A= 4d.
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in den Teilpunkten den Ordinaten der Seilkurve. Mit den Bezeichnungen der
Fig. 4 ergibt eine elementare Rechnung folgende Knotenlasten:
fiir einen Zwischenpunkt:

Ax

K, = 7 (#m—y + 100y + wyyy) (10)
fiir einen Endpuﬁkt m —1 (oder fiur einen Unstetigkeitspunkt):
Kn_y = —42'74{ (Tum_y + Oy — Umyy), (10a)
fiir einen Endpunkt m 41 mit horizontaler Tangente in m - 1:
Kt = 13 (B ttmas + ). (10b)

Falls die Querschnittswerte iiber die Balkenlinge verinderlich sind, so
ist die Seilpolygonberechnung zu ersetzen durch zwei Einzelintegrationen,

" B

g -

s s |$

mA-; mAx m+7
Fig. 4.

die wir am einfachsten je als Flichenberechnungen durchfithren. Zunichst
ist aus Gleichung (6) durch Summation das Torsionsmoment 7 zu berechnen,
wobei die Verdnderlichkeit von B’, durch Einfithrung einer ,reduzierten‘ Be-
lastungsflache beriicksichtigt wird. Aus dem Torsionsmoment ergibt sich
auf gleiche Weise der Verdrehungswinkel ¢, wobei die Verdnderlichkeit der
Verdrehungssteifigkeit C zu beriicksichtigen ist. (Bei Unsymmetrie ist 74
als iiberzihlige GroBe aus der Elastizititsbedingung fiir ¢ zu bestimmen.)
Dabei nehmen wir wieder niherungsweise parabelférmigen Funktionsverlauf
iiber je zwei Felder an und erhalten nach der Simpson’schen Regel die Fliche
zwischen m — 1 und m -+ 1 zu

A
F,Zlff:—g’{(um-l-l—‘lum%—umﬂ). (11)

Bei ungeréder Felderzahl nehmen wir je den Funktionsverlauf von m — 1 bis
m -1 und von m bis m - 2 als Parabel an und erhalten als Mittelwert

Frt1 :%(—um_1 + 13ty + 13 gy — thmya)- (11a)

Auf diese Weise ist auch bei kleiner Felderzahl eine praktisch geniigende
Genauigkeit erreichbar.
Wir skizzieren nun die Durchrechnung einzelner Belastungsfille:

a) Einfache Balken.

Infolge der freien Drehbarkeit um y- und z-Achse verschwinden die Ein-
spannmomente M, und M,,, sodaB sich Gleichung (7) vereinfacht zu

M2 S Ml'w-
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Damit liefert Gleichung (6), wenn die Belastung zunichst in Balkenachse
angreift:
dT = Mi-¢
dx T B,
Sind die Querschnittswerte B’, und C iiber die Balkenlinge konstant, so er-
gibt sich die vereinfachte Differentialgleichung

e M-

a t e =Y (12)
Gewohnlich darf der Auflagerquerschnitt als in seiner Ebene unverdrehbar
festgehalten angenommen werden: ¢, = 0. Bei elastischer Verdrehbarkeit
dagegen ist ¢, entsprechend dem Auflagertorsionsmoment 7 4 einzusetzen.
Ohne besondere Bemerkung ist hier stets ¢4 = 0.

Bei Belastung durch ein konstantes Biegungsmoment M=M,
ist die Differentialgleichung (12) identisch mit derjenigen des zentrisch be-
lasteten Druckstabes. Wir schlieBen daraus, daB die maBgebende Ver-
drehungskurve eine Sinuskurve ist:

= 0.

. T X
(p():Q%m'SIH l

Setzen wir diesen Wert in Gleichung (12) ein, so erhalten wir durch zwei-
malige Integration unter Beachtung der Randbedingungen (¢ =0 fiir x=20

und x =1/, ¢’ =0 fiir x = 21) die Verdrehungskurve ¢,:

M2 [? '
@1 :NB“{-C ’ ‘n‘?WPo‘: o Q.

Aus a = 1 ergibt sich der kritische Wert des Biegungsmomentes:

B, -C B, -C
212 ’ My, = 7 - ‘/ 21 ’ (13)
In Fig. 5 ist der einfache Balken mit Einzellast P in
Balkenmitte mit den zugehérigen Kurven zur Berechnung der Kipplast

(p, M,, M} - und zugehorige Seilkurve) dargestellt. Mit den fiir Balken-
mitte eingeschriebenen Zahlenwerten ergibt sich die Kipplast zu

Pry. = 16,94 - V—Bj-z—ﬁ (14)

Wenn die Belastung am obern Triagerrand statt in Balkenachse angreift,

so entsteht das in Fig. 5 ebenfalls skizzierte zusétzliche Torsionsmoment A7,
woraus sich in Balkenmitte die zusétzliche Verdrehung Ad¢,, ergibt:

P-h-l
Abn="grc o

Ml?cr. = 7% .

Da einerseits der EinfluB dieser Verschiebung des Lastangriffspunktes in der
Regel nicht sehr groB ist und andrerseits eine miaBige Verinderung der Form
der maBgebenden Verdrehungskurve nur eine unwesentliche Verinderung der
kritischen Last zur Folge hat, diirfen wir auch hier ohne groBen Fehler die
fiir den Grundfall ermittelte Verdrehungskurve ¢ als maBgebend betrachten.

8) Form der Differentialgleichung bei PrRANDTL.
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Die Form der Ag-Kurve ist nicht mehr dhnlich zur ¢-Kurve, sodafB} 4a fiir
jeden Tragerpunkt verschieden groB ist. Im Sinne unserer Ableitung ist
offensichtlich nicht die VergréBerung von ¢ eines einzelnen Punktes,-sondern
die Gesamtheit aller dieser Verinderungen maBgebend. Wir bestimmen des-
halb Ada als Mittelwert aus dem Flidchenvergleich von dg-Kurve zu ¢,-Kurve:

Pl h | ,,
FAg) = g ¢ " Pomr»  Flpo) = 058778 -1 pom;
somit . F(4¢) . . h
AC(— F((po) — 0,21266'13.'1'*5‘(—:‘.
Setzen wir a = 1:
1 P2t P.-l-h
= 2_86’9277 "B C + 0,21266 - ETon
so erhalten wir mit der Abkiirzung :
20 {/C
=" 1/3_2, (15)
die kritische Belastung zu ‘o '
VB, - C . 324 180
Py, = 16,94 - /e . (Vl + e — —;) (14a)

Greift P am untern Trigerrand an, so wechselt das Vorzeichen des letzten
Gliedes im Klammerausdruck. '

Tabelle 1 enthidlt die Werte der kritischen Belastung fiir die hiufigsten
Belastungsfille des einfachen Balkens.

Tabelle 1.
Belastungsfall | M, . Lalzgci}r;xtescgl?\?vlgf;kt. Flanschblegung Last 32?:‘1
e : K M My, = ‘/Bf*E o =Vit z By =
b Ammﬁﬂmﬂmlﬂi P 81 " =2831 V—BEE Yiq 100 Y20 nis
¢ ] -1?4—[ P, =1694 ,[/%TQ V +‘%§ V'1+3;f;‘-—"j°
a | 1| M M, = 556 ,V%Lg Vi
e " | PL P, = 40 ,'f/fj; € *(1’;)2 EPRECEE!

gilt im elastischen Bereich
b) Konsoltriager.

Die Berechnung der Kipplast des Konsoltrigers mit Einzellast P am
freien Ende ist in Fig. 6 skizziert. Zu beachten sind die Randbedingungen:
T'=0 fiir x=1[,, ¢ =0 fiir x=0. Im iibrigen ist die Berechnung die gleiche
wie fiir den einfachen Balken. Bei Unterteilung der Spannwelte / in 6 Teile
ergibt sich nach unserer Berechnung

Py, = 4014. 1 BY - C

T (16)
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die Vorzahl £ = 4,014 weicht von der von Prandtl gefundenen (4,0126) um”
nur 0,03 oo ab. , v

Bei Lastangriff in Trageroberkante liefert unsere Ndherungsberechnung
den Wert der Vorzahl £ zu ‘

/. 1,60 130
k= 4,014 . (‘/1+ adeSg i (16a)
. -oas a
\ d
A / 8 A ( 4
| g Q
; SP §P
A S Yo S
> >
M, ~
4 Tl M, N
!
N S
. X N.
N O Q
. Q -
Q\
&5‘:& N
N N Q
% L8 % S ?x%"
N |« POy e
‘*é‘i’. S
a7 F o
§§|w~
N
4% ~
8 \
Fig. 5. Fig. 6.

c) Elastisch eingespanntey Balkeﬁ.

Wir driicken die elastische Drehbarkeit der Auflager durch die Trager-
abmessungen aus. Fiir den in Fig. 7 skizzierten Belastungsfall mit gleich-
maBig verteilter Belastung p wurde angenommen:

ro_ MIA -l ’ MZA -l

ZA—-—“—"3B; ) J 3B, ’

Zunichst ist das seitliche Biegungsmoment M{ = M, - ¢ mit angenommener
@-Kurve zu bestimmen, das bei freier seitlicher Drehbarkeit auftreten wiirde.
Das zugehorige Stiitzenmoment ergibt sich aus der Elastizititsbedingung

Mza - a, + -MzB ‘@2 + Qo = O,»

wobei in a@,; die elastische Drehbarkeit des Auflagers zu beriicksichtigen ist
und a,, die 1: B,-fache Auflagerkraft der Momentenfliche M] bedeutet. Das
Seilpolygon zur M,-M,:B’;-C - Fliche ergibt den Verdrehungswinkel ¢,
dessen VergréBerung gegeniiber der angenommenen Verdrehungskurve den
Wert der kritischen Belastung liefert. Diese besitzt im Beispiel der Fig. 7
gegeniiber dem in beiden Richtungen frei drehbar gelagerten Balken einen
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rd. 2,16-fachen Wert. Fig. 8 enthilt die Berechnung der Kipplast fiir den im
iibrigen gleichen Triger wie in Fig. 7, wenn sich die Auflagerquerschnitte
um den Winkel Ty -1

pa = 0,10 . C

elastisch verdrehen. 74 wird als Inhalt der M, - M,: B’,-Flache iiber die halbe
Spannweite bestimmt. Infolge dieser kleinen elastischen Verdrehbarkeit
nimmt der Wert der kritischen Belastung gegeniiber dem Beispiel der Fig. 7
um rd. 17 oo ab. ,

i P A
4llllllllllll]llHHlIll[lIlHII T AT T T O O

\

/A ~
My .M My,

Fig. 7. Fig. 8.

d) EinfluB einer gleichzeitig wirkenden Druckkraft S.
Das seitliche Biegungsmoment in einem ausgebogenen einfachen Balken
betriagt
M2:M1'<P+S'y; ; (17)
somit ist, wenn wir den untergeordneten EinfluB der Hauptbiegung nicht be-
riicksichtigen:

By =—Mi-9+S-y), (18)
woraus wir durch Berechnung des Seilpolygons wieder y erhalten. Um die
beiden Klammerglieder M, ¢ und S-y addieren zu konnen, setzen wir vor-
itbergehend

S=¢-M:C. (19)
Die Verdrehung ¢ ist durch den Zusammenhang
C' (pu — Ml .yu . (20)

gegeben. Die Berechnung der Kipplast ist nun folgende: Annahme einer Aus-
biegungskurve y, mit zugehoriger zweiter Ableitung y,; aus letzterer wird
nach Gl. (20) die Verdrehungskurve ¢ als Seilkurve berechnet. Damit und
fiir einen bestimmten Wert von ¢ (Gl. (19)) wird nach Gl. (18) y; bestimmt,
woraus sich y, als Seilkurve ergibt. Der Vergleich von y, und y, liefert mit
a = 1 den Wert des kritischen Momentes und daraus nach Gl. (19) den der
zugehorigen Druckkraft S.
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Fiir den Fall eines konstanten Biegungsmomentes sind y- und ¢-Kurven
sinusformig; zwischen Biegungsmoment M und Druckkraft S ergibt sich da-
mit die Beziehung:

M2

&)
Dabei bedeutet Mj, das Kippmoment des Balkens ohne Druckkraft und Sz
die Eulersche Knicklast des momentenfreien Balkens.

Fig. O zeigt den Verlauf der Gleichungen (21). Falls M nicht konstant
ist, ist die maBgebende Ausbiegungskurve y vom Wert ¢ abhingig. Die fiir
zwel andere Belastungsfille in Fig. O eingetragenen Kurven zeigen jedoch,
daB Gl. (21) mit praktisch geniigender Genauigkeit allgemein verwendet
werden kann. Gl. (21) gilt auch bei beliebiger Lagerungsart, wenn dabei die

entsprechenden Werte von Mj, und Sy eingesetzt werden. Falls S eine Zug-
kraft ist, wechselt in der ersten Form von Gl. (21) das Vorzeichen von S.

r. — Mpy ‘/1“——, Skr.:SE'(l— (21)
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Fig. 9.

Trotzdem Triager mit Rechteckquerschnitt in der Konstruktionspraxis
keine Bedeutung besitzen, sind die Untersuchungen dieses Abschnitts auch
fiir die Praxis nicht unwichtig, weil sich die noch zu bestimmenden Werte
der Kipplast von I-Trigern mit zunehmender Schlankheit den fiir schmale
Rechteckquerschnitte geltenden Werten derart mehr und mehr ndhern, daB
diese untere Grenzwerte fiir die Kipplast von auf Blegung beanspruchten
Triagern iiberhaupt darstellen.

3. Balken mit I-Querschnitt.
Bei der Verdrehung von Tragern mit I-Querschnitt handelt es sich auch
anniaherungsweise nicht mehr um reine Torsmn da die Flanschen, die bei
einer Verdrehung ¢ eine seitliche Ausblegung 5 ¢ erleiden, diese nicht mehr

spannungsfrei mitmachen konnen. Aus dieser Flanschausbiegung, entgegen-
gesetzt oben und unten, folgt mit Hilfe der Differentialgleichung der elasti-
schen Linie die GroBe der Flanschbiegungsmomente zu
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ko,
Mr. = —Br - o - q". (22)

Bg,. bedeutet die Biegungssteifigkeit eines Flansches und kann bei [-Triagern
mit geniigender Genauigkeit der halben seitlichen Tragersteifigkeit B, gleich-
gesetzt werden ®). Die Flanschquerkrifte, d.h. die ersten Ableitungen der
Flanschbiegungsmomente,

. h » dBy h "
Q.= —By g g — 2 g (23)

bilden zusammen ein Torsionsmoment Qf,. - # und die Betrachtung des Gleich-
gewichts zwischen duBern und innern Torsionsmomenten liefert die Beziehung
. /lo " dB2 4
T=C-¢ ‘4’(\32'9) +gx'90);
die bei konstanten Querschnittswerten in die von Timoshenko aufgestellte
Form B . h? . /2
T=C- 24 " =C-¢—C- pol c@” (24a)
iibergeht. Dabei hat die Abkiirzung a2 die durch Gl. (15) gegebene Bedeu-
tung, nur ist hier B, statt B’, einzusetzen. Auch ist die Tragerhohe 7 hier ge-
nau genommen zwischen den Flanschschwerpunkten zu messen.

, Die Verdrehungssteifigkeit C des I-Querschnittes setzt sich auf Grund
des Prandtlschen Membrangleichnisses aus den Verdrehungssteifigkeiten der
den Querschnitt bildenden schmalen Rechtecke zusammen; der so erhaltene
Wert ist jedoch nach den Versuchen von A. Foppl etwas zu klein, hauptsach-
lich wegen des Einflusses der Gabelungspunkte, den C. Weber 1°) untersucht
hat. Nach diesen Untersuchungen darf gesetzt werden:

lzd3

(24)

C=G- - Ja=G-125.>] (25)
Die Gleichungen (6), (7) und (24) umschrelben zusammen das Stabilitats-
problem des auf Biegung beanspruchten Balkens mit I-Querschnitt. Eine
Losung der Aufgabe in geschlossener Form mit elementaren Funktionen ist
nur bei konstantem Biegungsmoment A, und bei konstantem Balkenquer-
schnitt moglich. Unter diesen Voraussetzungen ist z. B. fiir einen einfachen

Balken wieder wx
@ = @, Sin ]

Durch Differentiation der GI. (24 a) und Einsetzen in Gl. (6) erhalten wir
fiir den einfachen Balken die Differentialgleichung
12 "y : Ml
. o a? " + + Bc) . C
Fiir M = konst. erhalten wir durch Einsetzen von ¢ und seiner Ableitungen
direkt den Wert des kritischen Momentes zu

— 0. | (26)

9) Bei I-Trdagern mit ungleichen Flanschen ist fiir Bp, ein Mittelwert
2B, - B,: (B, -+ B,) einzusetzen, der sich aus der Gleichgewichtsbedingung Qy, = Q%
eralbt (s S. TimosHENKO: Method of Analysis of statical and dynamical Stresses in Rail.
Proceedmgs of the second Intern. Congress for applied Mechanics, Ziirich 1926).
10) C. WeBer: Der Verdrehungswinkel von \X/alzelsentragem Foppl-Festschrift.
Berlin 1924. Der Korrekturfaktor wird dort fiir einen Trager [ B 22 mit 1,27 bis 1,28
angegeben.
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Moy = 7t - \/321 <, V] + 2 — . ‘1§2_£ By (27)
Das Kippmoment des I-Triagers unterscheidet sich vom entsprechenden Wert
fiir den Rechteckbalken durch den Faktor f,, der sich mit wachsendem
4C . [® R
B, ht der Einheit nihert.
Im allgemeinen ergibt sich die Bestimmung der Kipplast von I-Tragern
am einfachsten durch eine numerische Auflésung der Differentialgleichung

(24), wodurch der den Trager auf Torsion beanspruchende Anteil £

t=C ¢ (28)
des Drehmomentes 7" bestimmt wird. Die Integration von ¢ bezw. das Seil-
polygon zu ¢ liefern dann die Verdrehungskurve o.

Ein einfaches und recht genaues numerisches Auflésungsverfahren der-
artiger Differentialgleichungen ergibt sich durch Betrachtung der Eigen-
schaften des Seilpolygons, Fig. 10. Wir fassen ¢ als Ordinaten des mit der
Poldistanz H = 1 gezeichneten Seilpolygons auf. #” sei die zugehorige Be-

Wert von a2 —

-

Qm
0//7(7;1’ e
Kmer KmKm -1
e

Fig. 10.

lastungsfunktion, deren Knotenlasten in den Teilpunkten wir mit K be-
zeichnen. Nach Fig. 10 ist

Ly = tm~1 e Qm : Axr

tm-q-l = ln -+ Qm+1 < dx.

Beachten wir, daB Q,, — @, + 1 = — K,,,, sofolgtaus ¢,, — t,, . ; die Gleichung:
tm—-l - 2tm + tm+1

Ax ’

Setzen wir den Wert der Knotenlast nach GIl. (10) ein, so erhalten wir fiir
einen Zwischenpunkt m die Beziehung

1 2tm + tn;+1
A x2 )

" vy ’ tm_
ty oy 4+ 108, + £y = 12 (292)

Nach Gl. (24 a) betragt
. a’
t —_— 72' - (t == T),

woraus in Verbindung mit Gl. (29 a) und wenn » die Zahl der Felder 4x be-
deutet, die dreigliedrige Gleichung
—tmy - (1212 —a®) + £, - (24n? + 10a%) — £y, - (120% —a?)
= a® (Tm~1 + 107, + Tm+1) =a*- 2T, (30)
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hervorgeht. 27, ist eine abgekiirzte Schreibweise, deren Bedeutung aus
(30) hervorgeht. Bei Unstetigkeits- oder Endpunkten ist 27, ent-
sprechend den Gleichungen (10a) oder (10b) zu modifizieren.
Gl. (30) 1aBt sich mit der Abkiirzung y = n2:a? noch etwas einfacher
schreiben:

—(12y-1) by + (24 7410) iy — (127 =1) sy = Ty + 10T + Ty, . (302)

Eine derartige Gleichung gilt fiir jeden Zwischenpunkt m. Fiir die End- oder
Auflagerpunkte stehen uns folgende Randbedingungen zur Verfiigung:

Auflagerpunkte. Bei freier seitlicher Drehbarkeit der Flanschen
mubB ¢, = 0 sein,da ¢ = C-¢”, abgesehen von einem Multiplikationsfaktor,
ja dem Flanschbiegungsmoment entQpricht das an dleser Stelle null sein muB

gerddhmgen Verlauf der Belastungsfunktion z‘” von A bis 1 annehmen

, —t t Ax
th= " %;fl — g b+

und die gesuchte Randbedingung ¢, = 0 ergibt sich zu
talby +2) —t,(6y—1) =2T4+T,. (31)

Falls die Flanschen bei beiden Auflagern frei drehbar sind, ist es einfacher,

Fig. 11. Fig. 12.

in Gl. (30) mit den Werten # und 7’ zu rechnen, statt mit / und 7. Bei Ver-
wendung dieser ,abgeleiteten Gleichung (30)‘ fallen infolge #,4=¢5-=0
einfach die beiden den Auflagerpunkten entsprechenden Gleichungen weg.

Falls die Flanschen seitlich starr eingespannt sind, besitzt ihre seitlich2
Ausbiegungskurve und folglich auch die ¢-Kurve eine zur Balkenachse pa-
rallele Tangente im Auflagerpunkt: damit muBl ¢’, und deshalb auch 7, null
sein. Damit fallen bei Anwendung des unverinderten Gleichungssystems
Gl. (30) die Auflagergleichungen weg.

Bei elastischer Einspannung der Flanschen driicken wir wieder den Ein-
spannungsgrad durch die Balkenabmessungen aus; es sei

ro _lz MAF[ l_
L) - Bp,
Die Differentialgleichung der elastischen Linie des Flansches lautet:
. h __ Manr
(pA . j = — ’BFZ .

Aus diesen beiden Ausdriicken folgt
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(P;l - — 9‘0;4 ‘ ’ll}"’ Oder t,:l — = tA - ';‘7
und die gesuchte Randbedingung lautet:
tA-l67<1+7:»)+2]—11-(ﬁy—l):ZTA—f—Tl. (31a)

Freie Endpunkte. Fiir das freie Ende / beispielsweise eines Konsol-
tragers 148t sich mit Hilfe der Gl. (10 a) eine zu Gl. (30) analoge Gleichung
aufstellen:

by — by (2y—6) - Ay L+ T) = —T; 5, +6Ti, +7T;. (31b)

Die Auflosung des dreigliedrigen Gleichungssystems zur Bestimmung der
Torsionsanteile £ oder # bietet keinerlei Schwierigkeiten.

Bei verdnderlichem Querschnitt ist auch das von der Verdnderung der
seitlichen Biegungssteifigkeit herrithrende zweite Klammerglied der GI. (24)
zu beriicksichtigen. Dabei darf genau genug die durchschnittliche Verdnde-
rung von B, lings der Feldweite Ax eingesetzt werden. Fiir ¢” setzen wir

angendhert , ,
g v Pmy — Pma

Pm = 2Ax !

wodurch wir im allgemeinen fiinfgliedrige Gleichungen statt der dreiglied-
rigen Gl. (30) erhalten. Zu beachten ist, daB auch die Werte «* veridnder-
lich sind.

Der Berechnungsgang zur Bestimmung der Kipplast ist nun folgender:
Auf Grund einer angenommenen @-Kurve wird nach Gl. (7) die Kurve der
Biegungsmomente A, berechnet, worauf Gl. (6) die Kurve 7" liefert. Bei ein-
fachen Balken (Flanschen frei drehbar) wird durch Auflésung des ,,abge-
leiteten Gleichungssystems Gl. (30)¢ die Kurve # bestimmt, aus der das zu-
gehorige Seilpolygon die Verdrehungskurve ¢, liefert. Die Bedingung a =1
(¢1 = ¢o) liefert einen ersten Niherungswert der Kipplast, der durch Wieder-
holung der Berechnung beliebig verbessert werden kann. In allgemeineren
Fallen (Einspannung) ist aus der 7’-Kurve durch Summation die 7-Kurve zu
berechnen, entweder unter Beriicksichtigung der Symmetrieverhéltnisse oder,
bei unsymmetrischen Fillen, unter Einfithrung einer {iberzihligen Gré8e 7,
wie bei gewohnlichen statisch unbestimmten Systemen. Aus 7 folgt durch
Auflésung des Gleichungssystems Gl. (30) die Kurve ¢, aus der durch Sum-
mation die Verdrehungskurve ¢, bestimmt wird.

In Fig. 12 ist fiir einen einfachen Balken mit Einzellast P in Balkenmitte
der Verlauf der Kurven 77 = M} - ¢: B’s und, fiir die Werte a® = 4, 40 und 400,
der Kurven ¢ dargestellt, um den ausgleichenden EinfluB8 der Flanschbiegung
zu veranschaulichen. Die zugehorigen Werte der Kipplast betragen:

rigen
pkr,::31,92v—§%_9 fir o= 4
10,08 40
17,20 400.

Es liegt nahe, den EinfluB der Flanschbiegung auf dieselbe Form zu bringen
wie beim Balken mit konstantem Biegungsmoment (Gl. (27)), d.h. das Ver-
hiltnis der Kipplast des I-Trigers zu derjenigen des Rechteckbalkens durch
den Faktor

B = V1 + u?:a? (32)
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auszudriicken. Mit der Vorzahl fir die Kipplast des Rechteckbalkens
ko, = 16,04 finden wir fiir die Werte a2 = 4, 40, 400 die Werte x2 = 10,20,
10,76, 12,12, d. h. nicht mehr einen konstanten Wert, wie fiir M = konst.
(v = a2). Wihlen wir, um einen einfachen Ausdruck fiir die Kipplast zu
bekommen, hier u» = 10,20 = konst., so betrigt .der dadurch begangene
Fehler auf die Kipplast fiir a2 = 40 bezw. 400 rund 0,6 bezw. 0,24 0.

Ahnlich wie im zweiten Abschnitt kann die Kipplast auch bestimmt
werden, wenn die Belastung nicht in Triagerachse, sondern auf Trigerober-
kante angreift. Die durchgefiihrten Berechnungen zeigen, daB der EinfluB
dieser Verschiebung des Lastangriffspunktes, den wir durch einen Faktor g,
ausdriicken wollen, bei nicht zu kleinen Werten von «? mit praktisch ge-
niigender Genauigkeit gleich groB angenommen werden darf wie beim Balken
mit Rechteckquerschnitt.

Fig. 13.

Die Werte der kritischen Belastung sind fiir einige hiufige Belastungs-
fille des einfachen Balkens in Tabelle 1 zusammengestellt. Fiir den Konsol-
trager, der ebenfalls aufgenommen ist und bei dem der EinfluB der Flansch-
biegung sich nicht in der gleichen Form darstellen 148t wie beim einfachen
Balken, ist der Faktor g, den Untersuchungen Timoshenkos entnommen.

Bei gleichzeitig wirkender Lingskraft ist die Berechnung analog wie
beim Rechteckbalken, nur ist statt Gleichung (20) die Beziehung

/ 4 12 //r/\ ) ”
C(@?’—-d;-fp /):Ml-y - (209)
(bei konstantem Querschnitt) zu beriicksichtigen. Die Gleichungen (21)
gelten auch beim [-Triger fiir M = konst. genau und fiir allgemeine Be-
lastungsanordnungen mit guter Annaherung. In Fig. 9 ist fiir einen einfachen
Balken mit dreieckférmiger Momentenfliche fiir a2 = 10 der dem Wert
¢ = 0,5 entsprechende Punkt C eingetragen.

4. Der unelastische Bereich.
Wenn an einer Stelle des Balkens die kritische Randspannung

 die Proportionalititsgrenze iiberschritten hat, so dndern sich die Biegungs-
steifigkeiten B und die Verdrehungssteifigkeit C und die im zweiten und
dritten Abschnitt abgeleiteten Beziehungen fiir die kritische Belastung gelten
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nicht mehr. Wiren die Verdnderungen von B und C im unelastischen Be-
reich bekannt, so konnte die Berechnung der kritischen Belastung nach dem
dargestellten Verfahren, wenn auch mit vermehrtem Arbeitsaufwand, durch-
gefithrt werden. Der Bestimmung von B, und C stehen aber wesentlich
grofere Schwierigkeiten entgegen als z. B. der Bestimmung des Knickmoduls
T i bei gedriickten Stiben, soddaB wir vorlaufig auf eine genaue Bestimmung
der Kipplast im unelastischen Bereich verzichten miissen.

Nun liegen aber, wenigstens fiir die Konstruktionspraxis, die Verhéltnisse
recht giinstig insofern, als aus der Kenntnis der kritischen Belastung im
elastischen Bereich mit einiger Zuverlissigkeit auch auf den unelastischen
Bereich geschlossen werden kann. Ein sehr kurzer Triager, /=0, wird durch
Uberwindung der Zugfestigkeit 5, an der gezogenen Faser zu Grunde gehen.
Aus Versuchen wissen wir, daBl die Kippstabilitit bei Tragern mittlerer Spann-
weite in der Nahe der FlieBgrenze oy versagt. Die Kippspannungslinie wird
also iiber einen gewissen Bereich in der Hohe o verlaufen, um dann, von

Charge sur /5ile mkferieure

2
6l /em £ 2 Last am untern Flansch
v 6p=270%/cm Load on fower fange

25 \: .

20 \ RS Charge sur /oxe de lo poutre

e ——= ] = Lastin Balkenachse

. 6p- 1190 tfem y — =X Zgao’ naxis ofbeamn

15 Charge sur /aife superieure

) Lastam obern Flansch

05— Load on upper Fonge

0 20 30 40 50 60 70 680m (
Fig. 14.

einem gewissen Punkte F an, stetig in den den elastischen Bereich der oy,.-
Linie darstellenden Ast iiberzugehen. Uber die Lage des Punktes F konnen
wir aussagen, daB seine Abszisse kiirzer sein muf}, als sie sich aus der Ver-
langerung der elastischen Kippspannungslinie ergeben wiirde. In Fig. 13
ist der Verlauf der Kippspannungslinie im Sinne dieser Uberlegungen skiz-
ziert. Das Verhaltnis von //y zu [, wird fiir verschiedene Belastungsfille ver-
schieden groB sein. Fig. 13 zeigt aber, dal} eine kleine Verschiebung des
Punktes F die .GroBe von o, zwischen op und o nicht stark beeinfluBt, so-
daB /';: [, fir eine bestimmte Stahlsorte als konstant angenommen werden
darf.

Fiir Baustahl St. 37 wird o, zu rd. 1,9 t/cm2 gefunden, wihrend fiir o
etwa 2,7 t/cm? angenommen werden darf. Auf Grund dieser Werte ist in
Fig. 14 der Verlauf der Kippspannungslinien fiir einen einfachen Balken aus
I 20 bei gleichmiBig verteilter Belastung unter der Annahme

Z,F — 0,5 . lp

11) Der unelastische Bereich von Knickstiben wird in ahnlicher Weise durch die
Tetmajersche Gerade mit fiir die Praxis jedenfalls geniigender Genauigkeit umschrieben.
DaB wir die Kippspannungslinie nicht iiber die FlieBgrenze hinaus gefiihrt haben, was
in Analogie zur Tetmajerschen Geraden auch in Betracht gezogen werden konnte, hat
seinen Grund in der Bewertung der charakteristischen Beanspruchungs- und Verformungs-
unterschiede zwischen Druckstab und Biegungstriger. In der Zugzone eines auf Biegung
beanspruchten Trigers treten wihrend des FlieBvorganges jedenfalls wesentlich grof8ere
Forminderungen auf, als in einem Druckstab, sodaB dort auch die FlieBgrenze einen
wesentlich groBeren EinfluB auf die Stabilitit haben wird.

Abhandlungen 111 27
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und unter Vernachlassigung des Verfestigungsbereichs aufgetragen tt). Die
Streuungen der FlieBgrenze nach unten sind dabei jedenfalls dadurch ge-
deckt, dafl auf Biegung beanspruchte Trager bei FlieBbeanspruchung, infolge
der nicht mehr linearen Spannungsverteilung, ein gréBeres Biegungsmoment
aufnehmen konnen, als dem Wert o - W entsprechen wiirde.

Bei der Bemessung von auf Biegung beanspruchten Bauteilen ist somit
folgender Weg einzuschlagen: Aus den Trigerabmessungen ist zunichst oy,.
aus den Gleichungen des 2. und 3. Abschnittes zu bestimmen. Ist o,,. > op, so
daB /'p:/p fiir eine bestimmte Stahlsorte als konstant angenommen werden

fiir lé 0,5 - p: Opp. = OF
fiir 05-lp=[1=1Ilp: 0. = 60— (0F — 0p) - —5————

Der zu wahlende Sicherheitsgrad soll mit Riicksicht darauf, daB o,,. fiir
einen praktisch kaum zu verwirklichenden Idealfall 12) (gerade Stabachse,
Kraftangriff in Haupttrigheitsebene, homogenes Material) abgeleitet \\urde
eher groBer angenommen werden, als der Sicherheitsgrad gegen Erreichen
der FlieBgrenze bei gewohnlicher Biegung.

5. Gebrauchsformeln fiir I-NP-Tridger.

Fiir die Anwendungen ist es bequem, die Kipplast fiir die am haufigsten
vorkommenden Belastungsfille mit Hilfe einfacher Formeln mit praktisch
geniigender Genauigkeit rasch bestimmen zu konnen. Deshalb seien hier
noch einige Gebrauchsformeln fiir einfache Balken mit / — NP - Querschnitt
mitgeteilt.

Tabelle 2.

| : 3 B N s 8 /B

I w oy P VB,.c VB Clogr775 Be ‘ B,

| ./1 J ./z | E ./(z’ 7‘ 2 ‘ % C ‘ C

| | |

10 ‘ 171 34,2! 122 13,1 1,64‘ 5060 174 173 | 10,8 | 4,45

‘ 2140 | 214 | 117 124 13,9 | 53400 250 250 | 225 | 4,74

0800 | 653 | 451 473 584 | 213800 327 327 | 906 454

40 20210 | 1460 | 1160 1210 1741 | 590300, 404 404 | 17g ) 422
i

68740 ‘2750 2480 2570 | 411 “1321000§ 480 481 16’1 | 4,01
0 139000 4630 4670 | 4830 J834 ’2582000‘ 558 558 1 4’9\ 3,86

In Tabelle 2 sind die in Betracht kommenden Querschnittswerte fiir die
(deutsche) I-Normalprofilreihe auszugsweise zusammengestellt, wobei ange-
nommen wurde:

E=2100t/cm? G =3/8-F Js=125- gﬁ_gfi

Es zeigt sich, daB der Querschnittswert VB,, C:W sehr genau durch eine
Gerade dargestellt werden kann:

‘B, - C
v 72 96,0 + 7,70 - &,
12) Schon eine geringe Abweichung von diesen Voraussetzungen verursacht eine
nennenswerte Verminderung der kritischen Belastung. Vergl. F. StUssi: Exzentrisches
Kippen. Schweiz. Bauzeitung 1935, Band 105, Nr. 11.
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also nur linear von der Tragerhohe / abhingig ist. Damit lassen sich die
Grundwerte o}, der Kippspannung sehr einfach darstellen (Tab. 3).

Der EinfluB von Flanschbiegung und Lastangriffspunktverschiebung
gegeniiber Balkenachse ist abhiangig von den Werten ¢ und «2. Da diese
beiden Einfliisse ja nicht sehr gro8 sind, setzen wir niherungsweise B,: C =
konst. = 20 und erhalten

) B2 ; - U : 5 .
Damit ergeben sich beispielsweise fiir gleichmaBig verteilte Belastung p fol-
gende Werte der Korrekturfaktoren f:

Tabelle 3.
Belastungsfall = M,,,, Ope t/cm? % B, ; B
; L | )
a ’a;_—’__i;” 1 M %7(302 +2420) 14 247 7’5
| b1 /z2 ] s
b } T ] / (340 4 27,2 /l) 14 25,0 - 15 3 22 + 5 2
nE |
| . 2 2
c ¥ | %lj %(407—{—32,6/1) 1 +25,5§L2 174,00, +80h
| |
M | 2
a M —17-(534+42,8h) 1%28,0?—2
i i
|

gilt fiir 0, = 0,,.-f, s = 0p.

EinfluB der Flanschbiegung:
50}1’

B, =11+ 100: a~:‘/1+——~ o 1425 1"
Lastangriff am obern (untern) Tragerrand:
b= V1421000 F 1450217322 45270
Mit Hilfe der Zusammenstellung Tabelle 3 kann die kritische Spannung
Opp, = Gl(')zr. : /))1 : /))2
fiir den elastischen Bereich leicht berechnet werden. Damit ist auch Z,, die-
jenige Spannweite, fiir die oz, = op wird, bestimmt, womit sich der ange-

naherte Verlauf der Kippspannungslinie im unelastlschen Bereich nach Ab-
schnitt 4 ergibt.

Zusammenfassung.

Die kritische Belastung (Kipplast) von auf Biegung beanspruchten
Trigern wird aus dem Vergleich von Forminderungskurven (Verdrehung
oder seitliche Ausbiegung) des seitlich leicht ausgebogenen Balkens bestimmt.-
Die Rechnungsgenauigkeit kann dabei beliebig gesteigert werden.

Der EinfluB der Flanschbiegung bei der Torsion von I-Tragern wird
durch numerische Auflosung der entsprechenden Differentialgleichung er-
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halten, wobei freie Drehbarkeit oder elastische bezw. starre Einspaunung
der Flanschenden in den Randbedingungen ausgedriickt werden kdnnen.

Résumé.

La charge critique des poutres sollicitées a la flexion est déterminée a
partir d’une comparaison entre les courbes de déformation (torsion ou dé-
flexion latérale) d’une poutre légerement incurvée. La précision du calcul
peut étre poussée a volonté.

iL.’influence de la flexion des ailes en cas de torsion des poutres en I est
établie par résolution numérique de I’équation différentielle correspondante,
les conditions d’appui des bords des ailes (torsion libre, encastrement
élastique ou rigide) pouvant étre exprimées dans les conditions des bords:

Summary.

The critical loading (buckling load) of beams and girders subject to
bending is determined by comparing curves of deformation (torsion or lateral
deflection) of a beam with slight lateral deflection. The accuracy of the
computation thereby may be increased as desired.

The influence of flange-bending with I-beams subject to torsion is de-
termined by the numerical solution of the corresponding differential equation,
whereby the conditions of support at flange-ends (free support, elastic or
resp. rigid restraint) may be expressed in the marginal conditions.
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