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DIE STABILITÄT
DES AUF BIEGUNG BEANSPRUCHTEN TRÄGERS.

LA STABILITE DE LA POUTRE SOLLICITEE Ä LA FLEXION

STABILITY OF A GIRDER SUBJECT TO BENDING

Dr. sc. techn. Fritz Stüssi, Privatdozent an der Eidg. Technischen Hochschule, Zürich.

1. Grundgleichungen.
Das Stabilitätsproblem des auf Biegung beanspruchten Trägers ist für

einige einfache Belastungsfälle von Prandtlx) für Träger mit Rechteckquerschnitt
und von Timoshenko 2) für I-Träger gelöst worden. Das hier

vorgelegte baustatische Verfahren beruht auf der Berechnung von elastischen
Formänderungen und ist bei beliebiger Belastungsanordnung und bei
beliebiger Auflagerung anwendbar. Es liefert die Kipplast, wie die kritische
Belastung nach Prandtl bezeichnet wird, ähnlich wie beim bekannten
Verfahren von Vianello3) für Knickstäbe, mit fortgesetzter Annäherung aus dem
Vergleich zweier Formänderungskurven. Die Genauigkeit kann beliebig
gesteigert werden.

Bei Stabilitätsproblemen ist die kritische Belastung durch den Übergang
vom stabilen zum labilen Gleichgewicht gekennzeichnet. Ist die Belastung
gleich der kritischen, so verursacht eine beliebig kleine Störung des
Gleichgewichtszustandes das Unstabilwerden des gedrückten Stabes („Knicken")
oder des auf Biegung beanspruchten Balkens („Kippen"). Nehmen wir
beispielsweise an, die Gleichgewichtsstörung werde durch eine kleine
Ausbiegung e0 der Stab- oder Trägermitte verursacht, so können wir die kritische
Belastung als diejenige definieren, unter welcher die kleine Ausbiegung
„unendlich groß"4) wird.

In Fig. 1 ist ein ursprünglich gerader Balken in verformtem Zustand
skizziert. Infolge der gedachten kleinen Ausbiegung y0 treten Torsionsmomente

T auf, die ihrerseits eine Verdrehung cp der Balkenquerschnitte
bewirken. Dadurch liefert nun das Biegungsmoment M± der äußern Kräfte
eine Komponente M2, die die seitliche Ausbiegung um den Betrag

yi <x-yo (l)
*) L. Prandtl: Kipperscheinungen. Ein Fall von instabilem elastischem

Gleichgewicht. Diss. München, 1899.
2) S. Timoshenko: Einige Stabilitätsprobleme der Elastizitätstheorie. Zeitschrift für

Mathematik und Physik, 1910. — S. Timoshenko: Sur la Stabilite des Systemes elastiques.
Annales des Ponts et Chaussees, 1913. — S. Timoshenko: Stability of plate girders
subjected to bending. Internationale Vereinigung für Brückenbau und Hochbau, Kongreß
Paris 1932, Vorbericht. — S. Timoshenko: Strength of Materials. New York, Van Nostrand
Co., 1930.

3) L. Vianello: Z. d. Ver. deutsch. Ing., 1898.
4) Selbstverständlich wird die Ausbiegung nicht unendlich groß, sondern nur so

groß, daß der Stab zerstört wird.
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402 F. Stüssi

vergrößert. War die Form der Ausbiegung y0 passend gewählt, nämlich so,
daß y1 zu y0 ähnlich verläuft6), so muß die durch yt verursachte Vergrößerung

der Ausbiegung den Wert y2 a • yt erreichen. Der Endwert y kann
somit angeschrieben werden zu

y y0 (1 + a + «2 + a3 + a4 yQ ^-L-. (2)

Das Tragwerk ist unstabil für a 1, weil dafür, auch bei sehr kleiner
anfänglicher Ausbiegung y0, der Endwert y sehr große Werte erreicht. Analog
ergibt sich die Beziehung zwischen einer angenommenen Querschnittsverdrehung

qp0 und ihrem Endwert cp:

frhi**-=FFFFF Tl

f z

Fig. 1.

In Fig. 2 ist ein durch die Schnitte x und x + dx begrenztes
Balkenelement, bezogen auf ein Hilfskoordinatensystem £, rj, £, herausgezeichnet,
wobei die angreifenden Momente durch ihre Achsen dargestellt sind. Die
Belastung ist auf Trägeroberkante angreifend angenommen; der davon
herrührende Beitrag wird sein Vorzeichen wechseln, wenn die Last am untern
Trägerrand angreift, bezw. verschwinden bei Lastangriff im Schwerpunkt.
Da die vorkommenden Winkel im betrachteten Zustand klein sind, setzen
wir ihren Cosinus gleich eins und den Sinus gleich dem Tangens, bezw. gleich
dem Winkel und lesen folgende Momentengleichgewichtsbedingung bezüglich

der |-Achse ab:

_ r+ {T+ dT) + {M2 + dM2) • df— (Mx + dMx) • dö — {Q + dQ) • d>,

+ (Q + dQ)-<p>d£ + p. -^-V-dx 0.

Die Werte drj und cp • dt sind kleine Größen höherer Ordnung. Wir lassen
Produkte mit ihnen und die übrigen vernachlässigten Größen weg und
erhalten mit

dy l" - d£, dö i\" • d£
den Zuwachs des Torsionsmomentes von x bis x -f- dx zu

dT= ~M2. r-rff + Mx • ii'-dt—f^-cp'dx. (3)

5) D. h. in diesem Fall entspricht die gewählte Ausbiegung der Lösung der
Differentialgleichung des Stabilitätsproblems. Sind yQ und yx einander nicht ähnlich, so ergibt
sich die charakteristische Ausbiegungskurve durch eine genügend oft durchgeführte
Wiederholung der im Abschnitt 2 dargestellten Berechnung.
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Die Differentialgleichung der elastischen Linie liefert uns den Wert der
zweiten Differentialquotienten von £ und rj zu

w, Mi „ M2 /ylv^ —bT' '' ^-^ (4)

wenn der einfacheren Schreibweise wegen die Biegungssteifigkeiten mit
B E J bezeichnet werden. Setzen wir d£ -= dx, so erhalten wir mit der
Abkürzung

5« B» • 6)
#1 ^2

die folgende Grundgleichung des betrachteten Problems:

dT M\ • M% p - h
dx+ b: + 2 ¦(r °-

(5)

(6)

^
!*,*

^//T+dT

o Ö

^ A^r^ ^y
f>

TTSfes=*

</j"
^Sk

fco?" _h Ve=LL ?>

pdx
p dx

<fr

^*> •**£/* /q</*

Fig. 2.

Den Wert des seitlichen Biegungsmomentes yW2 erhalten wir durch
Betrachtung des Momentengleichgewichts bezüglich der z-Achse am Teil
A — x des verformten Balkenfeldes A— B (Figur 3). Um die gesuchten
Grundgleichungen in möglichst allgemeiner Form zu erhalten, wurde
angenommen, daß auf den Auflagerquerschnitt A Einspannmomente MiA
und M2a einwirken sollen, die entweder als äußere Belastungen oder
infolge (starrer oder elastischer) Einspannung des Balkenendes auftreten
können. Im letzteren Fall stehen für die Bestimmung dieser Einspannmomente

die entsprechenden Elastizitätsbedingungen zur Verfügung. Im
Gegensatz zu diesen Einspannmomenten MxA und M2a ist das Torsionsmoment

TA unerläßlich zur Herstellung des Gleichgewichts des ausgebogenen
Balkens; bei Symmetrie in Belastung und Konstruktion genügt eine
Gleichgewichtsbedingung zur Bestimmung von TA -= TR, während in unsymme-

b) Durch Einfuhrung von B'2 statt B2 wird die lotrechte Durchbiegung
(Hauptbiegung) berücksichtigt. Dieser Einfluß, der übrigens schon von Prandtl untersucht
wurde, ist bei schmalen Tragern nicht groß: für I NP 20 ist z.B. B\ — E • 124 cm4
gegenüber B2 ZT- 117 cm1.
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trischen Belastungsfällen eine Elastizitätsbedingung beigezogen werden muß.
Der Auflagerquerschnitt A soll durch Torsionsmomente TA elastisch um den
Winkel cpA verdreht werden können. Beachten wir, daß die Winkel klein sind,
so liefert Fig. 3 die Beziehung:

— M2a — Ta - za + Mxa - <pa + M2 + T- z — Mi • cp 0,

wenn wir mit MA MA + Qmab • x die Ordinate im Schnitt x des durch die
Einspannmomente MA und MB bestimmten Trapezes bezeichnen. Die
Momente M2 und T sind kleine Größen, weil sie durch die als klein
vorausgesetzten Verformungen y und cp entstehen. Im allgemeinen sind auch die
lotrechten Durchbiegungen z und ihre Ableitungen klein; sie besitzen
jedoch gegenüber y und cp bestimmte endliche Werte, sodaß die Produkte T • zr
nicht von vornherein vernachlässigt werden dürfen. Dagegen zeigt eine
einfache Überlegung, daß die Produkte T • z' vom Verhältnis der Torsionssteifig-
keit C =- G'Jd zur Biegungssteifigkeit Bx EJ1 abhängig ist; da für die

\t*ii \ /

N"*S
z A

X
m ^

1& ' \'Qr

m.f'
Fig. 3.

in der Konstruktionspraxis verwendeten Trägerquerschnitte in der Regel C
kleiner ist als \ o/o von Bu und da dieses Verhältnis C:B1 zugleich die obere
Grenze für den Einfluß der Produkte T • z' auf den Wert der kritischen
Belastung darstellt, sollen diese vernachlässigt werden. Damit ergibt sich M2 zu

M2 M2a — MXA - <pa + Mi • cp (7)

Das Biegungsmoment Mx ist, abgesehen von vernachlässigbar kleinen
Nebeneinflüssen, gleich dem Moment der äußern Lasten.

Die Gleichungen (6) und (7) bilden die Grundlage zur Bestimmung der
kritischen Belastung von beliebig gelagerten und durch beliebig angeordnete,
jedoch in der Hauptträgheitsebene wirkende Belastungen beanspruchten
Balken.

2. Balken mil Rechleckquerschnitt.
Bei Torsionsaufgaben haben wir zu unterscheiden zwischen Querschnittsformen,

bei denen, wenigstens angenähert, eine „reine" Verdrehung möglich
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ist, und andern, zu denen vornehmlich die I-Querschnitte gehören, bei denen
durch die Verdrehung in einzelnen Querschnittsteilen Biegungsmomente, sog.
Flanschbiegungsmomente auftreten, wodurch der Verdrehungswinkel gegenüber

reiner Torsion oft wesentlich vermindert wird. Zu der ersten Gruppe
gehören erfahrungsgemäß die Rechteckquerschnitte, bei denen die gegenseitige

Verdrehung dcp zweier benachbarter Querschnitte infolge eines
Torsionsmomentes T dargestellt wird durch die Beziehung:

*. £.*; § i. (8)

Hierbei ist C die Verdrehungssteifigkeit, C G • /</, wobei für Baustahl und
genügend schmale Rechtecke gesetzt werden kann:

G !-.£¦, Jd \-h .d*.t)
Durch Differentiation der Gleichung (8) folgt bei konstantem

Balkenquerschnitt

dx2 - C dx> (öa)

setzen wir daraus —z— in Gleichung (6) ein, so erhalten wir die Differentialgleichung

des Stabilitätsproblems für Balken mit konstantem Rechteckquerschnitt:

d^ Mi-MA p^±
'

dx* + B2'-C + 2C q U* W

Dabei ist M2 durch Gleichung (7) bestimmt.
Der Rechnungsgang zur Bestimmung der kritischen Belastung ist nun

einfach folgender: Wir nehmen eine mit den Auflagerbedingungen verträgliche

Verdrehungskurve cp0 an, deren größte Ordinate wir mit cp0m bezeichnen
wollen, und berechnen damit die Kurve der Werte M2 und daraus das zweite
Glied der Gleichung (9). Das dritte Glied ist nur vorhanden, sofern die
Belastung nicht in Balkenachse angreift. Daraus erhalten wir durch zweimalige
Integration eine Kurve cpx, aus deren Ordinatenverhältnis zur angenommenen
^o-Kurve der Wert a und damit aus a 1 der Wert der kritischen Belastung
bestimmt ist. Sind angenommene und erhaltene 99-Kurve einander nicht ähnlich,

so ist der berechnete Wert der Kipplast eine erste Annäherung, der durch
Wiederholung der Berechnung mit der erhaltenen 99-Kurve beliebig verbessert
werden kann.

Die zweimalige Integration wird mit den Mitteln der Baustatik derart
durchgeführt, daß man die zu integrierende Funktion als Belastung auffaßt
und zu ihr ein Seilpolygon zeichnet, bezw. rechnet. Die Lage der Schlußlinie

hat dabei den Randbedingungen zu entsprechen. Die Balkenlänge wird
in eine mehr oder weniger große Anzahl von gleichen Feldern Ax eingeteilt,
über welche gewöhnlich ein geradliniger Verlauf der Belastungsfunktion
angenommen wird. Eine wesentliche Verbesserung gegenüber dieser
Trapezmethode wird dadurch erhalten, daß man näherungsweise ein über zwei Felder
verlaufendes Kurvenstück durch eine Parabel ersetzt und daraus die Knotenlast

für den mittleren Teilpunkt als Auflagerkraft der Belastungsfläche
bestimmt. Die Ordinaten des Seilpolygons zu diesen Knotenlasten entsprechen

7) Genauer Jd (A — 0,63 d) • rf»: 3 für h ;> 4 d.
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in den Teilpunkten den Ordinaten der Seilkurve. Mit den Bezeichnungen der
Fig. 4 ergibt eine elementare Rechnung folgende Knotenlasten:

für einen Zwischenpunkt:
Ax

Km -T^T ' (Utn-i + 10 Um + Um+1) (10)
12

für einen Endpunkt m — 1 (oder für einen Unstetigkeitspunkt) :

Ax
Km-l -qjT (^ Um~l "T" ^ Um — um+i) y

für einen Endpunkt m-\-\ mit horizontaler Tangente in 7n -f-1:
Ax

Km
12

¦(5um+1 + «*,).

(10a)

(10b)

Falls die Querschnittswerte über die Balkenlänge veränderlich sind, so
ist die Seilpolygonberechnung zu ersetzen durch zwei Einzelintegrationen,

1 1 1

% m Z17+7

Fig. 4.

die wir am einfachsten je als Flächenberechnungen durchführen. Zunächst
ist aus Gleichung (6) durch Summation das Torsionsmoment T zu berechnen,
wobei die Veränderlichkeit von B'2 durch Einführung einer „reduzierten"
Belastungsfläche berücksichtigt wird. Aus dem Torsionsmoment ergibt sich
auf gleiche Weise der Verdrehungswinkel cp, wobei die Veränderlichkeit der
Verdrehungssteifigkeit C zu berücksichtigen ist. (Bei Unsymmetrie ist TR
als überzählige Größe aus der Elastizitätsbedingung für cpB zu bestimmen.)
Dabei nehmen wir wieder näherungsweise parabelförmigen Funktionsverlauf
über je zwei Felder an und erhalten nach der Simpson'schen Regel die Fläche
zwischen in — 1 und m-\-\ zu

Fm + l1
m — \

Ax
(um_x + 4um + um+1). (")

Bei ungerader Felderzahl nehmen wir je den Funktionsverlauf von in — 1 bis
m-\-l und von m bis in -f- 2 als Parabel an und erhalten als Mittelwert

Cm4-1 Zj X

24
•(— u-m-\ + 13am + 13«m+1 .)• (IIa)

Auf diese Weise ist auch bei kleiner Felderzahl eine praktisch genügende
Genauigkeit erreichbar.

Wir skizzieren nun die Durchrechnung einzelner Belastungsfälle:

a) Einfache Balken.
Infolge der freien Drehbarkeit um y- und z-Achse verschwinden die

Einspannmomente MlA und M2A, sodaß sich Gleichung (7) vereinfacht zu

M2 Mx • cp.
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Damit liefert Gleichung (6), wenn die Belastung zunächst in Balkenachse
angreift:

dT Ml-cp
dx "*"

B2

Sind die Querschnittswerte B'2 und C über die Balkenlänge konstant, so
ergibt sich die vereinfachte Differentialgleichung

Gewöhnlich darf der Auflagerquerschnitt als in seiner Ebene unverdrehbar
festgehalten angenommen werden: cpA 0. Bei elastischer Verdrehbarkeit
dagegen ist cpA entsprechend dem Auflagertorsionsmoment TA einzusetzen.
Ohne besondere Bemerkung ist hier stets cpA 0.

Bei Belastung durch ein konstantes Biegungsmoment M--=M±
ist die Differentialgleichung (12) identisch mit derjenigen des zentrisch
belasteten Druckstabes. Wir schließen daraus, daß die maßgebende
Verdrehungskurve eine Sinuskurve ist:

71 • x
<Po — <Pom • sin /

Setzen wir diesen Wert in Gleichung (12) ein, so erhalten wir durch
zweimalige Integration unter Beachtung der Randbedingungen {cp 0 für x 0

und x /, cp' 0 für * —) die Verdrehungskurve cpx:

M* /2

Aus a 1 ergibt sich der kritische Wert des Biegungsmomentes:

ML=^.^^, MkK n.l^l-^. (13)

In Fig. 5 ist der einfache Balken mit Einzellast/3 in
Balkenmitte mit den zugehörigen Kurven zur Berechnung der Kipplast
{cp, Mu M\ • cp und zugehörige Seilkurve) dargestellt. Mit den für Balkenmitte

eingeschriebenen Zahlenwerten ergibt sich die Kipplast zu

Pkr. 16,94-^. 04)

Wenn die Belastung am obern Trägerrand statt in Balkenachse angreift,
so entsteht das in Fig. 5 ebenfalls skizzierte zusätzliche Torsionsmoment AT,
woraus sich in Balkenmitte die zusätzliche Verdrehung Acpm ergibt:

A<Pm= g m c ' Vom-

Da einerseits der Einfluß dieser Verschiebung des Lastangriffspunktes in der
Regel nicht sehr groß ist und andrerseits eine mäßige Veränderung der Form
der maßgebenden Verdrehungskurve nur eine unwesentliche Veränderung der
kritischen Last zur Folge hat, dürfen wir auch hier ohne großen Fehler die
für den Grundfall ermittelte Verdrehungskurve cp als maßgebend betrachten.

8) Form der Differentialgleichung bei Prandtl.
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Die Form der Acp-Kurve ist nicht mehr ähnlich zur 99-Kurve, sodaß Aa für
jeden Trägerpunkt verschieden groß ist. Im Sinne unserer Ableitung ist
offensichtlich nicht die Vergrößerung von cp eines einzelnen Punktes, sondern
die Gesamtheit aller dieser Veränderungen maßgebend. Wir bestimmen
deshalb Aa als Mittelwert aus dem Flächenvergleich von Acp-Kurve zu qvKurve:

P-/2.A
E{A y) 16-C <po* F(<Po) 0,58778- hcp^

somit

Setzen wir a

Aa= F¥y) 0,21266 ./>./¦
F(Vo)

h

2C
1:

1
1 l*

286,92 Bt' ¦ C

so erhalten wir mit der Abkürzung
2/ ./~C~

die kritische Belastung zu

Pkr. 16,94

+ 0,21266 P-l-h
2C

Vß2' • C
/2 f; 3,24 1,80

(15)

(14a)

Greift P am untern Trägerrand an, so wechselt das Vorzeichen des letzten
Gliedes im Klammerausdruck.

Tabelle 1 enthält die Werte der kritischen Belastung für die häufigsten
Belastungsfälle des einfachen Balkens.

Tabelle 1.

Belastungsfall M„ Rechteckbalken
Last im Schwerpkt. Flanschbiegung, Last oben

unten

^

M

=Ö*

Cf

M

pP_
8

P.l
4

M

P-l

Mkr

Pkr

VBt'.C

-28,31 VfC
Pkr 16,04»^

Mkr - 5,56 rfC
P. - 4.01 VB*'C

vr;
10,2

kr l2

' ~ /»a -r „

Vi + 344 +
1,80

gilt im elastischen Bereich

b) Konsolträger.
Die Berechnung der Kipplast des Konsolträgers mit Einzellast P am

freien Ende ist in Fig. 6 skizziert. Zu beachten sind die Randbedingungen:
T 0 für x== l, cp=0 für x=0. Im übrigen ist die Berechnung die gleiche
wie für den einfachen Balken. Bei Unterteilung der Spannweite / in 6 Teile
ergibt sich nach unserer Berechnung

kr. 4,014 • V^l£ (16)
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die Vorzahl k 4,014 weicht von der von Prandtl gefundenen (4,0126) um
nur 0,03 o/0 ab.

Bei Lastangriff in Trägeroberkante liefert unsere Näherungsberechnung
den Wert der Vorzahl k zu

-^¦(i/'^-1?) (16a)

K>,>o

"Sil
cn> Mj

8?
ICSI

Mi V
>

s?

«M-

AT
t$¦^r*

S£
A<P.

\^
Fig. 5. Fig. 6.

c) Elastisch eingespannte Balken.
Wir drücken die elastische Drehbarkeit der Auflager durch die

Trägerabmessungen aus. Für den in Fig. 7 skizzierten Belastungsfall mit gleichmäßig

verteilter Belastung p wurde angenommen:

zA — MiA'l
3BX ' yA

M2A ' l
3B9 <PA 0.

Zunächst ist das seitliche Biegungsmoment M% Mx • cp mit angenommener
cp-Kurve zu bestimmen, das bei freier seitlicher Drehbarkeit auftreten würde.
Das zugehörige Stützenmoment ergibt sich aus der Elastizitatsbedingung

M2A ' flu + M2B • 012 + öio 0,

wobei in axl die elastische Drehbarkeit des Auflagers zu berücksichtigen ist
und a1Q die 1: B2-iache Auflagerkraft der Momentenfläche M\ bedeutet. Das
Seilpolygon zur Mx • M2: B\ • C - Fläche ergibt den Verdrehungswinkel cpx,

dessen Vergrößerung gegenüber der angenommenen Verdrehungskurve den
Wert der kritischen Belastung liefert. Diese besitzt im Beispiel der Fig. 7

gegenüber dem in beiden Richtungen frei drehbar gelagerten Balken einen
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rd. 2,16-fachen Wert. Fig. 8 enthält die Berechnung der Kipplast für den im
übrigen gleichen Träger wie in Fig. 7, wenn sich die Auflagerquerschnitte
um den Winkel

cpA 0,10
Ta-1

elastisch verdrehen. TA wird als Inhalt der M± • M2:B'2-Fläche über die halbe
Spannweite bestimmt. Infolge dieser kleinen elastischen Verdrehbarkeit
nimmt der Wert der kritischen Belastung gegenüber dem Beispiel der Fig. 7
um rd. 17 <y0 ab.

£ %.Illllllllllllllil iiiiiiiiiiiiiiiiiiiiiimmm

Mj

Ml "2

iiiiMiiiiiiiiiiiiiiiiTmmmiiiiiiimiiiiiiiiiiiimiiiiiii

Mi

M2

S
Mj.M,

Fig. 7. Fig. 8.

d) Einfluß einer gleichzeitig wirkenden Druckkraft 5.
Das seitliche Biegungsmoment in einem ausgebogenen einfachen Balken

beträgt
M2 =Mi -<P + S-y; (17)

somit ist, wenn wir den untergeordneten Einfluß der Hauptbiegung nicht
berücksichtigen :

&•/ =-(M1><p + S>y), (18)
woraus wir durch Berechnung des Seilpolygons wieder y erhalten. Um die
beiden Klammerglieder Mx • cp und 5 • y addieren zu können, setzen wir
vorübergehend

S e.Ml2:C. (19)
Die Verdrehung cp ist durch den Zusammenhang

CV =Ml-y" (20)

gegeben. Die Berechnung der Kipplast ist nun folgende: Annahme einer
Ausbiegungskurve y0 mit zugehöriger zweiter Ableitung y'0 ; aus letzterer wird
nach Gl. (20) die Verdrehungskurve cp als Seilkurve berechnet Damit und
für einen bestimmten Wert von e (Gl. (19)) wird nach GL (18) y\ bestimmt,
woraus sich yx als Seilkurve ergibt. Der Vergleich von y± und y0 liefert mit
a 1 den Wert des kritischen Momentes und daraus nach Gl. (19) den der
zugehörigen Druckkraft 5.
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Für den Fall eines konstanten Biegungsmomentes sind y- und 99-Kurven
sinusförmig; zwischen Biegungsmoment M und Druckkraft S ergibt sich
damit die Beziehung:

M^. Mlkr. f _s_

SE
?kr.

Ml
Ml,kr.

(21)

Dabei bedeutet Mir. das Kippmoment des Balkens ohne Druckkraft und SE
die Eulersche Knicklast des momentenfreien Balkens.

Fig. 9 zeigt den Verlauf der Gleichungen (21). Falls M nicht konstant
ist, ist die maßgebende Ausbiegungskurve y vom Wert e abhängig. Die für
zwei andere Belastungsfälle in Fig. 9 eingetragenen Kurven zeigen jedoch,
daß Gl. (21) mit praktisch genügender Genauigkeit allgemein verwendet
werden kann. Gl. (21) gilt auch bei beliebiger Lagerungsart, wenn dabei die
entsprechenden Werte von Mir. und SE eingesetzt werden. Falls 5 eine Zugkraft

ist, wechselt in der ersten Form von Gl. (21) das Vorzeichen von 5.

Mkr./?<

n?

06

«±&—^«S.
a.Gl.2 & 4-^4-06

«£X i0.4

02

7.0 S,<n0.60.4 0.60.2

Fig. 9

Trotzdem Träger mit Rechteckquerschnitt in der Konstruktionspraxis
keine Bedeutung besitzen, sind die Untersuchungen dieses Abschnitts auch
für die Praxis nicht unwichtig, weil sich die noch zu bestimmenden Werte
der Kipplast von I-Trägern mit zunehmender Schlankheit den für schmale
Rechteckquerschnitte geltenden Werten derart mehr und mehr nähern, daß
diese untere Grenzwerte für die Kipplast von auf Biegung beanspruchten
Trägern überhaupt darstellen.

3. Balken mit I-Querschnitt.
Bei der Verdrehung von Trägern mit I-Querschnitt handelt es sich auch

annäherungsweise nicht mehr um reine Torsion, da die Flanschen, die bei

einer Verdrehung cp eine seitliche Ausbiegung-- • cp erleiden, diese nicht mehr

spannungsfrei mitmachen können. Aus dieser Flanschausbiegung, entgegengesetzt

oben und unten, folgt mit Hilfe der Differentialgleichung der elastischen

Linie die Größe der Flanschbiegungsmomente zu
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Mm. —Bel'^-cp". (22)

BFt. bedeutet die Biegungssteifigkeit eines Flansches und kann bei I-Trägern
mit genügender Genauigkeit der halben seitlichen Trägersteifigkeit B2
gleichgesetzt werden9). Die Flanschquerkräfte, d.h. die ersten Ableitungen der
Flanschbiegungsmomente,

/^k d h „f d B2 n „ /oo\QFL -Bi.^.cp __._.,, (23)

bilden zusammen ein Torsionsmoment QFi. • h und die Betrachtung des
Gleichgewichts zwischen äußern und innern Torsionsmomenten liefert die Beziehung

T= C.<p'-^(b2 ¦ cp'" + *£ y»), (24)

die bei konstanten Querschnittswerten in die von Timoshenko aufgestellte
Form Rh2 ' /2

T=C.<p'-^/^.<p'" Ccf'-C.l^.(p- (24a)

übergeht. Dabei hat die Abkürzung a2 die durch Gl. (15) gegebene Bedeutung,

nur ist hier B2 statt B'2 einzusetzen. Auch ist die Trägerhöhe h hier
genau genommen zwischen den Flanschschwerpunkten zu messen.

Die Verdrehungssteifigkeit C des I-Querschnittes setzt sich auf Grund
des Prandtlschen Membrangleichnisses aus den Verdrehungssteifigkeiten der
den Querschnitt bildenden schmalen Rechtecke zusammen; der so erhaltene
Wert ist jedoch nach den Versuchen von A. Föppl etwas zu klein, hauptsächlich

wegen des Einflusses der Gabelungspunkte, den C. Weber10) untersucht
hat. Nach diesen Untersuchungen darf gesetzt werden:

C=Q.jd=:Q. 1,25 2^3^. (25)

Die Gleichungen (6), (7) und (24) umschreiben zusammen das Stabilitätsproblem

des auf Biegung beanspruchten Balkens mit I-Querschnitt. Eine
Lösung der Aufgabe in geschlossener Form mit elementaren Funktionen ist
nur bei konstantem Biegungsmoment Mx und bei konstantem Balkenquerschnitt

möglich. Unter diesen Voraussetzungen ist z. B. für einen einfachen
Balken wieder

m 7tx
<p (fm- sin —-.

Durch Differentiation der Gl. (24 a) und Einsetzen in Gl. (6) erhalten wir
für den einfachen Balken die Differentialgleichung

l2 „„ „ Mi • (p n (0f-,
—*m(p +(p ^^T^^0* (6)

Für M konst. erhalten wir durch Einsetzen von cp und seiner Ableitungen
direkt den Wert des kritischen Momentes zu

9) Bei I - Trägern mit ungleichen Flanschen ist für BFt. ein Mittelwert
2B0-BU: {B0-{-Bn) einzusetzen, der sich aus der Gleichgewichtsbedingung QFL QFL

ergibt (s. S. Timoshenko: Method of Analysis of statical and dynamical Stres&es in Ra>il.

Proceedings of the second Intern. Congress for applied Mechanics, Zürich 1926).
10) C. Weber: Der Verdrehungswinkel von Walzeisenträgern. Föppl-Festschrift.

Berlin 1924. Der Korrekturfaktor wird dort für einen Träger I B 22 mit 1,27 bis 1,28
angegeben.
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V#7 • c *L .r2" i/b2' • cMkr. ™
/ F /

01 ¦
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(27)

Das Kippmoment des I-Trägers unterscheidet sich vom entsprechenden Wert
für den Rechteckbalken durch den Faktor ßu der sich mit wachsendem

4C • l2
Wert von a2 ——— der Einheit nähert.

B2 • hl
Im allgemeinen ergibt sich die Bestimmung der Kipplast von I-Trägern

am einfachsten durch eine numerische Auflösung der Differentialgleichung
(24), wodurch der den Träger auf Torsion beanspruchende Anteil t

t=C-<p' (28)
des Drehmomentes T bestimmt wird. Die Integration von t bezw. das
Seilpolygon zu t' liefern dann die Verdrehungskurve cp.

Ein einfaches und recht genaues numerisches Auflösungsverfahren
derartiger Differentialgleichungen ergibt sich durch Betrachtung der
Eigenschaften des Seilpolygons, Fig. 10. Wir fassen t als Ordinaten des mit der
Poldistanz fi 1 gezeichneten Seilpolygons auf. t" sei die zugehörige Be-

m+i

m-7 1/77 m+i

Ax I Ax

S L/gne de Fermeture
ScZj/uss//n/'e

f/na/ //ne

Fig. 10.

*:

v
//=/

lastungsfunktion, deren Knotenlasten in den Teilpunkten wir mit K
bezeichnen. Nach Fig. 10 ist

*m r== t/n—i i" Uzlm • zj X,

i-m+i — *m i Uln Ax.
Beachten wir, daß Qm — Qn

Km —

- Km> so folgt aus tn

-1 2 Im "T~ lm+i
Ax

tm + 1 die Gleichung:

(29)

Setzen wir den Wert der Knotenlast nach Gl. (10) ein, so erhalten wir für
einen Zwischenpunkt in die Beziehung

lm-i 2tm + lm+i
C29a^lm-i t" 10rm -f- tm+x — 12-

Nach Ol. (24 a) beträgt

Ax2-

t" =1*-(t-T),
woraus in Verbindung mit Gl. (29 a) und wenn n die Zahl der Felder Ax
bedeutet, die dreigliedrige Gleichung

¦*„_, -(\2n*-a>) + tm.(24n*+ 10 a*) - tm+1 -(12«* —as)
aHT,„_l + \0Tm+ Tm+l) ZTm (30)
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hervorgeht. 2Tm ist eine abgekürzte Schreibweise, deren Bedeutung aus
Gl. (30) hervorgeht. Bei Unstetigkeits- oder Endpunkten ist 2Tm
entsprechend den Gleichungen (10 a) oder (10 b) zu modifizieren.

Gl. (30) läßt sich mit der Abkürzung y n2:a2 noch etwas einfacher
schreiben:

-(12^-1)4^ + (24 7+10) 4-(12/-l) 4m Tm^ + 10 Tm + Tm+X. (30a)
Eine derartige Gleichung gilt für jeden Zwischenpunkt in. Für die End- oder
Auflagerpunkte stehen uns folgende Randbedingungen zur Verfügung:

Auflagerpunkte. Bei freier seitlicher Drehbarkeit der Flanschen
muß t'A 0 sein, da t' C • cp", abgesehen von einem Multiplikationsfaktor,
ja dem Flanschbiegungsmoment entspricht, das an dieser Stelle null sein muß.
Nach Fig. 11 beträgt der Neigungswinkel der /-Kurve im Punkt A, wenn wir
geradlinigen Verlauf der Belastungsfunktion t" von A bis 1 annehmen:

0 ergibt sich zu

tA(6y + 2)-tl(6y-\) 2TA+Tl. (31)

Falls die Flanschen bei beiden Auflagern frei drehbar sind, ist es einfacher,

11

und die gesuchte Randbedingung t'A

Jz

Fig. 12Hg. 11.

in Gl. (30) mit den Werten t' und Tf zu rechnen, statt mit t und T. Bei
Verwendung dieser „abgeleiteten Gleichung (30)" fallen infolge i'A t'B^=0
einfach die beiden den Auflagerpunkten entsprechenden Gleichungen weg.

Falls die Flanschen seitlich starr eingespannt sind, besitzt ihre seitliche
Ausbiegungskurve und folglich auch die cp-Kurve eine zur Balkenachse
parallele Tangente im Auflagerpunkt: damit muß cp'A und deshalb auch tA null
sein. Damit fallen bei Anwendung des unveränderten Gleichungssystems
GL (30) die Auflagergleichungen weg.

Bei elastischer Einspannung der Flanschen drücken wir wieder den Ein-
spannungsgrad durch die Balkenabmessungen aus; es sei

h
WA *

Ma FI.

2 v • Bei. '

Die Differentialgleichung der elastischen Linie des Flansches lautet:
h Mael

Aus diesen beiden Ausdrücken folgt
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<Pa — <pa •

-j oder t\ — tA - j-,
und die gesuchte Randbedingung lautet:

tA • [6 y (l + ~) + 2] _ tt • (6 y - 1) 2 TA + Tx. (31a)

Freie Endpunkte. Für das freie Ende / beispielsweise eines Konsolträgers

läßt sich mit Hilfe der Gl. (10 a) eine zu Gl. (30) analoge Gleichung
aufstellen:

— U_2 -/;_! .(24y-6) + 6.(24y+7) - Tt_2 + 6 Tt_x + 7 7}. (31b)
Die Auflösung des dreigliedrigen Gleichungssystems zur Bestimmung der
Torsionsanteile t oder t' bietet keinerlei Schwierigkeiten.

Bei veränderlichem Querschnitt ist auch das von der Veränderung der
seitlichen Biegungssteifigkeit herrührende zweite Klammerglied der Gl. (24)
zu berücksichtigen. Dabei darf genau genug die durchschnittliche Veränderung

von B2 längs der Feldweite Ax eingesetzt werden. Für cp" setzen wir
angenähert > >ö ». <Pm+i — <Pm-i

9m 2Ax
wodurch wir im allgemeinen fünfgliedrige Gleichungen statt der dreigliedrigen

Gl. (30) erhalten. Zu beachten ist, daß auch die Werte a2 veränderlich
sind.
Der Berechnungsgang zur Bestimmung der Kipplast ist nun folgender:

Auf Grund einer angenommenen 99-Kurve wird nach Gl. (7) die Kurve der
Biegungsmomente M2 berechnet, worauf Gl. (6) die Kurve T' liefert. Bei
einfachen Balken (Flanschen frei drehbar) wird durch Auflösung des
^abgeleiteten Gleichungssystems Gl. (30)" die Kurve tf bestimmt, aus der das
zugehörige Seilpolygon die Verdrehungskurve cpx liefert. Die Bedingung a 1

{cpx cp0) liefert einen ersten Näherungswert der Kipplast, der durch Wiederholung

der Berechnung beliebig verbessert werden kann. In allgemeineren
Fällen (Einspannung) ist aus der T'-Kurve durch Summation die T-Kurve zu
berechnen, entweder unter Berücksichtigung der Symmetrieverhältnisse oder,
bei unsymmetrischen Fällen, unter Einführung einer überzähligen Größe TD,
wie bei gewöhnlichen statisch unbestimmten Systemen. Aus T folgt durch
Auflösung des Gleichungssystems Gl. (30) die Kurve t, aus der durch
Summation die Verdrehungskurve cpx bestimmt wird.

In Fig. 12 ist für einen einfachen Balken mit Einzellast P in Balkenmitte
der Verlauf der Kurven V M\cp:B'2 und, für die Werte a2 4, 40 und 400,
der Kurven t dargestellt, um den ausgleichenden Einfluß der Flanschbiegung
zu veranschaulichen. Die zugehörigen Werte der Kipplast betragen:

Pkr. 31,92 V*Jf- C
für a2 4

19,08 40
17,20 400.

Es liegt nahe, den Einfluß der Flanschbiegung auf dieselbe Form zu bringen
wie beim Balken mit konstantem Biegungsmoment (Gl. (27)), d.h. das
Verhältnis der Kipplast des I-Trägers zu derjenigen des Rechteckbalkens durch
den Faktor

ßy iTTJ^Ta^ (32)



416 F. Stüssi

auszudrücken. Mit der Vorzahl für die Kipplast des Rechteckbalkens
kQ 16,94 finden wir für die Werte a2 4, 40, 400 die Werte tu2 10,20,
10,76, 12,12, d.h. nicht mehr einen konstanten Wert, wie für M konst.
(^2 ^ n2J Wählen wir, um einen einfachen Ausdruck für die Kipplast zu
bekommen, hier p2 10,20 konst., so beträgt der dadurch begangene
Fehler auf die Kipplast für a2 40 bezw. 400 rund 0,6 bezw. 0,24 <y0.

Ähnlich wie im zweiten Abschnitt kann die Kipplast auch bestimmt
werden, wenn die Belastung nicht in Trägerachse, sondern auf Trägeroberkante

angreift. Die durchgeführten Berechnungen zeigen, daß der Einfluß
dieser Verschiebung des Lastangriffspunktes, den wir durch einen Faktor ß2
ausdrücken wollen, bei nicht zu kleinen Werten von a2 mit praktisch
genügender Genauigkeit gleich groß angenommen werden darf wie beim Balken
mit Rechteckquerschnitt.

ßz

fV^
6P kr

L'F ip
Fig. 13.

Die Werte der kritischen Belastung sind für einige häufige Belastungsfälle
des einfachen Balkens in Tabelle 1 zusammengestellt. Für den Konsolträger,

der ebenfalls aufgenommen ist und bei dem der Einfluß der Flanschbiegung

sich nicht in der gleichen Form darstellen läßt wie beim einfachen
Balken, ist der Faktor ßx den Untersuchungen Timoshenkos entnommen.

Bei gleichzeitig wirkender Längskraft ist die Berechnung analog wie
beim Rechteckbalken, nur ist statt Gleichung (20) die Beziehung

c(<p*
l2
LT2

cp ') Mi-y" (20a)

(bei konstantem Querschnitt) zu berücksichtigen. Die Gleichungen (21)
gelten auch beim I-Träger für M konst. genau und für allgemeine
Belastungsanordnungen mit guter Annäherung. In Fig. 9 ist für einen einfachen
Balken mit dreieckförmiger Momentenfläche für a2 10 der dem Wert
e 0,5 entsprechende Punkt C eingetragen.

4. Der unelastische Bereich.
Wenn an einer Stelle des Balkens die kritische Randspannung

Mkr.
Okr. w

die Proportionalitätsgrenze überschritten hat, so ändern sich die Biegungs-
steifigkeiten B und die Verdrehungssteifigkeit C und die im zweiten und
dritten Abschnitt abgeleiteten Beziehungen für die kritische Belastung gelten
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nicht mehr. Wären die Veränderungen von B und C im unelastischen
Bereich bekannt, so könnte die Berechnung der kritischen Belastung nach dem
dargestellten Verfahren, wenn auch mit vermehrtem Arbeitsaufwand,
durchgeführt werden. Der Bestimmung von B2 und C stehen aber wesentlich
größere Schwierigkeiten entgegen als z. B. der Bestimmung des Knickmoduls
7> bei gedrückten Stäben, sodaß wir vorläufig auf eine genaue Bestimmung
der Kipplast im unelastischen Bereich verzichten müssen.

Nun liegen aber, wenigstens für die Konstruktionspraxis, die Verhältnisse
recht günstig insofern, als aus der Kenntnis der kritischen Belastung im
elastischen Bereich mit einiger Zuverlässigkeit auch auf den unelastischen
Bereich geschlossen werden kann. Ein sehr kurzer Träger, 1 0, wird durch
Überwindung der Zugfestigkeit ßz an der gezogenen Faser zu Grunde gehen.
Aus Versuchen wissen wir, daß die Kippstabilität bei Trägern mittlerer Spannweite

in der Nähe der Fließgrenze oF versagt. Die Kippspannungslinie wird
also über einen gewissen Bereich in der Höhe oF verlaufen, um dann, von

25

20

75

7.0

05

Charge sur t'a/Le /nFer/eure
Last am unfern F/ansch
Load on Lower fLange

fr/r, cm
v6F 2.70t/cmZ

6p 1.90 */cm2

Charge sur Laxe de Lapoutre
Last in Bafkenachse
Load in ax/s ofbeam

Charge sur t'a/Le superieure
Lastam obern FLansch
Loadon upper FLange

1.0 2.0 JO 40 SO 60

Fig. 14.

70 80m t

einem gewissen Punkte E an, stetig in den den elastischen Bereich der okr-
Linie darstellenden Ast überzugehen. Über die Lage des Punktes E können
wir aussagen, daß seine Abszisse kürzer sein muß, als sie sich aus der
Verlängerung der elastischen Kippspannungslinie ergeben würde. In Fig. 13
ist der Verlauf der Kippspannungslinie im Sinne dieser Überlegungen
skizziert. Das Verhältnis von VF zu lP wird für verschiedene Belastungsfälle
verschieden groß sein. Fig. 13 zeigt aber, daß eine kleine Verschiebung des
Punktes F die Größe von ohr zwischen oP und or nicht stark beeinflußt,
sodaß Vt: Ip für eine bestimmte Stahlsorte als konstant angenommen werden
darf.

Für Baustahl St. 37 wird oP zu rd. 1,9 t/cm2 gefunden, während für oF
etwa 2,7 t/cm2 angenommen werden darf. Auf Grund dieser Werte ist in
Fig. 14 der Verlauf der Kippspannungslinien für einen einfachen Balken aus
I 20 bei gleichmäßig verteilter Belastung unter der Annahme

VF 0,5 -Ip

n) Der unelastische Bereich von Knickstäben wird in ähnlicher Weise durch die
Tetmajersche Gerade mit für die Praxis jedenfalls genügender Genauigkeit umschrieben.
Daß wir die Kippspannungslinie nicht über die Fließgrenze hinaus geführt haben, was
in Analogie zur Tetmajerschen Geraden auch in Betracht gezogen werden könnte, hat
seinen Grund in der Bewertung der charakteristischen Beanspruchungs- und Verformungs-
unterschiede zwischen Druckstab und Biegungsträger. In der Zugzone eines auf Biegung
beanspruchten Trägers treten während des Fließvorganges jedenfalls wesentlich größere
Formänderungen auf, als in einem Druckstab, sodaß dort auch die Fließgrenze einen
wesentlich größeren Einfluß auf die Stabilität haben wird.

Abhandlungen III 27
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und unter Vernachlässigung des Verfestigungsbereichs aufgetragen11). Die
Streuungen der Fließgrenze nach unten sind dabei jedenfalls dadurch
gedeckt, daß auf Biegung beanspruchte Träger bei Fließbeanspruchung, infolge
der nicht mehr linearen Spannungsverteilung, ein größeres Biegungsmoment
aufnehmen können, als dem Wert oF • W entsprechen würde.

Bei der Bemessung von auf Biegung beanspruchten Bauteilen ist somit
folgender Weg einzuschlagen: Aus den Trägerabmessungen ist zunächst okr
aus den Gleichungen des 2. und 3. Abschnittes zu bestimmen. Ist okr. > oP, so
daß VF\lP für eine bestimmte Stahlsorte als konstant angenommen werden

für

für

l ^ 0,5 • Ip: ökr. — oF

0,5 • Ip <^ / _l Ip: Okr. oF — (oF — op)
l — 0,5 • lP

~~Ö,5-lP

Der zu wahlende Sicherheitsgrad soll mit Rücksicht darauf, daß aRr für
einen praktisch kaum zu verwirklichenden Idealfall12) (gerade Stabachse,
Kiaftangriff in Hauptträgheitsebene, homogenes Material) abgeleitet wurde,
eher größer angenommen werden, als der Sicherheitsgrad gegen Erreichen
der Fließgrenze bei gewöhnlicher Biegung.

5. Gebrauchsformeln für I-NP-Träger.
Für die Anwendungen ist es bequem, die Kipplast für die am häufigsten

vorkommenden Belastungsfälle mit Hilfe einfacher Formeln mit praktisch
genügender Genauigkeit rasch bestimmen zu können. Deshalb seien hier
noch einige Gebrauchsformeln für einfache Balken mit / — NP - Querschnitt
mitgeteilt.

T abelle 2.

/ h w > J2 E Ja
1

W
96+7,7 h

c lr c
]B>'-C\

10 171 34,2 12,2 13,1 1,64 5960 174 173 19,8 4,45
20 2140 214 117 124 13,9 53400 250 250 22,5 4,74
30 9800 653 451 473 58,4 213800 327 327 20,6

17,8
16,1
14,9

4,54
40 29210 1460 1160 1210 174,1 590300 404 404 4,22
50 68740 2750 2480 2570 411 1321000 480 481 4,01
60 139000 4630 4670 4830 834 2582000 558 558 3,86

In Tabelle 2 sind die in Betracht kommenden Querschnittswerte für die
(deutsche) I-Normalprofilreihe auszugsweise zusammengestellt, wobei
angenommen wurde:

2100 t/cm2, G 3/8- E, Jd= 1,25-2"
h • d3

Es zeigt sich, daß der Querschnittswert ]/B2 • C:W sehr genau durch eine
Gerade dargestellt werden kann:

V b: • C
__

W 96,0+ 7,70- h,

12) Schon eine geringe Abweichung von diesen Voraussetzungen verursacht eine
nennenswerte Verminderung der kritischen Belastung. Vergl. F. Stüssi: Exzentrisches
Kippen. Schweiz. Bauzeitung 1935, Band 105, Nr. 11.
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also nur linear von der Trägerhöhe h abhängig ist. Damit lassen sich die
Grundwerte o\r der Kippspannung sehr einfach darstellen (Tab. 3).

Der Einfluß von Flanschbiegung und Lastangriffspunktverschiebung
gegenüber Balkenachse ist abhängig von den Werten a und a2. Da diese
beiden Einflüsse ja nicht sehr groß sind, setzen wir näherungsweise B2:C
konst. =- 20 und erhalten

0,20-
l2 l

a =-- 0.45 • *-
h

_ 4CW*^ ~ B2^h2 ~~ "~~ h'2

Damit ergeben sich beispielsweise für gleichmäßig verteilte Belastung p
folgende Werte der Korrekturfaktoren ß:

Tabelle 3.

Belastungsfall rimax ol t/cm2 ßi ß»

M - (302 + 24,2 li) 1 + 24,7 ~

p-l2 1

8
(340 + 27,2 h)

h2
1 + 25,0 ya

h h2iq 3,22^ + 5,2^
P-l 1

- (407 + 32,6 li)
h2

1 + 25,5 £. iq 4,00 *+8,0^
M - r (534 + 42,8 h)

h2
1+28,0^

fi
a c -4

iiiiiiiiiiiiiiiiiiinimiir

fi

gilt für akr ~= ok°r -ßX'ß2^ oP.

Einfluß der Flanschbiegung:

ßx }!\ + \0,0:a2 v ¦+
50 h2

/2
¦ + 25.;;.

Lastangriff am obern (untern) Trägerrand:

ß2 V 1 + 2>10 • al + M5 : * ^ 1 + 3,22
*

4- 5,2 ~".

Mit Hilfe der Zusammenstellung Tabelle 3 kann die kritische Spannung

Okr. °l. ' ßl ' 02

für den elastischen Bereich leicht berechnet werden. Damit ist auch lP,
diejenige Spannweite, für die okr aP wird, bestimmt, womit sich der
angenäherte Verlauf der Kippspannungslinie im unelastischen Bereich nach
Abschnitt 4 ergibt.

Zusammenfassung.
Die kritische Belastung (Kipplast) von auf Biegung beanspruchten

Trägern wird aus dem Vergleich von Formänderungskurven (Verdrehung
oder seitliche Ausbiegung) des seitlich leicht ausgebogenen Balkens bestimmt.*
Die Rechnungsgenauigkeit kann dabei beliebig gesteigert werden.

Der Einfluß der Flanschbiegung bei der Torsion von I-Trägern wird
durch numerische Auflösung der entsprechenden Differentialgleichung er-
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halten, wobei freie Drehbarkeit oder elastische bezw. starre Einspannung
der Flanschenden in den Randbedingungen ausgedrückt werden können.

Resume.
La charge critique des poutres sollicitees ä la flexion est determinee ä

partir d'une comparaison entre les courbes de deformation (torsion ou de-
flexion laterale) d'une poutre legerement incurvee. La precision du calcul
peut etre poussee ä volonte.

L'influence de la flexion des ailes en cas de torsion des poutres en I est
etablie par resolution numerique de Pequation differentielle correspondante,
les conditions d'appui des bords des ailes (torsion libre, encastrement
elastique ou rigide) pouvant etre exprimees dans les conditions des bords.

Summary.
The critical loading (buckling load) of beams and girders subject to

bending is determined by comparing curves of deformation (torsion or lateral
deflection) of a beam with slight lateral deflection. The accuracy of the
computation thereby may be increased as desired.

The influence of flange-bending with I-beams subject to torsion is
determined by the numerical Solution of the corresponding differential equation,
whereby the conditions of support at flange-ends (free support, elastic or
resp. rigid restraint) may be expressed in the marginal conditions.
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