Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 3 (1935)

Artikel: Elastisch eingespannte Saulen
Autor: Ngkkentved, Chr.
DOI: https://doi.org/10.5169/seals-4156

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-4156
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

-

ELASTISCH EINGESPANNTE SAULEN
COLONNES A ENCASTREMENT ELASTIQUE

COLUMNS ELASTICALLY FIXED
Professor Dr. techn. CHR. NOKKENTVED, Kopenhagen.

Einleitung.

In zahlreichen Fillen sind die in der Praxis vorkommenden Siulen als
einzelne Glieder einer Konstruktion elastisch eingespannt. Als Beispiel hierzu
konnen Druckstibe in Fachwerkkonstruktionen genannt werden, wo die
Knotenpunktssteifigkeit, die die sogenannten sekundiren Spannungen er-
zeugt, die elastische Einspannung darstellt. Man kann auch an Sdulen denken,
die Bestandteile einer Rahmenkonstruktion sind; hier behandelt man die
Saule in Wirklichkeit als einen gebogenen Balken, dessen Momente man aus-
schlieBlich aus der Rahmenwirkung bestimmt. Erst bei der Bemessung der
Sidule nimmt man Riicksicht auf die Sidulenbeanspruchung, doch wurde dies
bisher nicht korrekt durchgefithrt. Weiter nimmt man keine Riicksicht auf
den EinfluB, den die Sdulenbeanspruchung auf den iibrigen Teil des Rahmens
ausiibt; dieser EinfluB kann in gewissen Fillen von Bedeutung sein, da sich
die Momentenverteilung in der Siule infolge der Sdulendurchbiegung dndert;
damit dndern sich die Momente in den elastischen Einspannungen der Siule,
sodaB kein Gleichgewicht mehr in dem betreffenden Knotenpunkt herrscht.

Im ersten Abschnitt dieses Artikels soll der ganz allgemeine Fall be-
handelt werden, daB eine Siule teils durch eine Belastungsflache (Querkrafte)
und teils durch Einspannmomente beansprucht ist. Im zweiten Abschnitt
werden Siaulen behandelt, die jeweils das einzige belastete Feld der Kon-
struktion darstellen, im dritten solche, die nur durch Einspannmomente be-
ansprucht sind, und schlieBlich soll der vierte Abschnitt zeigen, wie man den
in den Formeln enthaltenen kritischen Saulendruck, Pg, bestimmt.

Es werden nur Systeme mit geraden Stiben und konstantem Tréagheits-
moment innerhalb eines jeden Stabes behandelt.

I. Elastisch eingespannte Sdulen, beansprucht durch Querkrifte
und bereits vorhandene Einspannmomente.

Die in Fig. 1 gezeichnete Sdule ab wird durch die dargestellte Be-
lastungsfliche belastet gedacht; die Belastungsfliche zusammen mit even-
tuellen Belastungen von anderen Teilen der Konstruktion erzeugt die bereits
vorhandenen Momente in a und &.

Mab,o — Mo
Mba,o =c-M, (1)
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Unter den bereits vorhandenen Momenten versteht man solche, die sich
ohne Beriicksichtigung der Siulenwirkung vorfinden, z. B. die einfachen
Rahmenmomente, die man unmittelbar aus einer gewohnlichen Rahmenberech-
nung erhalt?).

Unter dem Siulendruck P biegt sich die Siule weiter durch, wodurch
die Reaktionsmomente 4 M,, und 4 M,, entstehen. Die resultierenden Mo-
mente sind dann:

Myp = Mab,o + A Mgy } (la)
My, = Mba,o + A My

Hieraus erhalt man:

AMab = Mo — M,
AMba = Mba"_CMo } (lb)

Die resultierenden Winkeldrehungen in ¢ und & ergeben sich dann zu:

L o
g — OEJ M0(2 + C) + Uoq (Mab Mo) Tab } (2)
£p = ()ll‘fj Mo(2c+ 1) — cop + (Mpa — ¢ M,) 144 J

7. und 7, ist ein MaB fiir die elastische Einspannung in a beziel1ungsWeise
in b, da t,, die Winkeldrehung der Einspannung in « fiir das Moment
Mab = 1 ist 2).

P
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Fig. 1.

ao, und a,; sind die Winkeldrehungen in den Punkten @ und 4, wenn
die Belastungsflache auf den einfach unterstiitzten Balken a & einwirkt; beide
Winkeldrehungen werden positiv in der gleichen Richtung wie M,, und M,,
auf der Abbildung gerechnet. Ausgedriickt durch den Inhalt F der einfachen
Momentenfliche und ihre Schwerpunktsabstinde & und & von a4 beziehungs-
weise &, sind die Winkeldrehungen:

[94 — ———-FS, P [04 — ————FE
= JEJ’ °° — JEJ 2a)
, F¢&' o,
oder: HabCog — l—f; HabCob — f;f

1) Eine Untersuchung von Siulen, die durch bereits vorhandene Momente in den
Endpunkten beansprucht sind, ist von D. H. Youna durchgefiihrt im ersten Band der
,,Abhandlungen*‘, Ziirich 1932, herausgegeben von der ,Internationalen Vereinigung fiir
Briickenbau und Hochbau‘, S. 507. Youna behandelt jedoch nur einfach unterstiitzte
Sdulen, weswegen die Untersuchung sehr begrenzt ist.

2) Im wesentlichen werden die gleichen Bezeichnungen gebraucht wie in A. OsTen-
FELD: Die Deformationsmethode. J. Springer, Berlin 1926.
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Wir fithren hier den Begriff ,Steifigkeitskoeffizient* fiir die verschie-
denen Stdbe?3) ein, ndmlich:

ab le
ey = %,, (3)

wo J. und /., ein konstantes Trigheitsmoment bezw. eine konstante Linge
bedeuten; wir fithren ebenso ein:

Coq = Coq ”%; Oop = Qop Ee
und analog fiir andere GroB8en: (3a)
D -/ SR -/

Fiir die Gleichungen (2) kann man nun schreiben:

1
Uap s = M, ( (2 +¢) + tasvan + Hab % ) — Mo ttapTiop
M,
=M, éaa — Mgp ap z7ab
| ., 4)
‘“abz.:é = —M, (“6 (2(3 -+ 1) + Cltas Tba + Lub_oq) + Mba;“ale;a.
= — MoCc;b + Mo tiap Tha
Hierbei ist:
Zz;a = 6 (2 + c) -+ Uab Tab -+ ‘Llab aoa ]
Mo (4a)
Lot == ~~(2C+ 1)+cuab'[ba+ Mab Cob [
Lo

Aus dem Aufbau der Formeln (4) ersieht man, daB die Groé8e M, ’,,
die Winkeldrehung des Punktes a ist, die von einer Belastung links auBer-
halb des Feldes herrithrt. Dies erkennt man auch, wenn man den ersten Aus-
druck in (4 a) umschreibt zu:

1 la a(;ll ’ ’
6‘(2"|‘C)+ ‘l/["/lo :Coa“ﬂabfab-

Die linke Seite dieser Gleichung gibt die Winkeldrehung des Balkens a &
im Punkte a an, die rechte Seite muBl dann die Winkeldrehung der Einspan-
nung ausdriicken; {’,, rithrt her von einer auBerhalb liegenden Ursache,
ttap - Tap Vvon der Einwirkung des Balkens « & auf die Einspannung.

Entsprechend bedeutet M, -{’,, die Winkeldrehung des Punktes &, die
von einer Belastung rechts auBerhalb des Feldes herriihrt.

Mit Mys = K- My (5)

findet man das Moment M, in einem beliebigen Punkte des Balkens mit dem
Abstand x von a:

M= Py + M’ % 4 KMay 5 4 My (6)

3) Siehe OsTENFELDS obenerwihntes Buch.
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M, , ist das statisch bestimmte Moment, wenn die Belastungsfliche auf den
einfach unterstiitzten Balken a & wirkt.

Die Differentialgleichung der  Biegelinie ist:
. d?y Il —x+ Kx
dx?
Durch Integration findet man:

= — Py — Mg

— My, (7)

L ; b | —x+ Kx My, o
y = C;cosax + C,sinax — P ] P
My 1 Me, 1
de®  Pa? dxt  Pa* : (8)
Hier kann man einsetzen:
dng,o - . !fi4Mx,o . dgpx
7 I S B S ’
[P

wo p, die Ordinate der Belastungsfliche ist und a = ‘/ E—j
Die Lésung der Differentialgleichung enthilt eine Reihe von Differential-
quotienten von p,.. Kann man p, in einer endlichen Potenzenreihe ausdriicken,

4) Diese Integralform kann ganz allgemein wie folgt angegeben werden:

Die Differentialgleichung:
d?y

dx? = ,_aZy _'f(x)
hat das Integral:
44 I'V‘
y = C, cos ax + C, sin ax — f% + faix) _f agx) ..... (8a)

Wenn f (x) eine Funktion ist derart, daB
Jr@) =—0f(x); ) =—b2" () e

so erhidlt man:

y = Cycos ax + Cysinax— f(x)( + + + ----- )
(8b)
= C, cos ax + C, sin ax — azf—(f)bz
Beispiel: f (x) = ksinbx
y = C,cos ax + C, sin ax — i:ljl;ﬁ .
Wenn f (x) eine Funktion ist derart, dal
. ) =064(x); fN(x) =462 (x) -
so erhalt man:
2
y == C;cosax 4 C, sin ax — f(x) ( —b———+ yaie SRR )
(8¢)
. f(x)
= C, cos ax + C, sin ax — pEp

Beispiel: f (x) = ket*

—C . keb®
y = 1cosax+Cgsmax—mn
Die zwei Integrale (8b) und (8c) gelten gleichgiiltig, ob

i>1 oder ‘b~<1.

Im allgemeinen kann man den Ausdruck (8 a) nur gebrauchen, wenn die Relhe kon-
vergent ist.
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so wird die Anzahl der Differentialquotienten ebenfalls endlich. Um fertige
Formeln ableiten zu kénnen, wollen wir voraussetzen, dal p, eine endliche
Potenzenreihe ist, wo x héchstens in der 3. Potenz vorkommt; dabei wird dann
der Ausdruck fiir y nicht mehr Glieder als die aufgeschriebenen enthalten.
Gleicherweise wollen wir voraussetzen, dafl p, eine kontinuierliche Funktion
ist, da man sonst keine durchgehende Integration durchfithren kann.

Wenn diese Voraussetzungen nicht zutreffen, muBf man eine besondere
Berechnung auf Grund der allgemeinen Gleichung (8) durchfithren.

Unter den gemachten Voraussetzungen hat man:

— 2
y = C,cosax+C, sinax—ﬂﬂml x+Kx—~——M""’-—-£i+ @ps 1

P l P Pa*  dx? Pa* ©)
dy . My K-1, Q0 ap. 1 d3px 1
L — — o > XN TFX, © TP . T
p aC,sinax+aC,cosax P / D dr  Pa® 4 Pak
Die Bedingungen x = 0, y = Ound x = [/, y = 0 geben:
. Mab PA |
C= Tt TPt 10)
C. — Mgy , K—cosal  pgp—pacosal  pacosal-—pp
? P sin al Pa® sin al Pa* sin al
. = (EE) 5 = (T
WO /JA——(dx2 " PB = dx? g
. . dy .
Die Bedingung x = 0, P £, gibt
.t o ’ ____Mab 1<_~ Cos:al_Mab
HabCa = M;Coa Map ap Tap = al sin al (al)g(K 1) (10 )
a
+p312——p,412cosal R4l +pﬂ,l4cosal——p}§l4_p,'413 pal®
(a)3sinal  (al)? (al)®sin al (a)t " (al)"
Hieraus findet man: |
. Ca (al)? sin al
Map = fao + K al — sin al’ (112)
-wo ¢, und f,, unter den Formeln (11) angegeben sind.
Die Bedingung x = [, % = {, gibt:
) , , sinal —cos al
Uap Co = = Mo Cop+ Map Kttap Toa = ~Map—_7— + Map KaTsEﬁf - cos al
K-1 Rgl  ppgl®cosal—-pal* ppltcosal—pylt
_ S ST ok . ! ! 10b
Mas (al)? + (al)? (al)?sin al (al)®sin al (10b)
_psl | pEl®
(al)* " (al)®
Hieraus findet man:
2 Q1 ’
Mas ¢ (al)’sinal (11b)

= Kfeat1 al—sinal
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Man setzt die zwei Ausdriicke fiir M,;, (11 a) und (11 b) einander gleich und
erhilt:

Ca . ___Qb__
fas + K Kfsa + 1 (10¢)
Ca— Cofab
= —= 11
cb — Cafba ( C)

Wir haben nun folgende Ausdriicke zur Berechnung der Momente:

Map = Ca foa — o . (al)2 Si_n_a!
&b o fee— 1 al—sinal
i Ch fab —:ﬁ i (al)2 sin al _ )
/‘naa o fabfba'—l al - sin al K Mab
_ Ca— Colab
K= Co — Cafb
_ Uaptap(al)Esinal-alcosal+sinal _ Map Tha(al)?sinal—alcos al+sinal
fas = al-sinal s foa = al—sinal
Moy Ral | paPcosal-pgl® pyltcosal-pplt pil pil®
o = Mozoa™ ;e ™ ™ (al)3sinal (@lsinal " (al)* (al)®
. ., Rpl pplcosal-pal> pgltcosal—pylt ppl® p};rl:’ 11
e = /W"go‘bJr(al)2+ (al)®sinal  (al)®sinal (al)* * (al)® (an
’ 1 ’ Of, -t 1 ’ "
Coa = = (2+0) +ttapTap + 20505 Loy = (20 1) +C tap Tha + -2
6 R 6 Mo
al = Fpl;
. sin a (/—x) sin ax
M= Mas Sﬁ‘l'c)llgw + Mpa al’TLZ?
1 ( , Sina (/- x) , Sin ax )
+(al)2 PAl =gna 7B Ginar P )
1 ( » g Sina(l-x) ,  sinax d?p, 4)
@) A8 e PP Gnw T e J

Man ersieht aus der Formel fiir M,, daB alle Glieder mit Ausnahme von
zwei sinal im Nenner und sina x oder sina (/ — x) im Zihler enthalten.
Ist al = =z, so ist sina/ = 0 und sina x = sina ({ — x). Alle diese Glieder
kann man also ordnen, sodaB man die Funktion sina x erhilt, die mit einem
Faktor multipliziert wird, dessen Nenner null ist und dessen Zihler eben-
falls null sein muB, damit der Faktor endlich bleibt. Man erhilt dann:

2 ’ " 4
Mas + Mpa = ——M pa) ! - (pa+ pa) ! (12)

7c? Tt

Fiir volle Symmetrie, sowohl in Belastung als auch beziiglich Einspannungen,
erhalt man:



M, und M,, sind also in diesem Falle unabhingig von M, und u7'.

Werte f,, oder f,, fiir verschiedene Werte von w7’ und

ert
so die Werte fiir die Funktion (297sine!

Elastisch eingespannte Sdulen

Mab:Mba: —

pal?

72 T

+

palt

4

361

(12a)

Zur Beniitzung bei der Ausrechnung sind in der folgenden Tabelle die

V—{)— angegeben, eben-
PE

al—sinal’

al P (al)? sin al S

w V Pp| al—sinal |\"r o " 025 | 050 | 1,00 | 300 | 500
0, 6,000 2,000 3,500 5,000 8,000 20,00 32,00
0,125 5.910 1,985 | 3483 | 4040 | 7,900 | 19,72 31,54
0,250 5,580 1,040 | 3335 | 4730 | 17520 | 18,68 20,84
0,375 5,040 1,860 3,120 4,380 6,900 16,98 27,06
0,500 4,330 1,750 2,872 3,920 6,080 14,74 23,40
0,625 3,430 1,631 | 21488 | 3350 | 5060 | 11,92 1878
0,750 2,385 1,444 2,040 2,637 3,830 8,60 13,37
0,875 1,225 1235 | 1541 1,847 | 2460 | 401 7.36
1,000 0 1,000 | 1,000 | 1,000 | 1,000 1,00 1,00
1,10 — 0,978 0,793 0,549 0,304 | — 0,18 | — 0 ,570
1,20 1,910 0564 | 0086 |— 0,391
1,30 — 2770 0328 | — 0,365 | — 1,057
1,40 — 3,450 0,0776 | — 0,785
1,412 — 3,520 0 — 0,880
1,50 3800 |—0175 | 1148
1,60 — 4,020 — 0418 |
1,70 —3750 | —0,641

1,80 — 3,020 — 0,826
1,90 —1,760 |—0,952
2,00 0 — 1,000
Da man fiir f,, schreiben kann:
, (al)?sinal
fab = fz' + Mab Tap ( ) (12b)

al — sinal
wo f; dem Werte w7’ = O entspricht, d. h. den in der 3. Spalte der Tabelle
angegebenen Werten von f, kann man sehr leicht durch Interpolation den

richtigen Wert von f,, finden unter Beniitzung der drei ersten Spalten der
Tabelle.

II. Die betrachtete elastisch eingespannte Sdule ist das einzige

Mab

= 1= fasfoa

val?

(al - sin al)*

Loa — Lob = 0.
Setzt man dies in den Formeln (11) ein, so findet man M,, und M,,.

Besonders sei angegeben:
EinfluBlinie fiir M,,:

+ t—x— cosal—cosa
/ l

(l—x)>+sin ax + sina(l—x)—sinal] J

belastete Feld; Belastung durch Querkrifte.
- In diesem Falle ist:

l‘“ab Tab (al)? (Sin a(l-x)- I—Tx sin al) l

(13)

(14)
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Fiir gleichmiBig verteilte Totalbelastung erhilt man:

lsin al___L:,C,OS a_{
b T Fab Fra al — sin a/ )

IIl. Elastisch eingespannte Sdulen, die nur durch Einspann-
Momente belastet sind.

In diesem Falle erhialt man:

- 1 »
e = MyCop = M, (—6— (2 + c) + Uab tab)

, g ,
Cp = MoCob = M, (F(ZC‘!" 1) + Cz“abTba)

ga fba - :Céb . (01)2 sin al
® fasfra—1 al —sinal

Cov fas — Loa (al)?sinal

Mpp = M

(16)

Mba: Mo fabfba——l . al——Sin al - K.Mab
_ ga - -éb fab

K o Co,b - Ce;a fba
. sin a (/ — x) sin ax

Me = Mav —gnar + Moa Gy

Die Formel fiir M, zeigt, daB M, eine periodische Funktion ist; die halbe
" Periodenlinge findet man, indem man

" 7T
ax, = r setzt; x}= -

Wenn x, = [, d.h. al = = ist, findet man M,, = — M,,; da al = “V,Tp ist,
T E
hat man also fiir P =1, ohne Beriicksichtigung des Wertes von 7/,5, 7',
E
und den bereits vorhandenen Momenten, M,, = — M,,.
Durch Differentiation des Ausdruckes fiir M, findet man:
— 1 2 ? Y
Mmax_——- Mabm‘V] +K —Z:KCOSalr. (17)

Die Stelle von M, ist bestimmt durch den Abstand von & durch die
Gleichung:

| __ K—cosal

tg ax — ——m— . (173)

Die Formel fiir M,,,, soll angewendet werden bei:
My, - sec al > Myp > My, cos al
Fiir My, << My, cos al ist M,,.. — M, und befindet sich in & (17b)
» Map >!Mba secal , Mpusy = Mpp ” » n a
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Besondere Falle.

Mit den angegebenen Formeln kann man den allgemeinen Fall be-
handeln. Wir wollen besonders den Belastungsfall betrachten, wo eine Be-
lastung in einem Feld links vom Punkte a Momente in der Siule erzeugt,
wihrend die Konstruktion rechts von a unbelastet ist.

In diesem Falle hat man:

e p 1 ’
Cov = '6—(25 == 1) + ClUawpThy = 0
1 1
CT T T S | 19
r 1 1 + 4 ab";éa ) ’
LT 4 B T
_ ;;a fba (01)2 sin al )
Map = M, :‘abfba— 1 al—sinal (19
K - fba
Fiir al/ = 0 wird der letzte Ausdruck zu:
1
K= 2 + 6[Jabrl’m —¢
1. Volle Einspannung in b.
Es ist: r,,a =0 } (18a)
oa = % +Mab7;ab, c = — %
. % + v 'Ea(,)f, (al)? sin al
May = M, fawfi—1  al—sinal
(19a)
K _ 1 f'“:—alcosal-}—smal J
- f,' ’ P al — sin al

[: ist der Wert, den f,, oder f,, bei voller Einspannung annimmt.

M q findet man im Punkt a fiir al <1z V2.

Fiir al =1 JIVZ findet man M,,,, aus der Formel (17).

Fig. 2 zelgt den Verlauf der Momente M,,, My, und M,,,. bei verschie-

2 .
denen Werten von a /. Als Abszisse ist ‘/11; f;l aufgetragen (Pr = i l‘,El ,
- D

d. h. der Eulerwert fiir eine an beiden Enden einfach unterstiitzte, mittig be-
lastete Siule, die unterhalb der Proportionalititsgrenze beansprucht ist) ; als
Ordinaten sind die Werte der Momente aufgetragen, wobei M, gleich 1,0
gesetzt ist; es ist eine Schar von Kurven fiir verschiedene Werte von u,, v,
gezeichnet.

r
Pe
wichst ebenso von Null an, so sieht man, da M,, abnimmt und M,, wiachst;
das letztere leuchtet ohne weiteres ein. Das Abnehmen von M, entsteht als

LiBt man fiir e’irle Sdule die Kraft P von Null an wachsen, d.h.
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Folge der Einspannung oben, weil die Sdule bei wachsendem P zum stirkeren

Ausbiegen neigt und dabei die Einspannung oben entlastet. Wenn ‘/1@ =V2
SO ; E

ist, wird M,, sogar Null und wird dann fiir noch gréBere Werte von P
negativ. Dieser Ubergang von positiven Werten iiber Null zu negativen
Werten muBB eben auch eintreten, in dem MaBe wie P wichst.

11
Mo
- 0Ll |
29 &7
S L] |
18
Mmax | § /
177 g
/.
- L]
15 8
9 N
4 CHIS/SF © v
SIS/ o ‘?A
13 N7 S o
I | ;
12 % / / X
y /AR Ry,
70 //// / /
/ = T
N — p \\'\ /
0,‘9 ~ — = ~ \\
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g8 ~ > T\
MR L KGN
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o5 AT AN W )
o \[\ i
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4 \ \
\
ar \
0 Q7 0z G5 04 05 g6 Q7 48 49 10 17 72 13 14 15 16 17 18 19 2,0!/7,/2
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I
a3 3 —1
04 ] ——
g5 —
Fig. 2.

M. se trouve a une distance x du point A.
M,... befindet sich im Abstand x vom Punkt A.
M,,.. occurs at a distance x from point A.

/ _
M., befindet sich im Punkt a und ist gleich M,;,, solange ﬁp— =1iy2.
\X/achst ‘/—~ iiber diesen Wert hinaus, so entfernt sich die Stelle von M,,,,
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vom Punkt a. Der Wert %

unten auf der Zeichnung angegeben.
—

fiir den Maximumspunkt ist durch eine Kurve

Fiir V[? = 1 (d.h. al = =) ist, wie schon gesagt, M,, = — M;,. Die
E
entsprechende Momentenkurve zeigt Fig. 3.
M
Mo

. ﬂ - T

18

; il
. 9]
. []] /
' o 1

13
N
12 5

3 0p
\n
—

—3
200
0
s
2

& %
77 /Q %,
),
10 | //// y
d . /// A'/ ,
. 7y
’ +M, R
07 48 - //// <y
96 /‘/é/ 7 53
4 = L >
05
04
03
92
01
0 47 07 43 97 45 06 G7 08 03 10 17 12 I3 14 15 16 17 18 19 2,01/70/3
£
Fig. 2a.

Man beachte, daB die Linie a, b, Tangente an die Momentenkurve im
Punkt &, ist. Dies erklirt sich daraus, da das Moment in einem beliebigen
Punkt in zwei Teile zerfillt:

1. M,, das unmittelbar von den Momenten M,, und M,, in den Endpunkten
der Siule erzeugt wird, und

2. M,, das das Moment P -y ist. Da die Siule in & eingespannt ist, muB
Fiir 1 = V2 ist, wie schon gesagt, M,, = 0 fiir jeden Wert von

“E
tap T ap. Wie wir bereits gesehen haben, nimmt M, ab, wénn P wichst. Lassen
wir nun P wachsen, bis M,, = 0 ist, so muBB P fiir eine an einem Ende ein-
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gespannte, am anderen Ende frei unterstiitzte Sdule gerade den Eulerwert
erreicht haben, d.h. P = 2 Pr. Bei kleinerem P wiirde sich die Sidule aus-
zurichten suchen, in a wiirde dann ein Moment entstehen; bei gréoBerem P
wiirde die Sdule die Tendenz haben, auszubiegen, wobei in a ein Moment
entgegengesetzt dem erstgenannten entstehen wiirde. M,, nimmt deswegen

den Wert Null an, wenn ‘/g = V2 ist.
E

am¢

X

Mz

. HMab
% c!

) b
R T

/o= /bt

Fig. 3.

Bei einem gewissen Wert von ‘/71;- abhingig von u,, v'4, findet man, daBl
E

My, M., und My, alle o werden. Der entsprechende Wert von P ist die
kritische Belastung der Siule, ohne Riicksicht auf die GroB8e der bereits vor-
handenen Momente, daher auch fiir eine mittig belastete Siule giiltig. Alle

Kurven in Fig. 2 haben fiir entsprechende Abszissen ('/g) lotrechte
E ) krit.

()4
" E Tk {s

20
‘l
15 T 1
W \ ‘l
Y V\ m|
,,H\\ \~_ u ﬁ_:
70 SEEESS S8
a5
0 - | T +HHHH /
S e B H By Sy e e ey A

Fig. 4.
Asymptoten. Fiir 7/, = 0 (volle Einspannung) ist die Asymptoten-Abszisse

Ll 2, fiir ©’,5 = oo (einfache Unterstiitzung) ‘/—p— =1v2.

Pg Pg
In Fig. 4 gibt die voll ausgezogene Kurve die Abhingigkeit zwischen
o
tas T'ap (Abszisse) und dem kritischen Wert von Vg (Ordinate) an. Wie
E

man spater im IV. Abschnitt sehen wird, ist die GroBe (V]gf ) gleich dem
krit.
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Verhiltnis zwischen der wirklichen und der freien Sdulenlinge. Wir setzen

F [
deshalb (‘/»—) = =,
Sha PE [ writ. s

2. FEinfache Unterstiitzung in 4.
Man hat hier:

Tb’a:OO

’ 18b
COII— +.“ab'[ab, c=20 ( )
My = M, 2 3+ Mas T (al)® sin al
ab —
a [ — sin al
fab ‘ ¢ (19b)
Mp, =0; M, = Mgy Slﬁ_ajl ,-.,_,,_),; Mopax = Map

sin al sin al

Aus der letzten Formel erkennt man, daB fiir al< i Moy = Mgp ist und sich
im Punkt a befindet. Fiir a /> 5 " befindet sich Mmax in dem durch die Glei-
chung bestimmten Punkt:

a(l—x) = f; S

2 V

Die M,, und M, entsprechenden Kurven zeigt Flg. 5, die analog der Fig. 2
gezeichnet sind.

Wie in Fig. 2 nimmt M,, mit wachsendem V£ ab; fiir Vﬁ = 1 ist
Pr Pg

M, Null, was auch ganz einleuchtend ist. Die Abhingigkeit zwischen ., 7’4
und ('/
P l

AuBerdem ist die Abhingigkeit zwischen u,,7" und ( *) = — fiir
PE krit IA

gleichgroBe elastische Einspannung in @ und & als eine strichpunktiérte Linie
dargestelit.

) _ L zeigt Fig. 4 als eine punktierte Kurve.
pE krit. s

3. Einfache Unterstiitzung in a.

Will man die in diesem Artikel gewonnenen Resultate in den gewohn-
lichen Rahmenberechnungssystemen verwenden (dies soll in einem spiteren
Artikel geschehen), so bendétigt man das Moment, das der Winkeldrehung
¢’, = 1 entspricht. Dieser Wert von M,, wird g,, genannt.

Man findet g,, unter Beniitzung von (10 a) :
v _ Mgy K—cosal

Hab Ca = : : 3 (K )
al sin al (all) (202)
Sll’l a
= My (K -+ fz) W

f: ist der Wert von f, bei voller Einspannung.
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Setzt man hierin

=1, My = oa und K = — fl (siehe (19)),
ba
so erhilt man:
. foa (al)? sin al
Qab - luab ifba il'— 1 . al-—— Sin al (20)
Vi

;7 Tax ‘I
s /]
" , //i
M 537§§’°~: )
3 IPNe S T o
12 1//l/

” v/

10 ) // 4‘?_73=

s i s e Y P T -
* Q\J\\ :
a6} . N N ))<(.)~\ g
N e {‘:ﬂ@
a7 N XNORN I
h < \‘.%\o‘ \ [
N, N\ \
” RO —
NARY
a5 -\ ‘\\\
Mot \ \L\\\\\
04 R R
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a3 R
% T“i
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I /2 £
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.-g2|— N
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g4 ~
5
26 = -
a7
26
a9
70
Fig. 5.

M, se trouve A une distance x du point A.
M,,,. befindet sich im Abstand x vom Punkt A.
M. occurs at a distance x from point A.
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IV. Bestimmung von P
Um die Kurven in den Figuren 2, 4, 5 und 6 und die angegebenen

: : 2
Formeln anwenden zu koénnen, mufl man den Ausdruck Pp = ﬂlfj» etwas
naher betrachten; er ist bekanntlich die Eulerformel, und es bestehen dem-
nach keine Schwierigkeiten, wenn die Spannungen in der Siule iiberall unter-
halb der Proportionalititsgrenze liegen. Uberschreiten dagegen die Span-
nungen diese Grenze, so variiert der Elastizititskoeffizient mit der Spannung,
die selbst von Punkt zu Punkt sowohl iiber dem Querschnitt wie auch in
Liangsrichtung der Siule variiert. In diesem Falle 14Bt sich daher eine exakte
Berechnung nicht durchfiithren.

Geht man indessen auf den Gedankengang ein, der der Engesser-Karman-
Formel zu Grunde liegt und von P. M. Frandsen?) weiter entwickelt ist, so
kann man mit guter Anniherung mit dem Wert von E rechnen, der der mitt-

leren Spannung der Saule, d.h. ¢ == 1; entspricht.

Ist also o groBer als die Proportionalititsgrenze, so mufl man den ¢ ent-
sprechenden Wert von E bestimmen und ihn in die Eulerformel einsetzen.
Die Bestimmung von £ kann unmittelbar mit Hilfe der Arbeitskurve des
Materiales erfolgen. Da man diese jedoch selten zur Hand hat, soll hier ein
anderes Verfahren angegeben werden.

|
i
1
| —
A K/ 7/
{

Fiir jedes Material gilt nach Engesser-Karman und P. M. Frandsen, daB
man den kritischen Sdulendruck fiir eine mittig belastete, einfach unterstiitzte
Siule aus der modifizierten Eulerformel finden kann:

7/25
Okrit. — Alll—fl"/ (21)

wo E,; den o;,,. entsprechenden Wert des Elastizititskoeffizienten bedeutet.
Den Wert von oy,,. fiir die verschiedenen Materialien findet man gewohn-
lich mit Hilfe der sogenannten Siulenformeln, z. B.: Stahl:

) n*EJ .
Okrit. — E flir — op. < op

AR
Oppit. — OB — }'(7 fir — ope. > 0p

5) Zeitschrift des Technischen Vereins Kopenhagen, 1920, S. 139—151, und Erster
Band der ,,Abhandlungen‘‘, Ziirich 1932, herausgegeben von der ,Internationalen Ver-
einigung fiir Briickenbau und Hochbau‘, S. 195203,

Abhandlungen III. 24
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Sprode Materialien:

it = P usw.

Betrachtet man nun die verschiedenen Siulenkurven als , Eulerkurven

. . : . P
mit variablem E‘, so kann man den einem gewissen Wert von ¢ = F ent-

sprechenden Wert von £, als Punkt der Sdulenkurve mit der Ordinate ¢ finden.

Wenn dieser Punkt die Abszisse llk hat, so findet man:

a2 E i 0 [*
R —A——r% ; £, = (22)

r2i?

Hieraus erhalt man:

N s B
L L 23)
/ 1')1" OF f"E] {: if__ﬁ lk.f l" lk J

‘/[5 kann also gleich dem Verhédltnis zwi-
E

schen der wirklichen Sdulenlidnge /und der Sdulenlinge
[, gesetzt werden, fiir die o die kritische Spannung ist,
oder P der kritische Druck, wenn die Sidule als einfach
unterstiitzt gerechnet wird.

Der Wert von

P

Hieraus sieht man auch, daB fiir ('/p )
: E /krit.

[, gerade die sogenannte

freie Saulenliange /; ist.

Selbstverstiandlich kann man gerade so gut das Zwischenglied o ein-
schieben, das man aus Formel (21) findet:

7r? El./

o = (24)

wo E; = Ozlfg ist und /, als Abszisse (multipliziert mit /) des Sdulenkurven-
7272
punktes mit der Ordinate o gefunden wird.
Beispiel :

- ' |
Man soll fiir einen Wert o l/ g = bestimmen unter Beniitzung der
E &

Parabelformel bei dem betreffenden Material.
Aus der Parabelformel findet man:

(lk \)2 ; . /03 — 0
0= op — ogr\ ] ; =[]/ —
L B L/ % ‘ oB”
Y S APV e (25)
} OF o l/; o ‘ op— O

Soll man fiir das Material die Rankineformel beniitzen, so findet man:
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o= B lk_,-‘/%—-o
el h)
)
‘//0 — i_ — é ‘// (04 . (25a)
OF I I ¥V op—o

Einen ganz allgemeinen Ausdruck, giiltig fiir alle Materialien, kann man aus
dem oben erwahnten Artikel von P. M. Frandsen ableiten; man findet:

lk - i Y 2 = (26)

[ 1/ 6 (05— 20p) + op*

wo op die Bruchgrenze (FlieBgrenze bei Stahl und anderen weichen Mate-
rialien), op die Proportionalititsgrenze und E, die GroBe des Elastizitats-
koeffizienten bedeuten.

Fiir Stahl kann man’ setzen:

op
op=4%o0p und » = —> .
& 4 E,
Fiir sprode Materialien:
op
op=0 und o= —, .
7c? £,

Setzt man diese Werte in (26) ein, so erhdlt man (23) bezw. (25 a).

Zusammenfassung.

Viele von den in der Praxis verkommenden Saulen sind in den Endpunkten
elastisch eingespannt, z. B. alle die in einer Rahmenkonstruktion eingehenden
Druckstibe. Solche Sdulen werden entweder als ein durch Biegung bean-
spruchter Balken behandelt oder als eine Siule, die man aber behandelt ohne
die Biegung, die Einspannung und die Siulenwirkung in der richtigen Weise
zu kombinieren und ohne die Einwirkung des Siulendruckes auf die Ein-

spannungsmomente und dadurch auf die iibrigen Rahmenmomente zu beriick-
sichtigen.

Es werden zuerst ganz allgemein elastisch eingespannte Siulen be-
handelt, beansprucht durch Querkrifte und bereits vorhandene Momente an
den Unterstiitzungen. ,,Bereits vorhandene Momente‘ sind die Momente,
die gefunden werden, wenn man keine Riicksicht auf die Saulenwirkung
nimmt. Die Elastizitit der Einspannung ist durch die Winkeldrehung = ge-
geben, die das Moment M = 1 an der Einspannung erzeugt.

Der Verfasser gibt fertige Formeln zur Bestimmung sowohl der Eii-
spannungsmomente als auch des Momentes in einem willkiirlichen Punkt der
Saule,

Spezielle Formeln sind angegeben fiir eine Siule, die nicht von Quer-
kraften beansprucht wird. Besonders einfache Formeln werden gefunden fiir:

a) Vollkommene Einspannung in dem einen Endpunkt,
b) Einfache Unterstiitzung in dem einen Endpunkt.
Hieriiber sind graphische Tabellen ausgearbeitet.
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Dann wird nachgewiesen, wie die Grofle V[]; , die den Einfluf} des
E

Sdulendruckes bestimmt, festgelegt werden kann. Es ergibt sich, daB
/P _

Pt~ &
welche P der kritische Saulendruck ist, wenn man mit einer einfach unter-
stiitzten Siule rechnet.

wenn . die totale Sdulenlange und /, die Siulenlange ist, fiir

Résumé.

Les colonnes et poteaux que l’on rencontre dans la pratique sont pour
une grande partie fixés élastiquement aux extrémités; c’est le cas, par
exemple, de tous les éléments travaillant a la compression dans les cadres
rigides. Ces éléments sont traités comme poutres sollicitées a la flexion ou
comme colonnes, mais sans que 'on combine a proprement parler les in-
fluences de la flexion, de la rigidité et de P’effet de colonne. L’influence de
la pression exercée par la colonne elle-méme, sur les moments aux extrémités
et par l'intermédiaire de ces derniers, sur les moments auxqiuels est soumis
I’ensemble du cadre, a été également négligée.

L’auteur aborde tout d’abord d’une maniere tout a fait générale la
question des colonnes élastiquement encastrées, soumises a des efforts
tranchants et a des moments préliminaires aux appuis. Par moments pré-
liminaires, il entend ceux que l’on détermine sans tenir compte en aucune
facon de I’effet de colonne. L’élasticité de I’encastrement est exprimée par
la rotation angulaire = que provoque a ’encastrement un moment M = 1.

L’auteur donne des formules spécialement établies pour la détermination
des moments d’encastrement et des moments en un point arbitrairement choisi
sur la colonne. ~

Il indique également des formules spéciales pour une colonne non
soumise a des efforts tranchants, ainsi que des formules particuliérement
simples pour les cas suivants:

a) encastrement complet a une extrémité,
b) simple appui a une extrémité.

Des graphiques ont d’ailleurs ét¢ €tablis a ce sujet.

Enfin, "auteur montre comment la quantité /[i) qui joue un roéle dé-
. E
terminant dans la pression de la colonne, peut &tre elle-méme déterminée. 11

P ,
montre que ‘/P [ représentant la longueur de la colonne et /, la
E

== 2}; y
longueur de colonne pour laquelle P représente la pression critique lorsque
I’on considere le cas d’une colonne avec appui simple.

Summary.

Many of the columns met with in practice are elastically fixed at the
ends, as for instance all compression members forming part of a rigid frame.
Such members are treated either as beams or as columns, but without properly
combining the influence of the bending, rigidity and column effect. The in-
fluence of the column pressure on the end moients, and through them on the
moments of the whole frame, has also been neglected.
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In the paper, elastically fixed columns, acted on by lateral forces and
by preliminary moments at the supports, are first treated quite generally.
“Preliminary moments’’ are moments found when no consideration is paid
to the column effect. The flexibility of the fixing is expressed by the rotation
7, caused by the moment M = 1 at the support.

The author gives general formulae for determining the end moments as
well as the moments at an arbitrary point of the column.

Special formulae are given for a column which is not acted on by lateral
forces, and especially simple formulae for:

a) Rigid fixing at one end,
b) Hinged at one end.
For these cases graphic tables have been worked out.

Finally it is shown how the quantity l/fljv’ which is decisive for the in-
E
fluence of the column pressure, may be determined. Thus it is shown that

V][; == ZL’ where / is the total length of the column, and /, is the length
E k

of the column for which P is the critical column pressure when calculating
with a column hinged at both ends.
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