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ELASTISCH EINGESPANNTE SÄULEN

COLONNES A ENCASTREMENT ELASTIQUE

COLUMNS ELASTICALLY FIXED

Professor Dr. techn. CHR. N0KKENTVED, Kopenhagen.

Einleitung.
In zahlreichen Fällen sind die in der Praxis vorkommenden Säulen als

einzelne Glieder einer Konstruktion elastisch eingespannt. Als Beispiel hierzu
können Druckstäbe in Fachwerkkonstruktionen genannt werden, wo die
Knotenpunktssteifigkeit, die die sogenannten sekundären Spannungen
erzeugt, die elastische Einspannung darstellt. Man kann auch an Säulen denken,
die Bestandteile einer Rahmenkonstruktion sind; hier behandelt man die
Säule in Wirklichkeit als einen gebogenen Balken, dessen Momente man
ausschließlich aus der Rahmenwirkung bestimmt. Erst bei der Bemessung der
Säule nimmt man Rücksicht auf die Säulenbeanspruchung, doch wurde dies
bisher nicht korrekt durchgeführt. Weiter nimmt man keine Rücksicht auf
den Einfluß, den die Säulenbeanspruchung auf den übrigen Teil des Rahmens
ausübt; dieser Einfluß kann in gewissen Fällen von Bedeutung sein, da sich
die Momentenverteilung in der Säule infolge der Säulendurchbiegung ändert;
damit ändern sich die Momente in den elastischen Einspannungen der Säule,
sodaß kein Gleichgewicht mehr in dem betreffenden Knotenpunkt herrscht.

Im ersten Abschnitt dieses Artikels soll der ganz allgemeine Fall
behandelt werden, daß eine Säule teils durch eine Belastungsfläche (Querkräfte)
und teils durch Einspannmomente beansprucht ist. Im zweiten Abschnitt
werden Säulen behandelt, die jeweils das einzige belastete Feld der
Konstruktion darstellen, im dritten solche, die nur durch Einspannmomente
beansprucht sind, und schließlich soll der vierte Abschnitt zeigen, wie man den
in den Formeln enthaltenen kritischen Säulendruck, PE, bestimmt.

Es werden nur Systeme mit geraden Stäben und konstantem Trägheitsmoment

innerhalb eines jeden Stabes behandelt.

I. Elastisch eingespannte Säulen, beansprucht durch Querkräfte
und bereits vorhandene Einspannmomente.

Die in Fig. 1 gezeichnete Säule a b wird durch die dargestellte
Belastungsfläche belastet gedacht; die Belastungsfläche zusammen mit
eventuellen Belastungen von anderen Teilen der Konstruktion erzeugt die bereits
vorhandenen Momente in a und b.

Mab,o M0 \ m
Mba,0 C-M0 j l '
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Unter den bereits vorhandenen Momenten versteht man solche, die sich
ohne Berücksichtigung der Säulenwirkung vorfinden, z. B. die einfachen
Rahmenmomente, die man unmittelbar aus einer gewöhnlichen Rahmenberechnung

erhält1).
Unter dem Säulendruck P biegt sich die Säule weiter durch, wodurch

die Reaktionsmomente A Mab und A Mba entstehen. Die resultierenden
Momente sind dann:

Mab Mab,o + AMab
Mba Mba,o + AMha

Hieraus erhält man:
A Mab Mab — M0
AMba Mba — cM0 J

Die resultierenden Winkeldrehungen in a und b ergeben sich dann zu:

M0 (2 + c) + aoa — (Mab — M0) xab

(la)

(lb)

<*b

ÖEJ

l
ÖEJ

M0 (2 £ + 1) — aob + {Mba — cM0) i ba

(2)

xab und xba ist ein Maß für die elastische Einspannung in a beziehungsweise
in b, da xab die Winkeldrehung der Einspannung in a für das Moment
Mab 1 ist2).

Fig. 1.

aoa und aob sind die Winkeldrehungen in den Punkten a und b, wenn
die Belastungsfläche auf den einfach unterstützten Balken ab einwirkt; beide
Winkeldrehungen werden positiv in der gleichen Richtung wie Mab und Mba
auf der Abbildung gerechnet. Ausgedrückt durch den Inhalt F der einfachen
Momentenfläche und ihre Schwerpunktsabstände | und f von a beziehungsweise

b, sind die Winkeldrehungen:

oder: [^ab&oa

HL
IEJ

l2

Uob

Mab «ob

Fi
IEJ
Fi
/2

(2a)

x) Eine Untersuchung von Säulen, die durch bereits vorhandene Momente in den
Endpunkten beansprucht sind, ist von D. H. Youno durchgeführt im ersten Band der
„Abhandlungen", Zürich 1932, herausgegeben von der „Internationalen Vereinigung für
Brückenbau und Hochbau", S. 507. Youno behandelt jedoch nur einfach unterstützte
Säulen, weswegen die Untersuchung sehr begrenzt ist.

2) Im wesentlichen werden die gleichen Bezeichnungen gebraucht wie in A. Ostenfeld:

Die Deformationsmethode. J. Springer, Berlin 1926.
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Wir führen hier den Begriff „Steifigkeitskoeffizient" für die verschiedenen

Stäbe3) ein, nämlich:

Jab h
Mab

Je lab
(3)

wo Jc und lc ein konstantes Trägheitsmoment bezw. eine konstante Länge
bedeuten; wir führen ebenso ein:

EJc
«ob «ob

EJc

und analog für andere Größen:

f =1 EJc •-EJ'X T

(3a)

Für die Gleichungen (2) kann man nun schreiben:

Mab Va M0 l^-g- (2 + c) + (.lab Tab + ^ °* — M<*° Vab *ab

M0 loa — Mab jilab *ab

MabKb —M0\-jr-(2c+l) + C(labXba -\ a^j-°b-J + MbaVabVba

— —MoKob + MbaHabVba

(4)

Hierbei ist: Ii/o \ i r Mab &o
±oa "g- (2 + C) + ^flft Tß6 H ——

& -i_(2<T + 1) + *wL + ****-
(4a)

1
6 ^ ' M0

Aus dem Aufbau der Formeln (4) ersieht man, daß die Größe M0£'oa
die Winkeldrehung des Punktes a ist, die von einer Belastung links außerhalb

des Feldes herrührt. Dies erkennt man auch, wenn man den ersten
Ausdruck in (4a) umschreibt zu:

-i /
* /o i \ i Mab ®oa yr t

-g- (2 + C) H yr Qoa — Mab ^ab •

Die linke Seite dieser Gleichung gibt die Winkeldrehung des Balkens a b
im Punkte a an, die rechte Seite muß dann die Winkeldrehung der Einspannung

ausdrücken; t?oa rührt her von einer außerhalb liegenden Ursache,
Mab' i'ab von der Einwirkung des Balkens a b auf die Einspannung.

Entsprechend bedeutet M0 • f'oft die Winkeldrehung des Punktes b, die
von einer Belastung rechts außerhalb des Feldes herrührt.

Mit Mba K-Mab (5)
findet man das Moment Mx in einem beliebigen Punkte des Balkens mit dem
Abstand x von a:

Mx]= Py + Mab '-^ + KMab ~ + MXi0 (6)/ /

3) Siehe Ostenfelds obenerwähntes Buch.
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MXy0 ist das statisch bestimmte Moment, wenn die Belastungsfläche auf den
einfach unterstützten Balken a b wirkt.

Die Differentialgleichung der'Biegelinie ist:

Durch Integration findet man:
Mab l — X + KX MXy0

y d cos ax + C2 sin ax — P l
d2MXi0 1 d±MXy0 1

"*"
dx2

'
Pa2 dx"

'
Pa" '

Hier kann man einsetzen:

d2MXy0 _ m

[d"MX)0 _ d2px
¦Px]

(8)

dx* ' ' dx" dx2

wo px die Ordinate der Belastungsfläche ist und a 1/ —.
Die Lösung der Differentialgleichung enthält eine Reihe von Differentialquotienten

von px. Kann man px in einer endlichen Potenzenreihe ausdrücken,

4) Diese Integralform kann ganz allgemein wie folgt angegeben werden:
Die Differentialgleichung:

|£ =-«.,_/(*)
hat das Integral:

y Cx cos ax + C2 sin ax — ^5> + IL&1 _ fl^L (8 a)

Wenn / (x) eine Funktion ist derart, daß

/'(*) - b2f(x); fIY(x) - b*f'(x)
so erhält man:

fix) b2 b4- \
y C1cosa*+ C2smax — z-^-n + —^ + -r +

Ci cos ax + C2 sin ax i v
9a2 — b2

Beispiel: / (x) k sin bx

k sin bx

(8 b)

y Ci cos ax + C2 sin a# -
a2-b2

Wenn / (x) eine Funktion ist derart, daß

r(x) b*/(x); rw + ^rw--so erhält man:

j/ — Ci cos ax + C2 sin ax — ^~ f 1
„ H—r + ¦

a* \ a* a*

Ci cos ax + C2 sin ax —
(8 c)

a2 \-b2
Beispiel: / (x) k e°x

kehx
y Cx cos ax + C2 sin ax —

a2+b2 '

Die zwei Integrale (8 b) und (8 c) gelten gleichgültig, ob

— > 1 oder — < 1.
a a

Im allgemeinen kann man den Ausdruck (8 a) nur gebrauchen, wenn die Reihe
konvergent ist.
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so wird die Anzahl der Differentialquotienten ebenfalls endlich. Um fertige
Formeln ableiten zu können, wollen wir voraussetzen, daß px eine endliche
Potenzenreihe ist, wo x höchstens in der 3. Potenz vorkommt; dabei wird dann
der Ausdruck für y nicht mehr Glieder als die aufgeschriebenen enthalten.
Gleicherweise wollen wir voraussetzen, daß px eine kontinuierliche Funktion
ist, da man sonst keine durchgehende Integration durchführen kann.

Wenn diese Voraussetzungen nicht zutreffen, muß man eine besondere
Berechnung auf Grund der allgemeinen Gleichung (8) durchführen.

Unter den gemachten Voraussetzungen hat man:

y Ct cos ax + C2 sin ax
Mab l-x + Kx M*\o

i
Px d*px

Pa* dx* Pa*

dx
~ • ~ Mab K~ 1

i Qx o dpx 1 d3px

Pa*

(9)

Die Bedingungen x 0, y 0 und x l, y 0 geben:

Mab

P

Pa2 '" Pa"

K — cos al pb — Pa cos al p"a cos al — p'ß
i r>~2 „:*, „i rsin al

wo:

Die Bedingung x

Mabt'a M0£oa—Mab Mab Vab

0, £ t. gibt

Pa2 sin al Pa" sin al

Mab K— COS,tf/ Mab
al sin al (aiy (K-l)

Pb12—Pa12 cos al _RaI p'aI" cos al—p"Bl" p'Al3 p"Älb

(ö/)3sina/
Hieraus findet man:

{al)2

Mab fa

(a/)5sin #/

(a/)2 sin al

{al)" ] {aiy

fab + K al— sin a/ '

wo ca und /flö unter den Formeln (11) angegeben sind.

dyDie Bedingung x l, dx
tb gibt:

y aa r> > aa is > aa sina/ K-cos al
MabQb — -M0L0b+ MabKMabVba ~Alaft ; h ^6 77777—- • COS alal

K-\ /fe/ pBl2cos al-pAl2
{al)2

'
(ö/)2

(a/)4
"*"

(a/)6

(ß/)2sina/

#/sin#/

pb l" cos al - p"A l"
{al)b sin a/

Hieraus findet man:

Mab a (ö/)2sin a/
A'/öa +1 #/ — sin al

(10)

(10a)

(IIa)

(10b)

(IIb)
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Man setzt die zwei Ausdrücke für Mab, (11 a) und (Hb) einander gleich und
erhält:

Ca Cb

fab + K Kfba + 1

rs Ca Cb fab

Cb Cafba

Wir haben nun folgende Ausdrücke zur Berechnung der Momente:

Ca fba — Cb {al)2 sin al

(10c)

(11c)

Mab

Mba

K

fab fba

Cb fab -

- 1

Ca

fab fba 1

Ca Cbfab

al— sin al

{al)2 sin al
al-^ sin al K' Mab

fab

Cb — Ca fb

Mab vab (al)2 sin al-al cos al+sin al
al- sin al > fba

— aa r> RaI^PaI2cosal-pßl2 p"Al"cos al-p'Bl" paI3

Mab v'ba {al)2 sin al- al cos al+sin al
al- sin al

PaI5

(aiy {aiy sin al {aiy sinal {al)" {aiy

— M r +
^b1 PBl2cosal-pAl2

_
p"BlA cos al-p'aI"

__
PbI5 Pb l'°

Cb - Mo -ob+^y +
(ß/)3 sjn al (aly sjn al ,a[y

+
/aly

al

/«"» \ ' Mab ®oa

-fr{2 + c) + MabVab + —~T~.
w *

/o i\ ' t-'abUob
'-ob -fr{2c+l) + CMabVba + —7-f

™ 1/ ~i^—

** sina(/-jc) ljr sin ö*Afx Mab 77f7j?~r-Z + Mba ~

sin #/ sin al

+
1

_1
{al)

sin a{l-x)
*ypAl ^naT+PBl

„ /Asin a{l-x) „

-Pxl'•)
sin ax
sin al

sin öx d2 p.
sin ß/ sin«/ dx2

(»)

Man ersieht aus der Formel für yWx, daß alle Glieder mit Ausnahme von
zwei sin al im Nenner und sin^x oder sin a {l — x) im Zähler enthalten.
Ist al ti, so ist sinal 0 und sinax sina(/— x). Alle diese Glieder
kann man also ordnen, sodaß man die Funktion sin a x erhält, die mit einem
Faktor multipliziert wird, dessen Nenner null ist und dessen Zähler ebenfalls

null sein muß, damit der Faktor endlich bleibt. Man erhält dann:

Af* + ^fc _ied±#^+kd±Äl (12)

Für volle Symmetrie, sowohl in Belastung als auch bezüglich Einspannungen,
erhält man:



Elastisch eingespannte Säulen

AA AA PAP PAI*
Mab Mba — '—v- + —zr

361

(12a)
J t VI

Mab und Mba sind also in diesem Falle unabhängig von M0 und ^r'.
Zur Benützung bei der Ausrechnung sind in der folgenden Tabelle die

Werte fab oder fba für verschiedene Werte von ^x' und I/-5- angegeben, eben-

a- w/ * 4... j- rr i+- (al)2 sinal 1Ie
so die Werte für die Funktion ^-~—: r.al — sin a l

« 1 Pe
{al)2 sin al /
al— sin al T' =0 0,25 0,50 1,00 3,00 5,00

0, 6,000 2,000 3,500 5,000 8,000 20,00 32,00
0,125 5,910 1,985 3,483 4,940 7,900 19,72 31,54
0,250 5,580 1,940 3,335 4,730 7,520 18,68 29,84
0,375 5,040 1,860 3,120 4,380 6,900 16,98 27,06
0,500 4,330 1,750 2,872 3,920 6,080 14,74 23,40
0,625 3,430 1,631 2,488 3,350 5,060 11,92 18,78
0,750 2,385 1,444 2,040 2,637 3,830 8,60 13,37
0,875 1,225 1,235 1,541 1,847 2,460 4,91 7,36
1,000 0 1,000 1,000 1,000 1,000 1,00 1,00
1,10 — 0,978 0,793 0,549 0,304 - 0,185 — 0,579
1,20 — 1,910 0,564 0,086 - 0,391
1,30 — 2,770 0,328 - 0,365 — 1,057
1,40 — 3,450 0,0776 — 0,785
1,412 — 3,520 0 - 0,880
1,50 — 3,890 — 0,175 - 1,148
1,60 — 4,020 - 0,418
1,70 — 3,750 — 0,641
1,80 — 3,020 — 0,826
1,90 —1,760 — 0,952
2,00 0 — 1,000

Da man für fab schreiben kann:

fab fi + Mab v'ab
{al)2 sin al

(12b)
al — sin al

wo /, dem Werte ^ r' 0 entspricht, d. h. den in der 3. Spalte der Tabelle
angegebenen Werten von f, kann man sehr leicht durch Interpolation den
richtigen Wert von fab finden unter Benützung der drei ersten Spalten der
Tabelle.

II. Die betrachtete elastisch eingespannte Säule ist das einzige
belastete Feld; Belastung durch Querkräfte.

In diesem Falle ist:
tob 0. (13)

Setzt man dies in den Formeln (11) ein, so findet man Mab und Mba.
Besonders sei angegeben:
Einflußlinie für Mab:

Mab
l sin al [Mab vab (al)2 [sin a{l-x) l-

l
sin al

1- fab fba (al -sin al)2

+ al -f —j— cos al - cos a {l - x) l + sin ax + sin a{l- x)- sin al
(14)
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Für gleichmäßig verteilte Totalbelastung erhält man

Pl2(\-fba)Mab

1 1 — cos al
w- sin al
2 al

1 — fab fba al — sin al (15)

III. Elastisch eingespannte Säulen, die nur durch Einspann-
Momente belastet sind.

In diesem Falle erhält man:

J_
"6Ca M0Loa Mo(-^-(2 + C) + Mab*'ab)

Cb M0Cob M0\-^{2c+ 1) + CMab^ba

{al)2 sin aljy ±oa fba ^ob
Mab M0

fab fba

Mba M0

K

t'obftab ±oa

Mx Mab

fab fba — 1

±oa Qob fab

^ob *?oa fba

sin a{l — x)

al — sin al

{al)2 sin al
al — sin al K-Mab

sin al + Mbl
sin ax
sin al

(16)

Die Formel für Mx zeigt, daß Mx eine periodische Funktion ist; die halbe
Periodenlänge findet man, indem man

axx Tc setzt'; xtl=

P
ist,Wenn x± /, d. h. a l n ist, findet man Mab — Mba; da a l n \

£P
* Pe

hat man also für y%— 1, ohne Berücksichtigung des Wertes von xfab, x'ba

und den bereits vorhandenen Momenten, Mab —Mba.
Durch Differentiation des Ausdruckes für Mx findet man:

1

Mmax Mab -j—y • V'l + K2 - 2]Kcos ak (17)sin al
Die Stelle von Mmax ist bestimmt durch den Abstand von a durch die
Gleichung:

K— cos al /4_ xtSaX ^^aJ-- <17a>

Die Formel für Mmax soll angewendet werden bei:

Mba - sec al > Mab > Mba cos al
Für Mab <C Mba cos al ist Mmax Mba und befindet sich in b \ (17b)

» Mab ~>\Mba sec al „ jWOTax Mab „ „ „ „ a
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Besondere Fälle.
Mit den angegebenen Formeln kann man den allgemeinen Fall

behandeln. Wir wollen besonders den Belastungsfall betrachten, wo eine
Belastung in einem Feld links vom Punkte a Momente in der Säule erzeugt,
während die Konstruktion rechts von a unbelastet ist.

In diesem Falle hat man:

^ob -jc(2c + 1) + CMabVba 0

1

^oa

1 + SUabt'ba

1 1 + 4/JabVba

Mab M<

4 1 + 3 Mab ^ba

±oa fba

+ Mab^'ab

{al)2 sin al

(18)

Oftfabfba

1

1 al — sin al

Für al
fba

0 wird der letzte Ausdruck zu:
1

(19)

K c2 + ÖMabVba

1. Volle Einspannung in b.

Es ist: x'ba — 0

±oa i ~r Mab Tab \ C g-

(i + Mab<b)fi (al)2 sinal
Mab M0

fab fi ¦

K —
ft

U

1 al — sin al

_
— al cos al + sin al

al — sin al

(18a)

(19a)

ft ist der Wert, den fab oder fba bei voller Einspannung annimmt.
Mmax findet man im Punkt a für al <^\tx^2.
Für al >,\7t^2 findet man Mmax aus der Formel (17).
Fig. 2 zeigt den Verlauf der Momente Mab, Mba und Mmax bei verschiedenen

Werten von a l. Als Abszisse «V£- al 7t2EJ
— aufgetragen (PE ¦= —-—
71 l"

d. h. der Eulerwert für eine an beiden Enden einfach unterstützte, mittig
belastete Säule, die unterhalb der Proportionalitätsgrenze beansprucht ist); als
Ordinaten sind die Werte der Momente aufgetragen, wobei M0 gleich 1,0
gesetzt ist; es ist eine Schar von Kurven für verschiedene Werte von Mabi'ab
gezeichnet.

1 F~P
Läßt man für eine Säule die Kraft P von Null an wachsen, d.h. 1/-^-

f Pe
wächst ebenso von Null an, so sieht man, daß Mab abnimmt und Mba wächst;
das letztere leuchtet ohne weiteres ein. Das Abnehmen von Mab entsteht als
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Folge der Einspannung oben, weil die Säule bei wachsendem P zum stärkeren
<i[P~ —

Ausbiegen neigt und dabei die Einspannung oben entlastet. Wennl/^- ^^2
ist, wird Mab sogar Null und wird dann für noch größere Werte von P
negativ. Dieser Übergang von positiven Werten über Null zu negativen
Werten muß eben auch eintreten, in dem Maße wie P wächst.

IL
Mo
2,0

7,9

l*
I*
14

13

12

V

7,0

Oß

0,7

Oß

Oß

0,4

Oß

0,2

0,7

0 OJ Oß 0.3 Oß Oß Oß Oß Oß Oß 10 1J 12 Iß Iß 15 Iß Iß

f m \r2

Jll
's/1 / '

Mtmax ni /
Hfl 1

1

tUli // /c
ii

$1ll& / / w
W$P #/

FlTz / j
.#y7///^V,'/ /^ >. s\

°N4
V O \5^\,

-c- .V *
X \\ \ #

\ \
>:\ ii

8

\\
Afe

- V
b

N n1

>

r,e 1,9 2,0\^P.

Fig. 2.

Mmax se trouve ä une distance x du point A.
Mmax befindet sich im Abstand x vom Punkt A.

Mmax occurs at a distance x from point A.

Wächst

Vi p
¦5- %\ V2

über diesen Wert hinaus, so entfernt sich die Stelle von Mn
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vom Punkt a. Der Wert — für den Maximumspunkt ist durch eine Kurve

unten auf der Zeichnung angegeben.

Für 1/p- =1 (d.h. al n) ist, wie schon gesagt, Mab —Mba. Die

entsprechende Momentenkurve zeigt Fig. 3.

Mo
2ß

7ß

7ß

7ß

7J

7ß

Oß

Oß

Oß

Oß

Oß

Oß

Oß

fi
'o'lB

f

))\ /,4 i
"l // /

«ULt7 /
z§. §4L

1

/
v
i

li <w

/7 f// / /
W//

+Mb d & '// t
•^^^0v r$

8
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Man beachte, daß die Linie a± bx Tangente an die Momentenkurve im
Punkt bx ist. Dies erklärt sich daraus, daß das Moment in einem beliebigen
Punkt in zwei Teile zerfällt:

1. Mu das unmittelbar von den Momenten Mab und Mba in den Endpunkten
der Säule erzeugt wird, und

2. M2, das das Moment P • y ist. Da die Säule in b eingespannt ist, muß
dieser letztere Teil der Momentenkurve den erstgenannten tangieren.

Für 1/— V2 ist, wie schon gesagt, Mab 0 für jeden Wert von

Mab *'ab> Wie wir bereits gesehen haben, nimmt Mab ab, w£nn P wächst. Lassen
wir nun P wachsen, bis Mab 0 ist, so muß P für eine an einem Ende ein-
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gespannte, am anderen Ende frei unterstützte Säule gerade den Eulerwert
erreicht haben, d.h. P 2PE. Bei kleinerem P würde sich die Säule
auszurichten suchen, in a würde dann ein Moment entstehen; bei größerem P
würde die Säule die Tendenz haben, auszubiegen, wobei in a ein Moment
entgegengesetzt dem erstgenannten entstehen würde. Mab nimmt deswegen

den Wert Null an, wenn ft-* ist.

OßBL

TT?

'/2l *¦'

Fig. 3

P
Bei einem gewissen Wert von 1/— abhängig von Mab*'ab, findet man, daß

Mab, Mmax und Mba alle oo werden. Der entsprechende Wert von P ist die
kritische Belastung der Säule, ohne Rücksicht auf die Größe der bereits
vorhandenen Momente, daher auch für eine mittig belastete Säule gültig. Alle

fW\1— lotrechte
Pe Zkrit.

Kurven in Fig. 2 haben für entsprechende Abszissen

ypXn/%
c,U

rV*>i/"/^4 ^""^--- — -=Jf 2£^.™™™======s=™
"V^s^ ~ -'3-aaJO —

nr

0
4 5 6

Fig. 4.

10 -/,r

Asymptoten. Für xfab 0 (volle Einspannung) ist die Asymptoten-Abszisse

1/— 2, für x'ab oo (einfache Unterstützung)!/^- ^2.

In Fig. 4 gibt die voll ausgezogene Kurve die Abhängigkeit zwischen

Mab ^ab (Abszisse) und dem kritischen Wert von 1/— (Ordinate) an. Wie

man später im IV. Abschnitt sehen wird, ist die Größe j£L«-gleich dem
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Verhältnis zwischen der wirklichen und der freien Säulenlänge. Wir setzen
'/T\ ^
PElkrit. l*'deshalb (]/£-)

2. Einfache Unterstützung in b

Man hat hier:
fba °°
r i m n ' (18b)
Loa i + Mab Vab\ C ü

/öö #* — sin al

aa n ^ aa
sin a{l—x) Mab

Mba 0; Mx Mab —T-z-y—z; Mmax -T——sin #/ sin al

(19b)

Aus der letzten Formel erkennt man, daß für a l <; — Mmax Mab ist und sich
71

im Punkt a befindet. Für #/> —befindet sich Mmax in dem durch die

Gleichung bestimmten Punkt:
7t

/f v TC l— X 2 1

a(l—x) -=r;2 ' / ö/ /^p~

Die Afa6 und AfmflA: entsprechenden Kurven zeigt Fig. 5, die analog der Fig. 2

gezeichnet sind.

Wie in Fig. 2 nimmt Mab mit wachsendem |/p- ab; für J' — 1 ist

Mab Null, was auch ganz einleuchtend ist. Die Abhängigkeit zwischen /nab x'ab

und I 1/ -=r- I -r zeigt Fig. 4 als eine punktierte Kurve.
Vr PElkrit. ls

Außerdem ist die Abhängigkeit zwischen fiabx' und \\^- I — für
Vr PElkrit. h

gleichgroße elastische Einspannung in a und b als eine strichpunktierte Linie
dargestellt.

3. Einfache Unterstützung in a.

Will man die in diesem Artikel gewonnenen Resultate in den gewöhnlichen

Rahmenberechnungssystemen verwenden (dies soll in einem späteren
Artikel geschehen), so benötigt man das Moment, das der Winkeldrehung
Ca 1 entspricht. Dieser Wert von Mab wird Qab genannt.

Man findet Qab unter Benützung von (10 a):

__
Mab K— cos al Mab t„ tx

N

t****** ~ 1Ü sin^ (^p(/C~ ])

M°b«+fi)Jaiy^al
fi ist der Wert von fbtt bei voller Einspannung.

(20 a)
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Setzt man hierin

ta 1, Mab Qab Und /(=-
so erhält man:

Qab Mab ri.

/.ba

+ (siehe (19)),
fba

{al)2 sin al
"fba fi — 1

" ~äl — sin a/
(20)
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Mmax se trouve ä une distance x du point A.
Mmax befindet sich im Abstand x vom Punkt A.

mmax occurs at a distance x from point A.
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IV. Bestimmung von Pe.
Um die Kurven in den Figuren 2, 4, 5 und 6 und die angegebenen

7T*EJFormeln anwenden zu können, muß man den Ausdruck Pt l3
etwas

näher betrachten; er ist bekanntlich die Eulerformel, und es bestehen demnach

keine Schwierigkeiten, wenn die Spannungen in der Säule überall unterhalb

der Proportionalitätsgrenze liegen. Überschreiten dagegen die
Spannungen diese Grenze, so variiert der Elastizitätskoeffizient mit der Spannung,
die selbst von Punkt zu Punkt sowohl über dem Querschnitt wie auch in
Längsrichtung der Säule variiert. In diesem Falle läßt sich daher eine exakte
Berechnung nicht durchführen.

Geht man indessen auf den Gedankengang ein, der der Engesser-Karman-
Formel zu Grunde liegt und von P. M. Frandsen 5) weiter entwickelt ist, so
kann man mit guter Annäherung mit dem Wert von E rechnen, der der mitt-

pleren Spannung der Säule, d. h. o — — entspricht.

Ist also o größer als die Proportionalitätsgrenze, so muß man den o
entsprechenden Wert von E bestimmen und ihn in die Eulerformel einsetzen.
Die Bestimmung von E kann unmittelbar mit Hilfe der Arbeitskurve des
Materiales erfolgen. Da man diese jedoch selten zur Hand hat, soll hier ein
anderes Verfahren angegeben werden.

6 i

1 |\*l i ~i ^Nv\^
-0| i —

1*° j
i

T ¦- i

f^/fj
Fig. 6.

Für jedes Material gilt nach Engesser-Karmän und P. M. Frandsen, daß
man den kritischen Säulendruck für eine mittig belastete, einfach unterstützte
Säule aus der modifizierten Eulerformel finden kann:

Gkrit.
^EJ (21)

wo Et den okril entsprechenden Wert des Elastizitätskoeffizienten bedeutet.
Den Wert von oknt für die verschiedenen Materialien findet man gewöhnlich
mit Hilfe der sogenannten Säulenformeln, z.B.: Stahl:

¦*EJ
°krit.- -jr für akrit. <C <>p

akrit. ob —y für ourit. ;> op

3) Zeitschrift des Technischen Vereins Kopenhagen, 1920, S. 139—151, und Erster
Band der „Abhandlungen", Zürich 1932, herausgegeben von der „Internationalen
Vereinigung für Brückenbau und Hochbau", S. 195—203.

Abhandlungen III 24
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Spröde Materialien:
ob

Okrit ~ TT^ USW-

¦+°g
Betrachtet man nun die verschiedenen Säulenkurven als „Eulerkurven

Pmit variablem E", so kann man den einem gewissen Wert von a =-_ ent-r
sprechenden Wert von E1 als Punkt der Säulenkurve mit der Ordinate a finden.

Wenn dieser Punkt die Abszisse ^ hat, so findet man:

„ llllf Ex °lf., (22)
ly- jC~ l~

Hieraus erhält man:

\ Pe oE 1/ -r^-Eji^ 1/ Jt^a 4j/- 4
(23)

\i PDer Wert von I' ¦ kann also gleich dem Verhältnis zwi-
r pE

sehen der wirklichen Säulenlänge /und der Säulenlänge
4 gesetzt werden, für die o die kritische Spannung ist,
oder P der kritische Druck, wenn die Säule als einfach
unterstützt gerechnet wird.

Hieraus sieht man auch, daß für (/ -- lk gerade die sogenannte
V f Pe 'krit.

freie Säulenlänge ls ist.

Selbstverständlich kann man gerade so gut das Zwischenglied oL
einschieben, das man aus Formel (21) findet:

<* ^ (24)

wo E± k9 ist und 4 als Abszisse (multipliziert mit /) des Säulenkurven-
7T l^

punktes mit der Ordinate a gefunden wird.

Beispiel:
I '~o~ l

Man soll für einen Wert a i/ — bestimmen unter Benützung der
r oE k

Parabelformel bei dem betreffenden Material.
Aus der Parabelformel findet man:

o oD-aB*\t ; /Ä / J/-__
]'a -=

l l \! °B/- (25)
} oE 4 / f aB — o

Soll man für das Material die Rankineformel benützen, so findet man:
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ob
o - r

}'

l* 11
Oß—O

'
ö a

6 l l G a

oe 4 i (JB— o
(25 a)

Einen ganz allgemeinen Ausdruck, gültig für alle Materialien, kann man aus
dem oben erwähnten Artikel von P. M. Frandsen ableiten; man findet:

1 — l 1 / a (°B — 2 0p) + öp2

4 ~~ / \ (ob — o) 7r2 Ep1-t5 '-^rh1^- > <26)

wo Oß die Bruchgrenze (Fließgrenze bei Stahl und anderen weichen
Materialien), ap die Proportionalitätsgrenze und Ep die Größe des
Elastizitätskoeffizienten bedeuten.

Für Stahl kann man setzen:

op J oB

Für spröde Materialien:

oP 0 und a — [%-
•

7llEp
Setzt man diese Werte in (26) ein, so erhält man (25) bezw. (25 a).

Zusammenfassung.
Viele von den in der Praxis verkommenden Säulen sind in den Endpunkten

elastisch eingespannt, z. B. alle die in einer Rahmenkonstruktion eingehenden
Druckstäbe. Solche Säulen werden entweder als ein durch Biegung
beanspruchter Balken behandelt oder als eine Säule, die man aber behandelt ohne
die Biegung, die Einspannung und die Säulenwirkung in der richtigen Weise
zu kombinieren und ohne die Einwirkung des Säulendruckes auf die Ein-
spannungsmomente und dadurch auf die übrigen Rahmenmomente zu
berücksichtigen.

Es werden zuerst ganz allgemein elastisch eingespannte Säulen
behandelt, beansprucht durch Querkräfte und bereits vorhandene Momente an
den Unterstützungen. „Bereits vorhandene Momente" sind die Momente,
die gefunden werden, wenn man keine Rücksicht auf die Säulenwirkung
nimmt. Die Elastizität der Einspannung ist durch die Winkeldrehung x
gegeben, die das Moment M 1 an der Einspannung erzeugt.

Der Verfasser gibt fertige Formeln zur Bestimmung sowohl der Ei^-
spannungsmomente als auch des Momentes in einem willkürlichen Punkt der
Säule.

Spezielle Formeln sind angegeben für eine Säule, die nicht von
Querkräften beansprucht wird. Besonders einfache Formeln werden gefunden für:

a) Vollkommene Einspannung in dem einen Endpunkt,
b) Einfache Unterstützung in dem einen Endpunkt.

Hierüber sind graphische Tabellen ausgearbeitet.
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Dann wird nachgewiesen, wie die Größe \ die den Einfluß des
r pE

Säulendruckes bestimmt, festgelegt werden kann. Es ergibt sich, daß

IIP l
t> / wenn l die totale Säulenlänge und lk die Säulenlänge ist, für
Pe lk

welche P der kritische Säulendruck ist, wenn man mit einer einfach
unterstützten Säule rechnet.

Resume.
Les colonnes et poteaux que Fon rencontre dans la pratique sont pour

une grande partie fixes elastiquement aux extremites; c'est le cas, par
exemple, de tous les elements travaillant ä la compression dans les cadres
rigides. Ces elements sont traites comme poutres sollicitees ä la flexion ou
comme colonnes, mais sans que Fon combine ä proprement parier les in-
fluences de la flexion, de la rigidite et de Feffet de colonne. L'influence de
la pression exercee par la colonne elle-meme, sur les moments aux extremites
et par Fintermediaire de ces derniers, sur les moments auxquels est soumis
Fensemble du cadre, a ete egalement negligee.

L'auteur aborde tout d'abord d'une maniere tout ä fait generale la
question des colonnes elastiquement encastrees, soumises ä des efforts
tranchants et ä des moments preliminaires aux appuis. Par moments pre-
liminaires, il entend ceux que l'on determine sans tenir compte en aucune
fagon de Feffet de colonne. L'elasticite de l'encastrement est exprimee par
la rotation angulaire x que provoque ä l'encastrement un moment M 1.

L'auteur donne des formules specialement etablies pour la determination
des moments d'encastrement et des moments en un point arbitrairement choisi
sur la colonne.

II indique egalement des formules speciales pour une colonne non
soumise ä des efforts tranchants, ainsi que des formules particulierement
simples pour les cas suivants:

a) encastrement complet ä une extremite,
b) simple appui ä une extremite.

Des graphiques ont d'ailleurs ete etablis ä ce sujet.
\/~p'

Enfin, l'auteur montre comment la quantite V — qui joue un röle de-

terminant dans la pression de la colonne, peut etre elle-meme determinee. II
\/~P lmontre quer -, l representant la longueur de la colonne et lk la
f Pe k

longueur de colonne pour laquelle P represente la pression critique lorsque
l'on considere le cas d'une colonne avec appui simple.

Summary.
Many of the columns met with in practice are elastically fixed at the

ends, as for instance all compression members forming part of a rigid frame.
Such members are treated either as beams or as columns, but without properly
combining the influence of the bending, rigidity and column effect. The
influence of the column pressure on the end moments, and through them on the
moments of the whole frame, has also been neglected.
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In the paper, elastically fixed columns, acted on by lateral forces and
by preliminary moments at the supports, are first treated quite generally.
"Preliminary moments" are moments found when no consideration is paid
to the column effect. The flexibility of the fixing is expressed by the rotation
x, caused by the moment M 1 at the support.

The author gives general formulae for determining the end moments as
well as the moments at an arbitrary point of the column.

Special formulae are given for a column which is not acted on by lateral
forces, and especially simple formulae for:

a) Rigid fixing at one end,
b) Hinged at one end.

For these cases graphic tables have been worked out.
'P
Pe

fluence of the column pressure, may be determined. Thus it is shown that
\I~P~ l\f —, where / is the total length of the column, and lk is the length

of the column for which P is the critical column pressure when calculating
with a column hinged at both ends.

Finally it is shown how the quantity y ~- which is decisive for the in-
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