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' o MEMOIRE SUR
L'ETUDE GENERALES DE SURFACES GAUCHES MINCES

ALLGEMEINE UNTERSUCHUNG DER REGELSCHALEN
GENERAL INVESTIGATION CONCERNING RULE-SHELLS

B. LAFFAILLE, Paris (France).

Une surface mince peut étre caractérisée par le fait que son épaisseur
présente une dimension neghgeable par rapport a ses deux autres dimensjons.
Nous nous proposons dans ce mémoire, d’étudier une théorie générale des
surfaces minces gauches. Nous divisons cette étude en trois parties, intitulées:
Idées, Chantiers, Théories, qui résument succintement I’état actuel de ces
questions auxquelles nous nous sommes intéressés depuis plusieurs années.
L’ordre dans lequel nous exposons ces trois parties montre bien quelle part
intuitive et d’imagination a présidé au début de nos recherches.

Il est normal que ce travail intellectuel ait été conduit de cette facon.

Nous sommes, en effet, constructeur d’abord et non pas mathématicien.
Le role du constructeur est de rechercher sous quelles formes il est avantageux
de réaliser les équilibres dans I’espace pour répondre a un probleme d’utili-
sation déterminé. Il nous a semblé que les propriétés constructives des sur-
faces gauches permettaient de résoudre fort économiquement de nombreux

cas particuliers de couverture.

Les travaux de chantiers auxquels nous faisons allusion et dont nous
donnons quelques exemples bien typiques montrent combien il y a une inter-
pénétration profonde entre la théorie pure et les méthodes de mise en oeuvre.

Tel systeme de coffrage se montrera tellement avantageux qu’on
n’hésitera pas a s’éloigner des conditions mathématiques les plus logiques
pour choisir une forme plus appropriée aux mises en oeuvre quitte a voir se
poser un probleme mathématique moins simple. Et inversement, si I’analyse
minutieuse des conditions mathématiques d’équilibre local permet de résoudre
un probleme avec rigueur et simplicité on devra, dans d’autres cas, demander
au chantier de s’adapter et de faire effort.

C’est encore le rbole du constructeur de trancher ces questions qui ne
relevent, a priori, pas plus du chantier que de la théorie.

Dans la derniere partie théorique et plus spécialement mathématique
nous avons cherché a généraliser le plus possible. Nous croyons ainsi indiguer
un instrument de recherches et de contréle plus souple que si nous nous étions
contenté d’analyser les problemes particuliers posés par les surfaces conoides
ou en paraboloides hyperboliques que nous avions tout d’abord étudiées au
début de nos travaux.

Nous tenons a signaler quelques uns de nos collaborateurs qui nous ont
apporté une aide efficace dans le cours des recherches et travaux dont il va
étre question. En particulier M. J. Crossay pour I’étude et la réalisation des
dispositifs de coffrage. M. L. Issenmann dans les relevés des mesures directes
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faites au moment des essais sur des voiles gauches. M. L. Beschkine depuis
1932 a été notre collaborateur dans la plupart des études que nous avons eu
a entreprendre.

Idées.

Une feuille de papier est une surface mince; si nous la prenons par un
des bords rectilignes elle est trés peu rigide, elle fléchit. Etant donné pré-
cisément sa tres faible épaisseur, son module d’inertie a la flexion plane est
tres faible (fig. 1).

Si nous incurvons le bord rectiligne que nous avons en mains tout en
maintenant droit le bord opposé nous réalisons une surface développable qui
semble présenter une rigidité beaucoup plus grande (fig. 2). Nous avons
entre les mains, et, encastrée en nos mains une surface mince incurvée capable
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Fig. 1. Fig. 2.

de se tenir elle-méme en porte a faux.

La quantité de matieres employée est la méme dans les deux cas: c’est
une feuille de papier.

Dans le premier cas elle était molle et présentait aux charges éventuelles
un module d’inertie négligeable; dans le second cas elle est rigide.

On peut encore se faire une représentation de la rigidité propre d’une
surface mince convenablement incurvée en examinant le cas d’une coupole.
On a pu considérer pendant longtemps une telle construction comme formée
par la superposition de pieces d’ossatures: fermes méridiennes, pannes suivant
des paralleles et enfin hourdis minces de remplissage. Nous savons qu’il est
possible de réaliser cette coupole en ne conservant que le simple hourdis
calculé non plus comme un remplissage mais comme une surface mince in-
curvée. Les fermes et les pannes deviennent inutiles comme dans le cas ce la
coquille d’un oeuf.

Nous pouvons encore comparer les deux cas suivants:

Considérons un disque circulaire plan trés mince en fer blanc par
exemple. Sa rigidité a la flexion est trés faible et nous pouvons le plier entre
nos mains. Si nous ’emboutissons en forme d’assiette creuse nous sommes
surpris de constater combien cette méme surface métallique est incomparable-
ment plus rigide. La encore la quantité de matiere est restée la méme, et,
c’est Vintroduction des courbures qui a transformé entiérement les conditions
de résistance.

On peut multiplier ainsi les exemples faciles qui permettent de s’aperce-
voir que l'introduction des courbures conduit a changer le mécanisme méme
de la distribution des contraintes.

On peut penser, en premier lieu, que cette distribution revient a con-
sidérer P’équilibre de ’ensemble total de la surface incurvée comme si on
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avait a faire a un solide ayant comme moment d’inertie celui de sa ligne
moyenne incurvée.

Ainsi dans le premier exemple choisi de la feuille de papier encastrée
sur une de ses rives courbe, on considere que la ligne EF est tendue, les lignes
AC et BD comprimées (fig. 3). De telle sorte que nous retrouvons a la section
d’encastrement une section totale résistante suivant la théorie classique de
la résistance des matériaux.

On concoit combien une telle facon d’envisager 1'utilisation des surfaces
incurvées présente d’intérét.

Tout d’abord on tend, vers l'utilisation en vue de la résistance, de ce
qui était considéré jusqu’ici comme une simple paroi de remplissage. On
supprime ainsi les éléments d’ossature calculés comme éléments strictement
porteurs. Ce qui permet d’alléger sensiblement les ouvrages et de les rendre
plus économiques.

De plus cette utilisation des propriétés des surfaces a courbures multiples
permet de concevoir avec beaucoup de liberté des modes de disposition dans
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I’espace pouvant répondre a des cas nombreux d’utilisation précise. Il en
résulte au point de vue architecture la possibilité de réaliser, par exemple,
des schémas de couverture tres divers, avec sheds, avec éclairage astral, avec
points d’appuis disposés au gré du plan.

Nous attirons I’attention sur un c6té particulier de cette méme question,
relatif a 'utilisation ,,partielle‘* des propriétés des surfaces gauches minces.

I1 s’agit de considérer de telles surfaces comme n’utilisant les propriétés
des courbures inverses que sous l'effet de systemes particuliers de charges
bien définies.

Un exemple simple nous permet d’illustrer ce point de vue qui nous
parait aussi important dans les constructions courantes que le point de vue
plus général de I’emploi systématique de telles surfaces gauches.

Il arrive souvent que le plan général d’un batiment a couvrir permet de
compter sur ’appui de deux murs porteurs paralleles. C’est méme le cas le
plus fréquemment rencontré pour les ateliers, les halles, les hangars.

A condition que les appuis continus soient résistants — et ’adjonction
d’un simple tirant convenable sous tendant la couverture permet de s’en
assurer — la couverture la plus économique a réaliser est celle dont la ligne
moyenne coincide avec le funiculaire des charges les plus permanentes. On
réalise, en effet, dans ce cas, au flambage pres, un équilibre funiculaire
(fig. 4).

On se rend compte qu’'un tel systeme en équilibre est cependant restreint
dans son utilisation. Tout d’abord dans le cas oit les charges extérieures pré-
sentent un funiculaire différent de la ligne moyenne de la volite: c’est le cas
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des charges dissymétriques. D’autre part on concoit que méme dans le cas
primitif de charges, les phénomenes de flambage prennent rapidement une
importance considérable.

Nous avons pu, pour notre part, résoudre le probléeme du transport de
Paction des forces dissymétriques sur des tympans rigides en conservant i
la construction la forme de vofite cylindrique avec appuis porteurs continus
(I) mais nous avons été cependant limités dans le choix de ’écartement des
fermes rigides. En particulier pour une portée de 50 metres nous nous sommes
fixés AB; = 8 metres.

Si maintenant nous incurvons cette surface a simple courbure de telle
sorte qu’elle se présente sous la forme d’un voile gauche nous voyons que
la tenue au flambage est incomparablement améliorée et que le report sur
les rives des efforts dissymétriques se produit encore plus facilement que
dans le cas de la surface simplement cylindrique.

Une telle surface gauche est sensiblement cylindrique sous I’effet d’un
certain systeme de charges. Elle est gauche sous I’effet des charges quel-
conques dissymétriques (fig. 53). ' :
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Ce simple exemple est donné ici a titre d’indication pour mettre en
garde contre la tendance que ’on pourrait avoir quelques fois de trop géné-
raliser I’emploi de nouvelles surfaces et d’abandonner les facons plus clas-
siques de construire qui ont donné cependant de multiples preuves de leur
légitimité. ‘

Ce méme exemple montre la souplesse et I’étendue du domaine de
P’imagination dans ces sortes de formes. Pour alimenter cette imagination,
il nous parait que le travail sur maquette est particulierement fructueux.

I1 permet également de se rendre compte d’une facon précise des pro-
blemes de construction posés.

Il ne faut pas perdre de vue, en effet, qu’il s’agit en fin de compte da
construire, c’est a dire de réaliser d’'une facon économique et durable. des
ouvrages importants par leurs dimensions. De multiples questions viennent
alors se greffer sur le probleme principal. Il faudra étudier les dispositifs
des retombées, I’agencement des rives, les manoeuvres des coffrages mobiles
s’il s’agit de constructions en béton armé.

L’emploi des maquettes permet de concrétiser simplement ces questions
et de les résoudre en imaginant les formes les mieux adaptées.

Nous donnons aux figures 6 et 7 des photographies de moules pour
maquettes de surfaces a courbures inverses.

Ces moules sont en tres léger carton; ils ont été employés pour comparer
des modes de retombées de surfaces gauches a rives curvilignes et a rives
rectilignes.
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Les maquettes mémes des surfaces que nous reproduisons aux figures 8
et 9 nous ont permis encore de mieux faire comprendre aux éxécutants de
quoi il s’agissait. En effet, souvent a la lecture d’un simple dessin, ceux-ci
éprouvent quelques difficultés a imaginer exactement de telles surfaces qui
ne leur sont pas encore familieres.

Fig. 6.

Nous mémes, aussi, avons ¢galement bénéficié de pouvoir manipuler
facilement 4 I’aide de ces maquettes ces surfaces, dont les propriétés sur les
rives nous ont permis certaines résolutions heureuses des problemes de trans-

port de forces. "

Fig. 7.

Si on applique, par exemple des forces / sur la rive CD — rive curviligne
(fig. 10) d’une surface gauche ABCD — on remarque que ces forces f se
transportent en A et B comme si la surface était une poutre plane.

Certains gauchissements permettent ce transport d’une facon simple,
d’autres semblent conduire les contraintes, sur la surface, suivant des di-
rections plus compliquées. Nous verrons dans la partie théorique de ce mé-
moire comment par la considération des asymptotiques nous pouvons résoudre
ces problemes que I'examen des observations expcrimentales nous avait
permis de poser.

lci, d’ailleurs, le réle de "analyse mathématique dont nous donnons quel-
ques apercus ci apres, dépasse, a notre avis, le stade classique d’application
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pratique oill on le cantonnait dans le domaine de la résistance des matériaux.
Les mathématiques ne présentaient alors qu’un réle de contréle de formes
simples: un poteau sera-t-il écrasé, une poutre se rompra-t-elle sous les
flexions?

Ici, dans ce domaine, les mathématiques permettent de prévoir d’une
facon tellement générale les répercussions sur des formes résistantes, de
Paction des forces quelconques par rapport a des rives ou a des contours
systématisés, qu’elles deviennent a leur tour un mode intellectuel de penser.

Ce mode, a ce degré, alimente imagination constructive non plus seule-
ment pour indiquer des limites matérielles (épaisseur, dimensions, portées)
mais bien au méme titre qu’une réelle connaissance architecturale.

Cette connaissance d’ailleurs est cependant toujours nécessaire et
comprend dans notre esprit la pratique des oeuvres et des moyens matériels
dont disposent les chantiers.

Chantiers.

Nous allons décrire succintement quelques chantiers et réalisations de
surfaces gauches minces en béton armé.

Nous envisagerons le cas d’une surface conoide en porte a faux qui
correspondait a la réalisation d’'une marquise sur quai. Nous décrirons en-
suite la construction d’une surface conoide reposant sur des rives portantes
paralleles. Enfin nous donnerons quelques explications et renseignements
sur les essais jusqu’a rupture que nous avons fait effectuer sur une construc-
tion d’essai a Dreux en 1933. Ces dernieres mesures nous ont permis de
controler expérimentalement le bien fondé des théories générales.

Conoide en porte a faux.

En 1929 nous avons eu a étudier la construction d’un magasin a Cazaux.
Le programme prévoyait deux marquises latérales régnant sur une longueur
de 110 metres.

Nous avons préjeté de réaliser cette marquise par une série d’éléments
en voile mince gauche sans nervures.

La longueur du porte a faux était de sept metres. Chaque conoide
couvrait une largeur de six metres vingt cinq; la hauteur de la fleche a la
racine curviligne était de trois metres. L’épaisseur du voile en béton armé
de cinq centimétres. L’épajsseur totale de la marquise rapportée en plan, y
compris les renforcements des rives, était de six centimetres et demi (fig. 11).

La mise en oeuvre de ces éléments en conoides se fit a 'aide d’un cof-
frage mobile dont la manoeuvre était grandement facilitée par suite de la
forme en dépouille du voile gauche (fig. 12). Des surcharges de I'ordre de
trois cents kilos par metre carré ne décelérent que des fleches insignifiantes
tant était grande la rigidité d’un tel ensemble. A Vintérieur du batiment nous
avons également prévu de porter un lanterneau central a Vaide de deux
conoides (fig. 13). Toutes ces constructions en voile mince se sont montrées
extraordinairement rigides malgré leur tres faible épaisseur.

La mise en oeuvre de ces travaux eut lieu en 1931.

Conoides reposant sur des rives portantes paralleles.

Cette méme année 1931 nous avons fait réaliser a Romilly la couverture
d’un magasin comportant deux nefs de vingt sept metres cinquante de portée
et 110 metres de longueur.
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L’ossature générale, les piliers, les poutres de ponts roulants, le quai
et la couverture étaient en béton armé (fig. 14).

La couverture se compose de deux files de quatorze ¢léments de vottes
de 27 m 50 de portée et de 7 m 50 de largeur environ. Chaque ¢lément de
volite est une surface conoide par une droite f, se déplacant parallelement a

Fig. 8.

un plan vertical passant par BE sur deux directrices; une directrice curviligne
ACB et une directrice rectiligne DE (fig. 15). Le secteur limité par la di-
rectrice curviligne est contenu dans un plan oblique. Ce secteur recoit les
vitrages. La succession de ces ¢léments de volite constitue une couverture

Fig. 0.

en sheds permettant un éclairage abondant de I'intérieur de I'édifice. 1l n'y
a aucune nervure ou poutre dans I'organisation de la surface gauche. Le voile
qui couvre ainsi une surface en plan de plus de deux cents metres carrés a
une épaisseur moyenne de six centimetres et demi. Le couronnement de I'arc
curviligne présente une surépaisseur de dix centimetres. Des mencaux en
béton raidissent le vitrage et relient le tirant O£ d’un élément de volte a
Parc curviligne de I'élément suivant (fig. 16).
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La surface gauche de la sousface du voile a été blanchie a la chaux. Elle
renvoie sur le sol la lumiere par réflexion et d’autant mieux qu’aucune diago-
nale ni soffite ne crée des zones d’ombre (fig. 17).

Fig. 10,

Il peut paraitre intéressant, puisque nous étudions plus particulierement
I'application, sur des chantiers, des surfaces gauches, de donner quelques
détails concernant la mise en oeuvre et 'éxécution.

Nous avons recherché dans la conduite de notre étude i aménager la
forme des voiles en vue d’obtenir une grande facilité d’éxécution et une

Lo |
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Fig. 11.

Marquise de 110 m de longueur, conoide en porte a faux. Cazaux (France).

Vordach von 110 m Linge. Auskragende Kegelschale. Cazaux (Frankreich).
Cantitevered roof of 110 m length; conoidal surface. At Cazaux (France).

cadence rapide d’avancement des travaux. Il est tres onéreux de revenir apres
coup pour couler des poutres, voiles ou meneaux sur des amorces laissées en
attente.

Nous avons voulu réaliser une voiite qui se coulat entierement en une
seule fois (fig. 18). Nous avons réalisé pour cela un moule en bois dont la
tace supérieure reproduisait la surface & mouler v compris le secteur curvi-
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ligne contenant les vitrages. Les meneaux en béton qui sont les seules pieces
prismatiques, avaient une section en dépouille de telle facon que leur d¢-
coffrage se faisait en méme temps que l'abaissement général du cintre
(fig. 19).

L’ossature générale de ce cintre se compose de quatre poutres en bois,
a treillis, 2 membrures paralleles et étrésillonces entre elles. Sur ce bati
rigide nous avons réalisé la surface gauche.

Dans chacune des poutres a treillis les montants verticaux se prolongent
a la partie supérieure et portent des pannes dirigées suivant les génératrices
de la surface. Sur ces pannes et paralltlement au plan des secteurs curvilignes
de téte nous avons disposé des cercles en planches espacées de cinquante centi-
metres environ. C’est sur ce dernier bati que sont clouées les planches rainées
et rabattées formant le coffrage jointif suivant les génératrices. Le tympan
de téte porte en creux les meneaux; les voiles d’extrémité du tympan ont été

Fig. 12.
Marquise de 110 m de longueur. Manoeuvre des coffrages. Cazaux (France).
Schalung des Vordaches von 110 m Linge. Cazaux (Frankreich).
False work for cantitevered roof at Cazaux.

éxécutés a double coffrage; les ¢écartements entre les parois sont maintenus
par de petits dés en béton qui restent dans le voile apres la prise et le dur-
cissement du béton.

’ensemble du moule ainsi constitué repose sur trois tréteaux (fig. 20)
par Uintermédiaire de coins en bois dur permettant le réglage en hauteur dans
la position exacte.

La montée et la descente du coffrage se fait au moyen de quatre treuils
tirant & brin direct sur simples poulies de retour. Ces poulies ¢taient placées
sur la poutre du futur pont roulant.

L’ensemble de ce coffrage était tres Iéger, il correspondait a une ¢paisseur
moyenne de quatorze centimetres de bois en plan.

Voici le détail des manocuvres effectuées: Mise en place. Le moule
est amené en place sur des lories composés de paires de roues et de bastaings.

Il est levé a I'aide des quatre treuils. Sous le coffrage suspendu on vient
glisser les trois tréteaux (fig. 21). On cale le coffrage a 'aide de coins. On
détend les cables des treuils.
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On dispose alors les armatures de tout 'ensemble d’une voiite y compris
celles des tympans vitrés. On coule le béton. La manoeuvre de décintrement
est ¢galement fort simple.

On desserre les coins de calage avec précaution de facon a mettre la
voute en charge sans a coups. Le coffrage se trouve décollé de quelques
centimetres. On peut alors vérifier la bonne tenue de la voiite qui vient d’étre
décintrée sans courir aucun danger grave de rupture.

On tend les cables des treuils pour soulever a nouveau le cintre et per-
mettre ainsi de dégager les tréteaux. Le cintre se trouve suspendu.

Fig. 13.
Conoides supportant au lanterneau. Cazaux (France). — Kegelschale mit Oberlicht.
Conoidal surface with openings.

On abaisse le cintre jusqu’au sol au moyen des treuils. Il vient reposer
sur les lories. On le roule a sa position suivante; on change les treuils de
place et les mémes opérations recommencent.

Ces différentes manoeuvres de décintrement et de remise en place de-
mandaient quatre heures et occupaient une dizaine d’ouvriers.

On a pu se rendre compte par cet exemple détaillé que la compléxité de
la réalisation d’une surface gauche n’est qu’apparente.

Il est nécessaire de faire un choix judicieux du module de construction
et de ses dimensions pour permettre un réemploi économique de la surface
de coffrage. C’est le role normal de auteur d’un projet de s’intéresser non
seulement a la partie proprement technique et aux calculs, mais encore de
juger en constructeur du meilleur usage économique a tirer des formes qu’il
imagine,

D’autres applications de couvertures dans lesquelles nous avons fait
emploi des surfaces gauches ont ¢té réalisées au cours des années 1931 3
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1033. Nous signalons entre autres des couvertures a grande portée a Reims,
a Chalons-Bouy, a Charleville, a Chartres. Nous donnons quelques docu-
ments photographiques sur ces travaux (fig. 22, 23, 24, 25).

Double auvent d’essais a Dreux.

En 1933, Pentreprise Rouzaud et fils de Paris nous a obligemment offert
de construire un batiment en béton armé dans lequel nous ferions usage de
surfaces minces gauches — le batiment était construit a titre d’essais — les
essais devant étre poussés jusqu’a la rupture.
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Fig. 14.

Sheds gauches Romilly (France) — Regelschalen-Sheds in Romilly (Frankreich)
Skew-shell sheds in Romilly (France).

Nous nous sommes tout d’abord attaché a pouvoir mesurer directement
sur ces voiles gauches les contraintes développées sur ’effet des charges.

Pour cela nous avons eu recours aux appareils de Monsieur Mabboux
et de Monsieur ’Ingénieur en Chef des Ponts et Chaussées Coyne.

c > 9 E

8
Fig. 15.

Ces appareils nous ont été aimablement prétés par le laboratoire de
I’Ecole des Ponts et Chaussées de Paris. Monsieur I’'Ingénieur des Ponts et
Chaussées Mary a bien voulu suivre ces essais qui ont porté sur une période
de plus d’une année.

Nous ne décrirons pas spécialement les appareils de mesures employés.
Cette description ne correspondant pas au cadre de ce mémoire.

Nous indiquerons seulement que ’appareil de Monsieur Mabboux est un
instrument trés pratique et trés souple de photoélasticimétrie. L’appareil
Coyne est une corde vibrante protégée par un tube métallique noyé dans le
béton a essayer.

Voici les caractéristiques du batiment que nous avons fait construire
(fig. 20).

Abhandlungen 111. 20
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C’est une construction ayant deux grands porte a faux. Les dimensions
sont indiquées sur le schéma de la figure 26. L’¢paisseur des voiles gauches
est de cing centimeétres. Il n’y a aucune nervure sur le voile. Seules les di-

Fig. 16.

Sheds gauches. Romilly (France). — Kegelschalen Sheds. Romilly (Frankreich).
Sawtooth-sheds with skew surfaces et Romilly (France).

N W OREENE WEREENE SRR NNRNNES IV AR

Fig. 17.
Vitrages sheds. Remarquer la forme en dépouille de la section des meneaux.
Fensterwinde der Sheds. Man beachte die Form der Querschnitte der Fensterposten.
Sash-side of sheds. Notice the cross-sections of window-posts.

rectrices légerement curvilignes /K, Kb, /I et LH ont été¢ renforcées par
une nervure saillante.
Les photographies des fig. 27, 28 et 20 montrent bien "aspect général
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du batiment. La photographie 29 indique avec quelle facilité on a pu procéder
au décintrement.

Fig. 18.

Sheds gauches. Le centre suspendu sur les cables manoeuvrés par les treuils. Les fers
a vitrage ont ¢été posés avant le décintrement. Romilly (France).
Regelflichen-Sheds. Das Lehrgeriist ist an Drahtseilen aufgehingt, die durch Winden
betitigt werden. Die Fenstergitter wurden vor dem Ausriisten verlegt. Romilly (Frankr.).
Skew surface sheds. False-work is suspended from cables which are actuated by winches.
The sosh-steel was laid before the false-work was removed.

Fig. 10.
Le cintre est entierement baissé, il repose sur les chariots. Romilly (France).
Das Lehrgeriist ist ganz abgesenkt, es ruht auf den Rollwagen. (Romilly (Frankreich).
False-work completely towered and rests on the carriages.

Voici comment ont été dispos¢s les appareils de mesure:

Sur un quart de la surface totale de la toiture, dans la partie AEKL,H,G
nous avons disposé 32 miroirs Mabboux et 12 tubes sonores Coyne; un
treizieme tube fut disposé dans le tirant /G.
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Fig. 20.
Le cintre est en place sur les tréteaux. Au premier plan le chariot sur voie de 0,60 m
servant a la translation du cintre au sol. Romilly.

Das Lehrgeriist ruht auf den Querbocken. Im Vordergrund ist der Rollwagen von
0,60 m Spurweite sichtbar, der zur Verschiebung des Lehrgeriistes in tiefer Lage
dient. Romilly.

The false-work rests on the supports. In fore-ground a carriage of 0,60 m gauge for
moving the lowered false-work into place.

Fig. 21.
Les tréteaux de calage sont enlevés. Le cintre est suspendu aux cables.

Die Unterstiittzungsbocke sind entfernt. Das Lehrgeriist hingt an Drahtseilen an der
Kranbahn.

The supports have been removed. False-work is suspended from cables.
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Les figures 30 et 31 montrent la position de ces différents appareils. La
figure 32 est une phase du ferraillage du voile gauche ainsi que la photo-
graphie 32 bis. Le tableau 33 représente 1’état des contraintes mesurces sons

Figh 22,

Reims. Voiites conoides portée 60 m; décintrement de 1100 m® en une seule opcration.
Kegelschalen-Gewdlbe, Spannweite 60 m; Ausriisten von 1100 m? durch eine einzige
Titigkeit.

Conoidal surface vault of 60 m span; removing of 1100 m? false work in a single
operation.

Fig. 22 bis. Voites gauches, portée 60 m. — Regelschalengewdlbe, Spannweite 60 m.
Skew surface vault; span 00 m.

I’effet d’une charge uniforme, les fleches indiquent les directions des con-
traintes principales de compression mesurées et calculées. On remarquera
quelques divergences d’allure sur certains points. Ces divergences sont sur-
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tout sensibles sur certaines rives, elles correspondent pour la plupart a des
contraintes locales de flexion au voisinage de ces rives.

D’une facon générale les phénomenes observés ont suivi nettement
Iallure que 'on pouvait prévoir par le calcul. En particulier, lors d’essais
ultérieurs sous des charges plus importantes poussées jusqu'a la rupture nous
avons constaté la présence de fissures uf et yd dirigées exactement suivant

Fig. 23.  Voiites 50 m et 30 m. Voiles gauches épausseur 0,06 m.
Regelschalengewdlbe von 50 und 30 m Spannweiten und 6 cm Dicke.
Skew surface vaults of 30 and 50 m span; 6 cm thick.

la direction calculée correspondant aux tractions. Ces fissures d’ailleurs n’ont
pas compromis sensiblement la solidité du voile qui a pu étre déchargé et

Fig. 23bis. Arc 50 m. Voite gauche conoide épaisseur 0,06 m. - Bogen 50 m
Spannweite. Kegelformiges Regelschalengewdélbe von 6 cm Dicke. — Arch of 50 m
span. Conoidal skew surface 6 cm thick,

recharg¢ 4 nouveau et plusieurs fois par la suite sous des systeémes de charges
différentes.

Parmi les cas de charges les plus intéressants nous devons noter une
charge de quatre tonnes localisée sur 10 metres carrés environ, a Uextrémité
de lauvent et dans la partie centrale.

La rupture définitive d’un auvent a ¢été obtenue a la fin de la série des
cssais par application d’efforts alternés sur la rive rectiligne d’extrémité du
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porte a faix. L’amplitude des plus grandes déformations sous ['effet de ces
charges atteignait quarante centimetres a I'extrémité.

Théorie.

Les développements mathématiques qui vont suivre ont ¢té I"aboutisse-
ment de recherches posées 2 'occasion de problemes concrets de construction.

Fig. 24.
Coffrage marquise 7 m porte a faux conoide double avec les épaisseur 0,05 m.
Vordachschalung von 7 m Auskragung. Doppelte Kegelschalen von 5 em Dicken.
Forms for a 7 m cantilevered roof. Double conoidal surface 5 c¢m thick.

Fig 24 bis. Voile gauche en marquises doubles accolées, ¢paisseur 0,05 m. — Vordach
als doppelte Regelschale, 5 cm. Dicke. — Cantilever-roof in the shape of twin skew
surfaces. Thickness 5 cm.

Nous les présentons ici sous une forme théorique et générale, mais dans
notre esprit ils n’ont été que peu a peu €laborés; ces calculs mathématiques
n'étant que les aides précieux pour controler la stabilité des formes imaginces
par le constructeur.

Nous allons retrouver dans ces développements présents lillustration
de ce que nous disions a la fin de la premiére partie de la note lorsque nous
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indiquions P’influence des connaissances mathématiques sur 'esprit d’imagi-
nation.

Nous nous proposons d’¢tudier I'équilibre général d’une surface a cour-
bures quelconques.

Nous exprimons I’état de contrainte du voile par trois composantes que
nous définissons plus loin. Pour que ces trois contraintes soient suffisantes
pour définir totalement I’état élastique de la surface — au lieu des six compo-
santes de la théorie de I'¢lasticité — les hypotheses suivantes doivent étre
réalisées.

Fig. 25. Voites gauches de 50 m de portée, épaisseur 0,05 m. — Regelschalengewdlbe
von 50 m Stiitzweite und 5 cm Dicke. — Skew surface vaults of 50 m span, 5 cm thick.
B8 C

@ 2,.50m |V o

Fig. 26.

a) I’épaisseur du voile est trés faible par rapport aux autres dimensions.

b) I'épaisseur du voile est tres faible par rapport aux rayons de courbure
en tous points.

c) les forces agissant sur le voile ont un taux de variation relative faible
sur la surface du voile — en particulier il n’y a pas de discontinuité de charge-
ment ni de charges isolées —.

d) les courbures ne changent que tres peu entre I’état libre et 1'état
contraint; on vérifie cette condition a posteriori, en calculant les déformations.
La variation de courbure donne une premitre approximation de la précision
du caleul.
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e) En vertu de (a) et de (d) et par I'application du probleme de Saint-
Venant, nous admettrons que les contraintes locales introduites par les liaisons
aux limites de la surface ont une influence négligeable & une certaine distance
de ces rives.

Nous basant sur ces hypotheses nous arrivons aux conclusions suivantes:

Si I’on considere des axes trirectangles O . X .Y .Z, OX, OY dans le plan
tangent en un point de le surface moyenne du voile, les contraintes sont indé-

XA 1
SE AT/

Fig. 27. Double duvent gauche. — Doppeltes Schutzdach als Regelfliche. — canti-
levered twin roofs with skew surface.

Fig.28. Vue latérale. — Seitenansicht. Side view.

pendantes des coordonnées (Z) (position du point dans I'épaisseur du voile)
et 'on a:
Yo =Zs = La== 01)
Les contraintes effectives sont
Xy ¥y &y

fonctions de x et y seulement.

Nous pouvons dire qu’il n’y a ni flexion ni torsion locale dans la voile.

Les calculs qui suivent reposent sur ces considérations mais il ne faut
pas oublier que les contraintes le long des poutres de rives doivent étre cal-
culées d’une facon spéciale.

1) Par exemple pour une vofite cylindrique en béton de 50 meétres de rayon de 0,05
d’épaisseur Z est de l'ordre de 1/1000 des contraintes non négligées.



314 B. Laffaille

Si par exemple nous supposons un cylindre soumis a des pressions et
cncastré par une base contre une plaque indéformable, les fatigues locales
de flexion a 'encastrement atteignent la valeur

P-Rq¢ 3 p- R
¢ ] l-—a2 1,82 e

p €tant la pression,

R le rayon du cylindre,

¢ I'épaisseur des parois supposées minces,

o le coefficient de Poisson ¢gal a 0,3.

| l
8 / | J e / i J
T .
| |
| |
£ K |2, L £ x !L, L
—_— __4-_..3_,—_’é_.T.‘.g_‘.szvs_'_Pé_._—.-....._._.,_,._.__.__...__.___.._T?_—.—._-._r__.— ——
&~ 4 i
3 7 17 15 19+ | 2327 F/ ! {|
8[19 l,ilz
2 6 10 4 18- | -22.26 r:a i ffl
I 18
7 5 9 13 17+ | -2 -25. (29 2. |
A G 7 # A G ‘H, H
| i |
Fig. 30. Fig. 31.
Emplacement des pastilles obtiques Emplacements des tubes sonores Coyne. Les
Mabboux. tubes 9 et 12 ont été placés surlaface supérieure
Anordnung der Spiegel System des nervure]s KGd s 111[?.1' Lte[tgbe 10 a été
Mrbbonz place dans le tiran :
o Anordnung der tonenden Rohre System Coyne.
Arrgngcment of mirrors Die Rohre 0 und 12 wurden an der Oberfliche
(System Mabboux). der Rippen K G und Z, H, und das Rohr 10

im Zugband /G verlegt.

Arrangement of sound-pipes system Coyne-

Pipes 9 and 12 were laid on the surface o.

ridgis KG and L, H,, pipe 10 in the bottomf
chord /G.
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La fatigue de tension étant /qeR’ la valeur relative de la fatigue de flexion

est 1,82, et, si 'on calcule les conditions de résistance par la théorie du plus
grand cisaillement, la fatigue est localement multipliée par 2,82.

I1 sera nécessaire de prendre les mémes précautions si les conditions (c)
ne sont pas réalisées, en particulier dans le cas de discontinuité de chargement.
Axe de syméltrie

Symimelrie Axe
Axis of symimelry

JSur tout le reste . £Epingle 98 tous fes 0.20
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WNole: Nepas melire de crachefs sux barres constifuant fes nappes ¢ 714 -A 8,C /e S0cm zwischen den ||both cantilevers 271474

Ore R.E.¢ 74 derlogen A, Bu.C erfialten keine Haken. verschiedenen Lagen
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Fig. 32.  Charges uniformes 200 kg/m?. — GleichmiBig verteilte Last 200 kg/m?2.
" Uniform load of 200 kg/m?2.

; Equations générales d’équilibre.
La surface moyenne du voile est définie par I’équation:

g == f(x: j/)
soient p, q, r, s, ¢ les dérivées premieres et secondes de z telles que
_ dz _ d*z
 dx 5= dx dy
g — % g B
dy ay?

d*z

dx? L’¢épaisseur e fonction de x et de y.
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Les forces appliquées sur un ¢lément se projettant suivant dx et dy sont
sur les trois axes

Xdxdy, VYdxdy, Zdxdy.

Soient du, dv, les longueurs se projettant suivant dx, dy, o est 'angle de
du et dv. Nous définissons les contraintes sur l’eltment dv par deux com-
posantes:
n, parallele a d
¢ parallele a d

5‘ »

Fig. 32 bis.
Ferraillage du voile gauche. On apercoit les tubes sonore Coyne disposées avant la coulée
du béton.
Armierung der Regelfliche. Man beachtet die tonenden Rohre System Coyne, vor dem
Betonieren verlegt.
Reinforcement of skew surfaces. Notice the sound-pipes (System Coyne) laid Dbefore
concreting.

De méme sur du agissent les contraintes unitaires: », et 7.

L’équilibre des moments montre que les deux valeurs de 7 sont égales.

La construction du cercle de Mohr a partir de ces contraintes est la
suivante:

On porte sur "axe des cisaillements OM — £

On trace MAB formant I'angle — o avec OM et on porte MA — n,,
MB =

Le cercle de Mohr passe par A et B.

Son centre est immédiatement défini. On en déduit les contraintes prin-
cipales en grandeur

Les angles o’ et «” définissent les directions principales.

Les cosinus directeurs correspondant a une direction a définie par son
angle a avec MAB sont:

_cos(a+ ) Y14p*(14-¢%) — pgcosa |1+ ¢
- 1 o= 7 == g /
p . €08 eV14g* (14 p*) — pgcos (et o) Y1+ p? )
- 1+prte
_gcosa144° + pcos(af ) Y1+ p?
1+ p*—+g*
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Les équations d’équilibre sont écrites en partant des contraintes réduites dé-
finies par les relations:
1 — 2
vy == 1€ V {——i

g .
Vo = n,€ '/L—p; @)
1+4°
v = £
Ces équations montrent que v,, v., et = sont les forces projetées sur X OV,
qui agissent sur 'unité¢ de longueur prise suivant dx et suivant dy.

1

B . ! i J
12.50 750 |
I Directrons calculées
! ———>Berechinele Richtungen
% Caleulated directions
5 |

Directions mesurées
> —¥Gemessene Richlungen
Measured Oireclrons

12.50

4 l, )
£ -——;;<,4 . '\Qg . f\yag ) “'?73& ) (\za Kz‘?\iza'szi -L - i ’ ’
g T s Y o

B

2 3 /0 74 8l 022 2640 | *
X\: . ::: ’::Q \;!4'};»‘2&[&\\
pa) = G .

i N Hy H

Fig. 33. Certaines pastilles se sont montrées inactives. — Einzelne Spiegel haben sich
nicht gedreht. — Certain mirrors have not turned.

\
N\

.

L’équilibre des forces projetées sur OX pour I'élément dx dy s’écrit:

sl — (yl + ;’v‘ dx> dy + vdx — (, L :y” dy) dx 4 Xdxdy = 0
soit ’
x+%:x (3)
On a de méme sur OY
ey ®)

Reste I’équation de projection sur OZ.
Remarquons que la composante sur OZ de la force projetée sur OX
suivant v; dy est:

cz
vl«ady = np-dy
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de méme sur le c6té parallele on a la force
0z 0 82)]
SR I
de méme pour v, et 7.
I1 en résulte I’équation d’équilibre sur OZ

dedy — 2 up)dyds — 2 (maydxdy— - () dydx — 2 p)dedy = O
Zaxay O x 1p_Vx (my 2qu ax‘qyx £ypxy—
En développant et en divisant par dxdy ‘

6‘11,_ o _6/‘112 . __6r . ___é_r . .
z~/a—x'p vy ¥ ayq vy t qu TS 6yp ts =20
ou encore
d v, 0 r) (6 v? é‘r) .
Z‘_”(W+ay q 2y 1_6‘); = r-+2st+ vt

Cette derniere équation peut s’écrire sous la forme suivante en remplacant
les termes entre parentheéses par leurs valeurs (3) et (3%)

nwr+2st+wnt=2Z—pX—gqV. 4)
En résumé nous avons ~

o Ty =X
vy C7 _y
oy Jdx

mwr+2st+vt=72—pX—gqYVY.
Les deux premieres équations sont vérifiées si I’on pose:

2 )
vy %ﬁ‘.{ + &
Jdp-
’ 20 :
2 dx* _i_ﬂ; (5)
* W
T = — ———
ox oy
2§ o
i - /. 6
X . oy . ( )
La troisieme relation devient alors:
2 20 220 P 3
: 0_25 ~ t __):Z__f_" Y -V 7
oy* ox 3y+ ox* ax(gp) ay(”q) (7)

Les équations (5) définissent entiérement v,, v, et z si ’on connait @.

& et n étant calculés par des quadratures.

L’équation (7) est une équation linéaire aux dérivées partielles du se-
cond ordre. Elle a une infinité de solutions.

Suivant la nature des conditions aux limites, le probleme de recherches
des contraintes peut étre entierement défini par (7) ou bien peut exiger des

équations supplémentaires.
L’équation (7) résumant uniquement des conditions d’équilibre de forces,
par analogie avec les ystemes réticulaires, nous appelons voile isostatique
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tout voile pour lequel les conditions aux limites (rives) sont suffisantes pour
résoudre le probleme avec la seule équation (7).

Dans le cas contraire nous aurions a faire a un voile dit hyperstatique.

Cette dénomination est adéquate parce que le probléeme est posé, non
dans les termes d’un probleme d’élasticité savoir:

»calculer les contraintes et les déformations connaissant le champ de
forces de volume et le champ de forces de surface,

mais bien, dans les termes d’un probleme hyperstatique d’ingénieur:

y,calculer les contraintes et les déformations étant donnés le champ de
forces de volume (ici, en premit¢re approximation de surface) et les pro-
priétés ¢élastiques des liaisons d’appuis.‘

Le probleme est résolu par application du théoreme de Castigliano:

,»91 I'on exprime le potentiel interne en fonction des forces de volume
et de surface statiquement indépendantes, la dérivée du potentiel interne par
rapport a une quelconque de ces forces est égale au déplacement du point
d’application de cette force sous I'action de toutes les forces données, ce dé-
placement étant donné sur la direction de la force.*

En particulier on a le théoreme de Ménabréa ,la dérivée du potentiel
interne par rapport a une réaction d’appuis fixe est nulle*.

Le probleme est plus complexe ici que dans le cas de systemes réti-
culaires puisqu’il faut déterminer des fonctions rendant le potentiel minimum
et non plus des forces isolées en nombre fini.

Le probleme est pratiquement résolu en remplacant la fonction continue
par une suite de forces discontinues supposées constantes pour de petits
éléments de rives.

L’expression générale du potentiel est:

o 112+ ) 2) 4y, 2\]2
=] f L e o vo 4 BRE2E (1000 g, ()
E Vi+p®+g° :
Le probleme étant supposé hyperstatique, l’équatibn (7) jointe aux con-
ditions aux limites définit @ a des fonctions arbitraires pres; les équations
(5) définissent les contraintes que l’on introduit dans (8).

Les fonctions arbitraires doivent alors rendre z minimum, en ajoutant
au besoin a x le potentiel interne des rives et des appuis.

Le probleme est ainsi défini dans le cas général, il est fort complexe —
nous ’avons cependant déja résolu pour des cas concrets.

Il est cependant intéressant de chercher d’une maniére précise dans
quels cas le probleme est isostatique. Dans ces cas, le probleme revient, en
effet, a chercher une fonction @ définie par I’équation différentielle (7) et
dont les conditions aux limites sont suffisantes pour la définir d’une facon
univoque ?).

Etude des conditions aux limites.

Les rives sont des systemes élastiques pouvant reporter certains efforts
de direction déterminée ou de direction quelconque. De plus, sur ces rives
peuvent agir des forces extérieures déterminées: par exemple un tympan re-
portant des cisaillements s’appuyve sur une vofite cylindrique est, dans le cas

2) Etant donné que seules les dérivées secondes de ¢ ont un sens physique, < ne
sera jamais déterminé qu’a une fonction linéaire ax + by + ¢, pres; ce qui ne présentera
aucun inconvénient (de méme qu’un potentiel n’est défini qu’a une constante pres).
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de pression de vent exerce sur cette voiite des pressions qu’elle reporte sur
ses retombées.
Le tympan n’ayant pas de rigidité¢ hors de son plan, la condltlon de rive
s’écrit alors
v, == 0
(le tympan étant défini par x = x,).
Mais quand il y a des forces extérieures

V1 — )v .
4 étant déterminé par les pressions agissant sur le tympan. Il en résulte
o* -
T = L —=E 9)
Qp- ;

On obtient des conditions analogues en @ quelles que soient les conditions
de rives.

Dans le second membre de (9) figurent 2 et &. Nous ne les distinguerons
plus dorénavant, et, dans ce cas particulier, par exemple, nous écrirons:

O
y*
puisque x est constant et égal a x,.

Si la rive avait une direction quelconque a, les équations d’équilibre
autour d’un point auraient permis de calculer la quantité remplacant £
(5 costa — ysina).

Le calcul précédent, donné, a titre d’exemple, peut étre généralisé, et,
nous allons classer les rives qui peuvent se présenter dans la pratique
constructive et écrire les équations aux limites correspondantes.

Les rives étant droites ou courbes (en projection sur XOY) nous dé-
finissons en tout point d’une rive la direction de la tangente Z, I’élément d’arc
ds, la direction de la normale 7, et le rayon de courbure R; @ est une fonction
de ’arc s sur la rive et a des dérivées le long de ’arc, le long de la tangente,
et le long de la normale.

Aux termes dépendant de & ety pres qui se transforment sans difficultés,
on a toujours

H() (10)

82
Vg =— ——
T an?
_ 2o |
Vyp = YE (11)
__ o
ST dn ot
et de plus:
* o o 100
2t Js? R 9n
2O 20 109 ‘ (12)

andt  dnds ' R 3s
Classification des rives.

I. Rives completes.

Nous appelons ainsi une rive supportant toute espece d’efforts: massif
en macgonnerie, mur trés épais, appui sur le sol, poutre de retombée tra-
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vaillant en flexion dans deux plans rectangulaires et supportant une vofite
cylindrique. Dans tous ces cas, aucune condition n’existe pour la fonction @,

2. Rives mixtes.

Ce sont des rives, limitées par un arc qui est supposé ne pas pouvoir
travailler en flexion: cas des tympans des votites cylindriques qui ne sup-
portent que des efforts dans leur plan et ne tiennent pas le renversement.

L’équation d’équilibre s’écrit (si ’on suppose que la rive ferme, par
exemple, un cylindre parallele a OZ):

d
05 ln = HIRI= =t (13)
c’est a dire
? D AW (a @ ds
iy & e 2 e = — H ”
R 2s” on ) 9s TR (13°)
En particulier dans le cas d’un tympan plan on retrouve I’équation (10).
L’équation (13”) ou sa forme (10) servira dans tous les cas out une
volite en voile mince est posée sur des murs ne tenant pas le renversement.

3. Rives de cisaillement (arétes).

On peut envisager des voiles formés d’éléments se coupant suivant des
arétes. Dans ce cas, les efforts peuvent étre transmis sous forme de cisaille-
ments seulement.

Par application du premier membre de (13") il vient:

O 20

Os— on

= HR (14)

4. Rives libres.

Dans le cas ou le voile n’est pas limité par un systeme résistant, sur ces
rives v, et 7,,, sont nuls

PO 130
as R an - (15"
eo r&+ﬂ
dnds — R 3s *
.
On déduit, ce qui permet de calculer @ et oag en tous points de la rive:
) 0* _ 100 "
SREE ra)] = 250+ 15"

En résumé de la classification que nous venons de définir, nous dirons
que les rives compleétes n’introduisent pas de conditions; les rives mixtes
et de cisaillement introduisent une condition; les rives libres introduisent
deux conditions aux limites.

Ce résultat nous permet de préciser les conditions de résolution de
I’équation (7) suivant sa nature, ce qui nous conduit a une classification des
voiles.

Abhandlungen III. 21
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Classification des voiles.
L’équation différentielle (7)
a ) 2 ’
-~ — e - =V 7
ay~ oxay_l— dx? (7)

se comporte différemment (du point de vue des conditions aux limites) suivant
qu’elle appartient au type elliptique, parabolique ou hyperbohque C’est a
dire suivant le signe de ’expression

4 = s?2—rt. (16)
Le signe de 4 indique le sens des courbures de la surface
z = [(x,9).

On obtient alors les résultats suivants:

1. surface du voile convexe a courbures dans le méme sens 4 est négatif
et ’équation est du type elliptique.

2. surface du voile a courbures opposées (ce que nous appelons surface
gauche plus particulierement) 4 est positif, I’équation est du type hyper-
bolique.

3. surface du voile développable 4 = 0 I’équation est du type parabolique.
Cette derniere famille de surfaces présente sur le cas particulier du
simple cylindre ’avantage de propriétés spéciales au flambage.

Premier cas — Surfaces convexes.

Nous ne développerons pas ce cas. Nous 'avons envisagé pour montrer
que cette étude particuliere des surfaces a courbures inverses ou surfaces
gauches gagne en clarté et en rigueur mathématique a étre envisagée dans
toute sa généralité. Nous indiquerons simplement pour ceux que la question
intéresse les considérations suivantes:

Par généralisation des problemes de Dirichlet et Neumann appliqués a
des équations du type elliptique, on sait que, pour que le probleme ait au
moins une solution certaine quel que soit le cas de charge, il faut avoir une
condition sur chaque rive et une seule.

Les rives doivent donc étre toutes soit des rives mixtes soit des rives en
cisaillement. , .

Si une rive libre est introduite, le probleme est en général impossible
en ce sens que la fonction @ présente des discontinuités et des valeurs mul-
tiples dans certaines régions. Le voile subira alors des flexions locales, et,
suivant 'importance de la rive libre il y aura ou non rupture de I’ouvrage. Le
probleme ne peut étre pratiquement résolu que dans le cas de rives libres de
petites dimensions calculées comme introduisant simplement des contraintes
locales. Il faudra faire appel a des théories d’¢élasticité plus générales.

Dans le cas ol une partie des rives est du type ,rive complete®, le
probleme devient hyperstatique et, pour le résoudre, il faut faire appel au
théoréme de Castigliano.

Deuxieme cas — Surfaces a courbures opposées.

Les asymptotiques de la surface sont les caractéristiques (réelles) de
I’équation en @.
Soient u=F,(xy)
Vo= F2 (X, y)
les asymptotiques.
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Les deux fonctions F sont définies par I’équation

/aF JFoF <8F)
— 25— == =0
k@x) dx dy T (17)
et ’équation en @ s’écrit sous forme canomque de Laplace:
a‘“’(D[ dudv dudv auav] [93 o 2%u %u ]
= — t— — —28 " —— =2 — At —2 -
dudvl dxdx axaﬂ“ oy dy + dx? sax8y+ ay*® +
aw[ % %y agv]
-2 a g
-+ axt T %ax3y T oy

Dans ce cas on ne peut pas donner de solutions générales, comme au cas
précédent, le probleme dépend essentiellement de la position des rives par
rapport aux asymptotiques.

Pour étudier le probléme, prenons le systeme de coordonnées (u, v).
Le voile se projette suivant un contour fermé (C). Pour que le probleme ait
une solution, et une seule, il faut:

1. qu’une partie des rives soit formée de rives completes et qu’une autre
partie soit formée de rives libres.

2. que, en tracant toutes les polygonales possibles formées d’éléments
paralleles aux directions z et v, chaque polygonale étant terminée sur une
rive libre et sur une rive compléte (les rives mixtes donnant les sommets
de la polygonale, ainsi que les rives en cisaillement) tout point a Pintérieur
de C se trouve a 'intersection de deux polygonales et de deux seulement.

Par exemple la figure précédente répond a ces conditions: la rive libre
et la rive complete s’arrétant aux points a tangentes paralleles a u et v.
Un point quelconque P se trouve bien sur deux polygonales et sur deux
seulement.

Suivant la forme des polygonales on peut classer les surfaces.

Les polygonales supposées issues de la rive complete peuvent étre
classées en deux groupes:

1. Polygonales dont le premier élément est parallele a 'axe .
2. Polygonales dont le premier élément est parallele a ’axe v.

Avec cette convention on obtient les principales formes suivantes:

A. Les polygonales des deux groupes se réduisent a un seul élément
rectiligne.

On a une rive complete et une rive libre comme l'indique le schéma
suivant que nous avons retransposé. sur la surface réelle en indiquant les
asymptotiques dans quelques cas particuliers.

B. Certaines polygonales d’un groupe ont un sommet, toutes les autres
sont a un élément. Ces formes correspondent aux formes précédentes ren-
forcées de rives de cisaillement ou de rives mixtes.

C. Dans les deux groupes certaines polygonales ont un sommet les
autres étant a un élément.

D. Dans les deux groupes les polygonales ont un nombre quelconque
de sommets, les rives completes et les rives libres étant uniques.

Ces deux cas C et D correspondent a des porte a faux appuyés contre
un mur.
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E. La rive libre se réduit a un point.

A condition d’admettre que @ est continu, ce qui seul a un sens physique,
le probleme mathématique a une seule solution qui est la solution physique
unique.

F. En combinant les éléments précédents entre eux, on peut obtenir un
grand nombre de solutions.

En particulier on peut réaliser des voiites ayant des rives completes sur
les retombées et des rives latérales mixtes ou de cisaillement.

Pour que le probléme soit isostatique il faut supprimer certaines liaisons
avec les rives de cisaillement.

Dans ce cas particulier, on peut dire que, partant d’une retombée et
arrivant a Pautre, chaque polygonale doit rencontrer une fois et une seule
fois une rive libre.

Dans le cas ot la surface a moins de liaison (une rive mixte au lieu d’une
rive complete) I’équilibre est en général impossible. Si elle a plus de liaisons
qu’il n’est strictement nécessaire, le probleme devient hyperstatique (rive
mixte au lieu d’une rive libre, par exemple).

Troisieme cas — Surfaces développables.

Nous indiquons ce cas sommairement, dans la théorie mathématique géné-
rale, encore qu’il ne rentre pas dans la définition d’une surface gauche.

Mais lintérét mathématique en est évident et la facon dont nous le pré-
sentons montre bien que la théorie que nous proposons est absolument
générale.

Dans le cas de surfaces développables les asymptotiques des deux fa-
milles sont confondues et sont nécessairement des droites.

Appelons
v=F (x) y)
le systeme de génératrices rectilignes.
v = G (x,y)

un systeme de trajectoires orthogonales.
On obtient a la place de I'équation (7) I’équation simplifiée

R 'z
Qut dv:

Pour que @ soit déterminé, il faut deux conditions sur chaque génératrice.
On en déduit dons immédiatement:
a) Une rive qui est en méme temps une génératrice doit étre une rive
complete. :
b) Toute génératrice doit rencontrer soit une rive complete et une rive libre,
soit une combinaison de rives mixtes et de cisaillement.
c) Dans le cas ol une rive est tangente en un point a une génératrice, ce
point se trouve soit sur une rive mixte ou de cisaillement, soit au contact
d’une rive complete et d’une rive libre. .
Nous n’examinerons pas les singularités introduites dans le cas ol1 ’aréte
de rebroussement serait dans la partie utilisée de la développable.

La réalisation d’une telle aréte (ol le rayon de courbure est nul) est
incompatible avec les hypothéses générales du calcul que nous avons
spécifiées au début de cette étude théorique.

(19)
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Applications aux cylindres.
Le cylindre étant défini par

= [ (%)
Péquation en @ est
a (D
Ay?
Le cylindre est limité par deux génératrices x = C% et deux rives y = C?.
Les deux génératrices sont nécessairement des rives completes. Les rives
y = C’ peuvent étre deux rives mixtes, ou une rive compléete et une rive libre.
a) Rive complete et rive libre, sur la derniere (y = 0)

2/ =V | (20)

SRR
~=h
dx? )
* W
= k
dx dy ()
Y o
O = ( j —,,dydy—}—j s /z(x)a’xdx—}—yJ k(x)dx. (21)
JoJo 2 040 0
b) Rives mixtes y = 0 et y = L, sur les deux, on a respectivement
R/
5)6'; f; (x)
* 0
= /.
dx* 2 (%)
vy X px
o= [V | [ meyasac(1—2) 4
0do Z 0o L
y - pX X L LV
—{—zlg { lzg(x)dxdx—‘. j 7dydy] (22)
Jodo Y00 -
Dans ce cas on peut éviter la fonction @ et écrire
ZL—pX—gqY
2/1 —_— Z"

les équations (3) donnant directement v, et v quand les conditions sur les
rives sont celles indiquées.

Appliquons cette étude au cas des vofites cylindriques accolees séparées
par des arcs.

Si les arcs supportent des efforts normaux (arcs caissons) le probléeme
est hyperstatique sauf pour le cas d’un seul arc caisson entre deux voftes
dont les autres rives en arc sont libres. (Cas des formules (21).)

Dans le cas out il y a trois voiites, le probleme est isostatique unique-
ment quand les rives extrémes sont libres et les rives intermédiaires sont
mixtes. Les équations (21) définissent en effet les v, des extrémités de la
volite centrale. L’analogie de cette étude avec le cas des poutres sur appuis
est complete.

A une poutre sur deux appuis correspond une voiite dans le cas (b).

A une poutre encastrée a un bout, libre a autre correspond le cas (a).

A deux porte a faux en encastrement central correspondent deux vofites
accolées.
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A une poutre cantilever a2 deux appuis correspondent deux voiites
accolées. ,
Tous les autres cas sont hyperstatiques.

Etude particuliére des surfaces définies par leurs
asymptotiques, formant un systeme de coordonnées
curvilignes.

Application aux surfaces simplement et doublement réglées.
La surface est définie par les relations

x = x(u,v)
y =y (a,v)
z = z(u,v)
Les lignes # = C” ct v — (¢ étant les asymptotiques.
Nous posons:
D(y,z) (3x‘
Ly = E — -
YT D(u,v) | x,%,]z au)
L Dz %) — dx ox
27 D(n,v) - P AT
. D(x;)’) . (9)6)“)
Lo = Da.y) a=2\3,

H=1VL*+L*+L2=VEG— F?
Les directions asymptotiques étant définies par
Ddu?® + 2D dudv + D"dv: = 0O

avec
2 d §
D:)*c*;'*"’g 7
Qu’dv’ )i(xyZ)
| 3 2 2
D=, = = l(xy,
Iau v auaw(xyZ)
q2
pol2.2, 2

On déduit immédiatement

D=0 D"=20
(de par le choix des coordonnées asymptotiques). Nous appelons R, et R,
les rayons de courbure des asymptotiques « et v.

Soit F, 1a projectionde larésultante des forces exté-
rieures sur la normale; ces forces sont de plus décompo-
sées en?d):

F, parallele a I’intersection des plans asymptotiques
aux lignes de courbure au point considéré.

F, parallele a la direction v = C’

F, parallele a la direction u— C*

3) Dans le cas d’une surface de révolution (hyperboloide
considéré plus loin) cette direction est celle de la normale
abaissée du point sur [’axe de révolution de la surface, sa dé-
termination est aisée dans ce cas.
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e étant "épaisseur duvoile, d’une maniere analogue a celle des équations
(2) nous introduisons les contraintes 7
‘lll — ’ll "/G €
Uy == Iy V/E e
dy = ¢ VE€
9y =tVEe
ny, n, et ¢ étant les contraintes unitaires définies précédemment et appliquées
ici au parallelogramme de direction du et dv.
Les u et © sont donc les efforts totaux par unité de parametre z ou v.

Les deux équations d’équilibre dans le plan tangent sont (a étant ’angle de
u et v)

(23)

oy oty ty L ﬂ — |
dv + du tgaRl+SinaR2_EldlLdV—FuH (24)
d I s P Uy
— i —— == F H
du + dv tgaR, ' sinaR ’

En projetant sur la normale au milieu de ’élément du, dv, seules les forces
de cisaillement # donnent une composante du 2¢ ordre et il vient:
H du dv

oy
& étant la distance d’un point (z - du, v -+ dv) au plan tangant en (z, v)
2 0

o 2 o0 | _ , 1
0 = J’au’év}(x’y’z)ﬁ'_du an D H

te — Fn

9

On a donc: H?

te = Fn 2D7 =

o=

ol VE
2D’

9 = Fn HZ‘DQ

Les équations (23), (24), (25) et (26) résolvent le probleme.

Dans le cas général des surfaces a courbures inverses ces équations pré-
sentent peu de simplifications par rapport aux équations écrites précédems-
ment. Dans le cas particulier de surfaces simplement et doublement réglées,
le calcul est notablement simplifié.

r (25)

N —

(20)

a) Surfaces simplement réglées.
Soit u = C?¢ le systeme de génératrices rectilignes

1
— = 0.
Ry
On a donc iy du, 29,
— 5 + R, -=F,H
Ritg« u Qv (27)
Lty 2y ty
cife 4 o2 " — FH
cv +311.+R15ma !
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0, et O, étant calculés par (26) il vient:

gy = l(Fu a\)])_{_;{
v
Y 29 ) (28)
[l‘lz = .{b(FVH_. Y SmaR1> dv — ‘ X dv -+ 2"(u)

L

Z(F,,H— 6(—3—) estunesolution particulieredel’équation

en u, avec second membre, 2 est 1a solution générale de
l1’équation sans second membre. 2”7 est une fonction arbi-
trairede u. Lesdeux fonctions 4 et 1”7 sont définies par les con-
ditions aux limites dans le cas d’un voile isostatique, ou par le théoreme de
Castigliano dans le cas d’un voile hyperstatique.

b) Surfaces doublement réglées (paraboloides et hyperboloides).
Dans ce cas

g = (:( A aa Vl) du -2 (v) 0)

ou

v ,) «
fte = L(FVH — qu—) dv 4 12" (u)

Etude des paraboloides hyperboliques.
Prenons pour plans directeurs du paraboloide les plans XOZ et YOZ
— ces plans ne sont pas nécessairement rectangulaires. —
x et y deviennent les coordonnées curvilignes précédemment considérées
( et v).
En reprenent les notations def1me< précédemment le paraboloide étant
représenté par I’équation

zZ = axy
il vient:
T:Z———ayX—axY:U
2a A
U Cy
Y1 = | Xdx— de‘i‘; ) = Fx,y)+ 72 () (30)

= var— |30+ = G+

Paraboloides limité par quatre génératrices.

Deux génératrices au moins doivent supporter v, et v, les deux autres
peuvent étre des rives de cisaillement.

Dans le cas oit les quatre génératrices supportent des cisaillements, les
conditions de symétrie peuvent en général définir v, et v, sans introduire le
potentiel.
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Paraboloide placé en ,selle de cheval“.

Les directeurs des rives sont bissectrices des génératrices. Le rectangle
des rives est placé au sommet du paraboloide.

2a est 'angle des génératrices.

Les contraintes dirigées suivant les bissectrices sont

T Y vy
M=l

tga ' 2iga
el A G .
Ny = cotg a + 2 cotg « (31)
Y2
T="5

N,, N, et T sont rapportés aux axes XOY.

D’apres les considérations générales précédentes le paraboloide est iso-
statique, par exemple, quand AA’ est une rive libre, AB et A’B’ sont des
rives de cisaillement, BB’ une rive complete. — C’est le cas d’un porte a faux.

Il est encore ‘isostatique quand AA’ et BB’ étant des rives completes,
AB et A’B’ sont des rives de cisaillement, a ’exception des éléments CC et
C’C’ qui forment rives libres.

Dans ce cas, sur AB et A’B’ on a:

NQIO
ou v, + vy = 27
soit () + 2 (x) =2U—F— G (32)

Donc, si 2" est défini en un point, 2’ s’en déduit spécialement sur CC et
C’C’ on a de plus

Vl = V2
soit M — A =G—F (33)
Donc
1!/ — U_._. G

Partant de a, par exemple, on obtient 2’ sur «b’, d’olt 2” sur 0’d’ et de méme
2" sur ab donne 1’ sur bd. Le calcul effectif dans ce cas est donc fort simple.
Dans le cas ou les rives CC et C'C’ ne sont pas libres, on peut appliquer le
théoreme de Castigliano en pratiquant une coupure suivant L/.

Chaque demi surface est isostatique et se calcule aisément, en introduisant
des liaisons surabondantes constantes sur des éléments finis de L, on écrit
que le potentiel est minimum, exactement comme pour un systéme réticulaire.

Nous n’insisterons pas sur le détail de ces calculs qui sont tres simples
mais cependant assez fastidieux.

Etude des hyperboloides de révolution.
Partons de I’hyperboloide défini par ’équation:
22 72 '
b= g ]

AN o A 1

ou encore; e =
b* a*
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Par un point A4 (x, y,z) passent deux génératrices que ’on peut définir
par les points ol elles coupent le cercle de gorge.

Tout point P du cercle de gorge peut étre défini par ’angle que fait OP
avec OX. On définira chaque génératrice par un tel angle en appelant ¢
I’angle définissant une génératrice d’un systeme, v l’angle définissant une
génératrice de P'autre systéeme.

On obtient ainsi: yo= a
cos ¥ -7
2
cos - —%
2
.
sin L. — ¥
2
y o Ir” —_—
cos -
2
sin? —%
Z=f——
Yy —
cos L =%
a® b2
r=a=— |1+
o 2
4cost ¥ ="
2
a> IE
4cos2 ¥ =%
2
H= ot fin =4 O
LW =
2 cos? L7 @
bz
H~) ) 1 Y
? a® a? 1
2D T 26| Ly _—_o
cos2 ¥ =%
2
ou encore:

L’équation (25) donne
t=ly
Les autres contraintes s’en déduisent.
On voit par comparaison avec les paraboloides hyperbohques que les

équations (29) et (30) appliquées au cas de "hyperboloide sont absolument
semblables, au terme H variable pres.
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De plus dans le cas du paraboloide

H=\T+p +¢°

ou encore

H = VT+a ()
les forces extérieures étant définies par unité de surface projetée, si 'on dé-
finissait ces forces par unité de surface vraie

H=1V14p+ ¢
figurerait explicitement dans les équations (30).
Les calculs numériques sont donc trés sensiblement les mémes dans les

deux cas et les considérations exposées précédemment sont valables dans le
cas actuel.

Les considérations théoriques et mathématiques que nous venons de dé-
velopper sur les surfaces a courbures devront étre complétées par une étude
systématique des conditions de flambage de ces surfaces.

Nous croyons en effet — et les expériences nombreuses sur des batiments
de grandes dimensions déja construits depuis plusieurs années sur nos projets
nous confirment dans cette idée — nous croyons que de telles surfaces a
courbures inverses offrent au flambage des résistances particulierement inté-
ressantes.

Nous avons déja commencé I’étude de cas concrets et pensons cette année
pouvoir poursuivre au laboratoire des recherches qui seront également fort
intéressantes.

Depuis plusieurs mois nous avons étudié la possibilité d’étendre aux
constructions en tble les principes généraux d’équilibre basés sur I'utilisation
des courbures. ‘

Ce domaine nouveau de la construction peut comprendre non seulement
les constructions de batiment en aciers semi-inoxydables mais encore les
voiles porteurs, comme les ailes d’avions qui, avec une augmentation considé-
rable de la sécurité, gagneraient tres sensiblement en allégement.

: Résumeé.

L’auteur présente une théorie générale des surfaces gauches minces et
établit les équations générales de base et les conditions de bordure de diffé-
rents cas. Il part a cet effet de cette notion que dans chaque cas, la couver-
ture la plus économique est celle dont la surface médiane coincide avec la
surface des pressions pour les charges fixes. Dans ces ouvrages, la question
du flambage est au premier plan.

Dans un paragraphe d’introduction, ’auteur étudie quelques cas pratiques
liés a la construction des surfaces gauches minces en béton armé et qui
montrent dans quelles proportions étroites sont liées la théorie pure et les
méthodes d’exécution pratique.

Zusammenfassung.

Der Verfasser stellt eine allgemeine Theorie der Regelschalen auf und
leitet sowohl die allgemeinen Grundgleichungen als auch die Randbedin-
gungen fiir verschiedene Fille ab. Er geht dabei von der Erkenntnis aus, daB3
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jene Dachkonstruktion die wirtschaftlichste ist, deren Mittelfliche mit der
Stiitzflache fiir die stindigen Lasten iibereinstimmt. Bei diesen Konstruk-
tionen tritt die Frage des Knickens in den Vordergrund.

In einem einleitenden Abschnitt werden einige Baustellen besprochen,
die sich auf die Ausfiihrung von Regelschalen in Eisenbeton beziehen und
die zeigen, in welch inniger Weise die reine Theorie und die Methoden der
Bauausfithrung miteinander verkniipft sind.

Summary.

The author sets forth a general theory of thin skewshells and deducts
the general basic equations as well as the marginal conditions for the diffe-
rent cases. He starts from the knowledge that the most economical construc-
tion of roof is that in which the mean areas correspond with the area of
support for the permanent loads. With such designs the principal question
deals with buckling.

In an introductory part he reports on some examples of building referring
to the execution of thin skewshells in reinforced concrete and showing how
intimately the pure theory and the methods of building are connected to each
other.
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