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DIE KNICKSICHERHEIT DER DRUCKGURTE OFFENER
FACHWERKSBRUCKEN

LA RESISTANCE AU FLAMVBAGE‘ DE LA MEMBRURE COMPRIMEE
DES PONTS OUVERTS A POUTRES EN TREILLIS

BUCKLING STRENGTH OF BOOMS OF OPEN LATTICE
GIRDER BRIDGES

Professor Dr. Ing. KARL KRISO, Deutsche Technische Hochschule, Briinn.

In den achtziger Jahren des vorigen Jahrhunderts hatten verschiedene
Einstiirze von offenen Fachwerksbriicken, die durch ungeniigende Knicksicher-
heit der Obergurte verursacht wurden, das Augenmerk der Techniker auf
dieses Problem gelenkt. Es ist das groBe Verdienst Engesser’s, erst-
malig im Jahre 1884 eine noch heute vielfach benutzte Naherungslosung ?)
entwickelt zu haben, die in einfacher Weise die Knickkraft bezw. die Knick-
sicherheit des Obergurtes oder die erforderliche Steifigkeit der Querrahmen
von Tragern mit parallelen oder polygonalen Gurten zu ermitteln gestattet.
Die Grundlagen einer strengen Losung verdankt man Zimmermann, der
die Ergebnisse seiner Arbeiten2) in den Jahren 1905—1909 in den Sitzungs-
berichten der preuBischen Akademie der Wissenschaften niederlegte. O st en-
feld?) entwickelte 1916 ebenfalls ein strenges Verfahren und verbesserte
die von Zimmermann in nicht ganz einwandfreier Weise erfaten Stetigkeits-
bedingungen eines Triagers mit polygonalen Gurten.

In den fiinfzig Jahren seit dem Erscheinen der Engesser’schen Arbeit
bis in die letzte Zeit wurde eine ansehnliche Reihe von Nadherungs-
verfahren fir Triger mit polygonalen und geradlinigen Druckgurten ver-
offentlicht¢), die sich eineVerbesserung derEngesserlésung zum
Ziele setzten. Wenn auch die meisten dieser Verfahren in mancher Hinsicht
. die am Obergurt der Briicke herrschenden statischen Verhiltnisse schirfer
erfaBten als die Engesser’sche Methode, so miissen hiebei doch immer wieder
auch Annahmen getroffen werden, die in keiner Weise, auch nur annahernd
erfiillt sind, deren EinfluB auf das Ergebnis daher schwer abzuschitzen ist.
Natiirlich lassen sich diese Annahmen stets so festsetzen, daB eine absolute
Sicherheit gewahrleistet ist, doch fithren derart grobe Voraussetzungen einer-
seits zu einer Materialverschwendung und stehen andrerseits im Widerspruch
zur angestrebten Verfeinerung des Niherungsverfahrens. Inwieweit nun das
Ziel, die Verbesserung des Engesserverfahrens, erreicht wurde, ist allerdings

1) Abhandlungen im Zentralblatt der Bauverwaltung: 1884, 1885, 1892, 1909.
2; Sitzungsberichte 1907 (S. 235, 326); 1909 (S. 180, 348).

3) Seitensteifigkeit offener Briicken. Beton und Eisen. 1916.

4) A. Hawranek, Seitensteifigkeit von Eisenbetonbogenbriicken. Bericht {iber die
II. Internationale Tagung fiir Briickenbau und Hochbau. Wien 1928.
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nicht bekannt, da die meisten dieser Arbeiten nur mit dem Engesser-
verfahren allein verglichen und vielfach als genauer erkliart wurden, falls
sich die Ergebnisse im Vergleich zu Engesser's LOosung ungiinstiger ge-
stalteten, weil gelegentlich die Meinung vertreten wird, daB die verein-
fachenden, dem Engesserverfahren zugrunde liegenden Annahmen auf zu
ginstige Ergebnisse gegeniiber der Wirklichkeit fithren. Auch diese Be-
hauptung ist nicht erwiesen, da die Ergebnisse des Engesserverfahrens, eben-
sowenig wie jene aller iibrigen Néiherungsverfahren, gehérig ijberprﬁft
wurden, weder mit den Ergebnissen eines Modellversuches, noch mit jenen
einer strengen Berechnung nach Zimmermann. Die Uberprufung und Durch-
rechnung von einigen speziellen Beispielen geniigt in diesem Falle
nicht, um Einsicht in die Verhiltnisse zu bekommen, sind im Gegenteil ganze
Bereiche nach bestimmten, durch die Praxis gegebenen Gesichtspunkten
miteinander zu vergleichen. Die hiezu erforderlichen auBerordentlich zeit-
raubenden und langwierigen Arbeiten sind wohl die Ursache, daB solche all-
gemeine Untersuchungen bisher noch nie durchgefithrt wurden, auch Stich-
proben auf die Zuverldssigkeit eines Naherungsverfahrens, durch strenge Be-
rechnung von wenigstens einigen speziellen Beispielen und Vergleich der
Resultate, liegen nicht vor.

Im folgenden werden Ergebnisse aus einer umfassenden Arbeit mit-
geteilt: ein Verfahren zur Berechnung der Knickdetermi-
nante aus den Zimmermann’schen Knickgleichungen, das im Gegensatz zu
dem bestehenden von Zimmermann 5) entwickelten Verfahren einen mehr ein-
heitlichen Aufbau zeigt und mit ziemlichem Zeitgewinn die strenge Berech-
nung der Knickdeterminante mit Beniitzung eines Rechenschiebers durchzu-
fithren gestattet; aus dem strengen Verfahren wird ein Niherungsver-
fahren entwickelt, das die herrschenden statischen Verhiltnisse weit-
gehendst erfaBt, einfach zu handhaben ist, durch eine Reihe von Vergleichs-
rechnungen iiberprift wurde und im Durchschnitt Fehler von nur wenigen
Prozenten aufweist, wihrend es in gewissen, auch in der Praxis oft nihe-
rungsweise erfiillten Grenzfillen strenge Losungen liefert; die Kenntnis der
rasch zu ermittelnden Naherungswerte fithrt andrerseits wieder zu einer Ve r-
einfachung im strengen Verfahren, indem sie eine derartige
Stellung des Problems gestattet, die die strenge Berechnung des erforder-
lichen Rahmenwiderstandes aus linearen Gleichungen ermoéglicht; iiber-
dies wurden die vielen bestehenden Ndherungsverfahren auf
eine einheitliche Basis gebracht, um auf diese Weise einen Vergleich
dieser Verfahren untereinander und mit dem hier entwickelten Néhe-
rungsverfahren zu ermdéglichen.

1. Die Zimmermann’'schen Knickgleichungen.

Ein gerader Stab sei in einzelnen Punkten elastisch gestiitzt und nach
Figur 1a belastet. Innerhalb eines Feldes sind dann die Stabkrifte O, kon-
stant, auch sind die Querschnitte F, und Trigheitsmomente /, im Felde un-
verdnderlich, im iibrigen aber ebenso wie die Feldweiten ¢, von beliebiger
GroBe. Die elastische Stiitzung sei durch Angabe des Wertes é gekenn-
zeichnet, der die Stiitzensenkung in cm pro Tonne Belastung angibt. Wird
dieser Stab durch ¢-fache Erhohung der Belastung an die Knickgrenze ge-
bracht, so verlafit er seine urspriinglich gerade, jetzt labile Gleichgewichts-

5) H. ZimmerManN, Die Knickfestigkeit der Druckgurte offener Briicken. Ernst &
Sohn, Berlin 1910.
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lage zugunsten einer benachbarten stabilen Form, deren elastische Linie durch
Figur 1b angezeigt sei. Die Verbindungslinie der Stiitzpunkte bildet das Stab-
sehnenpolygon, dessen Seiten zur urspriinglichen geraden Stabachse unter
den Winkeln », geneigt sind. Der deformierte Stab befindet sich unter der
Wirkung der Krifte §,4S und der elastischen Stiitzenwiderstinde W im
Gleichgewicht. Konstruiert man das zu dieser Belastung gehérige Druck-
linienpolygon, so kommt in der zum Felde r gehérigen Seite die Knickkraft
S, = 00, zur Wirkung, wihrend in den Stiitzpunktquerschnitten die Biegungs-
momente M, entstehen.

Die Gleichgewichtsbedingungen dieses Knickfalles werden durch zwei
Gruppen von linearen homogenen Gleichungen formuliert, die Zimmermann
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als Knickgleichungen bezeichnet hatte. Die eine Gruppe, die ,,Ste-
tigkeitsbedingungen®, umfaBt bei einem n-feldrigen Stab mit ge-

lenkiger Auflagerung (M,= M, = 0) der Stabenden n — 1 Gleichungen von
der Form :

Sy t trp Sr
My, =+ M (g _+~) M, H =y — |
=1 S;‘Cr + d SrCr + S}‘+1-Cr+l + i Sr_k]_cr.l.]_ vr Vr+1 I‘:],2..../Z——1 ( )
wobei
_ [ Srert
ss= 1, = r
r s @, ®r ‘/ Tr/r (1)
ty =1— T,
tge,’

I, = Knickmodul und /, = Triagheitsmoment im Felde r.

Die zweite Gruppe der Knickgleichungen, die ,Lagerbedingun-
g en‘, umfassen n Gleichungen von der Form
O gy [ St gy [
r-1

Cro Cr

+

)
] My— " My S 100y vy +

Cr Cri1 Criq

+ [Cr - (6\1‘41 + ()\r) Sr] Vp+ Sppq Oy Vrgr = 0 (")

Als Unbekannte in den Gleichungsgruppen (I) und (II) erscheinen die
(n —1) Stiitzmomente M,, M, ... M, _, und die n Neigungswinkel », des
Stabsehnenpolygons. Aus den obigen (27 — 1) homogenen Gleichungen re-
sultieren nur dann von Null verschiedene Werte der Unbekannten M, und »,,

Abhandlungen liI. ’ 18
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wenn die Determinante 4 aus den Beiwerten der Unbekannten verschwindet.
Diese Determinante 4 wird als Knickdeterminante bezeichnet, die B e-
dingung 4 = 0, die den Knickzustand kennzeichnet, bildet die ,,Knick-
bedingun g des vorliegenden Knickfalles.

Die Ausrechnung der Knickdeterminante liefert eine einzige Gleichung,
die zur Bestimmung von nur einer, in den Beiwerten enthaltenen Unbekannten
ausreicht.

Das Problem der Berechnung des Druckgurtes einer offenen Briicke
mit Riicksicht auf die seitliche Knicksicherheit geht darauf hinaus, daB in
den Beiwerten der Knickgleichungen eine passend gewihlte Grofie frei ge-
lassen und aus der Bedingung 4 = 0 errechnet wird.

2. Die Ermittlung der Knickdeterminante des Druckgurtes
einer offenen Briicke.

Der Obergurt einer offenen Briicke, der in den Rahmenkdpfen in Kugel-
gelenken lagernd gedacht wird, entspricht den in 1) dargelegten Bedingungen.
Die Knickkrifte S, = o max O, werden durch die g-fach erhéhten maximalen
Druckkrifte O, der Gebrauchsbelastung gebildet. Die Krifte max O, werden
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P ] :‘ '

W, Wy
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|
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Fig. 2.

allerdings durch verschiedene Zugsstellungen erzeugt und kénnen daher nie-
mals gleichzeitig zur Wirkung kommen. Trotzdem wird im weiteren eine
gleichzeitige Einwirkung angenommen und demnach rechnerisch eine Sicher-
heit ermittelt, die kleiner ist als die wirklich vorhandene.

Die elastische Stiitzung wird durch die Querrahmen gewdihrleistet.
Werden die Quertridger in den Vertikalen des Rahmens frei gelagert, so treten
in denselben bei beliebiger Quertrigerbelastung keinerlei Verbiegungen auf,
die Rahmenkopfe und damit auch der Obergurt verbleiben in der vertikalen
Tragwand und treten erst im Knickzustand aus derselben heraus, wobei in
seitlicher Richtung die elastische Stiitzung der Querrahmen zur Wirkung
kommt und die Rahmenwiderstinde W, hervorgerufen werden (Figur 1).
Umgekehrt wirkt der Gurt belastend mit W, auf die Querrahmen (Figur 2),
die Krifte W, erzeugen die Verschiebungen y, der Rahmenkdpfe, es ist

W — g

wenn 6, die durch W, = 1 erzeugte Rahmenkopfverschiebung vorstellt.

Der einer Durchbiegung y, = 1 cm entsprechende Rahmenwiderstand
wird mit A, bezeichnet und spezifischer Rahmenwiderstand (Federkonstante
des Querrahmens) genannt. Demnach ist auch

1
A=
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mit Kenntnis von &,, das mit Riicksicht auf die konstruktive Durchbildung
des Rahmens zu errechnen ist, als bekannt anzusehen ¢).

Fiir die weitere Untersuchung wird Symmetrie zur Mitte, sowohl fiir die
Konstruktion, als auch fiir die Belastung vorausgesetzt. Mit Riicksicht dar-
auf kann die elastische Linie eines n-feldrigen Stabes im Knickfalle, be-
ziiglich der Gurtmitte, nur eine symmetrische Form mit 1, 3, 53, ...
(n — 1) Knickwellen oder eine polarsymmetrische Formmit 2, 4, ...
(n — 2) Wellen aufweisen. Bei der Herleitung der Knickbedingung werden
diese zwei Knickfille von vorneherein getrennt behandelt und hiefiir ge-
legentlich die abkiirzende Bezeichnung ,Knickfall nc/1¢ bezw. ,Knick-
fall nc/2 gebraucht. .

Fiir die weitere Durchfithrung empfiehlt es sich, die Gleichungsgruppen
(I) und (II) so umzuformen, daB die Beiwerte der Unbekannten und
diese selbst als dimensionslose Zahlen erscheinen. Wahlt man
passende konstante Mittelwerte S, ¢,  bezw. A, setzt man

S Cr ’ 6"

*S-f:S}; o= 5 =0
Sr ’ tl‘ ’ ’ ’ ’
\—S-;—CZ — m‘; - tp H tr—l— t,a+1 - tr’r+1 ’ \ (2)
M, , c Ac
Sc r S0~ S

und fithrt diese GréBen in die Gleichungsgruppen (I) und (II) ein, so um-
fassen diese Gruppen fiir einen n-feldrigen Triger mit gerader Felderzahl
' n

infolge der herrschenden Symmetrie je -~ Gleichungen von der Form

2
S M_y + tr’, F+1 M; + Sr'+1 M;+1 = V= V1 s # (la)
= cees
’ 2
ar oM o —br  My_ +b, Mi—a/ My i Ve 8Vt By Ve =0 \ ,z("a)
r=1,2... ~

2
wobei die Koeffizienten der letzten Gruppe durch folgende Formeln bestimmt
werden:

’ n 4 n
r 6r+1 "’23"1 ” d"—l II’=E+1
ay = ’ i a, — ’
Cry1 lr=0 Cr |r=1
‘ n } n
, , , ;]-_—;E——l b” . ” t‘:?
by = a,_; + €144 | r=¢ + Arty
lr=1 r=1
n n | n (3)
a.s. T2 — T S )
ar = 0, Sy & = Cr ) —7r Br = 0p_1 S|
r=1 r=1 ‘r:Z
lr= " [r=
9 ’ ’ 9
er—_:ar'_1+a}’1 z J/r:crersr‘{ B
‘Vzl \I‘:l

Wegen der vorausgesetzten Symmetrie ist bei Anschreibung der Glei-
chungen (Ia) und (Il a) im speziellen Falle zu beachten, daB fiir alle Bei-
n

2’
6) R. Maver, Die Knickfestigkeit. Springer, Berlin 1921 (S. 200 ff.).

werte deren Zeiger r > die Beziehungen
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Sr == Snidr } a) = ap_,
Siland _ | @
by = tppar; Br = Qnyrr
gelten und daB ferner, wenn r>~g, beim symmetrischen bezw. polarsymmetri-
schen Knickfall die Beziehung
M=+M,, und Vp = F Vpy1-r (5)

gilt.

Mit Beriicksichtigung der Gleichungen (4) und (5) werden im folgenden,
der besseren Ubersicht halber, die Knickgleichungen fiir den spe-
ziellenFalleines8feldrigen Gurtesangeschrieben und die Kni ck-
determinanten 4/ und 4;” des symmetrischen bezw. polarsymmetrischen
Knickfalles entwickelt. Die Ergebnisse werden spiter verallgemeinert.

Stetigkeitsbedingungen. ‘

a) Symmetrischer Knickfall 8¢/1:
+ oty M+ S My = v —, |
Sy M + tg My 4 53 My = vy — v,
Ss My + by My + s, My = vy — v,
25, My + 26, M, = v, — vy = 2,

(Ib)

b) Polarsymmetrischer Knickfall 8¢/2:

Wegen v, = », und M’, = 0 entfillt nach (Ia) und (5) in der obigen
Gleichungsgruppe die letzte Gleichung, sowie das dritte Glied auf der linken
Seite der vorletzten Gleichung.

Lagerbedingungen.
a) Symmetrischer Knickfall 8¢/1:
+ by My — a, M, + 0+ gy + v, =0
— biM; + by My — as Ms + oy vy + &V + oy = 0
+ ay M — béM2'+b;M3’-a:M;+ oy vy + &vy + fivs =0
G M— (Gt a) My + B M, — O+ ayvy + (s-a)y, + 0 =0

(IIb)

b) Polarsymmetrischer Knickfall 8¢/2:

In diesem Falle ist in der letzten Gleichung die Differenz der Bei-
werte bezw. Summe durch (&5 — a’;) bezw. (&, 4 a,) zu ersetzen. Wegen
M’, = 0 entfallen iiberdies die entsprechenden Glieder in den zwei letzten
Gleichungen.

Die Knickdeterminante 47 des symmetrischen Knickfalles 8 /1.

Aus den Stetigkeitsbedingungen (Ib) lassen sich die Momente M’, als
Funktionen der Neigungswinkel », errechnen und in der Form
M;:A;V1+B;V2+C;73+D;V4‘I L2340 (6)
r=1,29:, =5
darstellen. Fiihrt man diese Gleichungen in die Lagerbedingungen (IIb) ein,
so erhdlt man in abgekiirzter Schreibweise die folgende Gruppe von homo-
genen Gleichungen:
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(+i, + &)y + (- b + 32) ve + (+ip3) vy + (- i1’4) vy, =0
(“ iz;l + ) vy + (+ Iy + 82) vy + (- izé + /)’3) Vs + (+ 52'4) vy =0 (7)
(+ igll) 7'1 + (— ig’g +02) Vz + (+ l'3'3 + 83) V3 + (-‘ ig:4 + ‘[))4) V4 pum— O

(—44) o+ (+ i) vo 4 (gt ) vy + (Fig+ e - a)vy =0
- Hierin sind die GréB8en #,,,, wobei der Zeiger » die horizontale Reihe,
k die vertikale Kolonne anzeigt, Absolutwerte, die, wie leicht festzu-

stellen ist, aus den untenstehenden Gleichungen zu ermitteln sind und zwar
ist fiir die Reihen

n . ’ ’ ” ”
’ é ,,2,4 R e 1 Kr—z =+ br—l Kr_1 + by Kr -+ Ariq KI‘+1

(8)
y — _’2’ ..... i =a, K, + (0w +a, YKn +0b3Kn
= B — =1 5 1 a5 a

— -9 [ i
2 2 2 2 2 ! 2 2 2

wobei im Klammerausdruck der zweiten Gleichung das positive Vorzeichen
fir den symmetrischen, das negative Vorzeichen fiir den polar-
symmetrischen Knickfall gilt.

In (8) ist fiir £ = 1, also fiir alle in der ersten Kolonne auftretenden
Werte i/, , der Buchstabe K, durch A4’, zu ersetzen, wihrend den Kolonnen
k=2, 3, 4 die Buchstaben B/, C/, D,/ zugeordnet sind. Aus diesem Grunde
werden die durch diese Buchstaben bezeichneten GréBen, die, wie sich zeigen
1aBt, mit den in (6) auftretenden Absolutwerten der Koeffizienten A4,, 4,
C,, D, identisch sind, kurz als Kolonnenbuchstaben oder Kolonnenwerte der

Knickdeterminante 4/’ bezeichnet. Nach (6) existieren in jeder Kolonne g
Kolonnenbuchstaben.

Aus (7) folgen nur dann endliche, dem Knickzustand entsprechende
Werte der Neigungswinkel »,, wenn die Determinante A4/ aus den Beiwerten
der », verschwindet. Die Knickbedingung fiir die symmetrischen
Knickformen ist daher gegeben durch

+ i+ & §_i1§+/32 + i 5'—1'1’4 ]

AP — _l;l—l—al+l2’2+€;_l2%+ﬁ%+l2’4 —0 (9)
+ i3 §_532+‘12§+533+83 3_134+/f4 '
— i i C— g oy iy + (8- @)

Die (-+) und (—) Vorzeichen der Absolutwerte #/,,, sindschachbrett-
artig verteilt.

Die Knickdeterminante 4/" des polarsymmetrischen Knickfalles 8 /1.

Fiihrt man die aus den Stetigkeitsbedingungen in der Form
, = A v, 4+ Blvy + Cl vy + D/ v, (10)

n
r=1,2,3= > —1

errechneten Momente in die Lagerbedingung ein, so erhidlt man hieraus in
Analogie zum Knickfall 8¢/1 die Knickbedingung

+ i+ & é_i12+52§+i13 i_iu
Ai" — —l21+a1§+122—}—82§—123—}—/)’3:!+124 —0 (11)
- Doz oy Ay & — iy + By

| o : . . o : on
J’*lu §+l42 2—543+a3§+l44+(’g4+0‘4)
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Die Absolutwerte {”, , gewinnt man ebenfalls mit Hilfe der Glei-
chungen (8), wobei im Klammerausdruck der zweiten Gleichung das ne-
gative Zeichen gilt, im iibrigen in den Kolonnen £ = 1, 2, 3, 4 der Ko-
lonnenbuchstabe K, durch die Absolutwerte der in (10) auftretenden Koeffi-
zienten A4,”, B,”, C,”, D,” zu ersetzen ist. In jeder Kolonne existieren jetzt

r

nur (g_ 1) Kolonnenwerte, in Ubereinstimmung mit der Zahi der in der

Stabhilfte auftretenden, von Null verschiedenen Momente M,. Wegen
M, = 0 sind daher fiir alle Kolonnen die in (8) auftretenden Werte K, = 0.

2

2
Mit Riicksicht auf die aus (9) bezw. (11) ersichtliche Form der Knick-
determinanten A/ und 4i” lassen sich nun diese Determinanten ganz
allgemein fiir jeden n-feldrigen Triger mit gerader Felderzahl
in formal analoger Weise anschreiben und die hierin auftretenden Koeffi-
zienten nach den Gleichungen (3) errechnen, vorldufig noch unbekannt
sind nur die in (6), (10) bezw. (8) auftretenden Kolonnenwerte 4... D.

3. Die Ermittlung der Kolonnenwerte.

Die in einer vertikalen Spalte in den Knickdeterminanten 4/ bezw. 4i”
auftretenden und auch in den Gleichungsgruppen (6) bezw. (10) erscheinen-
den Kolonnenwerte sollen voriibergehend, ganz allgemein durch die Bezeich-
nung K,” bezw. K,” angedeutet werden. Fiihrt man die Gruppen (6) bezw.
(10) in die Stetigkeitsbedingungen (Ib) ein, so erhidlt man auf Grund von
Koeffizientenvergleich die folgenden Gleichungen zur Ermittlung der Ko-
lonnenwerte:

A’ B’ c | D
+ t,;,K]’ +- s;’KQ’ = +1 -1 1 0 0
S Ki + g Ky + 55 Ky = 0 + -1 0 (12)
S K + Ly Ky + 8 Kf = 0 0 | +1 -1
S K5 + 4 K, — 0 0 0 +1
A” ( B” ’ Cu ! D”
. + ?1’2 K} + S’-z' Kz = +1 -1 0 0 (13)
Sy 1<1+ f2311<2 + ss Ky = 0 +1 -1 0
sy Ky + 6 K+ — 0 0 +1 -1

Aus den (n —1) Stetigkeitsbedingungen erhidlt man nun nach (12),
(13) g (n—1) Clapeyron’sche Gleichungen zur Ermittlung der

Kolonnenwerte. In diesen Gleichungen sind die GroBen K’ bezw. K” jeweils
durch die Kolonnenwerte A’ bis D’ bezw. durch 4” bis D” zu ersetzen und die
rechts unter den Kolonnenbuchstaben stehenden Werte als rechte Gleichungs-
seiten zuzuordnen.

Die L6 sun g dieser Gleichungsgruppen, die hier nicht hergeleitet wird,
1aBt sich sehr einfach nach einem vom Verfasser ausgearbeiteten Verfahren )
fiir jede beliebige Felderzahl einheitlich nach einem tabellarischen
Schema durchfithren, das nun fiir den vorliegenden Fall eines 8-feld-
rigen Trigers angeschrieben wird und fiir jede andere Felderzahl » = 8
wie aus dem Schema zu ersehen, sehr leicht erweitert, bezw. eingeengt werdén
kann.

7) Kt—‘KRlSO, Statik der Vierendeeltriger. Springer, Berlin 1922. K. Kriso, Sta-
bilité des poutres Vierendeel. Beranger, Paris 1026,
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Tabelle I fiir den Knickfall 8c¢/1 und 8c/2
S= c=....3
S,,|_ ¢ (- (- I . s‘, c,| .S/
S R S R 6. Tl s T =g st =g tlt =t [ = N Pk =c T
S S g e e ey s e
0T I 1 B T 1B | ,
LS| a — | — — }1 S1 — 4 - 1 71‘t1+f2 ]Sl':%lﬁ’:ﬂ ky=¢' =
i 1 h 1
i |
- S - — _ ‘ - e, Sal ., ¢ , Sy’
2 Sg Cy (gzs—; Cg'vé 0y = Og Q:E So |Sg =098 fg fz-—-O'?fg; Tzztg"l"tg ngzgg Cq :‘Ez kQ:L'g 7’[7227
— S — Cs — — | j— 7 !’ - ’ S ’ ;G ’ S'a‘
318, 53[ ‘73:§§‘ SZ(T; 63:‘353’{53 Ss=03S;) L t3:”3fsi Ty =ty +1y ’33233{63—?3 ks =cs 773
| i : i
n ‘ P S _ Ca _ I - ,S , C , S/
:IZHS}%Q !r! 04":’9‘::: 64:?4 04:04¢-4§§ Sy ‘15426454}&}&:64(4:1 T, =1,+0 I;S4 S (:4:2“E k,=c, ,,T,‘i
In dieser Tabelle sind die GroBen s, und ¢, nach 1) zu berechnen, die Stabkrifte
werden durch S,, die Feldweiten durch ¢, bezexchnet wihrend S und ¢ beheblg zu wah-
lende konstante Mittelwerte von der Gréfienordnung der S, bzw. ¢, darstellen. Am besten
setzt man S=3S,, und ¢ = c,y,.
Tabelle 11/1 fur 8c/l. Tabelle I1/2 fiir 8c/2.
a- und b-Werte: a- und b-Werte.
o ,Zfﬁ_li b =1 { a:fiﬂ| by =1
Foil S i Tre1 d ret) S| e b = Sy ¥ Sr+1‘ Tre1 g Tr+1‘ Sr | Tra b = ‘Sr
J Qg =1 ( | r 71[1 L ,:,g, - all/z-—l:li d Tra1
| Sy | | i } T
1 52 l Tg ay = — — i bl = 1 |
| |
_ Sl ¢ _S2
21 s g Tg | Qg = 7y [ S T | by 7 2
3 s ]\ Ty as:ﬁ S3 Ty bﬁz‘sj ,1—2:-),1[ _1 - as=1
‘ 4 ik Il B
" - -
:/Z‘ — | - | a,=1 Sy T3 | b4:§:
Die Werte in den umrahmten Teilen der beiden Tabellen stimmen iiberein.
Tabelle I11/1 fiir 8c/l. Tabelle I11/2 fiir 8c/2.
Koeffizienten c. Koeffizienten c.
| _ l a, ’ { } [ a,
rib, 6. f,=1-¢c_,b)a | c=4 ro 10, f,—l ¢ b,lla, | .=+
0 | T s |’ l I s
a | !
116 0 |fi=1-0 a, | ¢, ==a, 1 [
i
a,
2 b2 [} bg _fgzl"[flbg ay 6'2’?.: 2
i 2
a njp—1 a
3 bg Cy b3 f5: 1 —Cq bg as ‘ 05—}5‘ LZ3 } agzl Cg*f-“:
"2 b | eby | fim1-eb =%
—4| Y by | fi=1-¢6:b, | a4 04‘f4

Die Werte in den umrahmten Teilen der beiden Tabellen stimmen iiberein.
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Tabelle I'V/1 fiir 8c/l.

Koeffizienten d.

K. Kriso

Tabelle I'V/2 fiir 8c/2.

Koeffizienten d.

|

t | b f b
roa, [dr+1ar gy 1 dr+1arr br } dr:l r a, dr+1ar g‘r=1—-d,,+1 a, br d,»z_r
_ 4 R g
1l a | dyay gl—l—anl b, dl‘*bl A 1 a, | dy a, g-lzl_d2a1 Jbl dlzﬁ A
| E41 21
2 Qg } d_v, Qg g = "’dg Qg bg d2 éﬂ 2 Qs ds as gZ =1 -d3 ag b2 d2=é‘2-
g2 gB ‘
3as| dias | gs=1-d,a;| b, dg:és‘ ﬂ/_zgl 613! 0 g=1-0 bs dazﬁzb'si
e I e
| b
:/Z a4 ; O g4—l'0 b4 1d4=Ei:b4
Die Tabellen IV sind von unten nach oben zu entwickeln.
Tabelle V|1 fiir 8c/1. Tabelle V|2 fiir 8c/2.
Multiplikatoren . Multiplikatoren m.
| | DT R
rc_,\d, ¢4, h=1-¢c,  d, g = vy 8y |6y By By=1-c,_ d,| g, \m,=—-—
il Y i 2 R " &
T
e
| | ‘ i ]‘ _
2 ]’ o | dy | ¢ dy ! hy=1-c,dy ‘g2 ’”2—1?2%2' 2 e |dolleydy | hy=1-c,dy| g, %%mg:ggﬁg
3’c d cdihzl—cd!gimn: ! Mol — —lims=c
l 2 3 2 &3 3 2 ls 1 3 s gahg =3 l : ‘ 3 3
:/2’__ _‘i — | — y-—~ my = ¢
I |

™) In beiden Tabellen ist der Multiplikator in der ersten und letzten Zeile nicht nach
der im Tabellenkopf angegebenen Formel zu entwickeln; es ist immer m; =d,; und

in der letzten Zeile m,—=c¢,, wobei r== % bzw. % —1.
Tabelle VI|1 fiir 8c/l. Tabelle VI/2 fiir 8c/2.
ck- und dk-Werte. ck- und dk-Werte.
\ku I oo 1\ P I 1
1 k, ok jﬁcg (c; k) s (e k) _1 Tf
2 dy ks, ky f k| a(ek) 2 dy ky
3| dy(doks)|  dsks ke e by "RV dy (do k)| dy
21 dy (dydy k) | dy (deks) | dy kg ke

Die Werte in den umrahmten Teilen der beiden Tabellen stimmen iiberein.
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Tabelle VIIj1 fiir 8c/1. Tabelle VII|2 fiir 8c/2.
-, ﬁ-’ V=, d-Werte. o=, ,3-, )/-Werte.
1 “(Xlz ] Oy = ] g = ] 0y = ] 1 K%: !“2= Az =
2 1 8y=my| 1| Bo=m| 11| o=mf 1| g, =m 1V 2 1/91:”:1 1 go=mg] 11| e =y 111
‘\
3 ‘i‘}’l: Y2 = V3= Vi= ”fgllyﬁ 72" Vs =
:/Zl”gl: L o= L dloe= | o= L _

In die Tabellen VII sind die mit den entsprechenden Multiplikatoren vervielfaltig-
ten vertikalen Kolonnen der Tabellen VI einzutragen.

Tabelle VIII/1 fiir 8c/1. Tabelle VIII/2 fiir 8c/2.
Kolonnenwerte A, B, C', D'. Kolonnenwerte A", B”, C”, D".
A= wldi= wl A= w|Al= | A= w A= 4 A=«
By =0,+8, | By =g+, By =ag+B5| By =0, + 3, Blr'=(11+ﬂljBg":d2+{32‘3;”=a3+,33
Ci'=B1+y1| Co'=Ba+y: | Co'=Bs+ys| C =B+, C\"=81+7 C2“:ﬂ2+'}’2‘63”::33+7’3
Dy =y1+0, | Dy =y3+0y Dy'=y3+ 05| D)/ =y,+ 0, D, =y, ‘DQI,:}’Q ‘Dsﬂzi’s

In den Tabellen VIII erscheinen die in die Gleichungen 8) einzufithrenden A bs o-
lutwerte.

Bei der Durchrechnung eines speziellen Falles treten in allen
Tabellen infolge der getroffenen Anordnung in der Herleitung des Ver-
fahrens stets sehr kleine, dimensionslose Zahlen auf, die bei der
zahlenmiBigen Durchfithrung denGebrauch eines gewohnlichen R e ch e n-
schiebers gestatten. Die schematische Durchfiihrungsmég-
lichkeit, immer gleich fiir jede beliebige Felderzahl, die Uber-
sichtlichkeit des ganzen Verfahrens, das Arbeiten mit dimen-
sionslosen GroBen und dieleichte Kontrolle machen diese Me-
thode der Durchfithrung auch wegen des damit verbundenen groBen Zeit-
gewinnes fiir die Praxis besonders geeignet und biirgen fiir
ein Minimum an Fehlerquellen.

4. Die zwei Hauptaufgaben der Knickuntersuchung.

A. Uberpriifung einer bestehenden Konstruktion.

In diesem Falle sind alle Abmessungen der Konstruktion und die maxi-
malen Stabkriafte O, bekannt, die Knickkrafte S, =» max O, bezw. die Knick-
sicherheit » sind zu ermitteln. Eine direkte Losung ist nicht moglich,
doch sind die Knickdeterminanten A4/ und 4i” fiir jede beliebige o-fach er-
hohte Belastung berechenbar. Bestimmt man nun fiir mehrere solcher Be-
lastungen die zugehodrigen Determinanten, und konstruiert die Kurven
Ai" = f bezw. A4i” = F 4, so gewinnt man die zwei, den Knickbedingungen
Ai" = 0 bezw. 4;” = 0 zugeordneten Werte ¢’, bezw. ¢”,; der kleinere von
beiden liefert die Knicksicherheit » der Konstruktion.

B. Entwurf einer Neukonstruktion.

Bei gegebenem Briickensystem sind die durch die Gebrauchslast er-
zeugten maximalen Gurtkrifte O,, sowie die auf Grund der Dimensionierung
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mit Riicksicht auf das Knicken in der Tragwandebene ermittelten Querschnitte
und Trigheitsmomente der Gurtstibe als bekannt anzusehen. Die Knick-
sicherheit » fiir Knicken aus der Tragwandebene ist vorgeschrieben und da-
her sind auch die Knickkrifte S, =» max O, als gegeben zu betrachten. Als
FragegroBen erscheinen demnach die spezifischen Rahmen-
widerstdnde 4, die so zu bestimmen sind, daB die verlangte Knicksicher-
heit gewéhrleistet ist. Da aus der Bedingung 4/” = 0, 4;” — 0 nur eine einzige
Unbekannte ermittelt werden kann, so ist das Problem so zu stellen, daB nur
ein einziger, aus der Knickbedingung zu errechnender Rahmenwiderstand
offen bleibt. Hiefiir wihlt man zumeist den Endrahmenwiderstand 4, wo-
bei die folgenden Fille zu beachten sind.

1. Die Vertikalstibe der Querrahmen sind Stiabe des
Hauptsystems der Briicke, wie z. B. beim System c) der Figur 3.
In diesem Falle werden die Vertikalen der Zwischenrahmen unter Zugrunde-
legung der sie beanspruchenden maximalen Druckkrifte dimensioniert, ihr
spezifischer Rahmenwiderstand A, ist daher als bekannt anzusehen, wihrend
der Rahmenwiderstand A, des Endrahmens frei gehalten und aus der Knick-
bedingung unter Zugrundelegung einer v-fachen Knicksicherheit des Gurtes
errechnet 1wird. Wahlt man in Gleichung (2) fiir die Konstante 4 den Wert
A= il ’% = _13, so sind in (3) alle ¢/, mit Ausnahme von ¢, bekannt, das
in den Knickdeterminanten 4/’ und 4;” nur in der ersten Zeile einer jeden
Kolonne erscheint. Die Ausrechnung der Determinanten fithrt daher zu zwei
linearen Gleichungen nach &, der kleinere sich hieraus ergebende Wert
liefert den erforderlichen Endrahmenwiderstand

A
min 0,

2. Die Vertikalstibe der Querrahmen gehéren nicht
zuden Hauptsystemstibender Briicke, wie z. B. beim System a)
und b) der Figur 3. Solche Systeme eignen sich besonders gut zur Kon-
struktion von offenen Briicken, weil die Vertikalen gar nicht oder nur durch
sekundire Belastung verhiltnismiBig wenig auf Zug beansprucht sind, ihre
Steifigkeit daher zur elastischen Querstiitzung des Gurtes voll ausgeniitzt
werden kann. In diesen Fillen wird man, bei Beachtung der unten ange-
fithrten Grenzfalle, fiir alle Zwischenrahmen ein und denselben Rahmen-
widerstand A frei wihlen und den zugehoérigen erforderlichen Endrahmen-
widerstand A, wie oben unter 1. errechnen. '

Grenzfall a). Mit abnehmender Steifigkeit der Zwischenrahmen
wichst die Steifigkeit des Endrahmens; dem theoretischen Grenzwert des -
unendlich steifen, starren Endrahmens mit A, = co entspricht der kleinst-

Ao’e,f = max AO =

mogliche Zwischenrahmenwiderstand A4,,, = A..
Grenzfallb). Der obere theoretische Grenzwert 4,,. der Zwi-
schenrahmen entspriche dem Endrahmenwiderstand 4, = 0, praktisch

hingegen ist ein oberer Grenzwert A,,,. = A, dadurch gegeben, daB man die
Endrahmen nicht schwicher konstruiert wie die Zwischenrahmen, im Grenz-
falle alle Rahmen gleich mit ein und demselben elastischen Rahmenwider-
stand A, ausfithren wird. '

Um nun eine mehrmalige, durch unpassende Wahl des Zwischenrahmen-
widerstandes A verursachte Berechnung von A4, zu ersparen, ist die Kenntnis
von guten Niherungswerten der jeweilig in Betracht kommenden Rahmen-
widerstinde A, und A, notwendig, im besonderen die Kenntnis von A4,, da
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oft schon geringe Unterschreitungen dieses Wertes sehr steife Endrahmen er-
fordern.

5. Niherungsverfahren bei durchgehends gleichem
spezifischen Rahmenwiderstand A.

Bei Briickensystemen nach Fig. 3 a bezw. 3 b ist die Ausfithrung gleicher
Querrahmen zweckmafBig. Alle Rahmen besitzen dann dasselbe A bezw. 4,
alle Felder die gleiche Linge ¢, das gegenseitige Verhaltnis der maximalen
aus der Verordnungsparabel zu errechnenden Gurtkriafte ist-nur vom Briicken-
system abhidngig und durch dasselbe gegeben. Wiahlt man diese Werte &

3 S, Sz 3 Systeme-Sysfem @

RANZANZNVZN

N5y 2885 - 0614:0614:1TF

b. S Sz S JSysteme -System b

ANVAVAN

N8;:82:85 = 10,545:0678:17

C. 'Sy Sz2 Sz
N

7.0 82 : 83=10,614:0,937:1

Fig.3. m-y-Kurven — courbes m-y — “m-y’’ curves.

und ¢ auch als Konstantwerte der Gleichungen (2) und setzt hierin iiberdies
noch fir § = S,, das ist die Gurtkraft des mittelsten Feldes, so sind bei

2
durchwegs gleichem Rahmenwiderstand A die Glieder i, , der
Knickdeterminanten mit Riicksicht auf (3) zu ermitteln aus:

|
fﬁr /ZCV] und /26/2 b i}’,k = KI’—-Z +23K/_1 3Kr+ Kr+1 1"—‘1 ) n 1
=1, ....Ef
fllr nefl «vovoeveenen. ingy=Kn _, +4Kn _ +3Kn (14)
2’ 2 2 2
fiar nef2 oo v i, =K, +2K,
2k 27?2 2
Ferner nehmen die in A4/, 4i” noch auftretenden GroéB8en a, B, ¢ mit
5% = §’, die Werte
2" v
o =p=S§ und ¢ =y—28, (15)
an, wobei ' :
Ac
J = Se’ (106)

5 .
Istumgekehrt y errechnet und daher bekannt, so folgt aus (16) der
Rahmenwiderstand

A=y 2 (17)
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In den Determinanten 4/’ und 4i” steckt die einzige, hier auftretende U n-
bekanntedes Problems, der Rahmenwiderstand A, im y der in der
Diagonale erscheinenden Werte ¢. Die Ausrechnung der De-

terminanten liefert demnach zwei Gleichungen vom gten Grade nach y. Die

Gesamtheit der hieraus zu errechnenden n Werte y entspricht den » mog-
lichen Knickformen, praktisch brauchbar ist nur der Wert y,..., der nach (17)
den erforderlichen Rahmenwiderstand A liefert.

Die Glieder der Determinanten 4/, 4;” hingen nach (14), (15) einer-
seits von den Kolonnenwerten K, andrerseits vom Gurtkriafte-
verhdltnis §, ab. Weil bei einem bestimmten System mit vorgegebener
Felderzahl die S, als bekannt anzusehen sind, so werden die 4i’, 4;” nur
mehr von den Kolonnenwerten K allein abhingig sein, die ihrer-
seits wieder nach (12), (13) und mit Riicksicht auf (1) letzten Endes durch
die, den Gurtstiben zugeordneten GroéBen

_1/Sc?
=V

(18)

bestimmt werden.

Die dem Knickzustand entsprechende elastische Linie bildet, wie
sich leicht zeigen 14B8t, in jedem Felde einen Teil einer Sinuslinie,
deren Achse in die Drucklinie des Feldes fdllt und deren Halbwellen-
linge/, mitderfreienoder virtuellen Knickldnge des Feld-
stabes r identisch ist. Setzt man /, = m, c,, wobei stets m, = 1, so kann die
Knickkraft im Felde r dargestellt werden durch

m2T,], _ a*T,J,

S, =" 15 T mier (19)
Aus (18), (19) gewinnt man
NN VY OV
Mr — T l/s’,crz - _(i; ‘ (20)

und erkennt nun nach dem oben Gesagten, da8 die Kolonnenwerte, sowie
die Knickbedingung und der hieraus zu errechnende Wert y auch als allei-
nige Funktion der m, dargestellt werden kénnen. Nichtdie GroBe der
einzelnen Werte S,, 7,, /,, ¢, ist fiir das Resultat y maBgebend, sondern
ihre die Gr6Ben m, bildende Verbindung nach (20). Wie immer auch
die hierin auftretenden GroBen im einzelnen beschaffen sind, Gurte mit
gleichen m, fithren bei ein und demselben System, unabhingig von dessen
AusmaBen, zum gleichen Wert y.

Es sei nun vorausgesetzt, daB in einem vorgegebenen Sy-
stem alle Stibe des Gurtes ein und denselben Wert m besitzen
mogen. Errechnet man fiir eine Reihe von m-Werten, — im Briickenbau
kommt das Gebiet m =1 bis m = 3 in Betracht —, die zugehorigen y-Werte
und konstruiert die Kurve y = f(,,, so bringt dieselbe die strenge Lésung des
Knickproblems in dem betrachteten Bereich von m graphisch zur Darstellung
und gestattet die rasche Ermittlung des einem bestimmten m zugeordneten y,
womit der erforderliche Rahmenwiderstand nach (17) zu berechnen ist.

Diese Losungskurve wird im weiteren auch als die m-y-Kurve des
Systems bezeichnet.

In praktischen Fallen sind die m-Werte des Gurtes im allgemeinennich t
gleich, doch liegen sie, bei mit Riicksicht auf das seitliche Ausknicken gut
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durchkonstruierten Gurten, nicht allzuweit voneinander entfernt. Beim
Entwurf ist darauf gehorig Riicksicht zu nehmen, weil oft schon ein ein-
ziger besonders kleiner Wert m das Resultat ungiinstigst beeinfluBt
und zu relativ schweren Querrahmen fithren kann. Konstruktionserfahrung
und mehrmalige Uberschlagsberechnungen nach einem einfachen, rasch durch-
zufithrenden und zuverldssigen Niherungsverfahren konnen allein iiber das
beim Entwurf zu wihlende wirtschaftlich und konstruktiv giinstigste Ver-
hiltnis der Gurt- und Rahmenquerschnitte AufschluB geben #), das wohl immer
zu Gurtstiben mit m > 1, 2 fithren wird.

4000
37231
5,876]
3,525]
I4—
32
3,018 87 _Systéme-System 3.
6¢/5|Cadre extréme dentretoisement efast
Z8n \\) 40/ Endrahmen elastisch
26 3| | Flastic portsl Frame 4 ™
2,4!257 \ \/ Engesser
4 A + .
g ec;\ 8 /e}'c 4 Poutre 3 4 panneaux Sy 8p = 107
2,2} ———— 6 Fg/depf/*age/' S7: 82: 83 - 0,814:0,814:7
\\Xsc; \ =8 Feld-girder $;:82: 853 84 -0,709:0,709:7:7
20 \ “Yzc
18 8/5\ \\ 2
I NN
i
%6 N \{ \\
14 R
! £ngessér Q\\ \\1
7’ 2 N \\\'\ \J\
10 N —%
’ N N T~
0,8 \\\3'?75‘\ \QCLZ\ T
) . "~
0,6 \\\ \\~_\\\\~: E‘\
04, £ngesser- B/e/'cﬁ\\\ :9}-‘/2 = — 1
/] \\_‘_N
y=02

m=7 L1 32 13 14 15 16 17 1,8 1,9 20 27 2,2 23 24 2,5 26 2,7 28 29 3,0
Fig. 4. m-y-Kurven — courbes m-y — “m-y’’ curves

Die Tatsache, daB sich die m-Werte eines Systems in enger Nachbar-
schaft befinden bezw. befinden sollten, legte nun den Gedanken nahe, die
m-y-Kurven der Systeme zur jeweiligen Grundlage eines dem
System angepaften Ndherungsverfahrens fiir die Berechnung des
Rahmenwiderstandes A zu machen. In diesen Kurven ist das Briicken-
system, die Felderzahl, dersehrbedeutende EinfluB der ver-
schieden groBen Gurtkriafte, ferner der von Feld zu Feld verdnder-
liche Elastizitdtsmodulus, die Verschiedenheit der Gurttrag-
heitsmomente, sowie die elastische, in jedem Stiitzpunkte gleich starke

HarRTMANN, Knicksicherheit der Druckgurte offener Fachwerkbrucken Z.0. 1.
AV, 1925 S. 381.
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Einzelstiitzung der Rahmen beriicksichtigt und daher der Schluf}
berechtigt, daB mit Hilfe der m-y-Kurven, auch bei nicht gleichen
m-Werten, durch passende Interpolationsverfahren gute Niherungsergeb-
nisse fiir 4 zu erhalten sein miiBten. Da eine so aufgebaute Naherungslosung
bei durchwegs konstanten m-Werten in die strenge Losung iibergeht, so
erklirt es sich von selbst, daB der Fehler in der Berechnung des Rahmen-
widerstandes A bei enger Nachbarschaft der m-Werte nur klein sein
kann, doch wurde durch viele Vergleiche mit den Ergebnissen der
strengen Berechnung erwiesen, daBl dieser Fehler, selbst bei weitge-
spannten Grenzen der m,, im Durchschnitt nur wenige Prozente
betragt.

Fiir die Systeme der Figur 3 wurden die m-y-Kurven und zwar
fiir den 4-, 6- und 8-feldrigen Gurt errechnet, in Figur 4 und 5 sind jene
des Systems a) bezw. c) dargestelit. Jede solche Kurve eines z-feldrigen
Tragers besteht aus 7 sich iiberschneidenden Teilkurven, die im maB-
gebenden dargestellten Gebiet auBerordentlich flach verlaufen und daher
der ganzen m-y-Kurve ein polygonales Aussehen verleihen. Von den
n aus der Knickbedingung ermittelten y-Kurven sind im Gebiete m < 3 im
allgemeinen nur (n — 1) Kurvenstiicke praktisch verwertbar, die als hochst-
gelegene Teilstiicke nach oben die Berandung der Kurvenschar bilden und
den Linienzug der m-y-Kurve liefern. ‘

Um eine Orientierung iiber die Lage dieser Kurven im m-y-Felde zu
gewinnen und zwar im Vergleich zur Lage der analogen Kurven, welche die
bekannten Verfahren von Engesser®) und Bleicht) liefern, wurden
diese letzteren Kurven noch in die Figuren 4, 5 eingezeichnet. Rechts von
m = 1,7 fallen diese beiden Linien vo11i g zusammen, links hievon stellt die
oberste Linie eine im Jahre 1918 von Engesser auf Grund von Ver-
suchen vorgenommene Verbesserung der alten, zuunterst gelegenen
Engesserlinie vor, die allerdings von Engesser selbst nie beniitzt wurde, da
er bereits in seiner ersten Arbeit (1884) richtig erkannte, daB im Gebiete
m < 1,7 nach einem anderen von ihm angegebenen Verfahren zu arbeiten ist.
Hier sollen und konnen wegen des geringen verfiigbaren Platzes keinerlei
ausgreifende Vergleiche angestellt werden, doch ist aus den Figuren ohne
weiteres zu erkennen, daB auf die Gestaltung der m-y-Kurven nicht nur
die Felderzahl, sondern in noch gr6 B erem MaBe das Briickensystem,
d. h. das Gurtkrafteverhiltnis, von EinfluB ist. So liegen z. B. die m-y-
Kurven des Systems a) in Figur 4 in dem praktisch bedeutsamen Gebiet
m>1,2 fast zur Ginze iiber der Bleich’schen Kurve, beim System c)
in Figur 5 hingegen wird dieselbe von der 8-Felderkurve fast ganz unter-
schritten, wihrend die 6-Felderkurve links m = 1,8 unter- und rechts
davon oberhalb von ihr liegt.

Die hier nicht dargestellten m-y-Kurven des Systems b) verhalten sich
dhnlich wie jene des Systems c).

Aus den Figuren 4, 5 ist weiters zu ersehen, daB sich die den verschie-
denen Felderzahlen eines Systems zugeordneten m-y-Kurven rechts von
m = 1,1 nicht iiberschneiden, die Kurven hoherer Felderzahl immer
tiefer liegen und die Ordinatendifferenz zwischen zwei aufein-
anderfolgenden Kurven mit steigender Felderzahl abnimmt. Diese augen-
scheinliche Tatsache wurde auch durch einige Stichproben, — Berechnung

9) S.S.271 oder in ENcEssEr; Nebenspannungen, S. 150. )
10) Eisenbau 1919, S. 123 oder in F. BLEICH, Theorie und Berechnung eiserner

Briicken. Berlin 1924. Verlag Springer.
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und Vergleich mehrerer y-Werte eines 10-Feldertrigers, — erwiesen. Aus
diesem Grunde wurden die m-y-Kurven eines Systems von 10 und mehr
Feldern nicht mehr errechnet, da dieselben einerseits praktisch genau genug
durch die Kurven des 8-Feldertrigers ersetzt werden diirfen und andrerseits
10- und mehrfeldrige Trager bei Entwiirfen von untergeordneter Bedeutung
sind, da die groBten fiir offene Briicken noch in Betracht kommenden Spann-
weiten im allgemeinen durch 8-Feldertrager zu iiberbriicken sein diirften

und dies umso mehr, da es wegen 4 = yfnur giinstig ist, Konstruktionen

mit steifen Qurten und groBer Feldweite ¢ in Anwendung zu b’ringen, falls
man kleine spezifische Rahmenwiderstinde zu erzielen wiinscht.
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Fig. 5. m-y-Kurven — courbes m-y — /“m-y’’ curves

Die vorhin erwahnte, so sehr verschiedene von der Felderzahl und
dem System abhidngige Hohenlage der m-y-Kurve 148t wohl erkennen,
daB es nicht angingig erscheint, alle diese Kurven durch irgend eineeinzige
Kurve zu ersetzen, um aus derselben, falls 7 nicht fiir alle Gurtstabe konstant
ist, mit Hilfe irgend eines Interpolationsverfahrens Naherungswerte
Sﬂ/z

¢ »
wollen. Einige Aussicht auf Erfolg bei Ermittlung eines Niherungsver-
fahrens im Falle von verschieden groBen m-Werten ist nur dann zu er-

filr einen Mittelwert y zur Berechnung von A,,; = y ableiten zu
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warten, wenn die Briickensysteme von Haus aus getrennt und bei
Beriicksichtigung der Felderzahl die jedem System eigene
m-y-Kurve zur Grundlage des Verfahrens gemacht wird.

Das Verfahren der Mittelwertbildung muBl, um dem praktischen Be-
diirfnis zu geniigen, in erster Linie der Forderung nach Einfachheit in
derHandhabun g entsprechen, hat ferner von theoretischen Uberlegungen
auszugehen und die Ergebnisse der Erfahrun g entsprechend zu verwerten.
Erfahrungsergebnisse konnen aus sorgfiltig zusammengestellten
Modellversuchen oder, was auf dasselbe hinauskommt, aus ent-
sprechenden strengen Berechnungen gewonnen werden. Aus diesem
Grunde wurde eine groBe Reihe von in Hinsicht auf das zu ermittelnde Inter-
polationsverfahren aufschluBreichen Beispielen strenge gerechnet, die zum
Teil vollkommen durchdimensionierte offene Briicken behandeln, vielfach
aber auch von entsprechend ausgewéhlten m-Werten ihren Ausgang nehmen,
deren verschiedene Gr6f8e und Reihenfolge im System von ganz be-
sonderem Interesse ist.

So sind beispielsweise bei einem 6-Feldertriager fiir die drei Stibe der
Briickenhilfte die Werte m,, m,, m; nach (20) zu errechnen und aus der
m-y-Kurve des Systems die zugehorigen y;, y,, y; zu entnehmen, welche
‘Werte nun die Grundlage zur Bildung des Mittelwertes y abgeben.

Haitten die Gurtstibe durchgehends dasselbe m,, bezw. m, oder m;, so wiren

die entsprechenden, streng richtigen Rahmenwiderstinde A = yl%bezw.
yz%oder yg%‘— erforderlich. Da nun keiner der drei Fille tatsichlich zutrifft,

so kénnte man, wie dies auch bei anderen Verfahren gelegentlich geschieht,
an die Bildung des arithmetischen Mittelwertes denken und den
erforderlichen Rahmenwiderstand aus

Nt Vet Ss 0 Ss
o 3 c Ve (21)
berechnen, wobei jedes y,, d. h. jeder Stab denselben prozentuellen Bei-
trag zum Mittelwert y liefert.

Einschlagige Untersuchungen, bei welchen zwei m-Werte
konstant gehalten, der dritte jedoch nach oben und unten verindert wurde,
haben gezeigt, da schwache Stidbe, mit kleinem m und groBem y, bei
der Mittelwertbildung mit viel groBerem Gewicht in die Wagschale
fallen als starke steife Stiabe, mit groBem m und kleinem y.

Neben dieser ersten grundlegenden Tatsache hat sich bei den umfang-
reichen Untersuchungen aber noch weiter gezeigt, daB die durch einen
schwachen Stab bedingte Verschwichung des ganzen Gurtes nicht nur
von seinem die Stirke des Stabes charakterisierenden m-Wert allein ab-
hingt, sondern daB das MaB der Verschwichung vor allem auch beeinfluBt
wird von den angrenzenden Nachbarstiben, indem sich relativ
gro B e Unterschiede im Stiarkeverhiltnis besonders un giinstig auswirken.
Hieraus folgt die zweite grundlegende Erkenntnis, daB ndmlich bei der
Mittelwertbildung von y nicht nur die Gr6 B e der m- bezw. y-Werte, son-
dern auch ihre Reihenfolge im Stabzug mit Riicksicht auf die angrenzen-
den Nachbarstibe gehorig zu beriicksichtigen ist.

Diese Erfahrungstatsachen legten den Gedanken nahe, jedes y
mit einem w-fachen Wert in die Mittelwertbildung einzufithren und diese
,2aewichte y“ so festzulegen, daBl sie die obigen Erkenntnisse anndhernd
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erfassen. Andrerseits soll nun verlangt werden, daB fiir alle Gurtanord-
nungen, die bei beliebigen m-Werten der Stibe ein und denselben Rah-
menwiderstand A erfordern, die Summe 2vy,y, = konstant sei. Unter diesen
moglichen Stabanordnungen befindet sich auch jener der m-y-Kurve des
Systems zugrunde liegende Grenzfall eines Idealgurtes, dessen
Stibe ein und denselben m-Wert besitzen, der in der m-y-Kurve den ge-
suchten Mittelwert y bestimmt. Aus der Bedingung

Z YrVr =) Z Yre s ' (22)
wobei die Gewichte v,, , dem Grenzfall des ldealgurtes zugeordnet sind, hat
man nun die beiden zusammengehoérigen Mittelwerte 7 und y zu bestimmen.

Bei Festlegung des einem Gurtstabe » zugeordneten Gewichtes
Y, = 1/); + 'l/),':
soll y’, den vorhin ersterwidhnten EinfluB beriicksichtigen und dem-
nach nur eine Funktion von m, allein sein, wihrend v,” den zweit-
erwihnten EinfluB zur Darstellung bringen mége und daher als Funk-
tion der drei Werte m, _, m,, m, , , erscheinen muf}.

o (o S
“f,sp Sr “p Pl

| ﬂ"" '
R S

\Sp-r Ip-p ) ] ) b.
i J‘ \yf‘
rz s n

Mp
Fig. 6.

Der Einspannungsgrad des nach Figur 6 a, b in die Nachbarstibe
(r —1) und (- 1) elastisch eingespannten Stabes » kann zweifelsohne als
einungefidhres Ma@8 fiir y,” gelten. Fiir eine Belastung nach Figur 6 a
wird an der Stiitze » das Moment

) 1

M,- _— \f’_-f—*— M y—1 — — & e Mr—l (23)
ot by S tm
v Sr+1 r+1 Sr+1 t

erzeugt. Mit Riicksicht auf Tabelle II ist der Koeffizient von M, _; mit dem
Werte @, _, identisch, daher

M, = —a, M,_; und nach Figur 6b analog M, , =—8&M,, (24)
wobeli
S S,
b, = — ,V,,SC,,, =5 4*,;‘,17 . (25)
te 4 Sroy / &t S by 1
ttes, N

Fiir m = 1 ist s = ¢ — ~, mit wachsendem m fallen diese Werte zu-
nichst rasch ab, erreichen bei m = 3 die GréBen s = 0,209, { = 0,395, um

erst bei m = <o zu verschwinden. Hingegen besitzt der Quotient% bei 1 —=
~den Wert1, fillt bei m = 3 bis auf; — 0.529 ab und nihert sich asymptotisch
dem Grenzwert 0,5 bei m = co.

Abhandlungen III. 19
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Die Summe der den Einspannungsgrad kennzeichnenden Grofien a, _,
und &, wurde nun zum Gewicht

Sy [ 1 1

| If:b 1 — AR [ — e

Uy e ) t | S, QTL+1+1+_S_I;fFiI

S/’—l t/- Sr+1 t;f

des Stabes r zusammengesetzt und man erkennt, daB dieses Gewicht mit

wachsender Steifigkeit der Nachbarstibe zunimmt, bei vollkommen

(26)

. . Sr .
starren Staben mit m, , = m, ., = o den Grenzwert vy,” == 2? erreicht,

der selbst wieder den Maximalwert v,” = 2 annimmt, wenn m, seinen klein-
sten Wert von m, = 1 besitzt. Es sei hier wohl hervorgehoben, daB
das Gewicht w,” mit den tatsdchlichen Einspannungsverhiltnissen des
Stabes im ausgeknickten Gurt nichts gemein hat, die Zahl v,” stellt nur
ein M aB dar, welches das relative Stirkeverhiltnis des »ten Stabes zu
seinen Nachbarstiben kennzeichnet und dessen Einfithrung im Interpolations-
verfahren sich praktisch bewihrt hat. Da iiberdies die Gré8en «, und &,
auch in den Ansatzgleichungen zur Berechnung der Kolonnenwerte erscheinen,
die ihrerseits wieder zur Bildung der Knickdeterminante verwendet werden
und daher auf das Ergebnis y von EinfluB sind, so mag auch diese Tatsache
vielleicht den hier vorgenommenen Aufbau der Gewichte «,” bis zu einem
gewissen Grade rechtfertigen.

Wihrend das Gewicht v,” bei allen Systemen durch die imm er giiltige
Gleichung (26) bestimmt wird, ist hingegen das Gewicht y,, auf Grund
der sich aus den vielen streng gerechneten Beispielen ergebenden Erfahrung,
vom System und gelegentlich auch von der Felderzahl abhangig.
Nach vielen Versuchen hat sich die Form

, Sy ..
V=g f (my) (27)

als geeignet erwiesen, wobei f(,,) eine vom System abhangige Funktion

darstellt. Beim System b) hat sich die Form /)= @m—t—l, beim System c)
8

die Form f () = ”: , bewahrt, hingegen wurde beim System a) fiir die beiden

* 1 . . .
ersten Stibe die Form f(,,) = 3; , fiir den dritten bezw. dritten und vierten
Stab die Form f(n) = 3 als im Durchschnitt zutreffend erkannt. Um -

fangreiche Untersuchungen haben gezeigt, daB der EinfluB, von im
Prinzip richtig gewihlten, wenn auch weiter voneinander liegenden
Funktionen f,,), auf den zu rechnenden Mittelwert y verhiltnismaBig ge -
ring ist, wenn nur in der Mittelwertbildung nach (22) der Ubergang
zum Grenzfall des idealen Gurtes richtig durchgefithrt wird. Aus den
vielen Versuchsfunktionen haben sich die oben angegebenen im Durchschnitt
als am besten geeignet gezeigt.

Fiir das Gesamtgewicht g, erhdlt man daher nach (26), (27) den
Ausdruck '

Sy S 1 1
vr = (br + @) + - flm) = - IR M + f(m) ],  (28)
t bl Srter oy 4 S e '
S/‘_ 1 f/‘ . S;A_*_ 1 fi‘
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der fiir den Grenzfall des Idealgurtes mit durchwegs konstantem m iiber-
geht in
5 1 1
Yre= , |+ s+ [m], (29)
Sro1 Sr+1
wobei s und ¢ dem Mittlwerte m zugeordnet sind.
Die Mittelwertbildung nach (22) ist nun z. B. fiir den 6-Feldertriager

des Systems c¢) mit f;,) = ml,z in folgender Weise durchzufiihren:
.

Z ey =DJ Z Yr,g

daher
s 1 1
?1 ( 0 + .S 4 + oy J1
L e
2 1 E
,_SE F L 77777 ¥l ”17, 7\/I‘ A—l "
" *Sﬁ—é+1+1'52f%+m;’y2 =yg|20F3 (30)
l*‘Sl Z‘2 ’ s 83 t? _J
Ss F_A_]i - ,1_—‘
.h | S & , + 0,5 4 ; Vs
L S, t3 |

Auf der rechten Seite erscheinen die drei zusammengehodrigen
GroBen m, y und ;» die aus dieser Gleichung nur durch Probieren er-

mittelt werden konnen. Hingegen 148t sich graphisch der Mittelwert m
und das zugehorige y sehr einfach direkt bestimmen, indem man eine
,,Interpolationskurve‘

N 4 [25+3]

errechnet und in das Feld der m-y-Kurve einzeichnet. Geht man nun mit
einem speziellen, durch die linke Seite von (30) bestimmten »-Wert in diese
Kurve, so gewinnt man mit einem Schlageden fraglichen m- und
y-Wert.

Da der im groBten Teil des Gebletes ziemlich flache Verlauf der »-Kurve
eine scharfe Ermittlung der m-Werte vielfach erschwert, so empfiehlt sich aus

praktischen Griinden die Verwendung der, die Reziprokwerte 1 ={ dar-

stellenden Kurve, als Interpolationskurve. Diese {-Kurve wurde fiir den
0-Feldertrager des Systems c) in Figur 5 eingezeichnet.

Wenn schlieBlich die hier vorgeschlagene Mittelwertbildung theoretisch
auch nicht ganz zu befriedigen vermag, so ist sie doch aus der Erfahrung her-
vorgegangen und hat sich, wie die unten aus den zahlreichen Untersuchungen
herausgegriffenen Ergebnisse zeigen, im groBen Durchschnitt bestens be-
wahrt. Andrerseits ist eine einfache arithmetische Mittelwertbildung, wie
dieselbe in bestehenden Naherungsverfahren zur Gewinnung des Rahmen-
widerstandes gelegentlich verwendet wird, allerdings gewohnter, letzten
Endes aber noch viel weniger zusagend und auch unbegriindet, besonders
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dann, wenn wie bisher, jeglicher Vergleich mit streng gerechneten Beispielen
fehlt, der all ein Aufklarung iiber den erreichten Niherungsgrad eines Ver-
fahrens geben kann und damit die Giite desselben zu beurteilen gestattet.

Ergebnisse von Beispielen.

| ¢ . | w
System | Felder- ! | streng angendhert| Fepler
(Figur 3) iahl i”l s | s My vy | in%
‘ | | i |
13 13 |18 1362 | 1,533 12,5
6 1,8 1,8 1,3 — | 1,002 | 1155 + 1,2
19 11,9 (24  — 0934 | 0920 -15
. 24 |24 | 1,9 | — ‘ 0,712 | 0,703 - 13
11,6 | 16 |20 | 20 | 0997 o0 |+ 1,3
g |20 20 [ 1,6 [ 1,6 | 0900 088 | -272
| 19 |19 |23 23 | 0776 | 0788 | +15
23 |23 | 1,9 | 1,9 | 0656 | 0680 | +37
| 22 |22 | 1,1 — | 1,232 1330 | +79
122 122 | 1.2 | Yoz 1072 | +59
122 122 (13— | 085 | 0808 | +38
e 22 22 14 — | 0763 | 0802 | +51
22 |14 22 08 i 082 | - 38
b 1,4 122 | 22 — | 0,745 0,775 | + 4,0
225 135 1,75 — | 0,908 0924 | +18
2,12 197 | 156  — | 0717 0730 | +18
8 202 | 1,65 157/ 164 | 0772 | 0,750 - 28
| 28 |16 20 | 1,7 | 0721 | 0,670 -1
\ | 155 ] 140 | 1,25 | — | 1,238 1,217 | + 3.2
6 223 1,51 213 | — | 0851 0,802 - 57
| 151 | 223 213 | — | 0733 0,740 +1,0
¢ - — ——
22 | 1,8 | 1,35] 15 | 0915 = 00912 - 03
8 |12 1,8 | 135 15 | 1200 = 1,220 + 1,7
{! 18 | 12 | 135 15 | 1165 | 1228 | +55

Auch beim 4-Feldertrager liefert das Naherungsverfahren sehr gute Er-
gebnisse, doch ist es in diesem Falle nahezu entbehrlich, da die strenge Be-
rechnung nach dem hier mitgeteilten Verfahren in jed em Falle nur wenig
Miihe und Zeit erfordert.

6. Niherungsverfahren bei starren Endrahmen und durchwegs
gleichen Zwischenrahmen.

Auch in diesem Falle ist das auf den m-y-Kurven aufgebaute Nahe-
rungsverfahren analog nach dem in 5. beschriebenen Vorgang durchzufithren
und liefert gleich wie dort auch hier im Durchschnitt recht gute Resultate.

Um bei starren Endrahmen einige Einsicht in das System der m-y-
Kurver zu bekommen, wurden dieselben in Figur 7 beispielsweise fiir den
4-, 6- und 8-Feldertriger des Systems c), bei welchem der Grenzfail starrer
Endrahmen noch am ehesten als erfiillt angesehen werden kann, dargestellt.
Samtliche Kurven liegen, wie es sein muB, unterhalb der Bleich-
schen Kurve und man bemerkt die ipteressante Tatsache, daB sie sich in dem
ganzen Gebiet bis m = 3, im Gegensatz zu den analogen Kurven in Figur 4
und 5, mehrmals gegenseitig iiberschneiden und daB ferner die der
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8-Felderkurve angehérigen Teilstiicke 8¢/6, 8¢/4 und 8¢/2 in enger Nach-
barschaft mit den Kurvenstiicken 4¢/3, 4¢/2 und 4¢/1 nahezu parallel laufen,
in Ubereinstimmung damit, daB sich die entsprechenden Kurvenstiicke bei
durchwegs gleichen Gurtkriften vollkommen iiberdecken miissen.
Hier konnten die m-y-Kurven, im Gegensatz zu den Triagern mit elastischen
Endrahmen, mit grober Annidherung ersetzt werden durch eine, die
zut oberst gelegenen Polygonseiten berithrende stetige Kurve, die ohne
Riicksicht auf die Felderzahl beim Niherungsverfahren verwendet, wohl
immer sichere, aber gewiB nicht besonders gute Niherungswerte
liefern wiirde.
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Fig.7. m-y-Kurven — courbes m-y — “m-p’’ curves

Der EinfluBl einer Verdnderung des Endrahmenwider-
standes A, auf die Stiarke des Rahmenwiderstandes A der Zwischenstiitzen
wurde ebenfalls untersucht, doch kénnen die Ergebnisse wegen Mangel
an verfiigbarem Platz nicht mehr mitgeteilt werden.

7. SchluBwort.

Offene Briicken sind am zweckmaBigsten als Strebensysteme z. B. nach
Figur 3 a bezw. 3 b auszufithren. Die Gurte werden mit Riicksicht auf Knicken
in der Tragwandebene dimensioniert, sie sind daher hinsichtlich ihrer Quer-
schnitte und Trigheitsmomente stets als gegeben zu betrachten. Die Knick-
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belastung S, =v» max O, ist bekannt, die Knickspannung und der zugehorige
Knickmodul der Gurtstibe daher gegeben. Ein die seitliche Knicksicherheit »
gewaihrleistender, fiir alle Rahmen gleich starker spezifischer Rahmenwider-
stand A wird nun mit dem in 5. erliuterten Nidherungsverfahren bestimmt und
der Dimensionierung der Querrahmen zugrunde gelegt.

Wird eine strenge Berechnung verlangt, so ist dieser mit dem Nihe-
rungsverfahren errechnete und mit einem geringen Fehler behaftete Nihe-
rungswert A den Zwischenrahmen des Systems zuzuordnen und nach Ab-
schnitt 3 und 4 der erforderliche zugehdrige Endrahmenwiderstand A4, aus
linearen Gleichungen zu ermitteln. Nach dem hier entwickelten strengen
Verfahren ist diese Berechnung auch fiir Trager mit groBerer Felder-
zahl ziemlich mithelos und rasch durchzufithren, mit einem Zeit-
aufwand, der auch jedem praktisch tdtigen Ingenieur beim Ent-
wurfe von offenen Briicken zur Verfiigung steht.

[ig

Zusammenfassung.

Der Autor gibt eine strenge und eine angeniaherte Methode an fiir die
Berechnung der Knickfestigkeit der Druckgurte von offenen Fachwerks-
briicken. Die Tabelle auf S. 292 liefert fiir die in Fig. 3 gezeigten Briicken die
Resultate nach den genannten beiden Methoden und die Fehler der Nahe-
rungswerte in % von den Ergebnissen der strengen Berechnung.

Résumé.
Dans ce travail sont exposées une méthode exacte et une méthode ap-
proximative pour le calcul des membrures comprimées de ponts sans contre-
ventement supérieur. Le tableau (page 202) indique pour les systémes des

ponts representées par la fig. 3 les valeurs finales, calculées d’apres les deux
méthodes et les erreurs en 9.

Sumaary.

In the work submitted an exact method and a method of approach are
given for the calculation of the security against buckling of the compression
chord of open through-truss bridges. The table on page 202 gives for the
bridges shown in fig. 3 the results calculated both exactly and approxi-
matively and moreover the errors in 9o incurred.
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