
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 3 (1935)

Artikel: Die Knicksicherheit der Druckgurte offener Fachwerksbrücken

Autor: Kriso, Karl

DOI: https://doi.org/10.5169/seals-4153

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-4153
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DIE KNICKSICHERHEIT DER DRUCKGURTE OFFENER
FACHWERKSBRÜCKEN

LA RESISTANCE AU FLAMBAGE DE LA MEMBRURE COMPRIMEE
DES PONTS OUVERTS Ä POUTRES EN TREILLIS

BUCKLING STRENGTH OF BOOMS OF OPEN LATTICE
GIRDER BRIDGES

Professor Dr. Ing. KARL KRISO, Deutsche Technische Hochschule, Brunn.

In den achtziger Jahren des vorigen Jahrhunderts hatten verschiedene
Einstürze von offenen Fachwerksbrücken, die durch ungenügende Knicksicher-
heit der Obergurte verursacht wurden, das Augenmerk der Techniker auf
dieses Problem gelenkt. Es ist das große Verdienst Engesser's,
erstmalig im Jahre 1884 eine noch heute vielfach benutzte Näherungslösung1)
entwickelt zu haben, die in einfacher Weise die Knickkraft bezw. die
Knicksicherheit des Obergurtes oder die erforderliche Steifigkeit der Querrahmen
von Trägern mit parallelen oder polygonalen Gurten zu ermitteln gestattet.
Die Grundlagen einer strengen Lösung verdankt man Zimmermann, der
die Ergebnisse seiner Arbeiten2) in den Jahren 1905—1909 in den Sitzungsberichten

der preußischen Akademie der Wissenschaften niederlegte. Ostenfeld3)

entwickelte 1916 ebenfalls ein strenges Verfahren und verbesserte
die von Zimmermann in nicht ganz einwandfreier Weise erfaßten
Stetigkeitsbedingungen eines Trägers mit polygonalen Gurten.

In den fünfzig Jahren seit dem Erscheinen der Engesser'schen Arbeit
bis in die letzte Zeit wurde eine ansehnliche Reihe von Näherungsverfahren

für Träger mit polygonalen und geradlinigen Druckgurten
veröffentlicht 4), die sich eine Verbesserung derEngesserlösung zum
Ziele setzten. Wenn auch die meisten dieser Verfahren in mancher Hinsicht
die am Obergurt der Brücke herrschenden statischen Verhältnisse schärfer
erfaßten als die Engesser'sche Methode, so müssen hiebei doch immer wieder
auch Annahmen getroffen werden, die in keiner Weise, auch nur annähernd
erfüllt sind, deren Einfluß auf das Ergebnis daher schwer abzuschätzen ist.
Natürlich lassen sich diese Annahmen stets so festsetzen, daß eine absolute
Sicherheit gewährleistet ist, doch führen derart grobe Voraussetzungen einerseits

zu einer Materialverschwendung und stehen andrerseits im Widerspruch
zur angestrebten Verfeinerung des Näherungsverfahrens. Inwieweit nun das
Ziel, die Verbesserung des Engesserverfahrens, erreicht wurde, ist allerdings

Abhandlungen im Zentralblatt der Bauverwaltung: 1884, 1885, 1892, 1909.
2) Sitzungsberichte 1907 (S. 235, 326); 1909 (S. 180, 348).
3) Seitensteifigkeit offener Brücken. Beton und Eisen. 1916.
4) A. Hawranek, Seitensteifigkeit von Eisenbetonbogenbrücken. Bericht über die

Internationale Tagung für Brückenbau und Hochbau. Wien 1928.
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nicht bekannt, da die meisten dieser Arbeiten nur mit dem Engesserverfahren

allein verglichen und vielfach als genauer erklärt wurden, falls
sich die Ergebnisse im Vergleich zu Engesser's Lösung ungünstiger
gestalteten, weil gelegentlich die Meinung vertreten wird, daß die
vereinfachenden, dem Engesserverfahren zugrunde liegenden Annahmen auf zu
günstige Ergebnisse gegenüber der Wirklichkeit führen. Auch diese
Behauptung ist nicht erwiesen, da die Ergebnisse des Engesserverfahrens,
ebensowenig wie jene aller übrigen Näherungsverfahren, gehörig überprüft
wurden, weder mit den Ergebnissen eines Modellversuches, noch mit jenen
einer strengen Berechnung nach Zimmermann. Die Überprüfung und
Durchrechnung von einigen speziellen Beispielen genügt in diesem Falle
nicht, um Einsicht in die Verhältnisse zu bekommen, sind im Gegenteil ganze
Bereiche nach bestimmten, durch die Praxis gegebenen Gesichtspunkten
miteinander zu vergleichen. Die hiezu erforderlichen außerordentlich
zeitraubenden und langwierigen Arbeiten sind wohl die Ursache, daß solche
allgemeine Untersuchungen bisher noch nie durchgeführt wurden, auch
Stichproben auf die Zuverlässigkeit eines Näherungsverfahrens, durch strenge
Berechnung von wenigstens einigen speziellen Beispielen und Vergleich der
Resultate, liegen nicht vor.

Im folgenden werden Ergebnisse aus einer umfassenden Arbeit
mitgeteilt: ein Verfahren zur Berechnung der Knickdeterminante

aus den Zimmermann'schen Knickgleichungen, das im Gegensatz zu
dem bestehenden von Zimmermann 5) entwickelten Verfahren einen mehr
einheitlichen Aufbau zeigt und mit ziemlichem Zeitgewinn die strenge Berechnung

der Knickdeterminante mit Benützung eines Rechenschiebers durchzuführen

gestattet; aus dem strengen Verfahren wird ein Näherungsverfahren
entwickelt, das die herrschenden statischen Verhältnisse weit-

gehendst erfaßt, einfach zu handhaben ist, durch eine Reihe von
Vergleichsrechnungen überprüft wurde und im Durchschnitt Fehler von nur wenigen
Prozenten aufweist, während es in gewissen, auch in der Praxis oft
näherungsweise erfüllten Grenzfällen strenge Lösungen liefert; die Kenntnis der
rasch zu ermittelnden Näherungswerte führt andrerseits wieder zu einer
Vereinfachung im strengen Verfahren, indem sie eine derartige
Stellung des Problems gestattet, die die strenge Berechnung des erforderlichen

Rahmenwiderstandes aus linearen Gleichungen ermöglicht; überdies

wurden die vielen bestehenden Näherungsverfahren auf
eine einheitliche Basis gebracht, um auf diese Weise einen Vergleich
dieser Verfahren untereinander und mit dem hier entwickelten
Näherungsverfahren zu ermöglichen.

1. Die Zimmermann'schen Knickgleichungen.
Ein gerader Stab sei in einzelnen Punkten elastisch gestützt und nach

Figur la belastet. Innerhalb eines Feldes sind dann die Stabkräfte Or
konstant, auch sind die Querschnitte E, und Trägheitsmomente Jr im Felde
unveränderlich, im übrigen aber ebenso wie die Feldweiten cr von beliebiger
Größe. Die elastische Stützung sei durch Angabe des Wertes 6

gekennzeichnet, der die Stützensenkung in cm pro Tonne Belastung angibt. Wird
dieser Stab durch o-fache Erhöhung der Belastung an die Knickgrenze
gebracht, so verläßt er seine ursprünglich gerade, jetzt labile Gleichgewichts-

5) H. Zimmermann, Die Knickfestigkeit der Druckgurte offener Brücken. Ernst ft
Sohn, Berlin 1910.
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läge zugunsten einer benachbarten stabilen Form, deren elastische Linie durch
Figur lb angezeigt sei. Die Verbindungslinie der Stützpunkte bildet das
Stabsehnenpolygon, dessen Seiten zur ursprünglichen geraden Stabachse unter
den Winkeln vr geneigt sind. Der deformierte Stab befindet sich unter der
Wirkung der Kräfte S, AS und der elastischen Stützenwiderstände W im
Gleichgewicht. Konstruiert man das zu dieser Belastung gehörige
Drucklinienpolygon, so kommt in der zum Felde r gehörigen Seite die Knickkraft
Sr QÖr zur Wirkung, während in den Stützpunktquerschnitten die Biegungs-
momente Mr entstehen.

Die Gleichgewichtsbedingungen dieses Knickfalles werden durch zwei
Gruppen von linearen homogenen Gleichungen formuliert, die Zimmermann

Oj *°r.2 L°r
<* ^<—

AOn äOri

o ' J ' r-2 rj OrFhJr p

K—c C^*i*r-i rv-i

r+iASr+ib. AS

PH
Sr.

r-i
Wn

Wn

Flg. 1.

als Knickgleichungen bezeichnet hatte. Die eine Gruppe, die
„Stetigkeitsbedingungen", umfaßt bei einem /z-feldrigen Stab mit
gelenkiger Auflagerung (M0 Mn 0) der Stabenden n — 1 Gleichungen von
der Form

wobei

- _ <Pr
&r —

sin<£v

tr 1 - *'

+ Mr.

1;

Jr+l Lr+i
Vr— V,>+l

r=ly2 n—1

<Pr ~ \ Trjr
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(I)

(1)

Tr Knickmodul und Jr Trägheitsmoment im Felde r.
Die zweite Gruppe der Knickgleichungen, die „L a g e r b e d i n g u n -

gen", umfassen n Gleichungen von der Form

+ ^Af,_2
Cr-i

[ÖV-l
ÖV-l + <V1 *. \$r-\ + Ör ^/- 1 », oV

^LI + ^A. ^Mr_1+\^Lr^ + -Y-\Mr-7^Mr+1+Sr_1dr_1vr_1 +
w*—l Cr J L Cr ^r-\-\ J w*+l

+ [cr- (Ör-i + Ör) Sr] Vr + Sr+1 Ör Vr+1 0 (II)
Als Unbekannte in den Gleichungsgruppen (I) und (II) erscheinen die

(n — 1) Stützmomente Mt, M2 Mn_t und die n Neigungswinkel vr des
Stabsehnenpolygons. Aus den obigen (2n — 1) homogenen Gleichungen
resultieren nur dann von Null verschiedene Werte der Unbekannten Mr und vn

Abhandlungen III. 18
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wenn die Determinante A aus den Beiwerten der Unbekannten verschwindet.
Diese Determinante A wird als Knickdeterminante bezeichnet, die B e-

dingungJ 0, die den Knickzustand kennzeichnet, bildet die
„Knickbedingung" des vorliegenden Knickfalles.

Die Ausrechnung der Knickdeterminante liefert eine einzige Gleichung,
die zur Bestimmung von nur einer, in den Beiwerten enthaltenen Unbekannten
ausreicht.

Das Problem der Berechnung des Druckgurtes einer offenen Brücke
mit Rücksicht auf die seitliche Knicksicherheit geht darauf hinaus, daß in
den Beiwerten der Knickgleichungen eine passend gewählte Größe frei
gelassen und aus der Bedingung A 0 errechnet wird.

2. Die Ermittlung der Knickdeterminante des Druckgurtes
einer offenen Brücke.

Der Obergurt einer offenen Brücke, der in den Rahmenköpfen in
Kugelgelenken lagernd gedacht wird, entspricht den in 1) dargelegten Bedingungen.
Die Knickkräfte S, ^maxOr werden durch die £-fach erhöhten maximalen
Druckkräfte Or der Gebrauchsbelastung gebildet. Die Kräfte max Or werden

wr wr

Fig. 2.

allerdings durch verschiedene Zugsstellungen erzeugt und können daher
niemals gleichzeitig zur Wirkung kommen. Trotzdem wird im weiteren eine
gleichzeitige Einwirkung angenommen und demnach rechnerisch eine Sicherheit

ermittelt, die kleiner ist als die wirklich vorhandene.
Die elastische Stützung wird durch die Querrahmen gewährleistet.

Werden die Querträger in den Vertikalen des Rahmens frei gelagert, so treten
in denselben bei beliebiger Querträgerbelastung keinerlei Verlegungen auf,
die Rahmenköpfe und damit auch der Obergurt verbleiben in der vertikalen
Tragwand und treten erst im Knickzustand aus derselben heraus, wobei in
seitlicher Richtung die elastische Stützung der Querrahmen zur Wirkung
kommt und die Rahmenwiderstände Wr hervorgerufen werden (Figur 1).
Umgekehrt wirkt der Gurt belastend mit Wr auf die Querrahmen (Figur 2),
die Kräfte Wr erzeugen die Verschiebungen yr der Rahmenköpfe, es ist

wenn dr die durch Wr 1 erzeugte Rahmenkopfverschiebung vorstellt.
Der einer Durchbiegung yr 1 cm entsprechende Rahmenwiderstand

wird mit Ar bezeichnet und spezifischer Rahmenwiderstand (Federkonstante
des Querrahmens) genannt. Demnach ist auch

Ar -«-
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mit Kenntnis von ör, das mit Rücksicht auf die konstruktive Durchbildung
des Rahmens zu errechnen ist, als bekannt anzusehen6).

Für die weitere Untersuchung wird Symmetrie zur Mitte, sowohl für die
Konstruktion, als auch für die Belastung vorausgesetzt. Mit Rücksicht darauf

kann die elastische Linie eines /z-feldrigen Stabes im Knickfalle,
bezüglich der Gurtmitte, nur eine symmetrische Form mit 1, 3, 5,
(n — 1) Knickwellen oder eine polarsymmetrische Form mit 2, 4,
(n — 2) Wellen aufweisen. Bei der Herleitung der Knickbedingung werden
diese zwei Knickfälle von vorneherein getrennt behandelt und hiefür
gelegentlich die abkürzende Bezeichnung „Kn i ck f a 11 nc/\" bezw. „Knie k-
f a 11 n c/2" gebraucht.

Für die weitere Durchführung empfiehlt es sich, die Gleichungsgruppen
(I) und (II) so umzuformen, daß die Beiwerte der Unbekannten und
diese selbst als dimensionslose Zahlen erscheinen. Wählt man
passende konstante Mittelwerte 5, c, d bezw. A, setzt man

* - S' •

s ~ " Cr
- Cr ;

c

Sr -s' ¦

o^ Cr sjr Cr

Sc~Mr'
c Ac
Jo~!f

-*- or ;

tr ~\- *r+i — *r,r+i >

- y

(2)

und führt diese Größen in die Gleichungsgruppen (I) und (II) ein, so
umfassen diese Gruppen für einen /z-feldrigen Träger mit gerader Felderzahl

infolge der herrschenden Symmetrie je ^ Gleichungen von der Form

Sr M'r-x + #, r+i Mr + s'r+1 Mr+1 — Vr
r—1.2 -

d'r-2 M'r-2 - K-l M'r-x + KMr - a'r\x Af^+1 + u'r-1 Vr_ + ErVr + ßr+i vr+i - 0 I

\r=\,2...

(Ia)

n(»a)

wobei die Koeffizienten der letzten Gruppe durch folgende Formeln bestimmt
werden:

ar
d'r+ 1

Clr
är-i

r 0

+ 1

r=l

br — Clr-i 4" Cr+l

ar 8'rS'r

Cr — CLr i ~i Clr

b'r er 4- a'r-
r

r=\ r+i

Cry — yr

l/-=l
nr= -—

Pr — Ör-1 Sr
r 2

r=\
yr — Cr Cr ^r

r l

(3)

Wegen der vorausgesetzten Symmetrie ist bei Anschreibung der
Gleichungen (Ia) und (IIa) im speziellen Falle zu beachten, daß für alle

Beiwerte deren Zeiger r> =-, die Beziehungen

6) R. Mayer, Die Knickfestigkeit. Springer, Berlin 1921 (S. 200 ff.).
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zn+l-r dr an

s -s * - ' (4)
tr — tn+\—r > Pr — &n+i

tl
gelten und daß ferner, wenn t>- j beim symmetrischen bezw. polarsymmetrischen

Knickfall die Beziehung
Mr ± Mn_r und vr + vn+1_r (5)

gilt.
Mit Berücksichtigung der Gleichungen (4) und (5) werden im folgenden,

der besseren Übersicht halber, die Knickgleichungen für den
speziellen Fall eines 8-feldrigenGurtes angeschrieben und die Knick-
determinantenzl/' und AI" des symmetrischen bezw. polarsymmetrischen
Knickfalles entwickelt. Die Ergebnisse werden später verallgemeinert.

Stetigkeitsbedingungen.

a) Symmetrischer Knickfall 8c/1:
+ tn M\ + s2 M2 Vi — v2

s2 Af; + 4 Af2 + 53 Af3 — v2 — v3

s'zM2 + 4 Af3 + sl M\ v3 — v±

2s[M'z + 2t\M\ v± — vb 2v±

(Ib)

b:) Polarsymmetrischer Knickfall 8c/2:
Wegen vb n und M\ 0 entfällt nach (Ia) und (5) in der obigen

Gleichungsgruppe die letzte Gleichung, sowie das dritte Glied auf der linken
Seite der vorletzten Gleichung.

Lagerbedingungen.

a) Symmetrischer Knickfall 8c/\:
+ b'[M[ — d2M2 + 0 + e, vt + ß2v2 0

— b[M[ + b"2M'2 — alMs + axvx + e2v2 + ß>3 0

+ a\ M[ — b2M2 + blM'3 — d\M\ + a2 v2 4- e3 v3 + ß\ v\ — 0

+ d2M2 — (b:d+a3)Mz' + b\M[— 0 + as vs + (eA-ctA)v± + 0 0 J

(IIb)

b) Polarsymmetrischer Knickfall 8c/2:
In diesem Falle ist in der letzten Gleichung die Differenz der

Beiwerte bezw. Summe durch (b\ — a\) bezw. (e4 + #4) zu ersetzen. Wegen
M\ 0 entfallen überdies die entsprechenden Glieder in den zwei letzten
Gleichungen.

Die Knickdeterminante AV des symmetrischen Knickfalles 8 c/\.
Aus den Stetigkeitsbedingungen (Ib) lassen sich die Momente M'r als

Funktionen der Neigungswinkel vr errechnen und in der Form

M'r A'rV1+ B'r V2 + C'r VS + Dr V±
I (6)
|/- 1,2,3,4=T

darstellen. Führt man diese Gleichungen in die Lagerbedingungen (IIb) ein,
so erhält man in abgekürzter Schreibweise die folgende Gruppe von homogenen

Gleichungen:
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(+ 4 + «i) n + (-4 + ß-i) v2 +• (+/;3) vs + (-/;4) ^ o
(- % + Ofj) ^ -f- (+ l22 4 fi2) ^2 + (- /2'3 4 ft) V3 + (+ /2'4) v4 o
(4 4) vi 4- (- 4'2 + «2) ^2 4- (+ 4 + fi3) 1/3 + (- /34 + ft) x>4 0

(- 4) vi + (+ 4) ^2 + (- 4 4 «3) ^3 4- (+ 4 4 £4 - «4) ^4=0
Hierin sind die Größen i'nk, wobei der Zeiger r die horizontale Reihe,

k die vertikale Kolonne anzeigt, Absolutwerte, die, wie leicht festzustellen

ist, aus den untenstehenden Gleichungen zu ermitteln sind und zwar
ist für die Reihen

r<
r

n

T

Irk — ttr-2 A/--2 4~ br-\ Kr-i 4" br Kr 4" ür+\ Kr+i

+ {b'n ± a'n )Kn + b"„ Kn
(8)

tKn_
2" 2

2
2 ' " 2* 2*2* 22

wobei im Klammerausdruck der zweiten Gleichung das positive Vorzeichen
für den symmetrischen, das negative Vorzeichen für den
polarsymmetrischen Knickfall gilt.

In (8) ist für k 1, also für alle in der ersten Kolonne auftretenden
Werte Vr> t der Buchstabe Kr durch Är zu ersetzen, während den Kolonnen
k 2, 3, 4 die Buchstaben B/, C/, D/ zugeordnet sind. Aus diesem Grunde
werden die durch diese Buchstaben bezeichneten Größen, die, wie sich zeigen
läßt, mit den in (6) auftretenden Absolutwerten der Koeffizienten A/, A/,
C/, D/ identisch sind, kurz als Kolonnenbuchstaben oder Kolonnenwerte der

Knickdeterminante AV bezeichnet. Nach (6) existieren in jeder Kolonne -=
Kolonnenbuchstaben.

Aus (7) folgen nur dann endliche, dem Knickzustand entsprechende
Werte der Neigungswinkel vn wenn die Determinante AV aus den Beiwerten
der vr verschwindet. Die Knickbedingung für die symmetrischen
Knickformen ist daher gegeben durch

Ai- 0 (9)

+ 4
— 4 4- ft
4- 4 4- «3

— 4 4" «3

Die (+) und (—) Vorzeichen der Absolutwerte Vr, k sind Schachbrett
artig verteilt.

+ 4 + «i — 4 4- ft
— 4 4- «i 4" ^22 4- £2

+ hi — 4 4- a2

— 4 + 4

— hi
4- 4
— 4 4- ft
4- 4 4- («4 - «4)

Die Knickdeterminante A i" des polarsymmetrischen Knickfalles 8 c/i.
Führt man die aus den Stetigkeitsbedingungen in der Form

M'r a; v, + b; v2 + c>3 + d; va \

n (10)
=1,2,3=-

errechneten Momente in die Lagerbedingung ein, so erhält man hieraus in
Analogie zum Knickfall 8^/1 die Knickbedingung

Ai"

+ 4 4- «i hi v ft 4- 4 — 4
— 4 + «1 4" ^22 4" e2 /23 4- ft 4- 4
4- 4 hi 4" a2 + hs + es — 4'4 4- ft
— 4 + 4 — 4 + «3 + 4 4- (€4 + ccA)

0 (11)
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nur

Die Absolutwerte i",yk gewinnt man ebenfalls mit Hilfe der
Gleichungen (8), wobei im Klammerausdruck der zweiten Gleichung das
negative Zeichen gilt, im übrigen in den Kolonnen k 1, 2, 3, 4 der
Kolonnenbuchstabe Kr durch die Absolutwerte der in (10) auftretenden
Koeffizienten Ar", Br", Cr", Dr" zu ersetzen ist. In jeder Kolonne existieren jetzt

— — 11 Kolonnenwerte, in Übereinstimmung mit der Zahl der in der

Stabhälfte auftretenden, von Null verschiedenen Momente Af/. Wegen
Mn 0 sind daher für alle Kolonnen die in (8) auftretenden Werte Kn 0.

Mit Rücksicht auf die aus (9) bezw. (11) ersichtliche Form der
Knickdeterminanten AV und Ar lassen sich nun diese Determinanten ganz
allgemein für jeden #-feldrigen Träger mit gerader Felderzahl
in formal analoger Weise anschreiben und die hierin auftretenden
Koeffizienten nach den Gleichungen (3) errechnen, vorläufig noch unbekannt
sind nur die in (6), (10) bezw. (8) auftretenden Kolonnenwerte/l...D.

3. Die Ermittlung der Kolonnenwerie.
Die in einer vertikalen Spalte in den Knickdeterminanten AV bezw. Ai"

auftretenden und auch in den Gleichungsgruppen (6) bezw. (10) erscheinenden

Kolonnenwerte sollen vorübergehend, ganz allgemein durch die Bezeichnung

Kr' bezw. Kr" angedeutet werden. Führt man die Gruppen (6) bezw.
(10) in die Stetigkeitsbedingungen (Ib) ein, so erhält man auf Grund von
Koeffizientenvergleich die folgenden Gleichungen zur Ermittlung der
Kolonnenwerte:

4j t\iK\ + s2 Ki
f

s2f Ki 4- 4 Ki 4- 5a K
sBf Ki + 44 K -\- s4 Ki
54 ^3 + 4 Ki

4- 4 Ki 4- S2 K.2

s2 Ki 4- 43 Ki 4- s3 K —
Ss'Kt + 4C4

A' B' c D'
+1 -1 0 0

0 +1 -1 Ö

0 0 +1 -1
0 0 0 +1

A" B" C" D"
+1 -1 0 0

0 +1 -1 0
0 0 +1 -1

(12)

(13)

Aus den (ti — 1) Stetigkeitsbedingungen erhält man nun nach (12),

(13) - (n—1) Clapeyron'sche Gleichungen zur Ermittlung der

Kolonnenwerte. In diesen Gleichungen sind die Größen Kf bezw. K" jeweils
durch die Kolonnenwerte A' bis D' bezw. durch A" bis D" zu ersetzen und die
rechts unter den Kolonnenbuchstaben stehenden Werte als rechte Gleichungsseiten

zuzuordnen.
Die Lösung dieser Gleichungsgruppen, die hier nicht hergeleitet wird,

läßt sich sehr einfach nach einem vom Verfasser ausgearbeiteten Verfahren7)
für jede beliebige Felderzahl einheitlich nach einem tabellarischen
Schema durchführen, das nun für den vorliegenden Fall eines 8-feld-,
rigen Trägers angeschrieben wird und für jede andere Felderzahl n ^ 8
wie aus dem Schema zu ersehen, sehr leicht erweitert, bezw. eingeengt werden
kann.

7) K. Kriso, Statik der Vierendeelträger. Springer, Berlin 1922.
bilite des poutres Vierendeel. Beranger, Paris 1926.

K. Kriso, Sta-
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Tabelle I für den Knickfall 8c/l und 8c/2.
S ....;c

r

1

cr

Cl

- Jr-xtr cr
°> ffrcr V "sr=,rrV >r k= Vr

I

v +V+i
cr

crr C
k =c'Sr

—
1

1

5i — 'i Tl f2 +72 Cl
c

kx Cl —

2 s2 c2 "-5 *-ä *2

1

<?2 ^2 52 52 o2 52 h T* ö"2 4 ||
T2 /a+?8 Q / ^2

62 -J Ci
c

/ ' ^2
k2 c2 —

T2

3 s2 Cz 3
ss

- f2
cr3 ^3^s| 53 S3 a3 S3 u F8

'l

^3 4 [ T3 - 4 +74 o / ^3
63 ~s~ C%

c T3

n\2
4 s4 Ci - 53

^4

1

<*4 ^4 | S4 S4 <J4S4 h ?4 ff4 4 T4
1

t4 + 0 0 ' ^4
Ci' c

k4 c4 —
r4

In dieser Tabelle sind die Größen s, und tr nach 1) zu berechnen, die Stabkräfte
werden durch Sn die Feldweiten durch cr bezeichnet, während S und c beliebig zu
wählende konstante Mittelwerte von der Größenordnung der Sr bzw. cr darstellen. Am besten
setzt man S — Sni2 und c cn\%.

Tabelle 11/1 für 8c/l.
a- und b-Werte.

Tabelle 11/2 für 8c/2.
a- und Ä-Werte.

r •V+l r+i

Sr+\

r+i
anl2 *

sr Tr_i

*1 1

br
V-i

1

2

s2

53

T2

T3

s2

T2

«.= * S2

s3 T2

^ 1

b -^

T2
3

n\2
4

S4 ^4
St

*, -T4

«4 1 s4 T3
T3

'l

Tr+1

9 1

Tr+i|

ß/z/2-l 1i

sr V-l
bx \

br=
TV-l

1

2

*/2-l|
3 — — «3-1

Die Werte in den umrahmten Teilen der beiden Tabellen stimmen überein.

Tabelle III/l für 8c/l.
Koeffizienten c.

r K Cr-1 ^r fr=^-cr_tbr ar ^ fr
1

2

3

bx

b*

b.

0

Cib2

c2b^

/i i-o

fz \-c1b2

fz^X-c^bs

«1

#2

ax
Ci=ir a1

7i
ö2

£*2 — ~F~
/2

03

04 64 - j.
J4

n\2
4

A4 c3b4 f4 \-cBb4

Tabelle 111/2 für 8c/2.
Koeffizienten c.

r br cr-i ^r fr=\-Cr^br ar
ar

cr j.Jr

1

2

Ä/2-l
3 a%=\

Die Werte in den umrahmten Teilen der beiden Tabellen stimmen überein.
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Tabelle IV/1 für 8c/jl.
Koeffizienten d.

Tabelle 1V/2 für 8c/2.
Koeffizienten d.

r ar 0fm0r ^¦r=l-£/mflrJ *r <=--
«•

1

2

3

«/2
4

0i

02

03

04

0^2 01

0*3 02

d4as

0

£l 1 ~ 0*2 0!

g*2 1 ~ 0*3 02 62

£3

£4

gl

d -Ö2
£2

rl b*
dz —

gs

d4 — b4
£4

r 0,. rfr+iYr1-rfmflr K dr ~' gr

1

2

tf/2-l
3

0i

02

03

0*2 01

0*3 02

0

g1 \-d2a1

g2 l-dsa2

£-3 1-0

b1

b*

0>^ *
£*i

02
gs

dt ^=b,
g* 1

Die Tabellen IV sind von unten nach oben zu entwickeln.

Tabelle V/1 für 8c/l.
Multiplikatoren m.

Tabelle V/2 für 8c/2.
Multiplikatoren m.

r Cr-i dr cr-ldr K- 1 - cr_x dr gr " grK

1 — — — — ~ m1 d1

2 Ci 0*2 cxd2 h2 1 - cx d2 g2
1

g2h2

3 Ci 0-3 c2d3 h, 1 - c2 d% g*
1

gshs

4 — — — — ~ m4 c4

JI/2-1
3

cr-idr

Ci d2

hr=\-cf._1dr

K 1 - cx d2

gr m=-
V)

gr

mx dx

rn<
1

g2h,

*) In beiden Tabellen ist der Multiplikator in der ersten und letzten Zeile nicht nach
der im Tabellenkopf angegebenen Formel zu entwickeln; es ist immer m1 — dx und

in der letzten Zeile mr cn wobei r— — bzw. — 1.

Tabelle VI/1 für 8c/l.
ck~ und öfÄ-Werte.

\k I II III IV

1 ki c1k1

k2

c2 (c, kx)

c2k2

k3

Cz(c2c1k1)

cz(c2k2)

C3ks

2

3

n\2
4

d2k2

02 (äs kz)

d2 (ds d4 k4)

d3ks

ds(d4k4) d4k4

Tabelle VI/2 für 8c/2.
ck- und dk-Werte.

*/2-l
-3

I II

d2k2

d2 (ds h) d%h

in

Die Werte in den umrahmten Teilen der beiden Tabellen stimmen überein.
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Tabelle VII/1 für 8c/l.
«-» ß; )'; s -Werte.

Tabelle VI1/2 für 8c/2.
ß-, y -Werte.

1 ai «2 «3 a4

2 ß1=m1 I ß2 m» 11 ß%=m% III ß4 m4 IV

3 7i 72 7z 74

ul2
4 Sl *.= h ^4

1 «i rx2 «3

2 ß1 111! I ß2^m2 II ßs=m% III

*/2-l
3 7i 72 7%

In die Tabellen VII sind die mit den entsprechenden Multiplikatoren vervielfältigten
vertikalen Kolonnen der Tabellen VI einzutragen.

Tabelle VI U/1 für 8c/l.
Kolonnenwerte A', B', C, D'.

Tabelle VIII/2 für 8c/2.
Kolonnenwerte A"', B", C", D"'.

Ai= «i

B1' a1 + ßl

Ci^ßi + yi

D^yi + S,

**2 — f*2

B2' a2+ß2

C2' ß2+y2

D2=y2 + S2

Bs =as+ßs

Cs' ßs+7z

A'^/3 + ^S

A4= a4

B4^*4 + ß4

C4' ß4+y4

D4' yA + 84

At"= «!

B1" a1^-ß1

Ci" ßi + yi

/>r=/i

A2 — ct2

B2"' a2+ß2

C2" ß2+y2

D2" y2

Az"'= «8

Bt" az + ßz

C3" ßs+7?i

Ds =/s

In den Tabellen VIII erscheinen die in die Gleichungen 8) einzuführenden
Absolutwerte.

Bei der Durchrechnung eines speziellen Falles treten in allen
Tabellen infolge der getroffenen Anordnung in der Herleitung des
Verfahrens stets sehr kleine, dimensionslose Zahlen auf, die bei der
zahlenmäßigen Durchführung den Gebrauch eines gewöhnlichen
Rechenschiebers gestatten. Die schematische Durchführungsmöglichkeit,

immer gleich für jede beliebige Felderzahl, die
Übersichtlichkeit des ganzen Verfahrens, das Arbeiten mit
dimensionslosen Größen und die leichte Kontrolle machen diese
Methode der Durchführung auch wegen des damit verbundenen großen
Zeitgewinnes für die Praxis besonders geeignet und bürgen für
ein Minimum an Fehlerquellen.

4. Die zwei Hauptaufgaben der Knickuntersuchung.
A. Überprüfung einer bestehenden Konstruktion.
In diesem Falle sind alle Abmessungen der Konstruktion und die

maximalen Stabkräfte Or bekannt, die Knickkräfte S, rmaxOr bezw. die
Knicksicherheit v sind zu ermitteln. Eine direkte Lösung ist nicht möglich,
doch sind die Knickdeterminanten AV und Ai" für jede beliebige £-fach
erhöhte Belastung berechenbar. Bestimmt man nun für mehrere solcher
Belastungen die zugehörigen Determinanten, und konstruiert die Kurven
AV /^ bezw. Ai" E^, so gewinnt man die zwei, den Knickbedingungen
AV 0 bezw. Ai,f 0 zugeordneten Werte £'0 bezw. £"0; der kleinere von
beiden liefert die Knicksicherheit v der Konstruktion.

B. Entwurf einer Neukonstruktion.
Bei gegebenem Brückensystem sind die durch die Gebrauchslast

erzeugten maximalen Gurtkräfte Or, sowie die auf Grund der Dimensionierung
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mit Rücksicht auf das Knicken in der Tragwandebene ermittelten Querschnitte
und Trägheitsmomente der Gurtstäbe als bekannt anzusehen. Die
Knicksicherheit v für Knicken aus der Tragwandebene ist vorgeschrieben und
daher sind auch die Knickkräfte Sr v max Or als gegeben zu betrachten. Als
Fragegrößen erscheinen demnach die spezifischen Rahmenwider

s t ä n d e Ar, die so zu bestimmen sind, daß die verlangte Knicksicherheit
gewährleistet ist. Da aus der Bedingung AV 0, Ai" 0 nur eine einzige

Unbekannte ermittelt werden kann, so ist das Problem so zu stellen, daß nur
ein einziger, aus der Knickbedingung zu errechnender Rahmenwiderstand
offen bleibt. Hiefür wählt man zumeist den Endrahmenwiderstand A0, wobei

die folgenden Fälle zu beachten sind.
1. Die Vertikalstäbe der Querrahmen sind Stäbe des

Hauptsystems der Brücke, wie z.B. beim System c) der Figur 3.
In diesem Falle werden die Vertikalen der Zwisehenrahrnen unter Zugrundelegung

der sie beanspruchenden maximalen Druckkräfte dimensioniert, ihr
spezifischer Rahmenwiderstand Ar ist daher als bekannt anzusehen, während
der Rahmenwiderstand A0 des Endrahmens frei gehalten und aus der
Knickbedingung unter Zugrundelegung einer ^-fachen Knicksicherheit des Gurtes
errechnet wird. Wählt man in Gleichung (2) für die Konstante A den Wert

2n~x A 1

A —-—-r^ -*> so sind in (3) alle d'r mit Ausnahme von <J'0 bekannt, das
n — 1 o

in den Knickdeterminanten AV und Ai" nur in der ersten Zeile einer jeden
Kolonne erscheint. Die Ausrechnung der Determinanten führt daher zu zwei
linearen Gleichungen nach <3'0, der kleinere sich hieraus ergebende Wert
liefert den erforderlichen Endrahmenwiderstand

A

A0,erf= max^o'eff v min w0

2. Die Vertikalstäbe der Querrahmen gehören nicht
zu den Hauptsystemstäben der Brücke, wie z. B. beim Systema)
und b) der Figur 3. Solche Systeme eignen sich besonders gut zur
Konstruktion von offenen Brücken, weil die Vertikalen gar nicht oder nur durch
sekundäre Belastung verhältnismäßig wenig auf Zug beansprucht sind, ihre
Steifigkeit daher zur elastischen Querstützung des Gurtes voll ausgenützt
werden kann. In diesen Fällen wird man, bei Beachtung der unten
angeführten Grenzfälle, für alle Zwischenrahmen ein und denselben
Rahmenwiderstand A frei wählen und den zugehörigen erforderlichen Endrahmenwiderstand

A0 wie oben unter 1. errechnen.
Grenzfall a). Mit abnehmender Steifigkeit der Zwischenrahmen

wächst die Steifigkeit des Endrahmens; dem theoretischen Grenzwert des
unendlich steifen, starren Endrahmens mit A0 oo entspricht der kleinst-
mögliche Zwischenrahmenwiderstand Amin As.

G r e n z f a 11 b). Der obere theoretische Grenzwert Amax der
Zwischenrahmen entspräche dem Endrahmenwiderstand A0 0, praktisch
hingegen ist ein oberer Grenzwert Amax Ae dadurch gegeben, daß man die
Endrahmen nicht schwächer konstruiert wie die Zwischenrahmen, im Grenzfalle

alle Rahmen gleich mit ein und demselben elastischen Rahmenwiderstand

Ae ausführen wird.
Um nun eine mehrmalige, durch unpassende Wahl des Zwischenrahmenwiderstandes

A verursachte Berechnung von AQ zu ersparen, ist die Kenntnis
von guten Näherungswerten der jeweilig in Betracht kommenden
Rahmenwiderstände Ae und As notwendig, im besonderen die Kenntnis von Ae, da
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oft schon geringe Unterschreitungen dieses Wertes sehr steife Endrahmen
erfordern.

5. Näherungsverfahren bei durchgehend^ gleichem
spezifischen Rahmenwiderstand A.

Bei Brückensystemen nach Fig. 3 a bezw. 3 b ist die Ausführung gleicher
Querrahmen zweckmäßig. Alle Rahmen besitzen dann dasselbe A bezw. d,
alle Felder die gleiche Länge c, das gegenseitige Verhältnis der maximalen
aus der Verordnungsparabel zu errechnenden Gurtkräfte ist nur vom Brückensystem

abhängig und durch dasselbe gegeben. Wählt man diese Werte d

S, S2 Ss\ Systeme-Systeme

Sl-S2:St= 0,814:0,814 :\

b s7 s2 s3 Systeme "System b

^S7:S2:S3 0,545:0,876 J*\

C. \ Sj S2 S3

Sj.:S£ ¦ Sj
KNxkM4~ S. : Sn : S-, 0614:0.337:1*0,614.0,337:¦/'

Fig. 3. tn-y-Kurven — courbes m-y 'm-y" curves.

und c auch als Konstantwerte der Gleichungen (2) und setzt hierin überdies
noch für S Sn, das ist die Gurtkraft des mittelsten Feldes, so sind bei

2"

durchwegs gleichem Rahmenwiderstand A die Glieder ity k der
Knickdeterminanten mit Rücksicht auf (3) zu ermitteln aus:

für nc\\ und nc\2 irtk Kr-2 ±sßKr-i 3/C- + Kr+i
/¦ l/2.

für nc\\ in\H: Kn
2~'2

+ iKn
2 2

(14)

für nc\2 in =Kn ,+ 2/C«
T,Ä 2

2
2

Ferner nehmen die in AV, Ai" noch auftretenden Größen a, ß, e mit

S'r die Werte

2

ar ßr Sr und er y — 2Sr (15)
an, wobei

s„

Ist umgekehrt y errechnet und daher bekannt, so folgt aus (16) der
Rahmenwiderstand

5«

A=y- (17)
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In den Determinanten AV und Ai" steckt die einzige, hier auftretende U n-
bekannte des Problems, der Rahmenwiderstand A, im y der in der
Diagonale erscheinenden Wertes,. Die Ausrechnung der De-

nterminanten liefert demnach zwei Gleichungen vom — ten Grade nach y. Die

Gesamtheit der hieraus zu errechnenden n Werte y entspricht den n
möglichen Knickformen, praktisch brauchbar ist nur der Wert ymax, der nach (17)
den erforderlichen Rahmenwiderstand A liefert.

Die Glieder der Determinanten AV, Ai" hängen nach (14), (15) einerseits

von den Kolonnenwerten /C, andrerseits vom Gurtkräfteverhältnis
S'r ab. Weil bei einem bestimmten System mit vorgegebener

Felderzahl die S'r a 1 s b e k a n n t anzusehen sind, so werden die AV, Ai" nur
mehr von den Kolonnenwerten K allein abhängig sein, die ihrerseits

wieder nach (12), (13) und mit Rücksicht auf (1) letzten Endes durch
die, den Gurtstäben zugeordneten Größen

^[SrCr'<Pr=V^f (18)

bestimmt werden.
Die dem Knickzustand entsprechende elastische Linie bildet, wie

sich leicht zeigen läßt, in jedem Felde einen Teil einer Sinuslinie,
deren Achse in die Drucklinie des Feldes fällt und deren H a 1 b w e 11 e n-
länge lr mit der freien oder virtuellen Knicklänge des
Feldstabes r identisch ist. Setzt man /, mrcr, wobei stets mr > 1, so kann die
Knickkraft im Felde r dargestellt werden durch

sr n%J^ ^4 (19)
lr2 mr2Cr2

Aus (18), (19) gewinnt man

-='^% Z <20>

und erkennt nun nach dem oben Gesagten, daß die Kolonnenwerte, sowie
die Knickbedingung und der hieraus zu errechnende Wert y auch als alleinige

Funktion der mr dargestellt werden können. Nicht die Größe der
einzelnen Werte Sr, Tr, Jr, cr ist für das Resultat y maßgebend, sondern
ihre die Größen mr bildende Verbindung nach (2 0). Wie immer auch
die hierin auftretenden Größen im einzelnen beschaffen sind, Gurte mit
gleichen mr führen bei ein und demselben System, unabhängig von dessen
Ausmaßen, zum gleichen Wert y.

Es sei nun vorausgesetzt, daß in einem vorgegebenen
System alle Stäbe des Gurtes ein und denselben Wert m besitzen
mögen. Errechnet man für eine Reihe von m-Werten, — im Brückenbau
kommt das Gebiet m \ bis m 3 in Betracht —, die zugehörigen y-Werte
und konstruiert die Kurve y frm)) so bringt dieselbe die strenge Lösung des
Knickproblems in dem betrachteten Bereich von m graphisch zur Darstellung
und gestattet die rasche Ermittlung des einem bestimmten m zugeordneten y,
womit der erforderliche Rahmenwiderstand nach (17) zu berechnen ist.

Diese Lösungskurve wird im weiteren auch als die m-y-Kurve des
Systems bezeichnet.

In praktischen Fällen sind die m-Werte des Gurtes im allgemeinen nicht
gleich, doch liegen sie, bei mit Rücksicht auf das seitliche Ausknicken gut
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durchkonstruierten Gurten, nicht allzuweit voneinander entfernt. Beim
Entwurf ist darauf gehörig Rücksicht zu nehmen, weil oft schon ein
einziger besonders kleiner Wert m das Resultat ungünstigst beeinflußt
und zu relativ schweren Querrahmen führen kann. Konstruktionserfahrung
und mehrmalige Überschlagsberechnungen nach einem einfachen, rasch
durchzuführenden und zuverlässigen Näherungsverfahren können allein über das
beim Entwurf zu wählende wirtschaftlich und konstruktiv günstigste
Verhältnis der Gurt- und Rahmenquerschnitte Aufschluß geben 8), das wohl immer
zu Gurtstäben mit m > 1, 2 führen wird.

4,000

Sj : S2 7:7
S7 : S2 '¦ S3 0,674:0,874:7
S2 • S3 : S4 0,703:0,709:7:1

3.723
3,678
3.525

3,4

3.2

c'7\ Systeme-System d.
6c/c Cadre extreme dentre to/sement elast.

3,0

2.8 Endrahmen eZast/sch
f/ast/'cportaZ Frame2,6

2.467 y.Engesser'i2.4
Poutre a 4 panneauxBleich

,-_ ß Felderträger2.2
8 F/eZd-gZrder

2,0 4c
#^18

%\er^x§7.6 \\Wz*7.4 52Engesser
7,2 ^r~

4c/j
7.0

^6c/2
'ZT^0,8

6_CZ0,6

tngesser -B/e/ch 8c/2

0,2

m-7 1,7 7,2 7,3 7,4 7,5 1,6 7,7 7,8 7,9 2,0 2,7 2,2 2ß 2,4 2,5 2,6 2,7 2,8 2,9 3,0

Fig. 4. /n-y-Kurven — courbes m-y — "m-y" curves

Die Tatsache, daß sich die /n-Werte eines Systems in enger Nachbarschaft

befinden bezw. befinden sollten, legte nun den Gedanken nahe, die
m-y -Kurven der Systeme zur jeweiligen Grundlage eines dem
System angepaßten Näherungsverfahrens für die Berechnung des
Rahmenwiderstandes A zu machen. In diesen Kurven ist das Brückensystem,

die Felderzahl, der sehr bedeutende Einfluß der
verschieden großen Gurtkräfte, ferner der von Feld zu Feld veränderliche

Elastizitätsmodulus, die Verschiedenheit der
Gurtträgheitsmomente, sowie die elastische, in jedem Stützpunkte gleich starke

8) Hartmann, Knicksicherheit der Druckgurte offener Fachwerkbrücken.
A.V. 1925, S. 381.

Z. ö. 1.
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Einzelstützung der Rahmen berücksichtigt und daher der Schluß
berechtigt, daß mit Hilfe der m-y-Kurven, auch bei nicht gleichen
m-Werten, durch passende Interpolationsverfahren gute Näherungsergebnisse

für A zu erhalten sein müßten. Da eine so aufgebaute Näherungslösung
bei durchwegs konstanten m-Werten in die strenge Lösung übergeht, so
erklärt es sich von selbst, daß der Fehler in der Berechnung des
Rahmenwiderstandes A bei enger Nachbarschaft der /rc-Werte nur klein sein
kann, doch wurde durch viele Vergleiche mit den Ergebnissen der
strengen Berechnung erwiesen, daß dieser Fehler, selbst bei
weitgespannten Grenzen der mr, im Durchschnitt nur wenige Prozente
beträgt.

Für die Systeme der Figur 3 wurden die /ra-y-Kurven und zwar
für den 4-, 6- und 8-feldrigen Gurt errechnet, in Figur 4 und 5 sind jene
des Systems a) bezw. c) dargestellt, jede solche Kurve eines #-feldrigen
Trägers besteht aus n sich überschneidenden T e i 1 k u r v e n die im
maßgebenden dargestellten Gebiet außerordentlich flach verlaufen und daher
der ganzen tn-y-Knrve ein polygonales Aussehen verleihen. Von den
n aus der Knickbedingung ermittelten y-Kurven sind im Gebiete m<3 im
allgemeinen nur (n — 1) Kurvenstücke praktisch verwertbar, die als
höchstgelegene Teilstücke nach oben die Berandung der Kurvenschar bilden und
den Linienzug der m-y-Kurve liefern.

Um eine Orientierung über die Lage dieser Kurven im tn-y-Felde zu
gewinnen und zwar im Vergleich zur Lage der analogen Kurven, welche die
bekannten Verfahren von Engesser9) und Bleich10) liefern, wurden
diese letzteren Kurven noch in die Figuren 4, 5 eingezeichnet. Rechts von
m 1,7 fallen diese beiden Linien völlig zusammen, links hievon stellt die
oberste Linie eine im Jahre 1918 von Engesser auf Grund von
Versuchen vorgenommene Verbesserung der alten, zuunterst gelegenen
Engesserlinie vor, die allerdings von Engesser selbst nie benützt wurde, da
er bereits in seiner ersten Arbeit (1884) richtig erkannte, daß im Gebiete
m<l,7 nach einem anderen von ihm angegebenen Verfahren zu arbeiten ist.
Hier sollen und können wegen des geringen verfügbaren Platzes keinerlei
ausgreifende Vergleiche angestellt werden, doch ist aus den Figuren ohne
weiteres zu erkennen, daß auf die Gestaltung der //z-y-Kurven nicht nur
die Felderzahl, sondern in noch größerem Maße das Brückensystem,
d. h. das Gurtkräfteverhältnis, von Einfluß ist. So liegen z. B. die m-y-
Kurven des Systems a) in Figur 4 in dem praktisch bedeutsamen Gebiet
tn> 1,2 fast zur Gänze über der Bleich'schen Kurve, beim System c)
in Figur 5 hingegen wird dieselbe von der 8-Felderkurve fast ganz
unterschritten, während die 6-Felderkurve links tn 1,8 unter- und rechts
davon oberhalb von ihr liegt.

Die hier nicht dargestellten m-y-Kurven des Systems b) verhalten sich
ähnlich wie jene des Systems c).

Aus den Figuren 4, 5 ist weiters zu ersehen, daß sich die den verschiedenen

Felderzahlen eines Systems zugeordneten m-y-Kurven rechts von
tn 1,1 nicht überschneiden, die Kurven höherer Felderzahl immer
tiefer liegen und die Ordinatendifferenz zwischen zwei
aufeinanderfolgenden Kurven mit steigender Felderzahl abnimmt. Diese
augenscheinliche Tatsache wurde auch durch einige Stichproben, — Berechnung

9) S.S. 271 oder in Engesser; Nebenspannungen, S. 150.

w) Eisenbau 1919, S. 123 oder in F. Bleich, Theorie und Berechnung eiserner
Brücken. Berlin 1924. Verlag Springer.
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und Vergleich mehrerer y-Werte eines 10-Felderträgers, — erwiesen. Aus
diesem Grunde wurden die m-y-Kurven eines Systems von 10 und mehr
Feldern nicht mehr errechnet, da dieselben einerseits praktisch genau genug
durch die Kurven des 8-Felderträgers ersetzt werden dürfen und andrerseits
10- und mehrfeldrige Träger bei Entwürfen von untergeordneter Bedeutung
sind, da die größten für offene Brücken noch in Betracht kommenden Spannweiten

im allgemeinen durch 8-Felderträger zu überbrücken sein dürften
5

und dies umso mehr, da es wegen A y —nur günstig ist, Konstruktionen
c

mit steifen Gurten und großer Feldweite c in Anwendung zu bringen, falls
man kleine spezifische Rahmenwiderstände zu erzielen wünscht.

4,000

3,8
3.721
3J22_

3.447\\8c/7
4«it—

\~--Engesser
3,2

Bleich Systeme - System c3.0

Cadre extreme d'entreto/sement e/asf
Endrahmen elastisch
Elastic portat-Frame

2,8

2,6
2.467

-£12.4 r Sf:S2 =0,6/4:7/ S7:S2S3 =0,674.0,937:1
S;:S2:S3:S4 =0^467:0,673:0,976'7

n Poutre a 4pannea
2,2 Feldertrager

6c8c F/etd g/rder
2,0

18
3czk\ Courbe pour lepoutre a 6panneaux

Kunze Für den 6 Feldertragen
Curve For 6-F/eld-g/rder

7.6 3£ toffrgesser\\7.4 •o?

:s& fc/2
12

6cßC%
^XSN7.0 70F

4c/j
0.8

*PCl2
Engesser~Ble/c8c/30.6

6c/j
0,4 8C/2

8cJl

Wf

777* 7 11 7,2 7,3 7,4 1,5 7,6 7,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,6 2,9 3,0

Fig. 5. m-y-Kurven — courbes m-y — i"m-y" curves

Die vorhin erwähnte, so sehr verschiedene von der Felderzahl und
dem System abhängige Höhenlage der m-y-Kurve läßt wohl erkennen,
daß es nicht angängig erscheint, alle diese Kurven durch irgend eine einzige
Kurve zu ersetzen, um aus derselben, falls tn nicht für alle Gurtstäbe konstant
ist, mit Hilfe irgend eines Interpolationsverfahrens Näherungswerte

c
für einen Mittelwert y zur Berechnung von Aerf y —^ ableiten zu

wollen. Einige Aussicht auf Erfolg bei Ermittlung eines Näherungsverfahrens

im Falle von verschieden großen m-Werten ist nur dann zu er-



28$ K. Kriso

warten, wenn die Brückensysteme von Haus aus getrennt und bei
Berücksichtigung der Felderzahl die jedem System eigene
m-y-Kurve zur Grundlage des Verfahrens gemacht wird.

Das Verfahren der Mittelwertbildung muß, um dem praktischen
Bedürfnis zu genügen, in erster Linie der Forderung nach Einfachheit in
derHandhabung entsprechen, hat ferner von theoretischen Überlegungen
auszugehen und die Ergebnisse der Erfahrung entsprechend zu verwerten.
Erfahrungsergebnisse können aus sorgfältig zusammengestellten
Modellversuchen oder, was auf dasselbe hinauskommt, aus
entsprechenden strengen Berechnungen gewonnen werden. Aus diesem
Grunde wurde eine große Reihe von in Hinsicht auf das zu ermittelnde
Interpolationsverfahren aufschlußreichen Beispielen strenge gerechnet, die zum
Teil vollkommen durchdimensionierte offene Brücken behandeln, vielfach
aber auch von entsprechend ausgewählten tn-Werten ihren Ausgang nehmen,
deren verschiedene Größe und Reihenfolge im System von ganz
besonderem Interesse ist.

So sind beispielsweise bei einem 6-Felderträger für die drei Stäbe der
Brückenhälfte die Werte tnu tn2, tnz nach (20) zu errechnen und aus der
tn-y-Kurve des Systems die zugehörigen yly y2, y3 zu entnehmen, welche
Werte nun die Grundlage zur Bildung des Mittelwertes y abgeben.

Hätten die Gurtstäbe durchgehends dasselbe mu bezw. tn2 oder tn3, so wären

die entsprechenden, streng richtigen Rahmenwiderstände A yt—-bezw.SS c

j/g—— oder y3—- erforderlich. Da nun keiner der drei Fälle tatsächlich zutrifft,

so könnte man, wie dies auch bei anderen Verfahren gelegentlich geschieht,
an die Bildung des arithmetischen Mittelwertes denken und den
erforderlichen Rahmenwiderstand aus

A yi±J^±lLSl=ySl (21)

berechnen, wobei jedes yn d. h. jeder Stab denselben prozentuellen
Beitrag zum Mittelwert y liefert.

Einschlägige Untersuchungen, bei welchen zwei m-Werte
konstant gehalten, der dritte jedoch nach oben und unten verändert wurde,
haben gezeigt, daß schwache Stäbe, mit kleinem tn und großem y, bei
der Mittelwertbildung mit viel größerem Gewicht in die Wagschale
fallen als starke steife Stäbe, mit großem tn und kleinem y.

Neben dieser ersten grundlegenden Tatsache hat sich bei den umfangreichen

Untersuchungen aber noch weiter gezeigt, daß die durch einen
schwachen Stab bedingte Verschwächung des ganzen Gurtes nicht nur
von seinem die Stärke des Stabes charakterisierenden m-Wert allein
abhängt, sondern daß das Maß der Verschwächung vor allem auch beeinflußt
wird von den angrenzenden Nachbarstäben, indem sich relativ
große Unterschiede im Stärkeverhältnis besonders ungünstig auswirken.
Hieraus folgt die zweite grundlegende Erkenntnis, daß nämlich bei der
Mittelwertbildung von y nicht nur die Größe der tn- bezw. y-Werte,
sondern auch ihre Reihenfolge im Stabzug mit Rücksicht auf die angrenzenden

Nachbarstäbe gehörig zu berücksichtigen ist.
Diese Erfahrungstatsachen legten den Gedanken nahe, jedes y

mit einem ^-fachen Wert in die Mittelwertbildung einzuführen und diese

„Gewichte y>" so festzulegen, daß sie die obigen Erkenntnisse annähernd
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erfassen. Andrerseits soll nun verlangt werden, daß für alle Gurtanordnungen,

die bei beliebigen m-Werten der Stäbe e i n und denselben
Rahmenwiderstand A erfordern, die Summe 2yzryr konstant sei. Unter diesen
möglichen Stabanordnungen befindet sich auch jener der m-y-Kurve des
Systems zugrunde liegende Grenzfall eines Idealgurtes, dessen
Stäbe ein und denselben m-Wert besitzen, der in der m-y-Kurve den
gesuchten Mittelwert y bestimmt. Aus der Bedingung

Swjv — y YjWr,g, (22)
wobei die Gewichte \pr, g dem Grenzfall des Idealgurtes zugeordnet sind, hat
man nun die beiden zusammengehörigen Mittelwerte in und y zu bestimmen.

Bei Festlegung des einem Gurtstabe r zugeordneten Gewichtes
Wr Wr + Wr

soll yj'r den vorhin ersterwähnten Einfluß berücksichtigen und demnach

nur eine Funktion von tnr allein sein, während yir" den
zweiterwähnten Einfluß zur Darstellung bringen möge und daher als Funktion

der drei Werte mr_1, mr, mr^ x erscheinen muß.

n+ir+i
,Sr
nn.

4 b.or-r Sp-j
Sr n.J

r-7
Mr

Fig. 6.

Der Einspannungsgrad des nach Figur 6 a, b in die Nachbarstäbe
(r — 1) und (r-\-\) elastisch eingespannten Stabes r kann zweifelsohne als
ein ungefähres Maß für \pr" gelten. Für eine Belastung nach Figur 6 a
wird an der Stütze r das Moment

Mr ^ Af,_x -~ ~~~ Mr-! (23)
j ^r j lr i ^>r tr-j-l
*r -T ^ tr+i ' C 7~

Or+i ^r+1 fr
erzeugt. Mit Rücksicht auf Tabelle II ist der Koeffizient von /W,_i mit dem
Werte ar_1 identisch, daher

Mr~—ar_! AfM und nach Figur 6 b analog Mr^x =— brMr, (24)
wobei

S r 9 1

br —s— t s t ¦ (25)
tr-i i ^— fr ^— ~7~ -h 1

Or ^r-i fr

Für in \ ist s t ^, mit wachsendem tn fallen diese Werte
zunächst rasch ab, erreichen bei m -= 3 die Größen s 0,209, t 0,395, um

5
erst bei m oo zu verschwinden. Hingegen besitzt der Quotient— bei rn -— 1

5 t
den Wert 1, fällt bei in 3 bis auf- — 0.529 ab und nähert sich asymptotisch

dem Grenzwert 0,5 bei in co.

Abhandlungen III. 19
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Die Summe der den Einspannungsgrad kennzeichnenden Größen ar.
und br wurde nun zum Gewicht

«/V Or + ör-i
tr

l l
+ -Sr t,_i Sr tr+\

J- + * 1 + ~— y°/'-l *•/- °/-+i *r

(26)

des Stabes /* zusammengesetzt und man erkennt, daß dieses Gewicht mit
wachsender Steifigkeit der Nachbarstäbe zunimmt, bei vollkommen

gr
starren Stäben mit mr _1 mr + 1 oo den Grenzwert yjr" --= 2-^-erreicht,tr
der selbst wieder den Maximalwert ipr" 2 annimmt, wenn mr seinen kleinsten

Wert von tnr 1 besitzt. Es sei hier wohl hervorgehoben, daß
das Gewicht \pr" mit den tatsächlichen Einspannungsverhältnissen des
Stabes im ausgeknickten Gurt nichts gemein hat, die Zahl ipr" stellt nur
ein Maß dar, welches das relative Stärkeverhältnis des rten Stabes zu
seinen Nachbarstäben kennzeichnet und dessen Einführung im Interpolationsverfahren

sich praktisch bewährt hat. Da überdies die Größen a, und br
auch in den Ansatzgleichungcn zur Berechnung der Kolonnen werte erscheinen,
die ihrerseits wieder zur Bildung der Knickdeterminante verwendet werden
und daher auf das Ergebnis y von Einfluß sind, so mag auch diese Tatsache
vielleicht den hier vorgenommenen Aufbau der Gewichte y)r" bis zu einem
gewissen Grade rechtfertigen.

Während das Gewicht ipr" bei allen Systemen durch die immer gültige
Gleichung (26) bestimmt wird, ist hingegen das Gewicht ip/, auf Grund
der sich aus den vielen streng gerechneten Beispielen ergebenden Erfahrung,
vom System und gelegentlich auch von der Felderzahl abhängig.
Nach vielen Versuchen hat sich die Form

H'r=Sft\mr) (27)
lr

als geeignet erwiesen, wobei f^mr) eine vom System abhängige Funktion

darstellt. Beim System b) hat sich die Form /(Wr> —-—^~ beim System c)
I mr~

die Form /(/Wr) 2 bewährt, hingegen wurde beim System a) für die beiden
mr |

ersten Stäbe die Form /(w,,) =3— für den dritten bezw. dritten und vierten
j ] tnr

Stab die Form /(Wr) ~ — als im Durchschnitt zutreffend erkannt.

Umfangreiche Untersuchungen haben gezeigt, daß der Einfluß, von i m
Prinzip richtig gewählten, wenn auch weiter voneinander liegenden
Funktionen f(t7lr), auf den zu rechnenden Mittelwert y verhältnismäßig
gering ist, wenn nur in der Mittelwertbildung nach (22) der Übergang
zum Grenzfall des idealen Gurtes richtig durchgeführt wird. Aus den
vielen Versuchsfunktionen haben sich die oben angegebenen im Durchschnitt
als am besten geeignet gezeigt.

Für das Gesamtgewicht ipr erhält man daher nach (26), (27) den
Ausdruck

Tr (l>r + ör-0 + y / (lUr) /lr fr

1 1 ,/ v'
+ /(«r)

Sr h'-l _j_
-. i j Sr tr+i

LSr-i tr ^;-+i tr

(28)
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der für den Grenzfall des Idealgurtes mit durchwegs konstantem m übergeht

in

W, i
1

Sr +
+ 1 1 +

~-s7 + f(m) (29)

Jr-1 o/-+1

wobei 5 und t dem Mittlwerte m zugeordnet sind.
Die Mittelwertbildung nach (22) ist nun z. B. für den 6-Felderträger

des Systems c) mit /^,) _ 2
in folgender Weise durchzuführen:

daher

+

+

k

mr-

S vvy

l

yYjWng

1

1 +
s,

Oo t\
S\ t2

+
+ 1

1

o2 t$

+

52

0,5

+

+ _-

+
+ 1

mi

Ji

^2

Ja

J2,S 3-m-1
(30)

Auf der rechten Seite erscheinen die drei zusammengehörigen
Größen tn, y und — > die aus dieser Gleichung nur durch Probieren
ermittelt werden können. Hingegen läßt sich graphisch der Mittelwert tn
und das zugehörige y sehr einfach direkt bestimmen, indem man eine
„Interpolationskurve"

errechnet und in das Feld der m-y-Kurve einzeichnet. Geht man nun mit
einem speziellen, durch die linke Seite von (30) bestimmten i^-Wert in diese
Kurve, so gewinnt man mit einem Schlage den fraglichen in- und
y-Wert.

Da der im größten Teil des Gebietes ziemlich flache Verlauf der ^-Kurve
eine scharfe Ermittlung der m-Werte vielfach erschwert, so empfiehlt sich aus

praktischen Gründen die Verwendung der, die Reziprokwerte - £ dar-
t]

stellenden Kurve, als Interpolationskurve. Diese f-Kurve wurde für den
6-Felderträger des Systems c) in Figur 5 eingezeichnet.

Wenn schließlich die hier vorgeschlagene Mittelwertbildung theoretisch
auch nicht ganz zu befriedigen vermag, so ist sie doch aus der Erfahrung
hervorgegangen und hat sich, wie die unten aus den zahlreichen Untersuchungen
herausgegriffenen Ergebnisse zeigen, im großen Durchschnitt bestens
bewährt. Andrerseits ist eine einfache arithmetische Mittelwertbildung, wie
dieselbe in bestehenden Näherungsverfahren zur Gewinnung des
Rahmenwiderstandes gelegentlich verwendet wird, allerdings gewohnter, letzten
Endes aber noch viel weniger zusagend und auch unbegründet, besonders
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dann, wenn wie bisher, jeglicher Vergleich mit streng gerechneten Beispielen
fehlt, der allein Aufklärung über den erreichten Näherungsgrad eines
Verfahrens geben kann und damit die Güte desselben zu beurteilen gestattet.

Ergebnisse von B e i s p i e 1 en.

System
(Figur 3)

Felderzahl
Wi m2 m^ ///4

streng angenähert Fehler
in %

1 y y

1,3 1,3 1,8 1 1,362 1,533 +12,5

6 1,8 1,8 1,3 - 1,092 1,155 + 1,2
1,9 1,9 2,4 - 0,934 0,920 - 1,5

a
2,4 2,4 1,9

2,0 2,0

0,712
1

0,997

0,703

K010

- 1,3

1,6 1,6 + 1,3
« 2,0 2,0 1,6 1,6 0,900 0,888 - 2,2

1,9 1,9 2,3 2,3 0,776 0,788 + 1,5
2,3 2,3 1,9 1,9 0,656 0,680 + 3,7

1
2,2 2,2 M 1,232 1,330 + 7,9
2,2 2,2 1,2 1,012 1,072 + 5,9
2,2 2,2 1,3 - 0,865 0,898 1 + 3,8

6 2,2 2,2 1,4 — 0,763 0,802 | + 5,1
2,2 1,4 2,2 — 0,855 0,822 | - 3,8

* 1,4 2,2 2,2
I

—¦ 0,745 0,775
1

+ 4,0
2,25 1,35 1,75 0,908 0,924 1 + 1,8

8

2,12 1,97 1,56

1,57

1

1,64

0,717 0,730 + 1,8

2,02 1,65 0,772 0,750 | - 2,8
2,8 1,6 2,0 1J 0,721 0,670 -7,1
1,55 1,40 1,25 ___ 1,238 1,277 + 3,2

6 2,23 1,51 2,13 0,851 0,802 - 5,7

c
l 1,51 2,23 2,13 0,733

0,915

0,740 | + 1,0

2,2 1,8 1,35 1,5 0,912 - 0,3
8 1,2 1,8 1,35 1,5 1,200 1,220 1 + 1,7

1,8 1,2 1,35 1,5 1,165 1,228 + 5,5

Auch beim 4-Felderträger liefert das Näherungsverfahren sehr gute
Ergebnisse, doch ist es in diesem Falle nahezu entbehrlich, da die strenge
Berechnung nach dem hier mitgeteilten Verfahren in j e d e m Falle nur wenig
Mühe und Zeit erfordert.

6. Näherungsverfahren bei starren Endrahmen und durchwegs
gleichen Zwischenrahmen.

Auch in diesem Falle ist das auf den m-y-Kurven aufgebaute
Näherungsverfahren analog nach dem in 5. beschriebenen Vorgang durchzuführen
und liefert gleich wie dort auch hier im Durchschnitt recht gute Resultate.

Um bei starren Endrahmen einige Einsicht in das System der m-y-
Kurven zu bekommen, wurden dieselben in Figur 7 beispielsweise für den
4-, 6- und 8-Felderträger des Systems c), bei welchem der Grenzfall starrer
Endrahmen noch am ehesten als erfüllt angesehen werden kann, dargestellt.
Sämtliche Kurven liegen, wie es sein muß, unterhalb der Bleich-
schen Kurve und man bemerkt die interessante Tatsache, daß sie sich in dem
ganzen Gebiet bis m 3, im Gegensatz zu den analogen Kurven in Figur 4
und 5, mehrmals gegenseitig überschneiden und daß ferner die der
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8-Felderkurve angehörigen Teilstücke 8<:/6, 8<:/4 und 8^/2 in enger
Nachbarschaft mit den Kurvenstücken 4 c/3, 4 c/2 und 4^/1 nahezu parallel laufen,
in Übereinstimmung damit, daß sich die entsprechenden Kurvenstücke bei
durchwegs gleichen Gurtkräften vollkommen überdecken müssen.
Hier könnten die m-y-Kurven, im Gegensatz zu den Trägern mit elastischen
Endrahmen, mit grober Annäherung ersetzt werden durch eine, die
zu oberst gelegenen Polygonseiten berührende stetige Kurve, die ohne
Rücksicht auf die Felderzahl beim Näherungsverfahren verwendet, wohl
immer sichere, aber gewiß nicht besonders gute Näherungswerte
liefern würde.

4poo

3,8
3,718
32

3,4
324

3,2

3,0

Systeme -System C2,6
Cadre extreme d'entrefo/sement r/g/de

Endrahmen starr
Rigid porta/-frame

2.6
2,467 §£>

a2,4

2,2

Poutre ä 4 panneaux
6 Felderträger
6 F/e/d-girder

2,0
*A

18 ßjerch

m18
Enges>er

l*
h2

6czf%
1.0

8cS% Entressir - Bleich0.8

06 ß:
St/t0,4

4C/1
0.2

6c/F

m

Sj : S2 =0,874:7
S7 : S2 : S3 ^0,674:0,937:1

S7 : S2 : S3 : S+ 0,487:0,873:0,978. /

7,1 1,2 1,3 1,4 1,5 1,6 1,7 7,8 1,9 2,0 2,7 2,2 2,3 2,4 2,S 2,6 2,7 2,8 2,9 3,0

Fig. 7. m-y-Kurven — courbes m-y ''m-y1

Der Einfluß einer Veränderung des Endrahmen
Widerstandes A0 auf die Stärke des Rahmenwiderstandes A der Zwischenstützen
wurde ebenfalls untersucht, doch können die Ergebnisse wegen Mangel
an verfügbarem Platz nicht mehr mitgeteilt werden.

7. Schlußwort.
Offene Brücken sind am zweckmäßigsten als Strebensysteme z. B. nach

Figur 3 a bezw. 3 b auszuführen. Die Gurte werden mit Rücksicht auf Knicken
in der Tragwandebene dimensioniert, sie sind daher hinsichtlich ihrer
Querschnitte und Trägheitsmomente stets als gegeben zu betrachten. Die Knick-
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belastung Sr v max Or ist bekannt, die Knickspannung und der zugehörige
Knickmodul der Gurtstäbe daher gegeben. Ein die seitliche Knicksicherheit v
gewährleistender, für alle Rahmen gleich starker spezifischer Rahmenwrider-
stand A wird nun mit dem in 5. erläuterten Näherungsverfahren bestimmt und
der Dimensionierung der Querrahmen zugrunde gelegt.

Wird eine strenge Berechnung verlangt, so ist dieser mit dem
Näherungsverfahren errechnete und mit einem geringen Fehler behaftete
Näherungswert A den Zwischenrahmen des Systems zuzuordnen und nach
Abschnitt 3 und 4 der erforderliche zugehörige Endrahmenwiderstand A0 aus
linearen Gleichungen zu ermitteln. Nach dem hier entwickelten strengen
Verfahren ist diese Berechnung auch für Träger mit größerer Felderzahl

ziemlich mühelos und rasch durchzuführen, mit einem
Zeitaufwand, der auch jedem praktisch tätigen Ingenieur beim
Entwürfe von offenen Brücken zur Verfügung steht.

Zusammenfassung.
Der Autor gibt eine strenge und eine angenäherte Methode an für die

Berechnung der Knickfestigkeit der Druckgurte von offenen Fachwerksbrücken.

Die Tabelle auf S. 292 liefert für die in Fig. 3 gezeigten Brücken die
Resultate nach den genannten beiden Methoden und die Fehler der
Näherungswerte in o/o von den Ergebnissen der strengen Berechnung.

Resume.
Dans ce travail sont exposees une methode exacte et une methode

approximative pour le calcul des membrures comprimees de ponts sans contre-
ventement superieur. Le tableau (page 292) indique pour les systemes des
ponts representees par la fig. 3 les valeurs finales, calculees d'apres les deux
methodes et les erreurs en <y0.

Sumr^ary.
In the work submitted an exact method and a method of approach are

given for the calculation of the security against buckling of the compression
chord of open through-truss bridges. The table on page 292 gives for the
bridges shown in fig. 3 the results calculated both exactly and approxi-
matively and moreover the errors in o0 incurred.
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