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ELASTIC STABILITY OF A PONY TRUSS

STABILITE ELASTIQUE DES PETITS PONTS A POUTRES EN
TREILLIS

ELASTISCHE STABILITAT VON KLEINEN FACHWERKBRUCKEN

ALEXANDER HRENNIKOFF, M. A. Sc., Instructor, Department of Civil Engincering,
University of British Columbia, Canada.

General presentation of the problem.

The strength of engineering structures and parts of structure is sometimes
governed not by the stresses in the members, but by their elastic stability.
Thus, columns, struts and webs of compressed members can fail not on account
- of an excessive unit stress but on account of their slenderness, causing collapse
of the member when the stress is comparatively low.

The problem of elastic stability of a half-through truss belongs to the
same class. It has been treated by several authors, and though not completely
solved theoretically, some definite advance has been made toward its solution.
Professor Timoshenko in Volume 94 of the “Transactions of the American So-
ciety of Civil Engineers’ develops formulas and presents tables of coefficients
to be used in actual design of a pony truss with parallel chords, similar to
the one shown on fig. 1. The author of this paper attempts to solve the same
problem, but in the course of his discussion he takes into consideration certain
factors left out of question in the paper just mentioned, a circumstance due
to which the results of this analysis are generally somewhat different from
those of Professor Timoshenko’s.

The critical load producing collapse of the structure will be thought of
as applied all at the bottom chord, and may be either in the form of uniform
load covering the whole span or in the form of concentrated weights. Material
will be considered as perfectly elastic in all parts of the structure under the
critical load. The structure studied will be like the one on fig. 1; its top chord
has constant cross section, the end verticals are absolutely rigid, -and all the
intermediate verticals are of the same cross section constant along their length,
and are rigidly fixed at the bottom ends. Some additional assumptions will
be made later in the course of the discussion.

- Let fig. 2 represent the plan view of a deformed pony truss. Here ADB
is the straight bottom chord, and ACB the buckled top chord; the intermediate
verticals appear on this view as HG, FE etc.,, and the diagonals as GF,
ED etc. The ordinates of the buckled top chord, such as 4§, are considered
infinitesimals of the first order, then the longitudinal displacements of the
points of the top chord become infinitesimals of the second order and are
not indicated on this sketch. (Thus, the points A and B represent the ex-
tremities of both the top and the bottom chords.)

The forces acting on the top chord at each panel point, such as the point
E, are two in number, the force of the diagonal and the force of the vertical;
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the first can be resolved into P and P, acting horizontally, and P, acting
vertically; the second resolves into the horizontal force S (the bending re-
sistance of the vertical), and the vertical force V, which cancels P,. This leaves
only P, P, and S to act on the top chord at the panel point E. P, is the force
producing buckling, and the sum P + § = F is the total resisting force,
opposing the buckling. In most cases in addition to the forces discussed
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Fig. 1. Fig. 2a. Fig. 2.

already, there is a moment M,, applied to the top chord at each panel point
by the deflected vertical, as is evident from fig. 3; this moment affects bending
of the vertical and produces torsion of the top chord. Angular continuity
between the vertical and the top chord has great stabilizing effect, both, on
the structure as a whole, and on the individual vertical as a strut, and cannot
be neglected without a substantial error. Only in rare cases of chords with
single webs and no provision for continuity (fig. 4), the moment at the top
end of the vertical is absent. It is needless to say that the moment M, affects
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the magnitude of the resisting force of the vertical S, and that both M, and
S are affected by the direct stress in the vertical. In the process of buckling
of the top chord, the forces here mentioned S, P, P, and the moment M, do
work on the top chord, which is stored in the latter as potential energy of
bending (buckling) and twist. The value of the critical load is found from
the equation expressing mathematically this statement, after assumption of
a suitable shape for the buckled chord.

With this qualitative discussion in view, the quantitative study of the
subject will be undertaken.

Abhandlungen UI. 13



194 A. Hrennikoff

Lateral resistance of a pony truss vertical deflected a distances,
with no bending moment at the top end.

Such a vertical (fig. 5) satisfies the conditions of fig. 4, where there is
no angular continuity between the top chord and the vertical. The distance §
is determined by buckling of the top chord; the direct stress in the vertical V
is supposed to be known, and it is required to find the force S.

The bottom end of the vertical will be considered fixed in vertical po-
sition. The errors involved in this assumption will be discussed later.

Differential equation of the elastic curve is:

V(0 —y) —S(h—x) = —FI, Z? (1)

where E is the Young’s modulus and /, is the constant moment of inertia of

the vertical for bending out of the plane of the truss. Calling ‘//;V—[ by « the
v

equation (1) reduces to

d? 2 2 S Y \
a’x{ + uly = 0y (h—x) + u?0 (2)

whose general solution is
y = ACosux + BSinux + 5 (h—x) + 0 (3)

The constants of integration A and B, as well as the force S, are found
from the following three conditions:

x =0, y =0,
x=0, = =0,

x=h 5 y = ()',
These give for S the following expression:
uV \
$= fanuh—uh )

This relation shows proportionality between S and 4, the coefficient of
proportionality varying inversely with V (u being a function of V). When

|4 . 7T . . .
uh = El % increases to 5 S becomes zero, i.e. no force is required to
v

deflect the strut, and still further increase in V makes § negative, which means
that the strut not only does not resist deflection, but requires some support
on the part of the top chord and diagonal to prevent its collapse.

Collapsing load V,,. for lateral buckling corresponds to zero value of the
denominator in eq. (4)
tan - uh —uh = 0, which gives
(uh) =449, and V, = w2 El, = —22%51" . (5)
It is worthy of notice that the critical value of V is independent of the
amount of deflection of the top end §. It is true that § determines the magni-
tude of the lateral force S, but the value of V for which S becomes infinite,
and the whole system unstable, bears no relation to 4.
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Returning to fig. 2 a, the total resisting force F = S - P, where P is
the lateral horizontal component of the stress in the diagonal. Since the
vertical component of the stress in the diagonal is V,

0
P = " v, (0)

V uV tan uh V

and F=% anui = ° = tan uh — uh 76 (@)
This equation shows that F is proportional to 4, and decreases with in-

crease of V.

For =0, F = 3;]]/ )

o _ #*El _n*ElL EIL,
fOI‘ (llh) pumm 5 5 or V - *4’“ *ﬁ?, F _ 4 FO’— 247 113 ()
2

for (wh) = =, or V' = l/f)[” (7a), F=20.

As V increases above this value F becomes negative, i. e. the diagonal in
combination with the vertical cease their resisting action on the chord and
begin to exert a deflecting force on it.

It must be mentioned at this point that the ability of the vertical to
withstand a compressive stress up to the magnitude V., given by the
equation (5), is predicated on adequate support on the part of the top chord,
otherwise the collapse of the vertical will occur for the value of V somewhere
between the expressions (7a) and (5). Thus, should the end verticals be
absolutely rigid, any of the intermediate ones can stand a compression up to
V.o — 202F17,

cr- T h2
rigid, failure will inevitably result should all the verticals, including the end
w*El,

h?

This brings up for consideration one of the possible ways in which failure
of a pony truss on account of elastic instability may occur. When some of
the verticals are stressed below their V' and others above it, there is a pos-
sibility of such failure.

However, this possibility is purely theoretical. All the practical column
formulas used in design of truss verticals are based on the value of collapsing
ey sy
h?
not the object of this paper to discuss the adequacy of compression formulas,
and since in actual pony trusses it is the verticals that support the top chord
and not vice versa, the mode of elastic failure owing to failure of individual
verticals, as outlined above, is dismissed as practically impossible.

As is evident from the examples given, it is possible to write generally
El

3

; on the other hand, with the end verticals not absolutely

ones, be stressed to the values a little above their respective V' =

stress not over allowing a suitable factor of safety, and since it is

J, (8)

where b, depends solely on uk and can be calculated from the eq. (7). The
diagram 1 of the factor b, in terms of #/ has been plotted to facilitate the
calculations.
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Though the type of the vertical considered in this chapter may be treated
as a special case of the vertical with bending moment on the end, it was
thought advisable to bring this case up independently in order to point out
the difference in individual stability of the two kinds of verticals and to ex-
plain on a more simple case the supporting influence of the top chord. In
the following developments, however, this type will be referred to only oc-
casionally, and the main discussion will be concerned with the kind of the
vertical of the next chapter.

Lateral resistance of a pony truss vertical deflected a distance §,
with bending moment at the top end.

The vertical referred to in this section satisfies the conditions of fig. 3.
The buckling and twist of the top chord determine the amounts of angular
and linear deflections at the top end a and d; V is known, and it is required
to find S and M, for the given values of a and 8. The positive direction of
M, in the following discussion will be taken as indicated on fig. 6. The bottom
end will be again assumed vertically fixed.

The differential equation of the elastic curve is:

d%y

which reduces to
ary 2y — 2[ ﬁ,’lﬂ i — ]
where again u = 4 (12)
EI '
The general solution of (11) is
y = A; Cos ux + B, Sinux—i—d'—}-/—[v[/ﬂ—{—;(lz—x). (13)

The constants of integration A, and B,, as well as the unknowns Mlo and S,
are found from the following four conditions:

1. x:O, y:O,
_ dy _

2. x._(), zv-——o,

3. x=h, y =2,

4. x =#h, @:a,

dx
which determine the unknowns:
tan %
S — ‘;/Il/ b — /z2 Ve (14)
2tan~2—»—u/z 2tan7—u/z
tan wh LS + 13 (tan uh _ cot u_lz)
My = — i g4 L2 uhz 2/ v (15)
2tan§——uh 2 tan — —uh

2 2
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Adding to S the lateral horizontal component P of the stress in the
diagonal, the total resisting force F is found as explained before:

uh

tan -V
F::P-{—S:—K()-{— 4V 0 — : o =
h uh uh
2tan — — uk 2tan — — uh
2 v 2
2 tan li—}f tan Eé vV
2 | N 2
= wh A (10)
2tan5———u/z 2tan-2———u/z
The lowest value of V making either M, or S infinite, corresponds to
uh ) .
5 = 7, which gives
. 4n*El, _ .. El
]/[r == Rﬁ*"“ — 39.5 —/l?, (17)

an expression almost twice greater than the expression (5) for a vertical free
to rotate at the top. It may be repeated here, that although the individual
verticals can stand a stress up to V’.. according to eq. (17), the others,
stressed considerably lower, must come to their aid. To anticipate danger to
stability of the truss from this source is again quite unnecessary.

Returning to equations (15) and (16), the following formulas are ob-
tained after substitution for V of its expression in terms of («/4):

2tan£/E tan %
F= 2 (unpEly 2yt
uh h3 uh h?
2tan - — ukh 2tan  —uh
2 2
E]T b, ET
:b2—h§l’6—§?72—”a. (18)
2 tan%
where by, = 7 (zh)?; (19)
2 tan 5 uh
by, EI, . El,
alSO M():——‘—z—g?é—,-b'g—h—a, (21)
1+ %’f (tan %/E — cot %h)
where by = 7 - (uh). (22)
2 tan o —uh

The coefficients &, and &, are plotted on the diagram 2.

The equations (18) and (21) solve the preliminary problem of the force
resisting the buckling, and of the moment producing torsion of the top chord.
It may be noticed, that the force has been determined as caused by the
combined action of bending in the vertical and direct stress in the diagonal;
while the moment — as caused only by bending in the vertical. Actually, this
is not quite true: the diagonal has some bending resistance; and the fact of
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application of the lateral horizontal component of its stress P (fig. 2a)
within the depth of the gusset plate, that is below the centre of gravity of
the chord section, results in some additional twisting moment augmenting
that produced by the vertical. These influences have been disregarded in the
analysis as of minor importance, and the effect of ignoring them tends to
make the results on the safe side.

Since the factors &,, b, and b, in equations (8), (18) and (21) depend on
V and through that on the loading of the bridge, they are not known at the
beginning, and the “trial and error” method must be resorted to. Some ex-
pected value of V must be assumed, that will determine # and the & coeffi--
cients. When the critical load is found, the stresses V are calculated, checked
against the assumed and, if necessary, the procedure should be repeated with
new values of the coefficients.

To facilitate the mathematical treatment of the subject the concentrated
action of the verticals and of the diagonals on the top chord at the panel
points will be replaced with continuous action all along the chord of the
intensity per unit length of the chord equal to the force at the panel point
divided by the length of the panel. Then for truss with verticals free to rotate
at the top ends

f:w——b,ls"é—kd (23)
and for truss with verticals having moments at the top ends
_F __ EI by EI, by I
| =g =g d = 5 g = ko— 5, (24)
Mo _ _ b EL L EL Rk
and ’n—-——-’d §7l2d Tb3hda——— ) (s,kga. (25)
In these formulas d is the panel length of the truss,
El,
ko= B (20)
El,
k2:b‘2/5d7 (27)
E[v
ky = by hd’ (28)

and f and m are, of course, the intensities of force and moment acting on the
chord per unit length of it. It is needless to say that the positive direction of
/ and m should be regarded as opposite to what is indicated by arrows for
S and M, on figures 5 and 6, since it is the action of the web members on
the chord, that is considered now.

In further development the coefficients %, £, and %; will be considered
as constant along the bridge; actually they vary for different verticals, but
ordinarily not greatly, so that their mean value should give satisfactory re-
sults.

Torsional deformation of the buckled top chord.

The definite relation in which the linear and angular deformations of
the top chord 4 and a (fig. 6) stand to each other, will be found now.
Figures 7 and 7a represent a small length dx of the top chord with cor-



Elastic stability of a pony truss 100

responding continuous wall of verticals. Directing the attention to torsion of
this elemental length, the equation of equilibrium will be
T - mdx =T + dT,
where m is the moment at the end per unit length of the wall of verticals,
and 7 is the twisting torque at the point of the top chord with an abscissa
along the length of the truss x. This gives
= ‘—g - (29)
The torque 7" produces on the length dx a change in the angle of twist
da. 1f the constant torsional rigidity of the top chord is called C, then

da — -2 dx

C
or T=20C ? (30)

Substituting into (29) for m and 7 their express1ons from (23) and (30), the
following differential equation results:

1 _c¥e

.2 (

When a suitable expression of ¢ in terms of x is decided on, a is de-
termined without difficulty from this equation. Then f, m and 7 are easily

(31)

746 A A, Ag, RV
e
GIX P’/// ,c;/l/l GI ’
£ A &
Fig. 8.

found in terms of x from (24), (25) and (30). Naturally, when the verticals
are connected to the top chord according to fig. 4, there is no moment at the
top end of the verticals and no torsion in the top chord. Consequently, all
that is required to know in that case is the force f, which is given by the
equation (23).

With preliminary work thus completed the main problem of the elastic
stability of the pony truss will be attacked.

The energy method as applied to the question of elastic
stability of the pony truss.

In the process of buckling, the ends of the top chord are not permitted
by the absolutely rigid end verticals to have either linear or angular defor-
mation laterally, but, of course, the longitudinal displacements are taking
place.

The key to the solution is the “Energy Method”, extensively used by
Professor Timoshenko, and it is felt, that its brief explanation in relation to
the present problem will not be out of place here.

Suppose, that the load is placed on the bridge, and that the truss members
become stressed with the primary direct stresses and undergo certain de-
formations, as result of which a definite amount of elastic energy is stored
in the deformed structure. Considering now the possibility of collapse due
to elastic instability, imagine the top chord buckled by a small amount, its
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axis assuming certain appropriate curved shape in horizontal plane. This
buckling automatically brings into play the resistances f and m on the part
of the verticals and diagonals, and the moments m cause some torsion of the
chord. The primary stresses in the truss members, and the corresponding
original amount of the elastic energy of the structure before buckling are not
affected by this process, and thus, the agency producing the buckiing is called
upon to supply all the additional elastic energy W brought about by buckling,
which comes under the following four items:

Wp — energy required for buckling of the top chord proper,

W — energy required for torsion of the top chord,

W; and W,, — energy required to overcome j and m, the web resistances
to buckling of the top chord.

Thus, W=Wp+ Wr+ Wr+ W,. (32)

As the buckling deformation takes place, the two ends of the top chord
come closer together, and the horizontal longitudinal components of the
stresses in the diagonals, called P, on fig. 2a, do some positive work U,
as may be seen from fig. 8.

The elastic energy W depends on the amount of buckling and on the

sizes and shapes of the cross sections of the truss members; as to the load
on the truss, it affects W only as far as the coefficients %,, £, and k&; in the

Fig. 9.

equations (23), (24) and (25) are affected; and these coefficients, as well as
the corresponding amount of energy, decrease with an increase in load. The
work U, on the other hand, is directly proportional to the load on the bridge,
and also depends on the amount of buckling, but not on the sizes of the truss
members. It is evident, that as long as W > U, the assumed buckling cannot
be brought about by the load alone, without the aid of some outside agency.
As the load increases, U increases and for certain value of the load W = U

or Wz + Wr+ Ws+ W, = U (33)

The load of this magnitude is quite sufficient alone to bring about the
buckling; this load is the required critical load.

The curve of buckling is a sine like curve, whose number of waves is
determined by the relative stiffnesses of the chord and of the verticals. When
stiffness of the verticals is small compared to that of the chord, the curve is
one wave curve, but as the stiffness of the verticals increases, the number of
waves will increase to two, three or even more (see fig. 9). The curve of any
shape can be represented as a harmonic series of sine curves. It is sufficiently
accurate to think of the curve of buckling as the sum of two sine curves, the
primary one, roughly outlining the shape of the curve, and the secondary one,
whose addition modifies the shape of the primary bringing it into a greater
conformity with the actual buckling curve. When the load on the bridge is
symmetrical both curves must be either with odd or even number of waves.
Thus, fig. 10 a represents the sum of one wave primary and three wave se-
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condary sine curves, and fig. 10b the sum of two wave primary and four
wave secondary. A combination of even and odd sine curves, like the one on
fig. 10 ¢, would be considered impossible for symmetrical loading of the truss,
as making the two halves of the resultant curve dissimilar. In the following
discussion the equation of the buckling curve (fig. 10a and 10b) will be
assumed:

— a, Sin ? % - a, Sin ”T"x, (34)
where the number of waves in the primary p and in the secondary » are two
consecutive odd or even numbers. That p and 7 are consecutive numbers,
and that » in the larger of the two, are naturally only assumptions.

. 10a.

ig. 10b.

ig. 10c.

With the shape of the buckling curve decided on, the various terms in
the equations (32) and (33) will be determined.

Expression for the work done by the external forces.

The direct method to find the work U done by the buckling forces P,
(fig. 8) would be to express these forces in terms of the load and to multiply
them by the decreases of respective distances £E,, GG, and AA,, caused by
buckling; however, there is another method believed to be more instructive,
which will be followed here.

Thinking of the top chord as separate from the rest of the structure, it
is the forces P;, that do the work U, but considering the whole truss, the
forces P,, now internal forces between the chord and the diagonals, do no
work, and all the work done naturally comes from the load on the bridge.
As the top chord buckles by an infinitesimal amount in horizontal plane, the
bottom chord deflects in the vertical plane, the ordinates of deflection being
infinitesimals of the second order, and the load applied at the bottom chord
- does on its lowering the same amount of work U. It may be necessary to
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mention, that the deflection just referred to is the one due exclusively to
buckling of the top chord, and has nothing to do with the deflection caused
by the direct stresses in the truss, nor with the additional deflection caused
~ by bending of the verticals.

By the way of explanation of the nature of the additional deflection re-
ferred to in the previous paragraph, it may be said, that as the vertical bends,
its top end lowers pulling down the diagonal member connected to the top
of it. Since the diagonal is assumed to remain straight, its bottom end also
goes down, lowering with it the next vertical. This causes an additional de-
flection, over and above that produced by buckling of the top chord proper,
and, consequently, an additional work done by the load on the bridge.
However, in the method of approach adopted in this paper, the influence of
this factor is to be taken into account by the reduction in the resistance of
verticals caused by direct stresses; hence, this additional deflection and its
work should not be considered here.

Considering the influence of buckling of the top chord alone, as this takes
place, the plane of the truss deforms into curved surface of such geometrical
nature, that the magnitude of any angle in the plane of the truss is preserved,
and all the verticals remain perpendicular to the bottom and to the top chords,
as they were before the buckling (Deflection due to the direct stresses need

not be considered here). The differential equation of the deflected bottom
chord is

ax = b (33)

as may be seen from fig. 11a and 11 b representing diagrammatically the plan
and the elevation of a deformed truss. Here 4 is the longitudinal displace-
ment toward the centre of the truss of any point A of the top chord caused by
buckling. ,

l
2/ 1 1 do
= &b?w_JLRZIZJ(ﬂ)M =0
d(s n
from (34) = (papCOS ; x+ na, Cos x)'

This is substituted into (36), and in the integration the following formulas
are made use of, remembering that (p |+ n) and (p — #) are both even.

£

l

2

LV S ) L

LCOS ] xdx = A 5 4anm Ed

-2{ o 0o ; Smp—l’_-—n\: Sin —Y»Bam
and j 2Cos P xCos "y = — |\~ 4

x [ / 4 p+n n—p

“nz szi__vx_____ 2/{7\

Then 4= o¥E [p ap(4 2 T ipa Sin j x) +

Sinyi’—znx Sinlziﬁnx
n ﬂga2<_l~x__ / Sinznnx) - piza,,a,,! o [ +*_,w_lf_, (37)
"\4 2 4nn [ 7 ptn n—p

This expression for 4 is substituted into (35), and on integration of the re-
sultant equation, and after substitution of the initial conditions z = 0, when
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x =0 and x = [, the following expression for the downward deflection of the
bottom chord, due to buckling of the top chord, results:

T e gr g g2 _ 1( “_ 2.2/;2)
Z—.ShZQ(pa”+’l al)({x —x?) — alSin? = x + a? Sin ;X

[Sm (/J—f- ) Sin? n(lz ) ]
(

_ prapan 21 T 21

7z prmE T a—pr
The work U done by the load applied at the bottom chord can now be
easily found. ,

(38)

{
D - {-x
AT z o
7] A
o S M X
s | ’
A ()
Sl Uﬂl Q’
h
o’ I Ay X
Z 7
(6.)
X )
Z ‘ Fig.77
When uniform load ¢ covers the whole span
ol
U, = qJ zdx. (38a)
0
When the load is a series of concentrated weights @, the work
Ue = 21(Q2), (38D)
where the ordinates z are taken under the weights Q.
Let Q =NQ,, (38¢)

where N is a number defining the unknown critical intensity of a set of
weights, having a definite ratio among themselves, like, for example, a
Cooper’s loading; and Q, are the known values of weights corresponding to
some arbitrary unit intensity of the set, say, Cooper’s E. 10. Then the
equation (38b) takes the form: ,
Uc:NE(QI'Z)' (38d)
When the integration in (38a) is performed, the following expression
for the work done by the uniform load results:

ql[l( * e ) : 1.(1? 1) a2 — /z_fl(/”ﬂZ]
U”_Slz 5\3 7 l)a; + 5\ " 1)(1,2 8a,a, FOE (39)

Determining the ordinate z at the centre of the bridge from (38), the
expressions for the work U,, done by a single concentrated load Q at the
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centre, are obtained from (38b). When both p and # are odd:
Q= o ) . 2
U, = 8/1[4 P )ap+(4n2—1)a,f—~2piza,,an]. (39a)

When both p and n are even:

4= Gl sl L) o

With U known the terms on the left hand side of the equation (33)
will now be determined.

Elastic energy of the deformed structure.

Calling the constant moment of inertia of the top chord for bending in
the horizontal plane /., the elastic energy of bending (buckling) of the top
chord Wy is found from

d? d)
= dx . 40
WB 2 d 0( dx? ( )
2 2.2 2.2
ng == —— «p—l;ia,, Sin /—]{zx—— nl—?a,, Sin Eli[ x
This is substituted into (40).
!
. . S PT B L
Since JOSm Txdx = 5
L
and JSinEﬂxSinn—nxdeO,
Ol /
y or e atEl,
after simplification Wz = Vi “(aip* 4 aln'). - (41)

In expressing the elastic energy of twist of the top chord W, combine
it with W, the energy required to overcome the resistance of bending mo-
ments on the ends of the idealized verticals.

{

Wy + u’/,,,ﬁj 272 dx—{—%jomadx, (42)
From (20) and (30) T? = c2<2§)",
and m:%}:C%}?.
This gives Wr+ W, :%j [(‘fij) o2 =

o [

As the end verticals are absolutely I‘lgld, a = 0 for both x = [/ and
x = 0, and, consequently, the expression in the square brackets and the sum
(W7+Wm) are both equal to zero. In understanding this important result
one must realize that as the buckling of the top chord progresses, and the
angle o increases its positive value, the moment m also increases numerically,
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remaining negative, i.e. in the direction opposite to a, and, consequently,
the work of overcoming m is negative. It is interesting to note that it is for
the whole top chord and not for any small portion of it, that the work of
torsion and the work of overcoming the moment m balance completely. Thus
for the element dx at the centre of the wave 77 = 0, and the elementary
energy of twist dW; = 0, while the negative elementary work of bending
dW,, is the greatest here; on the other hand, the positive dW at the end
of the wave is the greatest due to the greatest 7, but dW,, is here zero.

Though the sum (Wy - W,,) is zero, it would be wrong to think that
the torsional resistance of the top chord is immaterial to the stability of the
structure. The fact is that the magnitudes f of the resisting forces on the
ends of the verticals are considerably affected by torsional rigidity of the
top chord. The following is the expression for W/, the work of overcoming
the resisting forces f:

W, _.I_Jfadx (44)

The equation (24) gives f in terms of § and a; and a must be determined
from the differential equation (31). Substitution into (31) of the expression
for 6 from (34) brings this equation into form:

o ky @(‘.pn ")
s T ="%¢ a,Sin——x + a, Sin —x| . (45)

/ /
General solution of this equation is:

a = A, Cosh (‘/% x) + B, Sinh (1/%3 x) 1

thl ko R 12 -~ T
+ 2(Cp2n® + ky1?) a, Sin x{ 2(Cn®a? +k312) mex' (46)
The conditions at the ends are such that when x = 0 or x = [, a = 0; this

makes the constants of integration 4, = B, = 0.
Introduce new symbol u, so that

ky12h: by, 12 EI,

"= 422C T 4athd C° (47)
k3 l2 . b3 .

as follows from (27) and (28). Substituting these into (46), the following
expression for a is obtained

o = 2“a”b Sm— — 2“‘1” 'n’—ll—nx. (49)
i)™ )
bs
then from (24)
= kya, 1—-i§~ Sm— x & kyay Sin’ilfx. (50)
p* +4b0u n? +4b2u
ol
and Wf:lj fddx:{zilaf -+ a2 [ S (51)
2/ 4 7 4 , by
pE +4——ru lz~+4b—y
\ \ 2
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The corresponding expression for W; when no torsion of the top chord
is possible, is found from (23):

Ryl .
Wy =2 (a3 + a) . (512)

In the following discussion, however, only the expression (51) will be used,
because (51 a) is a special case of it corresponding to the value of torsional
rigidity of the top chord C = 0 and u = co.

Critical value of the uniform load covering the whole span.

Both sides of the equation (33) being known, the energy equation for
the uniform load ¢ will be:

4 2l ! 3 { \
7'[4[;3[5 (al.]zp_i + a,f n4) + kzi a; /1 . 7‘7167 + a; — _~£7~5 — _
/Jg+4b—3,u ”2+427§‘“

gl 1 (=% , 1 (n® , ; pr(p®+n®)]

= [1—6 (\§ p:— 1) a, + ﬁ(:;—n‘ - l)azn?—a,,an_(’zZ St )] (52)
Let a, = ya, (53), where y is an unknown. Substituting this expression for
y into (52), cancelling @, and making the necessary transformations, the
following expression results for the compressive stress at the centre of the
top chord corresponding to the critical uniform load over the whole span of
the intensity ¢ per unit length of one truss:

w? El, . kyl? u u .
PG AR o | ey el Bl ey el 1
. pr+4-%u n?+42u

ql"' : b b2
e — . ‘ 53)
81 1 (75‘a . ) 1 (71;z ) ) y pr(p?+n?) (
o \3 P F gm0 =8y e
This can be represented in the form similar to the Euler’s formula
2 w? El,
g*,; =7 (54)
o Y YA S T #
Ca]lmg N = —4——7[7—5*16 — 4.2 th 7; ’ (55)
the following is the expression for y from (53):
2
Z[_(pzi +y2nt) 4 | (14— S IS T S
4 . b3 b
pi+4-=u n®+4-*u
- bs by (56)
B L) L(z‘%_)z_ pr(p*tn)
2\ 37 1 +2 3 1)y 8y (n? — p?)?

The first term of the numerator in this expression comes from the bending
resistance of the top chord proper; the second — from the web resistance to
bending and from the torsional resistance of the chord, and it contains the

coefficients » and u, and the ratio gﬁ. As may be seen from (55) and (47)

. 2
7 is a factor involving the ratio of flexural rigidities of the verticals and of
the top chord, and u — a factor depending on the ratio of the flexural rigidity
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of verticals to the torsional rigidity of the chord; both, as much as they de-
pend on b,, depend on the loading of the verticals.

The unknown y (the ratio of the amplitudes of the secondary and of the
primary sine waves of the buckled top chord) is found so as to make y a
minimum. This requirement involves solution of a quadratic equation, whose
general form is complicated, but each case taken individually presents no
difficulty.

A circumstance of great significance is the cancelling of the amplitude
of buckling out of the equations (53) and (56). This fact demonstrates in-
dependence of the critical value of the load ¢ from the value of the amplitude.
As long as the intensity of the load ¢ is below that given by the equation
(53), the top chord remains straight; when the critical value is reached there
exists a state of neutral equilibrium, and when the critical value of ¢ is
exceeded the collapse of the structure ensues.

| e I

Fg.72

The first approximation of y, sufficiently accurate for the preliminary
estimation of the critical load, corresponds to y = 0, i.e. to a case when
the secondary sine wave is neglected.

2

i pralr -t
4 p+4 by u

; (71;‘/]2 L 1)

The number of waves p in the primary curve is unknown at the start, and
is determined by trials from (57) so that the corresponding y is the smallest;
after that the second approximation of y is found from (56) for the same p.

To facilitate the analysis the diagrams 3 and 4 giving the first approxi-

Then y = (57)

mations of y in term of 4 and » have been plotted for 4 23 = 1.333 (the
2

maximum possible value) and for 40 _ 195,

As may be seen from the diagrams, the y —» curve for every u consists
of several straight portions. The first from the left part corresponds to a
single wave of buckling, the second — to a double wave etc. Of course, the
boundary between any two types of the buckling curve, as determined by a
corner point on y —# curve, is only approximate, insofar as the curves of
the diagrams give only the first approximations of y, hence, when calculating
the second approximation for a combination of # and u near a corner point
on the diagram the possibility of either type of the buckling curve must be
investigated.

It may be mentioned here, that in addition to the primary and to the
secondary a tertiary wave might have been introduced into the curve of
buckling by some simple modification of the equation (56), resulting in a
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seemingly more accurate expression for y. However, the accuracy would have
been imaginary. As the number of waves increases, the replacement of the
actual truss verticals with an equivalent continuous wall becomes generally
incorrect. In an extreme case, when the number of waves in the primary,
secondary or tertiary, as the case may be, equals the number of panels
(fig. 12), the work of overcoming the corresponding resistance of verticals
W, is actually zero, since the verticals coincide with the nodal points. As a
result, the part of the second term in the numerator in (56) and (57), cor-
responding to this wave, must be cancelled out, — a circumstance dis-
couraging the refinement of introduction of higher harmonics as too
theoretical. On the other hand, as long as the number of panels is an exact
multiple (but not equal) of the number of waves, the replacement discussed
here holds exactly true. Judging from few examples solved, the theoretical
error introduced by neglecting the tertiary is very small.

Critical value of a concenirated load at the centre.

Turning to the question of a single concentrated load at the centre, the
energy equation (33) is again the basis of the analysis, but while the left
hand side of it, the elastic energy of the deformed structure, has exactly the
same expression as for the uniform load, the right hand side, the work done
by the load, must be represented by the equations (39 a) and (39b) instead
of (39). Retracing the steps taken in connection with determination of y for
the uniform load, the resultant equations for single concentrated load Q at
the centre, corresponding to equations (54), (56) and (57) are:

QlL_  n*El

sp =" (54 a)
For p and n odd
Zj(pLi‘}’yzll‘i)-f-)) (1___' L N {1— ao 2
2 by 2 bs .
p + 4 F L n:+ 4 F o
7= — = & (56a)
()= (1) —2pm
For p and n even
LZ:(/J‘erzI#) + 1y 1— — “ + 1____i_b_ y2
2 -8 2 .
pr4+4-=u n*+4-"u
- by be (56b)
! 752p2+752 nty? /J/Z[ 1 I 1]y
R (e
First approximations of y, corresponding to y = 0 are as follows:
for p odd: for p even:
g2 2 '
F AR Rl PRl L
2+4-~3*t 2.}.4_3’“
PRt PPty
7= ; (57a) 1 =- 2 (57D)

(7{,2 2_1) _7,{,‘ )2
g ? 4!
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These first approximations of y, have been plotted on the diagram 5 for

different x4 and %, and for the value of 42 = 1.333.
2

Previous discussion of the significance of various terms in the expression
for y and of the shape of the buckling curve holds equally true in this case.

Effect of inclination of bottom ends of verticals.

The formulas for the resistance of verticals were derived on the assump-
tion of fixation of the bottom ends in vertical positions. This assumption is
not absolutely correct in view of flexibility of floor beams. Bending of floor
beams is firstly the result of buckling of top chord, and secondly, it is due
to the loads resting on them. Since ordinarily the floor beams are much more
rigid than verticals, disregard of the influence of the first factor on the sta-
bility of the bridge is probably justified in many cases.

As to the influence of the second factor, two conditions may obtain under
various kinds of loading. The ends of all floor beams, including the end ones,
may get equal inclinations, in that case the top chord will be straight before
buckling, and the formulas of this paper will not be affected. On the other

d=72-6"

H=74-0"

{=725'-0"
Fig.73

hand, unequal slopes of the ends of floor beams will cause some additional
bending of verticals and of the top chord. Detailed study of this question
shows that unequal inclination of the ends of floor beams does not affect the
magnitude of the load under which the structure becomes unstable, but while
with the floor beams bent equally the top chord remains straight up to the
critical value of the load, and then collapses suddenly; with unequally bent
floor beams the buckling of the top chord increases with increase in load,
reaching very large value under the load of the same critical intensity.

Reciprocal influence line of the criticaliload.

If the position on the span of single concentrated load varies, the work
U done in lowering of the load on account of buckling of the top chord also
varies in proportion to the ordinate z of the deflection curve of the bottom
chord. The shape of the buckling curve and the elastic energy of the deformed
structure W, as well as the shape of the deflection curve of the bottom chord,
change only slightly, as will be seen from the numerical example, and as an
approximation may be considered constant.

This circumstance is very important, and it suggests interesting use for
the curve (38), as a curve whose ordinates are approximately inversely pro-
portional to the load concentrations producing collapsing effect on the bridge,
if placed at the points of their abscissae. The principle if developed a little
further leads to the idea of a curve, which may be appropriately termed ‘“the
reciprocal influence line of the collapsing load”.

Using notation of the earlier part of the paper, let the top chord buckle
to certain suitable shape, first, under the action of uniform load of critical

Abhandlungen III. 14
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intensity ¢ over the whole span, and secondly, under a set of concentrated
loads of critical intensity N, in some definite position on the bridge. Then
the energy equation (33), combined with the expressions for the work done
by the loads (38 d) and (39), gives the following relations:

14

R E Ny A R Ey e G

8rl2\3 2 \3 d (n2—p32 7

w
and N = 7. . 59
2(Q12) 9
Dividing one by the other
' pl

N U 60
2'(Q¢) (00)

where the variable ¢ is proportional to z, and stands to it in the following
relation:

8h z

a, P_(fzj (7w e g PPt J
P 1\ . (3 " !> 8~ (n® - p?)2

Substituting z from (38)

(lx

) [s: nv A7), Sin2il‘xJ
pT nrr
s (pt+nty?)- (sz ~x+y?Sin? X )—Spny (7t ) +

1 (72 1 (2 N g pn(p?+n?)
2 <3 P? 1>+ 2 (3 4 1>y 8 =y 7

The ¢ curve is quite easy to visualize in view of its physical meaning,
the deflection curve of the bottom chord. Since its main part, the first term
in the numerator, is parabola, the curve is somewhat parabolic in form, with
maximum ordinate at the centre. The ratio of the amplitudes of the secondary
and the primary sine waves, designated by letter y, must be considered as
constant for the whole span and having the value corresponding to the uni-
form critical load on the bridge. The shape of ¢ curve and the magnitudes of
its ordinates are thus quite determined by two variables y and p, of which
the second is of major importance (z is the next after p consecutive number
of the same kind, i. e. odd if p is odd, and even when p is even).

With & curve constructed, and the critical value of the uniform load ¢/
previously determined, the critical intensity N of any group of concentrated
weights can be easily found from the equation (60). The critical value of
sirigle concentrated load Q is found from

0=12, (62)

(01)

which is a special case of (60). The equation (60) can also be extended to
a combination of uniform and concentrated loads.

The equation (62) provides simple interpretation of ¢ curve. According
to it, ¢ is an abstract number whose reciprocal shows how many times the
critical value of a concentrated load at any point on the span is greater than
the critical value of the uniform load covering the whole span. The average ¢
for the whole span is naturally unity; near the centre ¢ is greater than unity,
and near the end — smaller than unity, indicating that in order to cause
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collapse of a bridge the concentrated load, if placed near the centre, may be
lighter than the critical uniform load, and if placed near the ends — must be
heavier.

Being an influence line, the curve ¢ provides also the means of finding
the most unfavourable position of the moving load, for which N becomes a
minimum. '

However, it must be remembered that these simple relations based on
the principle of superposition hold only approximately true, since the bending
resistance of the verticals (coefficients &, and b;) and the ratio y depend
somewhat on the position and amount of loading. The relations are more
nearly true when the concentrated weights causing collapse of the truss are
present in pairs symmetrical about the centre of the bridge, otherwise the
assumption that the two sine waves composing the buckling curve are both
either odd or even, will be incorrect, and the error in using the reciprocal
influence line of the critical load will be greater.

Lamelle - Decklasche
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Sections de toutes les verticales Section constante de la membrure supérieure.

intermédiaires. Konstanter Querschnitt des Obergurtes.
Querschnitt aller Zwischenpfosten. Constant Section of Top Chord.

Section of all intermediate Verticals.

Example.

In order to illustrate how the developed formulas are used in checking
design of a pony truss for elastic stability, an example will be given here.

Let figure 13 represent the pony truss required to be checked. The end
verticals are supposed to be absolutely rigid, and the constant sections of the
top chord and of the intermediate verticals are given on figures 14 and 15.
Sections of the bottom chord and of the diagonals are immaterial. Such a
truss is good for a total equivalent uniform load of about 1 kip/ft of one
truss, which corresponds to an ordinary highway bridge with wooden deck
and one lane of traffic.

The torsional rigidity of the top chord C has nothing to do with the polar
moment of inertia of the section, and since the method by which it is de-
termined is not a matter of common knowledge, it will be taken here in full
detail. It is based on so-called hydrodynamic analogy, according to which the
problem of torsion of a shaft is reduced to a mathematically equivalent
problem of steady circulating motion of frictionless fluid in a vessel in the
shape of the shaft!). The velocity of fluid at any point is proportional to
and in the same direction as the torsional stress. The motion of fluid inside
the shaft is easy to visualize. Referring to fig. 16, representing a somewhat

1) For the explanation of hydrodynamic analogy see for example S. TIMOSHENKO,
Strength of Materials. Van Nostrand, New York.
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simplified section of the member in question, under the action of a torque T,
the velocities (or stresses) in different parts of the section will be parallel
to the walls, as shown by arrows, and inversely proportional to the respective
thicknesses £. Thus, fluid in the web of the channel on reaching the flange
will swerve parallel to it and will proceed to the gauge line of rivets, through
which it will enter the cover plate and move along it in the direction opposite
to that in the flange. The stresses 7, 1, and 7, will bear the relation:

Tt = Tl tl = T2 tg (68)
7]
5, Tension - |Spannung. —+
== —= 1" Stress T ~SU
tl i ) - i
L | %))
Tension unitaire | . g
Einheits -Spannung T F1g.76a |
Unit Stress 509 { Fig. 166
|
N i
t’1 — = - —_n} —— __g

Portions of the channel flanges and of the cover plate outside of the

gauge lines of rivets, shown dotted, do not contribute to the torsional rigidity
of the section.

N 9.5
x4
. 1.375 ]
5 =2
sl |
ik y
5 58 F1g.17
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N10303y 6.75" f0303"
1224 7053” 1y7224”"
a -
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——% ]
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Latticing at the bottom flange introduces no special complications. Its
duty is similar to that of the cover plate, namely to bind the flanges of the
channel together, and in performing it each lattice bar develops a force L,
whose lateral component is equal to the total shearing force in the cover plate:

L Sin . 600 j— T2 t2 62 (69)
Referring to fig. 17 the equation of moments is: ‘

T = 7(0.303) (7.53) (7.053) + =,(0.47) (1.224) (2) (7.53) +
+ 7, (0.312) (9.5) (8.312). (70)
Equating external work to resilience
T T2
Yol 26(7.53) (0.303) (2) +

Tf
2G
L2(2)

.25) (0.312)°
Expressing 7, 7,, 7, and L in terms of 7 from (68), (69) and (70), and using

(0.47) (1.224) (4) +

(12)

Ts
+ oXe (9.5) (0.312) + IE@
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the ratio between the modulii of elasticity and shearb€ = 2.5, the following

value for the torsional rigidity C is obtained from equation (72):
= 1004 G (73)

In this relation C is expressed in kip. inch?, and G — in kip./sq. inch 2).

It may be mentioned in passing that the greatest part of the elastic energy
of torsion of the member is stored in its weakest segment, the lattice, and
should the latter be replaced with a cover plate, the amount of internal energy
would greatly decrease, and, consequently, C would rise in proportion.

Strictly speaking, C is affected by the direct stress in the member.
Compression of the top chord makes it less rigid in torsion. However, this
influence is very slight. ‘

[

b, axss.
[

N
4

N N
- A
\ vh=h ET,
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! 1+ &
[ \ (uh) axis.
10 2.0 3.0
-05

Diagr. 1. Diagramme du coefficient & en fonction de (z#). Représentation graphique de la
réduction de résistance latérale du systeme lorsque V augmente.

Diagramm des Koeffizienten 4, gezeichnet in Funktion von (u4). Darstellung der Verminde-

rung des Widerstandes gegen seitliches Ausbiegen des Fachwerkes mit zunehmendem V.

Diagram of Coefficient 4. Plotted on the Base of (u4). Showing Decrease in Lateral
Resistance of Combination of Truss Vertical and Diagonal as 1 increases.

Knowing C and assuming, as a first approximation, maximum values for
the coefficients &, and &, (see diagram 2), &, = 12 and b, = 4, so that

4% _ % ihe coefficients w and 5 will be found from (47) and (55).

h=3
b, B EIL 12 125 a
M= 4% hd C T 305 (14)(125) >° 1004 — 2109
b4 12 s a
| = At ka1, T 305 (14)(128) 1727 — °1%

First approximation of y is found from (57), making the number of waves
p=1,2, 3 and 4.

2) kip = 1000 Ibs.
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For p=1 y =§123.35),
: p=2 y = 33.81,

p=3 y = 28,23,
and p =4 y = 33.96.

These figures show that the curve of buckling will be a triple wave, and
that approximately y = 28.23, which value can also be read off the diagram
of ».

For the second approximation substitute into (56) p = 3 and » = 5.
The resulting expression is

1823y + 404

— 74
7 = 406y — 1503y + 143 (74)
2
*\\ p
N S |
’”’
S v
Sy 4 % -3 -
$$ iss —-sﬁ\\\ \ ’ l/
S ¢ 33 w0 < =pi Y
&l 1845 ™~ \ whlzz,
L %Q%——%:?f:: N M bz?zvd b EIvd
- a-p L2V g4 p LLP
N \
< N n
b \
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ol 12 \
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Diagr. 2. Diagramme des coefficients b, et b; en fonction de (#4). Représentation graphique
de la diminution de résistance latérale de la contre-fiche lorsque V augmente.

Diagramm der Koeffizienten b, und &;, gezeichnet in Funktion von (uk). Darstellung der
Abnahme des Widerstandes des Pfostens gegen seitliches Ausbiegen mit zunehmendem V.

Diagram of Coefficients b, and b;. Plotted on the Base of (##). Showing Decrease in Resistance
of Strut with Increase in V.

The value of y making this expression minimum is -

y = —0.242, (75)
and the second approximation of y from (74) is
y = 24.9, (76)

about 12 9, less than the first one.

Knowing y, the value of the compression stress in the central panel of
the top chord, corresponding to the collapsing load on the bridge is found
from (54):
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gl*  w*El 7?2 >< 20000 >< 172.7 .

§p =1 R 249 (25512 = 546.5 kips. (77)
and the corresponding intensity of the critical uniform load per unit length
of one truss

g = 3.92 kip/ft. (78)
S0
]
% //
_ M-O /'452
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,r"’5/ ]
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Diagr. 3. Diagramme des coefficients y (premiére approximation) pour une charge uniformé-

ment répartie sur toute la portée, en fonction de 7 pour différentes valeurs de 4[)—s = 1,333
2

Diagramm der Koeffizienten y (Erste Annéih’erung) fir gleichmiBige Belastung iiber die

ganze Spannweite. Gezeichnet in Funktion von #% fiir verschiedene « 4% = 1,333
2

Diagram of Coefficients y (First Approximation). For Uniform Load Covering Whole Span-

Plotted on Base of 7 for different ¢ 4 éﬁ’- = 1.333
s 2

This figure has been obtained on the basis of the maximum values for
the coefficients of resistance of verticals 6, and b,; actually as the stress in
the verticals increases their resisting capacity decreases, and it is well to
inquire at this point, how much stability of the bridge will be affected by
the direct stresses in the verticals, corresponding to the uniform load
g = 3.92 kip/ft.

The intermediate verticals are numbered from the outside of the truss,
and the results of calculations involving formulas (12), (19) and (22), or the
diagram 2, are tabulated below.
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Intermediate | Stress 1 \
Verticals kips % inch uh be J b
— e ———————— = e e e o e e S— [
1 1 171.5 .01200 2.018 11.18 l 3.42
2 | 1225 01015 1.707 1141 | 3.60
3 § 73.5 00786 1.321 1166 | 3.78
4 245 .00454 0.762 11.90 3.95
5 i 0 0 | 0 12.00 4.00
Average of 9 f
Verticals I | 11.59 l 3.72
0
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Diagr. 4. Diagramme des coefficients y (premiére approximation) pour une charge uniformé-

ment répartie sur toute la portée, en fonction de » pour différentes valeurs de » 4 b =125

by
Diagramm der Koeffizienten y (Erste Anndherung) fiir gleichmiflige Belastung iiber die
ganze Spannweite. Gezeichnet in Funktion von 7 fiir verschiedene s 4% =1,25
'2

Diagramm of Coefficients y (First Approximation). For Uniform Load Covering Whole Span.
Plotted on Base of 7 for different « 417E = 1.25

2

Using ' b, = 11.59

and 4 by _ 1.285 (79)
by

the values obtained for x4 and # are:

and k 7 = 496.
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With these figures for u and # following the same procedure, the ratio

y — —0.23, (81)
the second approximation of y comes to y = 24.2 (82)
and g = 3.81 kip/ft. (83)

These values of y and ¢ may be considered as final, and they are only
about 3 9% less than those calculated on the basis of maximum resistance of
verticals. It is believed, that such small difference justifying the use of (76),
to save all the labour of calculating the stresses and resistances of verticals,
is general in most cases.
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Diagr. 5. Diagramme des coefficients y, (premiére approximation) par une charge concentrée
au milieu, en fonction de # pour différentes valeur de u 4;5 = 1,333
2

Diagramm der Koeffizienten y, (Erste Anndherung). Fiir Einzellast in der Mitte.

Gezeichnet in Funktion von # fiir verschiedene x« - 4—;5 = 1,333
2

Diagram of Coefficients y, (First Approximation). For Concentrated Load at the Centre.

Plotted on Base of # for different u 4;3 = 1,333
2

It is interesting to notice, that if the influence of torsion of the top chord
is disregarded, the error is considerable. When C = 0, u = oco. Substituting

this value of u together with y = 514 and 4 2-3—:% into (56), the second
2

approximation of y comes out
y = 20.7, ’ (84)
which is 17 9 less than (76).

Coming now to the study of stability of the truss under the action of
concentrated loads, and the accuracy of the influence line method, the curve e
(diagram 6) is constructed for the span under consideration, allowing
y = — 0.23, as was determined for the uniform load. The following three
cases of concentrated loads are studied:
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1. Single concentrated load Q at the centre.

2. Two concentrated loads ,2@ each, at the quarter points.

3. Two concentrated loads ~2Q~ each, at one eighth points.

The critical values @Q are found in two ways: by the influence line me-.
thod, formula (62); and by the direct method, using formulas (54 a) and
(56 a) for the central load, and modifying the denominator in (56 a) for the
other two cases, with the value of y in each case corresponding to y; minimum.
Various constants used in calculations are as follows:

w = 26.72; n = 496; ¢ = 3.81 kip/ft; g/ = 476.2 kips.
Results are presented in the table below.

20
18 ~
10 / N
/ N,
o5 /1 : N,
& o sl __%,ﬁ@\\

: Diagr. 6.
Ligne d’influence réciproque de la charge critique. Formule 61.
Gegenseitige EinfluBlinie der kritischen Belastung. Formel 61. } p=3; n=5; y=-0,23.
Recipracal Influence Line of Critical Load. Formula 61. ;

Influence Line . '
Method Direct Method

£ | Q kips v V1 Q kips
t

Load Q at the Centre 1556 | 3063 | -0.265 | 1550 | 305.2

9 Loads—g at thé»}r Points| 1004 | 4355 | —0205 | 2210 | 4350

2 Loads% at ;; Points 0.581 | 8200 | -0.178 | 41.62 | 819.0
|

The table shows, that although the shape of the buckling curve varies
somewhat as the position of the concentrated load changes, which is mani-
fested by the variation in the value of y, the error of using the influence line
method based on constant y, is so small as to be barely detectable in slide
rule work. The accuracy for several concentrated loads will evidently be even
greater. The other error inherent in the influence line method, when it fails
to take into account the change in resistance of verticals, is also a small matter,
as can be easily shown by calculation. :
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Some final remarks on the method and on the approximations
and assumptions involved.

Analysis of a pony truss for stability can be greatly assisted by plotting
two sets of curves: first, y curves (second approximations) for different u,

n and 4 g—s, similar to the first approximations plotted on the diagrams 3 and 4,
\ :
and secondly, ¢ curves for different p and y. Determination of the critical

uniform load will then be reduced to simple calculation of # and u, and
reading the corresponding y off the diagram. The critical value of the movable
load will be found by proper placing of the load on ¢ curve with suitable
p and y.

[t should not be lost sight of, that various stability formulas brought up
in this paper, are applicable only as long as the material in any part of the
structure, loaded with the critical load, remains below the elastic limit, and
as soon as this point is exceeded, the critical values obtained become too high.
This limits the applicability of the above formulas only to very slender struc-
tures. Thus, in the truss of fig. 13, just considered, the critical uniform load
g =: 3.81 kip/ft causes unit compression stresses: in the first intermediate
vertical 25.2 kip/inch?, and in the central panels of the top chord 45 kip/inche.
For ordinary structural steel the latter figure is above the elastic limit, and,
consequently, the actual value of ¢ will be below 3.81 kip/ft. However,
as Professor Timoshenko rightly points out, with present tendency of intro-
duction construction materials of higher strength and of higher elastic limit,
the lateral dimensions of the members decrease, and with that the field of
appllcatlon of theoretical formulas, based on perfect elasticity of the mater1a1
increases.

It must be pointed out, that although the development of the stability
formulas was purely mathematical, a due cognizance was taken of most of
the physical factors of importance. It is true that difficulty of the problem
required various idealizations of conditions, such as substitution of a con-
tinuous wall for actual verticals, and the assumption of constancy of the
sections of intermediate verticals and of the top chord, but in those assump-
tions reality was not idealized out of existance; furthermore, even if the
verticals of an actual truss may not have the same cross-section, and the top
chord may not be constant on all its length, the formulas, nevertheless, can
be used judiciously, as is the case with many other engineering problems.

Of lesser factors left out of consideration may be mentioned on the safe
side:

a) Bending resistance of diagonals and their stabilizing effect on the top
chord in its tendency to twist.

b) Strengthening with brackets of the bottom end connections of verticals
to the floor beams, resulting in increased resistance of verticals to
bending.

c) Torsional resistance of verticals, which however is small for / or /
sections.

On the other side may be mentioned the effect of deflection of floor
beams caused by bending of the verticals, when the top chord buckles.

The methods used in this paper can be applied to trusses with the end
posts of the same rigidity as that of intermediate verticals, and also to the
types of trusses different from the one on fig. 1.
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Summary.

The author of this paper endeavours to find an expression for the value
of the load which causes collapse of certain type of bridge without the top
lateral bracing. A qualitative study of the question reveals that the resisting
action of the web members is affected by the magnitudes of their axial
stresses, and this conclusion leads to the necessity of determination of web
resistances in terms of loading. The energy method, consisting in comparison
of the elastic energy of structure with the work done by the loading during
buckling, is used as the method of attack of the main problem. After eva-
luation of various terms in the energy equation, expressions for the critical
values of different types of loadings are found. It is noticed that the shape
of buckling curve is affected by the type of loading only very slightly, and
this leads to the idea of the reciprocal influence line of critical loading,
allowing an easy treatment of the questions involving movable load. The
application of the formulas developed is demonstrated on an example, and the
paper is concluded with some final remarks on the method and its assumptions.

'Résumé.

L’auteur s’efforce de trouver une expression pour la valeur de la charge
de rupture d’un type de pont déterminé sans contreventement supérieur. Une
étude qualitative de cette question montre que la résistance des barres du
treillis est influencée par la valeur de leurs contraintes axiales et cette consta-
tation conduit a la nécessité d’exprimer cette résistance des barres du treillis
en fonction de la charge. L’application du principe de I’énergie, qui consiste
a comparer ’énergie d’élasticité du treillis avec le travail que fournit la charge
pendant le flambage, est utilisée comme méthode de résolution du probléme
principal.

Apres établissement de différentes expressions pour 1’équation de
Pénergie, Pauteur donne d’autres expressions pour les valeurs critiques cor-
respondant a différents cas de charge. Il est & remarquer que la forme de la
courbe de flambage n’est que trés faiblement influencée par la nature de la
charge et on en arrive ainsi a la notion de la courbe d’influence réciproque
pour la charge critique, notion qui permet de traiter facilement les problémes
que posent les charges mobiles.

L’auteur donne un exemple d’application pratique des formules établies
et termine son rapport par quelques conclusions sur cette méthode et sur les
hypothéses qu’elle implique.

Zusammenfassung.

Der Autor versucht, einen Ausdruck zu finden fiir den Wert der Bruch-
last eines bestimmten Briickentypes ohne oberen Windverband. Eine quali-
tative Studie dieser Frage ergibt, daB der Widerstand der Fachwerkstibe
durch die Gr68en ihrer Axialbeanspruchungen beeinfluBt wird und diese
Folgerung fiihrt zur Notwendigkeit, die Widerstinde der Fachwerkstibe in
Ausdriicken der Belastung zu bestimmen. Die Energiemethode, bestehend
im Vergleich der elastischen Energie des Fachwerks mit der Arbeit, die die
Last wihrend des Ausknickens leistet, wird als Losungsmethode des Haupt-
problems gebraucht. Nach der Bestimmung von verschiedenen Ausdriicken
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der Energiegleichung werden Ausdriicke fiir die kritischen Werte fiir ver-
schiedene Belastungsfille gefunden. Es wird bemerkt, daB die Form der
Knickkurve durch die Art der Belastung nur sehr schwach beeinflut wird
und das fithrt zu der Idee von der gegenseitigen EinfluBlinie fiir kritische Be-
lastung, die eine leichte Behandlung der Fragen betreffend bewegliche Lasten
erlaubt. Die Anwendung der entwickelten Formeln wird an einem Beispiel
erlautert und der Beitrag endet mit einigen SchluBfolgerungen iiber die Me-
thode und ihre Voraussetzungen.
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