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VERFORMUNGSTHEORIE DER HANGEBRUCKE MIT
EINEM ZWEIGELENK-RAHMEN-VERSTEIFUNGSTRAGER

THEORIE DE LA DEFORMATION DES PONTS SUSPENDUS
AVEC POUTRES RAIDISSEUSE EN FORME DE CADRE A DEUX
ARTICULATIONS.

DEFLECTION THEORY OF SUSPENSION BRIDGES WITH A
DOUBLE-HINGED STIFFENING GIRDER

Von Dr. Ing. ALFRED HAWRANEK, o. 6. Prof. der Deutschen Techn. Hochschule
in Briinn (C.S.R.).

Die Elastizitatstheorie fiir Hangebriicken mit einem Zweigelenkrahmen-
Versteifungstriger wurde vom Verfasser in der Zeitschrift ,,Der Stahlbau‘,
1934, S. 137 und 145, veroffentlichtt). In diesem Aufsatz sind auch die
Vorteile des in den Fig. 1—6 wiedergegebenen Tragwerksystems und seiner
Kombination bei mehreren Offnungen ausfiihrlich angegeben und begriindet
worden. Die Vorteile dieses Systems liegen in der Moglichkeit, durch ex-
zentrische Aufstellung der Pendelstiitzen gegeniiber den RahmenfuBachsen
oder durch Anwendung von Gelenken in den Seiten6ffnungen einen Mo-
mentenausgleich fiir den Rahmenriegel zu erzielen, den Windverband als teil-
weise an den Enden eingespannt zu berechnen, was zur Verringerung der
maximalen Windmomente fithrt und deshalb fiir gr6Bere Spannweiten auch
schmilere Briickenbreiten zulafit. Der Horizontalschub und die Momente
des Rahmens konnen durch auskragende Ballastarme vermindert werden.
Der, wie dort gezeigt, weitgehend mégliche Momentenausgleich 146t die Aus-
bildung des Rahmenriegels mit wenig veridnderlichem Querschnitt zu, die
Durchbiegungen werden wesentlich geringer als bei einer Hangebriicke mit
einem einfachen Versteifungsbalken, daher ist das vorliegende Tragwerk-
system viel steifer als die gewohnlichen versteiften Hangebriicken.

AuBerdem iibertrigt der Versteifungsrahmen die Bremskrifte in viel
giinstigerer Weise als ein Versteifungsbalken. Gegeniiber einem Bogen als
Versteifungstriger entfillt bei dem vorliegenden System die ganze Fahrbahn-
abstiitzung und deren Querverbidnde, was in diesem Falle eine Gewichts-
ersparnis bringt. Dann ist auch die Wiarmewirkung dieses Systems giinstiger
als bei Verwendung eines Bogens als Versteifungstrager.

Das System eignet sich auch fiir groBe Spannweiten mit grofier freier
Durchfahrtshohe, wie fiir die Uberbriickung von Fliissen in Stidten mit an-
schlieBenden QuaistraBen und 148t eine, heute erwiinschte, straffe Linien-
fithrung des Tragwerkes bei verminderter Riegelhdhe gegeniiber einer ge-
wohnlichen Hingebriicke mit einem Versteifungsbalken zu, so daB§ die Unter-
suchung dieses Systems gerechtfertigt erscheint.

1) Dr. Ing. A. Hawranek: Hiangebriicken mit einem Zweigelenkrahmen-Versteifungs-
trager. ,,Der Stahlbau® 1934, S. 137, 145. 1935, S. 15.
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In der vorliegenden Abhandlung soll nun dieses Tragsystem nach der
strengen Verformungstheorie (Deflection theory) untersucht werden und
zwar das System mit einer Offnung, wie Fig. 2 zeigt, wobei die Rahmen mit
FuBgelenken versehen sind. Das System ist zweifach statisch unbestimmt.

Es soll symmetrisch angenommen werden. Die in parabolischer Form an-
genommene Kette ist auf Pendelpfeilern abgestiitzt.

Fig.1
Fig.2 %7

Fig 3
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fig.6
T
Fig. 1—6. Dispositions de I'ouvrage. Tragwerkausbildungen.
Examples of supporting structures.

Statische Berechnung.

Als statisch unbestimmte GréBen sind die beiden Horizontalkrafte H,
fiir den Rahmen, H, fiir die Kette gewihlt (Fig. 7a). Die Anfangslage von
Kette und Rahmen ist darin voll ausgezogen. Bei einer Belastung oder bei
einer Warmewirkung biegt sich das System durch und die beiden Tragglieder,
Kette und Rahmenriegel, gelangen in die strichliert gezeichnete Lage, wobei
- sich an der Stelle x des Versteifungstrigers eine Durchbiegung » ergibt,
wahrend bei Beriicksichtigung der Dehnungen der Hingestangen um Ay die
Kette Senkungen um % — Ay erfihrt. Die Dehnung der Hingestangen ist
im ersten Teil der Arbeit, um ihn allgemeiner zu halten, beriicksichtigt, eben-
so die angenidherte Wirkung der Normalkrifte. Da jedoch diese Einfliisse

Abhandlungen III: 11
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im allgemeinen gering sind, so wurden diese im zweiten Teil der Arbeit und
im anschlieBenden Beispiele vernachlidssigt. Sie lassen sich aber, da die all-
gemeinen Ausfithrungen bis zu der Aufstellung der Endgleichungen gefiihrt
sind, ohne weiteres mit Hilfe der gegebenen Formeln rechnerisch verfolgen.

In der Arbeit wurde auch der Fall eingeschlossen, dafB3 ein Teil des Eigen-
gewichtes g’ erst nach vollstindigem Zusammenbau der Konstruktion auf-
gebracht wird (Fahrbahndecke, Gehsteigabdeckung, Rohrleitungen). Vor
dem Aufbringen dieser Last g’ sei der Versteifungsriegel spannungsios, der
Rahmen ohne Horizontalschub und das gesamte Tragwerknetz in der An-

Fig. 7. a) et b). Le systeme porteur et ses déformations.
Tragwerknetz und dessen Verformung.
Supporting structure and its deformation.

fangslage, von welcher ausgegangen wird. Vom Eigengewicht g-—=g’ -} g”
wird g” sofort auf die Kette gebracht und erzeugt den Horizontalzug Hyg,
dann kommt eventuell g’ hinzu, welche Last die waagerechte Kettenzugkraft
Hjx bewirkt und schlieBlich p, und die Wirmewirkung (- ¢), die H, er-
zeugt, wobei Hyx = Hax + Hig

Der Rahmenriegel ist gegen die Mitte unter einem Winkel § geneigt
angenommen. Alle sonstigen Abmessungen, Querschnittsflichen, Triagheits-
momente, Winkel, sind aus der Fig. 8 zu entnehmen.

In der Abhandlung ist zum ersten Male die Verformungstheorie fiir ein
zweifach statisch unbestimmtes Svstem gegeben.

I. Aufstellung der Gleichungen fiir die Forménderungen.

Es bedeuten (Fig. 8):
M’ N’ das Moment und die Normalkraft des Versteifungsrahmens nach der
Elastizititstheorie,
M, N das Moment und die Normalkraft des Versteifungsrahmens in x nach
der Verformung infolge g’, p, und der Wirmezunahme,
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M,, Q, das Moment und die Querkraft des Versteifungsrahmens fiir das sta-
tisch bestimmte Grundsystem (in B waagerecht verschieblich gelagert
fiir die Lasten g’ und p,),

M, N,, My;N, das Moment und die Normalkraft des linken bezw. rechten
Rahmenstiels,

H,; den Horizontalschub des Rahmens fiir jenen Teil des Eigengewichtes g’,
das bei der Montage nicht auf die Kette iibertragen werden kann, bei
normaler Temperatur,

H,, den Horizontalzug der Kette (des Kabels) fiir die an die Kette unmittel-
bar aufgebrachten Eigengewichtslasten einschlieBlich des Ketten-
gewichtes bei normaler Temperatur,

H, den Horizontalschub des Versteifungsrahmens fiir die hinzukommende
zufillige Last p, und Wirmeinderung um £°,

H, der Horizontalzug der Kette fiir p, und ¢,

g’ den Teil des Eigengewichtes, der erst nach Montageschlufl aufgebracht
wird pro 1 m,

/) TAP - 5 H
A ' Iy <,
a] 1 o yz , . '42 a’ vd
e | s MLI@ 2 | hp
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I 7 ot 1P [J D
1 N »
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4 X s 6 43 Kz
AI L B;
Fig. 8.

p. die gegebene zufillige Last in x pro Lingeneinheit,

pr die zufillige Last, die von der Kette {ibernommen wird,

p: die zufillige Last, die vom Versteifungstriger iibernommen wird,

n die Senkung des Versteifungstragers in x fiir die Lasten g’, p, und Wirme-
zunahme (--£9),

Ay die Dehnung der Héngestangen fiir g', p. und 9,

n — Ay die Senkung der Kette in x fiir g’, p, und ¢°,

7, bezw. 7, die waagerechten Ausblegungen der Rahmenstlele nach innen
positiv gezihlt,

J, Jo die Tragheitsmomente des Rlegels bezw. der Stiele des Versteifungs-

- rahmens, die in jedem Bereich konstant angenommen werden,

F,F,, F, die Querschmttsﬂachen des Riegels, der Stiele bezw. der Hange-
stangen,

E,E, das ElastizititsmaB des Versteifungsrahmens, bezw. der Kette und
Hangestangen,

[ die Stiitzweite des Rahmens,

/ die Pfeilhohe der Kette,

h die Stielhohe des Rahmens,

i, den Pfeil des Rahmens in der Mitte,

i’ die Trigerhohe des Riegels,
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h, die Linge des Pylons,

sh,L die Linge der Hingestangen bezw. ihre Kraft,

2 ‘die Entfernung der Hingestangen,

a, den Neigungswinkel der Kettenstibe,

a;, a, die einer Hingestange benachbarten Winkel der Kettenstidbe links bezw.
rechts,

B die Neigung des Versteifungsrahmens (Riegels) gegen die Mitte,

V' = tga, —tga, = konst.,

¥1,y: die Ordinaten des Rahmenriegels bezw. der Kette in x,

w,t° At die Wirmeausdehnungsziffer, die gleichmaBige Wairmezunahme
bezw. den Wairmeunterschied zwischen Ober- und Untergurt des
Riegels.

H,,, H,, sind gegebene GroBen. Der Wert H,y;, ist Null zu setzen, wenn
der EinfluB des bei der Montage nicht auf die Kette gebrachten FEigen-
gewichtsanteiles g’ auch nach der Verformungstheorie berechnet werden soll.
Dann ist in den folgenden Ausdriicken g’ statt p, zu setzen.

H, ist auch dann gleich Null anzunehmen, wenn das ganze Eigengewicht
bei der Montage auf die Kette geleitet werden kann und der EinfluB der
zufilligen Last p, streng zu ermitteln ist.

Das Moment M’ und die Normalkraft N’ des Verst‘eifungsrahmens nach
der Elastizitatstheorie ist:

M =My —H,y, — Hy y, }

N' = — Qosing — H, cos + H, tgesing (1)

Unter Beriicksichtigung der 'Verformung ergibt sich fiir die hinzu-
kommenden Lasten g’, p,, fiir die Wirmezunahme um - £¢ einschlieBlich der
Dehnung der Hiangestangen das Moment des Versteifungstrigers mit

M= M,—H y — Hé)’2 + (Hlk + H1) /. (sz + H,) (1 — 41 } (2)
N — N’
Die Normalkraftanderung ist gering, daher wird ihr urspriinglicher Wert
N’ beibehalten. Die Beriicksichtigung der Anderung von N’ bei der Ver-

formung fithrt zu einer nichthomogenen Differentialgleichung, woriiber an
anderer Stelle berichtet wird.

Fiir den geradlinig gegen die Mitte ansteigenden Riegel ist

4
yo=h+ 2(/111 h)x 2
0
Mit n = 2k, I h) = tgf = konstant ist
’ , l
— 2 — —
y1——/l+’2x0 yo=h+n( x)té } (3)
Fiir die Kette als Parabel gilt die Gleichung
= _ x(—x)
Yo = ’lzﬂx(l"_‘x) — '**é’,-
12

wobei oy
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Setzt man Hy+ Hy, = HY Hyp + Hy = Hy ]
- . 9 H1k+H1 Hl, H2k+H2 H2l
g = =% = = = y2 = =
weiter c " = EJ EJ Cy EJ E] (4)
> . H
und da 62 >0 - - 6t—? = co“———ﬁ
wobei EJ = konst., so ergibt sich nach Einsetzen in Gleichung (2)
M=M, —Hy,—Hyy, —EJa?y + EJc,2 A4y (2a)
Die Kraft L der Hingestangen
L= VvH,

soll auf die Léingeneinheit reduziert werden, sodal pro 1 m die Hiangestangen-

kra ft L_Vv 72 bei einem Querschnitt [;2 eine Lingeninderung A ein-
schheﬁhch der Wirmezunahme gibt von
Ay = (5!12— + wz‘)s;,
E\F,
x(l— x) (5)
Sp = hp—y, — nx = h, — B P
Fiir den linken Rahmenstiel ist
M, =—H'x+ N 1
’ Ny = Ny + Hy tge,
im rechten Stiel : (6)
My = _Hxlx + Ny
N, = N,” + H, tga,

Die allgemeine Differentialgleichung der Biegelinie lautet

= (EM/’* /”) ecs + KEF;(M) tgﬁ] (7)

a) Rahmenstiele.
Fiir die Stiele gelten die Differentialgleichungen

” "o 1 4 .
7 Ej4 [H) x — Nj i) " = EJ. [H, x — N;5]
) N, N. . H,/ ( (7 a)
Mlt z,2 e Zo2 — 72 Zal — el . .
YT E), : EJ, * T E/L
1/)1 == Zl X 1/)2 = 22 X '1/11’ == Zl h y)2, jurrand 22 h

ergibt sich

. H/
1 = Visiny, + Wi cosy; + ~Nl—x
1

')/”], = Zl V1 COS 1/?1 — Zl Wl Sil’l 17[)1 + —N‘—l
1

wobei V, und W, aus den Randbedingungen zu bestimmen sind.
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Fiir x = 0O isty, = 0, v, = 0, daraus folgt W, = 0 und bei einer waage-
rechten Verschiebung des linken Rahmeneckes um A/’ nach innen ist

fur X = h 1/1 — Vl Sln 1/)1 -I— 1 }l . A lr/ ]
| ' (7b)
woraus B ;1_’[“, H,/ /z] l
Y sing' LT N,
womit die Konstanten V; und W, bestimmt sind.
Fiir x = £ ist auflerdem »
; , H'h H./'
n, = z, cotg y [A L o+ ]+ 1
i 1 COtg vy, N, N,
und das Moment (8
= SV I A — A a
L7 Sing, U !
fiir x =h My = N, Al — H, I

Analoge Werte gelten fiir den rechten Stiel mit z,, wy'y Ny AL,
Verschieben sich die Rahmenecken infolge der Belastung um &,, bezw.
d, nach innen, so ist (N positiv eingesetzt) S
/

Al = 0, + (EZ%* - wi)i
, ’ (9)
Al =0, + (ELV[_: — t) ?l
b) Rahmenriegel.
|1 . At
V= Mo — iy — Hoy) + ot — oty — | secs —
choz] sinp tg 3 :
—[ T r EF (10)

Dabei ist das letzte Glied néherungsWeise ausgedriickt, in welchem auflerdem
im unbelasteten Bereich p, = 0 zu setzen ist. Vernachlissigt man die ge-
ringe Neigung des Riegels (secf = 1) und bezeichnet man die konstanten
Glieder, zusammengefaﬁt mit

wAt EJc?\sinptes
o B

P
so vereinfacht sich die Differentialgleichung zu

14 9 l \ ) P
0 ety = — 2 (Mo — Hyyy — Hyps) — et Ay — Z

Fiir gleichmiBig verteilte Lasten, auch fiir Teillasten, kann man allgemein
setzen

‘M():k‘l“klx—kkgx‘z

aM, .

de = Qo = k1 + 2ky x (12)
M,

Ay T T P= 2k
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so dafl die Differentialgleichung die Form annimmt
y— oty = a4+ bx + cx?
wenn y,, y,, M,, Ay durch x ausgedriickt werden und in « alle Konstanten

zusammengefaBt werden.
Das allgemeine Integral wird

= A;e%* + Ay e *r — _;lmm—g + bx + (/'xz] (]3)

Fiihrt man anstelle der Integrationskonstanten A, und A, neue ein und zwar
C, = A, «*E] C, = Ay > EJ (14)
so entsteht unter Wiedereinfithrung von y,, y,

N = Ejl {C1 @t Coe W+ (My — Hyyy — Hy po) + 5 [ P+
Pl el v ere | |
+ = 1+Hz S, +chz Ay + EJZ (15)
o 1 ax —ax r__ 24,l . ’*’]
9 = E.—fa—z [a(Cle — Cye™ ) 4+ Q EJc, s (tg ey + tgf3) (16)
bei , am’ [—2
wobei Q=" = Q—Hn—H, ( zrjl a7

Qo = ky + 2kyx
Die Bestimmung der Konstanten C, und C, erfolgt aus den Bedingungen, daB
fiir ¥ = 0 und x = /; 5 gleich sein muB As" bezw. Ar” (Gl. (15)).
N, & N, h

1.7 L S A v ___ e
A¥ = EF, wth = FF, wth (17a)

Bei symmetrischen Lasten muf} fir x = é; 1’ == 0 sein (Gl. (16)).

Diese zwei Bestimmungsgleichungen fiir die Integrationskonstanten
reichen fiir Vollbelastung aus. Liegen Belastungen von Teilstrecken vor, so
gibt es fiir jede stetige Teilbelastung zwei besondere Integrationskonstanten
und dabei eigene 5-Werte, wobei fiir die Lastscheiden fiir die links bezw.
rechts der Lastscheide gelegene Belastung sowohl die beziiglichen #-Werte
wie die n’-Werte gleich groB sein miissen, so dafl so viel Gleichungen ver-
fiigbar sind, als unbekannte Integrationskonstante zu ermitteln sind. In un-
belasteten Strecken ist in Gl. (15) und Gl. (16) p, = 0 zu setzen. Wegen
des Knicks der Riegelachse in Tragwerkmitte sind bei den Integrationen die
Integrale an dieser Stelle zu teilen.

Fiir einen waagerechten Rahmenriegel ist in allen Glelchungen n=20
zu setzen.
Die Momente des Rahmenriegels ergeben sich:
ax —c 1] E_/CO A}/
M=_—(Ce*™* 4+ Cse ‘x)—-;x’._; — A“f‘*“’(]“}“*"*“* s —EJjZ (18)
Die Querkraft folgt aus der Differentiation von M nach x.
Q = — a(Cy e — Cye™™) + EJcy? -—S;'/— (tga, + t2h) l
. ‘ (19)
wobei A _(Vvﬁ;_{_“t) I

‘;;I EF,
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Nochmals differenziert, erhidlt man den von dem Versteifungstriger zu iiber-
nehmenden Anteil p, der Belastung p..

& Ay
r Sy
Pt = Px — Pk (21)

Bisher wurde die Ableitung allgemein gehalten ?).

pe=~+ «*(Cie** + Cye=™) — EJ (20)

II. Ermittlung der Integrationskonstanten.

Vollbelastung (Fall I).

Die Integrationskonstanten C, und C, lassen sich auBer auf dem vorher
angegebenen Wege auch aus den Momentengleichungen (18) bezw. (6) be-
stimmen, da fiir die Rahmenecken ,

Ml(x:lz) = M(x:q bezw. Mg(x:;,) — M(le).

Bei Vollbelastung ist N, = N, A4l = Al.".
Fiir das linke Rahmeneck ist demnach

, ’ , H, E 2 H’ ’
RN AL (€G- K- per ez |1 ELS ()
2

Mit T o= li['{i?i (%}% + (ul‘) und 7 =147

lautet die erste Bestimmungsgleichung
—(C, + C;) — %l-— pe+ EJatZ + —[g T] = —H'h+ N AL

Fiir das rechte Rahmeneck ist die zweite Bestimmungsgleichung (22)
— (Cye" + Cye) — ;lél— px+EJaZ + ﬁr’- T] = —H h+ N Al

Setzt man

R:%[—pﬁ—fﬁﬂz—%ﬁgr] ]

r .
N (22a)
— 1Ay
o1 |
so lauten die beiden Bestimmungsgleichungen _
C1+ C2 +R:H1,h(D
Clev + Cze_v + R = H],h(D
und damit
o _ (HEO—R(1—e)
1 — v —v
e — ¢ (23)
o _ _(Hh0—R(1—e)
2 — 7 e — eV

Es eritbrigt noch die Angabe der Verschiebung 4/,".

2) Fiir eine schirfere Berechnung unter Beriicksichtigung der veranderlichen Hinge-
stangenkrafte wire in der zweiten Gleichung von (19) p, aus Gl. (21) und (20) einzu-
fithren. Fiir 9 = 0 1468t sich die Wirkung der Lagerreibung eines Versteifungsbalkens
ermitteln. :
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Mit J h , _ d
51’—£x ( [/l(l—“‘x)‘—Hl.Vl]x(l Y) _dx

—EJJ, / 2 cosp
Px g ’ h i .
“ZEFJO(H‘ +~l-n)(l—~2x)sm/>?dx (23 a)

wobei # und g in der rechten Riegelhilfte negativ ist, wird
b H/ ) l
A l,~ o dl + (E‘F, — wt 2 (23 b)

Ohne Beriicksichtigung der Wirmewirkung, der Zusammendriickung des
Riegels und der Liangeninderung der Hingestangen und wenn g’ =0, /,;, == 0,
wird

ReL(Cpa®) o
a” r
und die Integrationskonstanten

¢ _ (Hih—R(1—e) l

“—e’ (24)
c — (Hr—R)(1—¢) l
2 — e’ — e~V
Die Kontrolle gibt
C1+ C = (Hxh—R) (25)

III. Bestimmung der Unbekannten H; und H-.

Es sind zwei Gleichungen erforderlich.

Zur Bestimmung der Unbekannten wird die Arbeitsgleichung heran-
gezogen, und zwar einmal die Arbeit der inneren und duBeren Krifte an der
Hiangegurtung und den Riickhaltketten bei der Vertikalverschiebung %, die
zur Gleichung (I) fithrt und dann die Arbeit, die der Versteifungsrahmen bej
der Durchbiegung # leistet (Gl. (II)). Die Trennung des Tragwerkes in
diese zwei Teile ist moglich, weil beide die Durchbiegung » erleiden und von
der Beriicksichtigung der geringen Forminderung der Hingestangen Ab-
stand genommen worden ist.

1. Ableitung der Gleichung (I).
Bedeuten

g das Eigengewicht, das unmittelbar auf die Kette wirkt,

gr das Eigengewicht der Kette,

pr die zufillige Last, die von der Kette iibernommen wird,

/. den Abstand der Hingestangen,

E, die Elastizitiatsziffer der Kette,

a, den Neigungswinkel der Kettenstibe gegen die Waagerechte,

a; den Neigungswinkel der Riickhaltkette,

Al,, Al, die waagerechten Verschiebungen der Rahmenstiitzpunkte nach auBien
infolge Nachgebens der Widerlager (44, + 4l, = A1),

A4,”,4," die lotrechten Senkungen der Rahmenstiitzpunkte infolge Nachgebens
der Widerlager (4" + A4” = A) (Fig. 8),

&,6” die Verschiebungen der Ankerpunkte der Riickhaltketten in Richtung
derselben infolge Nachgeben der Widerlager (Fig. 8),
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so lautet die Arbeit A4,, die die Belastungen bei der Senkung der Kette N
leisten:

~l
8
[l = Yo ) o oo
0 /

Die Arbeit A,, die infolge der Dehnung der Kette und der Senkung der
oberen Kettenstiitzpunkte hervorgerufen wird und hier erstmalig beriick-
sichtigt ist, ergibt sich unter Heranziehung der Bezeichnungen in Fig. 8 aus
nachstehenden TeilgroBen:

a) Vorhandene Horizontalkraft: #/H,, + 523
in der Kette: <’-1M + ZQ) sec ¢,
in der Riickhaltkette: (Hok -+ f; ) sec «,
im Pylon: \ E+ H2> (tgay + tga’)
im Rahmenstiel : < [;2 tg o,

b) Lingeninderungen durch H,
1y seca, (4 sec o)

in der Kette: E T
in der Riickhaltkette: ﬁasﬁ‘?%; S
im Pylon: - H, (tga, + tga’) Ehlpi
im Stiel : | _ /j’zéf %gﬂ

Werden auch die Wirmednderung um ¢°, sowie die Verschiebungen der
Widerlager beriicksichtigt, so wird

A secd « 2s, H, sec?«
ao = (s )| cclay | 25, Hy sect
2 = (Huet 5 ) (U H: " g EF,

2 H, (tg oy +tga) an 2H htg? oy
EF, EF,

+ + ¢ut[2315e0a1 +

L
+ D hsece, + 2h,(tg oy + tga') — 2htga1] +
0

ALz | AL
+ (0" + 0")secw —{—Ata+ta+ta'< 4 2] 27
(O + 0% secas +A1ge + (g +18) (o + 57 )] @D

Die Gleichsetzung der duBeren mit der inneren Arbeit
A - Az

ergibt nach Kiirzung durch H,, + - 3 und Multiplikation mit EJ:

mit den vereinfachenden Bezelchnungen:



Verformungstheorie der Hangebriicke mit Versteifungs-Zweigelenkrahmen 171

/ .
. LsecdayE[J ) EJ
LS"—‘; EIF}‘:?—FZSISEC C{IEI—F—;}—I_
+ 24, (tg ey +tga’)2[{ + 2/ztg2a1%
! ! 4 (27a)
L, = D Asecta, + 2s sec ey + 2h,(tge; 4-1ga) —2htg e,
0
ALz A1,
L,y= (0"40")seca, + Atga, + (1gea, + tga)(vl i)
‘ 2 hy, 2h,
87 (" |
Ej—ﬁj ydx = HyLs + EJwtL;+EJL, ‘ (28)
0

Nun wird # aus Gleichung (15) in die letzte Gleichung eingesetzt; es ent-
steht vorerst

1
EJa?
und wenn die Ausdriicke aus Gleichung (3) und (4) fiir y, und y, eingefiihrt
werden

1
1 (H

g [C, e + Cye ™ + pel (*’j%—l?x) + (M, -~ H, y, —HZ.V‘&):I dx

v 0

I
(I}dx:
<0

ol

| ! rl
pis = || @oe ooy an v e {lpsds

Jo EJa? L), ro 0 0
ol
nl H, 3
M,d —Hl<h w) -—ig].
_‘_-’0 o & ! + 4 12r.

Aus der Gleichsetzung von
A, = A, (Gl (28))
entsteht nach Ordnung der Glieder und Multiplikation mit
r’a

die erste Hauptgleichung

nl I [ / .
Hll(ll—l'—'z\)—l—ﬂgl:*l—é‘*—rag+ra2le :J (C1 gax+C2e—ax)dX+]
i 0 Gl. |
-+ <M0—5§>dx$r5ja2tht——rE]aELv l
Jo

Stetige Vollbelastung mit p,/m (Fall I).

Die Integrale in der Gleichung (I) nehmen fiir die Belastung folgende
Werte an

l
1 o
j (Cre™ 4 Cre)dx = —-[Cren = Cye] = —[(Cye"~ Coe™) - (C, - C2)]l
0

! l o (28b)
— B = [ [ L pstr—n) — 2 = put] 2~ 1] |
L(MO a2>dx =112 PrX(l — x) ey dx = pel 5 a°

C, und C; sind aus Gl. (24) zu ermitteln, alle vorstehenden Werte in Gl. (i)
einzusetzen und geben die erste Bestimmungsgleichung. Gl. (I) unter Be-
riicksichtigung der Normallast im Riegel, der Lingeninderungen der Hinge-
stangen, der ungleichmdBigen Wirme und der Widerlagerverschiebungen.
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Die GI. (26) lautet dann

A, = L (Hgk + Hz) J (y — A7) dx

{
1 1 ax —ax Px
—r joqu — E;?[jo(cle + Cge )dx +J<MO_ az) dx - H1 J_yl dx -
H, E] A4y
— H, (yzdx—{—,’—;éj( + '] % )d +EJC2 jA'l;dx-qLE_/ZJ‘dx] (a)
1 1 [(H, [ o x(l——;x_))
—r—jAz,dx_-T(Elﬂ—}—wi).(/z,, nE— =5 dx (b)
Mit Sm:</l,,~~§ —%l>
wird . -}:—J'A’)]dx: ]7(22;‘ +wz‘)sml
al. (27) Ay = (o + Hz)(g’; Lo+ otli+ L),

wobei in L und L; noch die Glieder fiir die Hingestangen hinzukommen und
zwar

E] . .
EF, v sy, in L; das Glied -+ Zsp.

Wird A, = A, gesetzt und mit £ J r a2 beiderseits multipliziert, so erhilt man
nach Ordnung der Glieder folgende Gleichung (I):

/zl) & l< ﬂ) , EJ 2]_
H11<11 4 +H2[12r Py 1+¢ E1F2V ¢ Elevsml+ra Lg| =

in Ly das Glied -+

:J(Cle“x+C2e‘“x)dx+j<Mo px)derEjZl—f- rEJa?wtl; + GlL I’

2
-+ ijtl(smcf%-%) -rEJa?L,.

Will man auch eine ungleiche Wirme zwischen Versteifungsrahmen (¢)
und der iibrigen Tragwerksglieder (¢,) beriicksichtigen, so ist im Faktor von
L, statt £ der Wert ¢, zu setzen, mit Ausnahme des vom Rahmenstiel ab-
hingigen Gliedes.

2. Ableitung der Gleichung (II).

Die zweite Bestimmungsgleichung fiir die Ermittlung der Unbekannten
H, und H, kann mit Hilfe des auf den Versteifungsrahmen entfallenden An-
teiles p, der gegebenen stetigen Last gewonnen werden, da die Beziehungen
der beiden Unbekannten /, und H, entsprechend der gemeinsamen Wirkung
von Kette und Rahmen, in diesem Werte bereits enthalten sind. Deunkt man
sich daher den Rahmen im Riegel mit p, belastet, so ist der Horizontalschub
H, des derart belasteten Rahmens bereits die eine Unbekannte FH,. Nach
Gl. (20) ist

pr = a*(Cye** + Cye?)
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C, und C, sind nur fiir einen stetigen Bereich der Belastung konstant, haben
aber fiir unbelastete Streckenteile andere Werte und alle folgenden Inte-
grationen miissen an den Grenzen zwischen belasteten und unbelasteten
Strecken fiir die beziiglichen Bereiche geteilt werden. Auch Unstetigkeiten
in der Tragerform verlangen dies.

Im Folgenden gelten die Bezeichnungen der Fig. O.

Diagramume des charges

Fgs L
i 2
””7 i ¢ 3 z‘] e
H,
@ %

e

Die Belastungsfliche des Riegels ist
l ol
G = j prdx = azj (Cre® 4 Cpe ™) dx
0 0

und die Stiitzendriicke der Belastung p,
. .l

= lj pe(l— x) dx |
l 0
1' ! (29)
B, = —J P X dx .
LJg

Das Moment des Versteifungstrigers an der Stelle x ist

My — A, x — L_O pe(x — &) dé | (30)

und der Horizontalschub des Zweigelenkrahmens

g ds
My, — + Ewtl

_Jo J _ Z+Ewtl
‘J71 7 sefes F
wobei fiir _
x < i n =h+4nx ]
2
‘ (31)

x>é n =h-+n(l—x J

(Tragheitsmoment und Querschnittsfliche des Riegels sind J, F, die beziig-
lichen GroéBen fiir die Rahmenstiele /,, F,. Z nicht mit Gl. (11) verwechseln.)
Um die Unbekannte H, zu erhalten, hat man fiir 9, und y, die Werte
der Gleichung (30) und (31) in die Gl. (II) einzusetzen.
Der Nennerausdruck N in dieser Gleichung ist unabhingig von der Be-
lastung. Ist F/, bestimmt, so 148t sich das Rahmeneckmoment M, bestimmen.

Ml — '_‘H‘l/l (32)
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oder wenn man mit u den Einspannungsgrad des Rahmens bezeichnet, auch

My = u 9ﬁt.nax (33)
und das Moment des Versteifungstragers an beliebiger Stelle
My = My — H, y, (34)

Vollbelastung des Riegels mit p, (Fall I) ohne Wiarmewirkung.

In diesem Fall wird mit Beachtung der aus GIl. (22) abgeleiteten Be-
ziehung

Der Stiitzdruck Gl. (29) A = —a(C, — Cy)
und aus QGI. (30) das Moment M, = (C; + C,) — (C, e** + C, =)

und fiir x = El (35)

mit v = E—l

Monax = (Cl _!— CZ) - (Cl e’ + C2 e—v')

Der Zahler Z der Gl. (II) wird mit ds = dx sec § und mit Beachtung, daB fiir
diesen Lastfall C,ev’ — C, e*"’ =0

l
3
7 — j M, y, D5 = 28€CH (2 f [(Cy + Cy) — (Cy % + Cyee%)] (h + nx)dx =
QO

0 J J

_ 2secp Lh (1‘-’ 1 )] n o ok
und der Nenner N
1 i l
,ds [ds ndy 2‘{ 2h  Isecp
N:j +J Zj 4 = h+nx)*dxsecp+ - +—— =
SOV E TR Ty ) B mdeseed e g
2 dseepy( nlt L ] 24 Isec
3j4+ 7 /z+4 +48 l+F4+ F
Nach Multiplikation von Zahler und Nenner mit / cos § wird
% : N h
2{(C +C9)[Z2h ”(ls’al‘zﬂﬂg(cl e’ +C2e"")+;(C1~C2) (I
= A1 LT J . 2o amd U 40
il 2 2 J_ = 3 <4 4 I
l[(/z+4> +48 l_l+2/zcos/>’F4+3cosp’/z 4#1:

und fiir einen waagerechten Rahmenriegel
mt n=0, h=h,, p=20

/

2 {(Cl + Cg)g + (G- Cg)}

[l(/z L/F>+?~hz]j4+2/]

Fiir Wirme kommt zum Wert Z noch der Wert E w ¢/ hinzu und fiir eine
Widerlagerverschiebung — E 4 /.

(37)

H, —
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IV. Bestimmung der Integrationskonstanten fiir Teillasten.

1. Teilbelastung p, von x = 0 bis x == £ (Fall II).

Die vier Integrationskonstanten, C, C, fiir die Laststrecke und C, C, fiir
die unbelastete Strecke, ergeben sich aus den Bedingungen, daB fiir x = 0
und x = / das Moment M in Gl. (18) gleich — H,4 sein muf, weiter dafB
das Moment M, fiir x = k& am rechten Ende der Laststrecke gleich sein miisse
dem Moment M, fiir x = k£ am linken Ende der unbelasteten Strecke. Die
vierte Gleichung ergibt sich aus Gl. (19), indem die Querkraft Q, fiir x = £
am rechten Ende der belasteten Strecke der Querkraft @, am linken Ende
der unbelasteten Strecke fiir x = £ gleich sein muB (Fig. 10).

Fiir die unbelastete Strecke ist

zu setzen. pe =0
Fig. 70
AW /\
Consfante: g | m
fontente: E et —ae =
Es ist nach Gl. (18)
fiir x < k:
M=—(Cert CGe=)— L™ p), 0= —a(Cer— e ]
flir x> k-
M= — (Cze™ + Cye ) — E]’ {;2, Q= —a(Cse™ _Coe ) l

Danach erhilt man die vier Bedingungsgleichungen:

Aus GIl. (18) fiir x = O:

_ ()
M = —(Ci+Co)— (52 —ps) = — Hih
j— k 1 H k 7
o Mk T (Cl e“k + Cg e_ak) -_— ?(I’é _px) = Mk
x ==k . [ ak —ak) ___ ‘,1,,_@
My = — (Cz e** + C, e %) - , (38)
=1 1 H, ’
M; = — (Cd €a1+ C4 €»al)'— “072* ﬁl’% — Hl h
Aus Gl (19):
x =%k Qk - — (Cl ek — Cg e—ak) = QI;
Qi = — a(Cye™ — C, e)
Mit H. H.
1 R, = ,,1.) (.,l — x) R, = il_)— -2 v = «al (39)
a= \r a” r

lauten diese Gleichungen



176 A. Hawranek

C]+C2 +R1 prm— th
Cyet+Coe ™ + R = Cye* + Coe* + Ry

Cye’ + Cye? 4~ Ry = H, I (40)
Cl etk C2 e~k — C5 etk C-L o—ak
Nach den vier Unbekannten aufgeldst, ergibt sich mit m = (/ — &) und
H]_ h — Rl == Dl
H, —R2 = D
1 e (41)
R2_R1_EXT_)‘—D1—'D2 .
C. — 2D2 — 2D1 eV + (R2 _Rl)(gam +e—am)
1 - —
2(e" — ™)
., = 2D1 eV — 202 —_— (R2 _ R])(eam __l_ e—am)
2 - p—
2(e" —e7) (12)
C. — 2D —2D15 V+ (R2 __..Rl)e V(e“k—|—e ak)
T 2(e" — &)
c, = 2D =20, — (R, -Rl)eweak +e
L 2(e" _ e

2. Teilbelastung p, von x = £k bisx = w (Fall IIT).
Die Integrationskonstanten sind (Fig. 11):

Fiir die Strecke £ C,, C,
” ” ;’ m CS; C4
” ” ” z C5) C6
Es sind sechs Bestimmungsgleichungen fiir diese Integrationskonstanten er-
forderlich. Sie werden erhalten, indem fiir x = 0 und x = / in GIl. (18) das
Moment gleich — H,4 sein muB, fiir x = %2 die Momentenwerte fiir beide
Zweige der Momentenlinie gleich sein miissen, ebenso fiir x = w. Die beiden
letzten Gleichungen werden aus der Querkraftsgleichung Gl. (19) gewonnen,
indem fiir x = £, bezw. x = w die Q-Werte der benachbarten Zweige der
Querkraftslinie gleich sein miissen.
Man erhidlt aus Gl. (18):

x=0 M = — (C, + G, FHQZZ-—Hl/l
x =~k Mk —_ (C, eak + C2 e—uk) _ :ZZ — M/;
= H.
o k M;c _— (C3 eak ‘—%" C4 e_ak) — ]; (‘i _"‘px>
az \r
X—Ww — aw —aw 1 ’H2. ‘ —— ’
My = — (Cse*" + Cye %) — *'3(7 *‘/’x)FMw l | (43)
FEV M, = (Cye b Cyemewy — T
ro?
Y=L = (e ~|—C(,e")--hf’:——H1/z
Aus QL. (19)
X — k Qk — a(cl (?“k o C2 e“‘k) — —q (C;; ak _ CA1 e ak)

£ =0 Qu=—a(Cye —Cie ) = —a(Cyet? — Gy )
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. ( H
Mt R=L(_p), mR=1T v (44)

T a\r o
lauten diese sechs Gleichungen:
Gl (1) Ci+Co+ Ry =Hh

(2) Cl Eak + C2 €'ak —%— R2 pum— (:3 gak + (:4 e*(lk + R1
(3) Cs etw + C4 e v _|_ RI == C5 eew + CG oW + R.Z
(4) Cye'+ Cye’ + Ry = Hih
(5) Cl eak — C2 e—ak — C3 eak o C4 e_ak
(6) C3 etV — C4 e = C5 P At — CG e

Diese Gleichungsgruppe ist nach den Unbekannten C, bis C; aufzulosen.

» (45)

fig. 17
\
Px
i !
ki m

<~>I<—”' + z

__‘b"_f}cg" CJ <, _’f‘—'—CS cs _"“:’_

e 4

Aus Gleichungen (2), (3), (5) und (6) lassen sich die einfachen Glei-
chungen ableiten:

(Cy — Cs)eak = —(C;, — Cy) e ** - (Ri —Ry)
(C, — Cs)e™* = (Cy — C4)e_ak
(C3 - C5)eaw == (C4 = C6)e‘“w
(C; — Gy)e*” = —(Cy, — Cg)e ™ + (R, — Ry)

Mit den vereinfachenden Bezeichnungen:

Dy = 2(H, h— Ry)(1—e?)
D,"”=2H h—R)(1 — e

z=1—w, §s =1[—F (46)
u=I04+w, g=1-+%k
haber die Integrationskonstanten nachstehende Werte:
C, = (RZ - Rl) [eaz + e E — (eas + e—as)] + Dgﬂ
1 = — .
2(ev —e7)
C, — (Rz —_ Rl) [e‘” + g*i‘s —_ (6“2 _|_ e—az)] . D2’
2 - a2 -
2 —e)
. — (Re—R\)[e" 4 e — (e + e29)] 4 D,
3 - p—
2(e" —e7) , )
C, — (Ry —— Ry) [e?7 4 e*s — (e** + e7“%)] — D, %
4 — - 4
2=
e (Re—=R)(e= e — e — ) 4+ Dy’
T 20" — )
C. — (RZ . Rl) (ea L]_{__ oS —— pat ___ eaz) o DQ’
6 — SR
2("—e€)

Abhandlungen I1I. 12
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V. Ermittlung der Gleichung I fiir Teilbelastung.

1. Fiir die Belastung p, von x = 0 bis x =% (Fall II).

In der allgemeinen Gleichung (I) sind die von der Belastung abhingigen
Integrale auf den vorliegenden Belastungsfall auszuwerten Es ist
%

l >
j (Cie*™ + Coe*)dx = j (CLe™ 4 Cye ) dx -+ ‘ (Cse** + Cype ™) dx
0 0 J kR

Mit Riicksicht auf die vierte Bestimmungsgleichung wird

/
1 i
| (G Cormyde = — (G = C) - L[ —Coe] (48)

Anderseits wird das Integral

[y W) { Fpck(21- k) Dy E? px] (! pek2(l-x)
l \M 0T a2 d"_.al““‘zz Ty T dx“'“,‘k Y
k
12 k*(31- 2k) (49)
Damit lautet die 1. Gleichung zur Beatlmmung der Unbekannten H, und H,
3 [ .1
(H" >+H2112r ra2 T LS]— l
. 52 P Gl 1
:—;(Cl—C2)+;[C3e"—C4e“’]+ {”" (31-2k) - P }+ rEJa? szf]
Fiir halbseitige Belastung»k ::21 wird
l 9
Px le(l ,L) '
j (M" pe )dx 2 \12 7 a2 (50)

welches in Gl. (I) anstelle des in der geschlungenen Klammer stehenden Aus-
druckes zu setzen ist.

2. Fiir Belastung p, von x = k£ bis x = w (Fall III).
In diesem Falle lautet die Gleichung (I):

! k w
J (Cie™ -+ Cye ) dx — j (Cye** 4+ Cy e %) dx + j (Cse** 4 Cye*)dx +
0 0 k

1
j (Cse™™ 4~ Cg %) dx
Mit Bezug auf die 5. und 6. Gleichung wird
1
j (Cie** + Cye ) dx — — ;‘(Cl — G) + —(lx—(Cs e’ — Cge™) (51)
0

Das Belastungsintegral wird in diesem Falle
14 ok : w 9
P A P j |27 (2 4 ) e — 22 B
L(MO o2 a’x_JO / z+ 5 xdx + A z 4 > X 5 dx

[ pxdx—l—" (k—f—gl—)(l—x)dx

ka'

J;(MO'— &) o= sz [((2z+ m)w? + (Zk-F'm)Z‘z] —me(Lnﬁj + o%’)



Verformungstheorie der Hangebriicke mit Versteifungs-Zweigelenkrahmen 179

Damit laufcet die I. Gleichung zur Bestimmung der Unbekannten /, und H,
nl /8 / \ ] B
(G |, — e =

_ :~%-(C1_C2)+l(C5e"~CGe“’)+{%;ﬁ[(22+m)w“2+(2k+m)22]— » Gl 1
_ (1’22+,_L
Pl 6 a2

)}’—F rEja®wtly

VI. Gleichung II fiir eine Teilbelastung p. von x = 0 bis x = k.
(Fall Il) (Fig. 10)

Die Belastung des Riegels ist
Fiir x <% pr = a?(C, e** 4 Cy )
x>k pe = a*(Cy e+ C, )
und die Gesamtbelastung

k !
G = «? { (Cie*™ 4 Cye ™) dx + agj (Cse™* 4+ Cye ™) dx =
Y0 k

= —a(C,— G) + a(Cye* — Cye™) (52)
Die Stiitzendriicke ergeben sich mit
links g 1 v 1
U= — a(Ci—Co) — (CHC) + (G + Coe)
(53)
ht X
rechis o, _—__a”” + _}‘(c1+c2) + a(C3e"—C4e“’)—%(C3 e+ C,eY)

Bezeichnet man die Momente im belasteten Teil mit I,’, im unbelasteten mit
M,”, so erhdlt man nach Einsetzen der Werte 2, bezw. B, in Gl. (30)

fiir x<% §=x X
My =W, x— a2j (Cie**+ Coe ) (x—&)dE =
§=0
— ig'f __{ E_ v —V) ax N ,—ax
=T + (G +C2)(1 l)+ 7 (Cse"+Cyet)— (Cre* + Cye ™) (54)
fii k x
ur x> sm;':—55(14§>+(c1+cg)(1—-~’1‘)+f(cgev+c4e~v)-—(caeax+c4e—ax)
Das Gr6Btmoment von 9J%x’ tritt ein, wenn
dgﬁé Px 1 1 — v ax —a
—(7;*:O:‘laz‘*7(C1+C2)+7(C3€v+C4€ )'-—-(Z(Cle —C23 x)
oder K—a(Cie*™ — Cye*) =0
Die Entfernung x 148t sich bestimmen aus der Gleichung
ean K ax e §2

—ec¢ Toq
Der Zahler Z der Gleichung (II) wird fiir £ <é

k l {
ds 5 ds ds

z:jsm; »'+{2932,;"——Lj MYy, — 55

0 ylj Ja .]'1] | _é_ ylj ( )
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wobei die Werte M, und M,” aus Gl. (39) und im 3. Integral fiir y, der
zweite Wert der Gl. (31) einzusetzen sind.

Danach ergibt sich bei Beachtung von C,e%* — Cye—%* = C,;e*
der mit J cos f multiplizierte Wert von Z mit '

Jcosp Z—~£;{(§l—k)[lz ;(51+k>]}+(C1+C2)[8£(4h+/zl)—3

C.,e—%*

A nl| h n
+(Cse’+Cye™) l-8(4/z+tzl) - F] + (C-C)+ 5 (Cre™ + Coe) | (56)

, N2
+ (Cg e’ + C4 eV ) '&g "(C3 eak + C4 e_ak) gj - (C‘3 e’ — C-i e—V) {%
und VA .

H, — — - — - (57)
LA 2] .2 0sc0s8) J
ll<h+ 4> +48’Z [ +F+ 312 cos/)’j4+2/zcosﬂ—1i—

Reicht die Belastung iiber die Briickenmitte hinaus, ist also 2 >> 2i, so wird

v[ - ‘k l
5w, ds j , ds j . ds
= X 2 9Jex 2 ; s
N hj+‘é hj+k 2y
und fiir y, ist in den beiden letzten Integralen der zweite Wert der Gl. (31)
einzufiigen.

Gleichung (II) fiir halbseitige Belastung.
Mit £ = El wird aus Gl. (56)
jcosﬂ-Z:(ClJrC.z)[ fffff (4h+n l)—~»~~ +(Cse" +Cye )[gl(4h+nl)]]

(58)
+(C - )/z [Cie”"+Coe V]_ (Cgev—C4€_V)Z l

und fiir einen waagerechten Riegel mit
b= hy B=0 n=0

h ! L
Jz =21 S C-Cor (G e S (Crer-Cue)

iod (c1+c2) +(c Cy) + (C3veV+ C,e™) !rg—(C?,e‘"—C(,e“’)
H, = (59)
iy o J J

Glelchung (Il). Teilbelastungp,vonx = kAbisx = w (Fall I11)
Fig. 11.

Fiir einen waagerechten Riegel
n=20 =20 y1 = h = konst.
Mit den drei Belastungswerten der drei Teilstrecken &, m, z (Fig. 11)
pi = a?(C, e** 4 C, e %) von O bis £
pt”— 2(Cye** + Cy e ) y k5 W
pi’ = a®(Cse* 4 Cyzem ) w W o, [
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erhalt man bei Belastung des Riegels den Stﬁtzendruck

A = —a(C,—G) — (c +Co) + (CseV+ Cse™) (60)
und fiir die drei Teilbereiche die Momente M, E)JE,Q’, My
My — (C+G) ( ) 7 (C5 e’ 4 Cee?) — (Cre®* 4 Cye™)
My = + (Ci + C2)( ) *(Cs eV 4 Cge™?) — (Cse** 4 Cye™¥) ¢ (61)
My = (C, +Gy) (1 - g) ’(Cse" + Cye7") — (Cse* 4 Cye)

und die Gleichung fiir H,
1 [jk , ds jw , ds jl , a@] z
Hy = || My — My yy — My, | = =
1 o yl _/ + B .Vl ] _{- w yl J N
Nach Integration, Beachtung der Gleichungen (45) und Reduktion wird

o ;l@;‘:—*— (C1+C2+C5€ +C6 V)+%(C1_C2)_‘i— (C5€v_c6e—1’)]

und unter Benutzung des bereits gerechneten Wertes fiir N

PP (Cit Gt Coe 4 Coe?) 4 L[(C=C) — (Coer—Cye)]

H, = (62)

J oS o)
IM+ZF+3hh+24

VII. Gleichung II. Wirmewirkung.

Die Gleichung (II) 14Bt sich nach den gleichen Grundsitzen ableiten,
wenn der fiir die Warmewirkung giiltige Belastungswert p, des Rahmen-
riegels bekannt ist.

Dieser 148t sich aus der allgemeinen Gleichung (I) ableiten.

Auf der rechten Seite dieser Gleichung stehen die Belastungsglieder und
auch das von der Wiarme abhingige Glied

FrEje?wtly,

das dem !
( (Cie** 4 Cy ) dx
Jo

entspricht.
Mit Bezug auf die Gleichung (20) ist

l l
J (Cie** 4+ Cye~**)dx = j %dx = FrEJa*wtl;
0 0
Nach Integration ergibt sich

l(f% =FrEJja®wtL; |

und die Belastung des Rahmenriegels fiir die Wirme

4
py, = F gl_fjal ©fLt _ yonstant.
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In der Gleichung (II) fiir A, wird mit M, = ptl x(l —x)

14
7= PSR 3 i s = 1952‘3;”’(16114—5”1)

und mit dem schon errechneten Nenner N
FrEPatwtPLi(16h+5nl)

H, =
n l— 2 ] g-l 2 3 .] J .] .)}
192{ l(th 4> t g 22+ + -k J4cos )’+2/z~—~ cos f3
und fiir waagerechten Riegel

T rEj"azwtlth

12[1/1—{— j—{—h’jj +2/]

VIIL. Losung des Gleichungssystems.

In diesem zweifach statisch unbestimmten System konnen die beiden
Unbekannten H, und H,, die den zwei Gleichungen (I) und (II) geniigen
miissen, nicht explizite ausgedriickt werden, weil sie auch in den Werten a v,
C, und C, enthalten sind und der erstgenannte Wert o im Exponenten von e
erscheint. Es ist daher zur Lésung beider Gleichungen ein Anniherungsver-
fahren erforderlich, das insofern schwieriger ist, als es sich um zwei Unbe-
kannte handelt, die gegenseitig in Beziehung stehen und zwei Mannigfaltig-
keiten fiir die erste Annahme von /, und H, vorliegen.

Die einfachen Beziehungen zwischen /H, und H,, wie sie bei Anwendung
eines Parabelbogens als Versteifungstriger vorhanden sind (siehe Melan,
Handbuch der Ingenieurwissenschaften, Theorie der eisernen Bogenbriicken,
IV. Auflage 1925, Seite 195, Formel 464) und die die Auswertung der Glei-
chungen erleichtern wiirden, fehlen hier. Man kann sich davon iiberzeugen,
wenn man die beiden Gleichungen nach /A, und H, auflést und deren Ver-
haltnis bestimmt. (Man vergleiche Gleichung (36) mit der spiter folgenden
Gleichung (III’).)

Anhaltspunkte fiir die erste Annahme von /A, und /, geben die Werte,
die man nach der einfachen Elastizititstheorie fiir die gleiche Belastung erhalt.

Bei Teilbelastungen sind fiir die Teilstrecken die beziiglichen Konstanten
C zu beriicksichtigen. Bei Mitberiicksichtigung der Warmewirkung ist in
Gleichung (I) das letzte Glied gleichfalls in die Rechnung einzubeziehen. Soll
die. Warmewirkung allein beriicksichtigt werden, so sind die von den Be-
lastungen abhiangigen Glieder bei den Gleichungen fortzulassen.

Da bei der Verformungstheorie das Superpositionsgesetz nicht gilt, sind
atich die a und C-Werte fiir den jeweiligen Anfangszustand des Tragwerkes
verschieden und sind immer gesondert zu berechnen.

Der Rechnungsvorgang fiir die Losung der beiden Gleichungen ist fol-
gender.

Es wird zuerst die Gleichung (II) herangezogen, die bloB die Unbekannte
H, enthilt. (Bei Vollbelastung Gleichung (36).) Man wahlt einen passenden
Wert H,” und drei verhiltnismiaBig weit auseinander liegende Werte von H,’
(I, 11, 1II), dann einen zweiten Wert /,” und die gleichen drei Werte H,
und rechnet fiir jedes Paar die beziiglichen GréBen a, C und bestimmt aus
der Gleichung (II) den Rechnungswert H,,. Diese Rechnungswerte trigt

H1~_—
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man in einem Koordinatensystem auf (Fig. 12), wobei die angenommenen
Werte H, als Abszissen und die errechneten F/,, in gleichem Mafstabe
nach abwirts aufgetragen werden. War die Annahme richtig, so ist H," = H,,
und der beziigliche Punkt im Koordinatensystem muf auf einer von 0 aus
unter 45° gezogenen Geraden G, liegen. Da aber die ersten Annahmen nicht

1]
L'p 1y =70¢
840¢ /
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Vollbelastung -| Full Joading 0
820 /
“/ i
T~ |82 1
N S
t\s @ T H;=82/5¢ _ale©
NN /) Ho”
LR N N ¢ Ul
n
oS @ Q
o S g -0 /
” !
TR £ S 85540 N
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S 3§ }lzee WzZats }l’
3 24
XY 2 % S2
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358 ¢
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Fig. 12. Solution du systeme d’équations. Losung des Gleichungssystems.

Solution of the system of equations.

gleich zutreffen werden, liegen die beziiglichen H,-Werte auBerhalb und
man kann die, jedem I, 11, 111 zugehorigen H,,-Werte durch eine Kurve A ver-
binden. Im Schnittpunkte dieser sehr maBig gekriimmten Kurven, die fast ge-
rade sind, mit der Geraden G, erhilt man drei Werte /), (in der Fig. I, II, 111
bezeichnet). Mit diesen H$,-Werten und den zugehdrigen Hy/-Werten (I, II,
111) geht man in die Gleichung (I), wobei man die fiir das betreffende Paar
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frither errechnete GréBe a, C beniitzt und ermittelt die GroBe H,,.

In dem Koordinatensystem werden nun auf der gleichen Abszissenachse
die angenommenen H,-Werte aufgetragen und dort als Ordinaten in gleichem
MaBstabe die H,-Werte eingetragen. Dabei erhilt man die drei Punkte I,
I, 11" (Fig. 12). Durch eine Kurve B verbunden, ergibt sich im Schnitt-
punkte mit der Geraden U, der endgiiltige H,-Wert.

Um nun den zugehdrigen richtigen H,-Wert zu erhalten, interpoliert
man zwischen zwei auf verschiedenen Seiten der Geraden G, liegenden
Punkten (in Fig. zwischen II’ und IIl’), da jedem dieser Punkte I’; II’; 11V
ein zugehoriges H, entspricht, das auch in der Figur eingetragen ist. Even-
tuell kann man die Interpolation graphisch durch Umklappen auf einer Kurve
I1”, I11” vollziehen, indem man zur Sehne II’, I1I’ senkrecht die betreffenden
H,-Werte auftrigt und den Abstand von der Kurve fiir den Schnittpunkt S,
sucht, der das richtige H, ergibt. Fiir diese /{, und H, sind die a, C, C, neu
zu berechnen.

Eine Kontrolle ergibt sich, indem man fiir das #, unterhalb der Ab-
szissenachse in der Geraden (G, den Punkt S, sucht, der auf einer Kurve C
liegen muB, die dem richtigen H,-Werte entspricht. Besonders hervor-
gehoben soll werden, daB alle hier erwidhnten Kurven 4, B, C von einer Ge-
raden nur sehr wenig abweichen.

Eine zweite Kontrolle ist auf folgende Weise moglich.

Man driickt aus Gleichung (22) H, aus

H, = /12 [( +GC) + — (H? _/Jx)]

I

und setzt diesen Wert in Gleichung (I) ein, um daraus H, zu rechnen; es ent-
steht allgemein

1 1
[ (Cle“x+C‘_,e"“x)dx+[ (M0+ a{)d px;(/qu ) (C+C,)— ( Z)?rE]a‘-’cutLt
LA - 0 5 ' (I11)
g
' 4r\3 a2k
und fiir Vollbelastung
W 2 AN .
Ll"(‘i—}— ;Z)—“*(Cl'f(:g)*(cl""‘Cg)l(l“"‘"‘l_)"f—rE‘/a'(UtLt
4 \3Ta2hl T a Y ,
H, = TN, PN — (III")
' s fl s - 2
[4r<3 T awz),‘{"”’ LS]
fiir einen waagerechten Riegel
3
s 11'2 —2(Ci—C) — UCHC) F rEJ e oL

Hy, =

[§f1 + raZLs] o

Diese Gleichungen (III) fiir die Unbekannte H, und die Gleichung (I)
fiir H, sind zugehorige Bestimmungsgleichungen fiir die Ermittlung von H,
und H,.
- Man kann also die Kontrolle durchfithren und in Gleichung (III) fiir
angenommene H, und verschiedene H, wieder Werte /1, rechnen, sie im
Koordinatensystem auftragen und Werte F,’, die einem H,’ entsprechen, ver-
binden (Fig. Kurven D). Die den richtigen /H,-Wert entsprechende E-Linie
(strichpunktiert) muBi durch S, hindurchgehen, was der Fall ist.
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24 x 74,25 = =342m

Charge - Belastung -Load pp
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~ Va/eu/‘moye/m&‘ © ¥ ™M R o
(:; g Loading af/ﬁe.s//fzrm_y Mittetwert o |3 g S g‘ ';:/@
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EQ © QR flechissements - Ourchbrequngen
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- " ” ” " 1 (Fheory of elasticity)
e e——- » ” " " gil‘d9f$.

Fig. 13. Résultats pour la pleine charge avec p .
Ergebnisse bei Vollbelastung mit px.
Results when fully loaded with px.
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Der in Fig. 12 eingetragene Vorgang bei der Losung entspricht der Voll-
belastung in dem anschlieBenden Beispiel.

" Die im Vorliegenden entwickelte Verformungstheorie fiir die Hange-
briicken mit einem Zweigelenkrahmen als Versteifungstrager 148t sich
in dhnlicher Weise auch fiir die Verwendung eines Zweigelenkbogens
als Versteifungstriger durchfithren, wobei die Ordinaten y, in Gleichung (3)
der Gleichung der Bogenachse entsprechen miissen. Ist diese Bogenachse
parabolisch, wie die Form der Kette, so ergeben sich- Vereinfachungen,
woriiber an anderer Stelle berichtet wird.

IX. Beispiel.
Gewaihlt wird eine Kabelhingebriicke nach dem Entwurf des Verfassers
mit der Spannweite / = 342 m = 24 X 14,25 m, einer Pfeilhohe f = 34,2 m
des Kabels. (Die gleiche Briicke wie in der Abhandlung im Stahlbau 1934.)
Die sonstigen Abmessungen sind in der Fig. 13 a und auBBerdem im folgenden
gegeben.

fli = 0,1 tg oy = 0,3312, sek a; = 1,0534
h =30 m tg o —4f —04

/n = 320m ;. =tgo +tga = 07312
= 50m n =tg = 0,011695

hy = 39,25 m G = cos # = 0,99003

s1 = 226,088 m sin # = 0,0116951

s{ = 119,62 m (ohne Verankerung im Schacht).
tg s — tg @, = 0,033333 konst. {. Parabel.
(tg a;—tgay)? = 0,001110889

Versteifungsrahmen: F = 0,16205 m*, J = 1,61416 m*

Kabel: F = 0,0541 m?

Pendelpfeiler: F1 = 0,19808 m?,

Rahmenstiel : F, = 0,24568 m*, J,=0,13578 m*
Hingestangen: F2 = 0,004564 m?,

Riickhaltkabel: F3;=0,05412 m?,

JF = 99609 m2 J|Fs = 20,8255 m*
JIFi = 81122 m?* j/F4= 6,2837 m?

JIF: = 353,672 m? JIJ. = 11,888

F =21 000 000 t/m? (Verstelfungstrager Pendelpfeiler)
£, = 16,000000 tl ?  (Hangesdulen als Drahtseile)

E, = 19,000 000 1/mo (Kabel)

EJ = 33,897360 tm*

2'sp = 332,534 m.

Belastungen: gr = 3,940 t/m Eigengewicht pro Kabel einschlieBlich des
: Kabelgewichtes, davon wird
e 1,000 t/m nicht auf das Kabel iibertragen.
pe = 2,38 t/m die zufillige Last fiir den Versteifungsrahmen.

(]

1. Vollbelastung der Briicke mit p, = 2,38 t/m (Unbekannte
H,, H.).

Der Anfangszustand ist gegeben durch die Kabelbelastung von g, — g’ =
2,94 t/m und die Belastung des Versteifungsrahmens mit 2/ = 1,0 t/m.
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Damit werden die beiden Horizontalkriafte nach der Elastizititstheorie
Hy, = 40,00 t,
H,, = 1256 - 336,24 = 1592,24 t.
Der in der Abhandlung angegebene Losungsvorgang fiir die beiden Un-
bekannten, wobei gerechnete Werte des Anndherungsverfahrens in Fig. 13
mit Kreisen bezeichnet sind, gibt die endgiiltigen Werte:

H, = 90181t gegen 9541t nach der Elast. Theorie
H; = 730t gegen 800,24t " ” »
a = 0,00803848 m™* v = 2749159
a? = 0,000064617126 m~* e’ = 15,620490
C. = 791,35760006 tm?® e”'=0,063982
C, = 12368,5161733 tm?® e’ = 3,953415
EJe?*= 2190,35 tm™* e’ = 0,252046
r = 4275 m
Mit diesen Werten und mit M, = 1% p,- x (l — x) wurden nach
Gl. (20) p¢, pr (Fig. 13D)
(18) M (Fig. 13¢)
(19) Q (Fig. 13d)
(15) v (Fig. 13 ¢)

gerechnet, und in der folgenden Tabelle sowie in Fig. 13 eingetragen.

Tabelle I. Ergebnisse bei Vollbelastung nach der Verformungstheorie.

Pkt. e ‘ D Q | M "
o | 0,850t/m} 1,530t/m | 93,063 t | —2753,944 tm | 0,000 m
1 0770 |1610 | 81,530 |-1511,331 0,143
3 10639 ‘ 1741 61,540 518,540 0,449
6 | 0504 | 1876 | 37356 | 2611.870 | 0.876
0 |0428 | 1952 17627 | 3775691 1,165
12 | 0404 | 1976 0,000 | 4148799 1253

AuBerdem wurden darin die beziiglichen Werte aus der Berechnung nach
der einfachen Elastizititstheorie strichliert ersichtlich gemacht.

Aus diesen Figuren ist zu ersehen, daBl die Belastung des Ver-
steifungsrahmens p; nicht konstant ist, wie dies die Elastizititstheorie
ergibt (0,500 t/m). Sie betragt an den Tragerenden 0,850 t/m, in der Mitte
0,404 t/m und im Mittel 0,545 t/m. Dieses ist groBer als jenes nach der
Elastizititstheorie 0,509 t/m. Die Héangestangen sind also an den Enden
wesentlich niedriger beansprucht als in Briicken-Mitte, werden also an den
Enden kleinere spezifische Dehnungen erfahren als in der Mitte, die Mo~
mente des Versteifungstriagers fiir die zufillige Last sind fiir Vollbelastung
bis auf einen kleinen Bereich durchwegs geringer als nach der Elastizitits-
theorie, in der Briickenmitte sind die positiven Momente um 6,0 %% geringer,
an den Enden ist der Unterschied kleiner. Jedenfalls werden Ersparnisse er-
zielt. Fiir Teillasten sind die Ersparnisse wesentlich groBer. Die Quer-
krafte verlaufen ahnlich wie bei der Niherungstheorie, der Gré68twert an
den Briickenenden betragt blofi 93,06 t gegen 106,10 t nach der Elastizitats-
theorie.

Dagegen zeigt die Durchbiegung fiir die zufillige Vollast den Be-
trag von bloB 1,253 m gegeniiber dem Wert von 2,67 m fiir eine Hangebriicke
mit Versteifungsbalken mit gleichem Trigheitsmoment nach der
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Elastizitatstheorie, was eine Verringerung der Durchbiegung um 57 oo ergibt.
Dies liegt einmal an der Anwendung des Versteifungsrahmens und dann an
der Entlastung der p; in der Briickenmitte. Die Durchbiegung ist auch gegen-
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Fig. 14. Résultats pour charge sémii-latérale avec px.
Ergebnisse bei halbseitiger Belastung mit pux.
Results when loaded with px on half the span.

iiber jener aus der Elastizititstheorie (1,431 m) fiir das gleiche System um
14 o6 geringer.

2. Halbseitige Belastung der Briicke mit p, = 2,38 t/m.
In diesem Falle sind

H, = 40,00 t
Hoy, — 1424,12 t
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und die fiir die hinzukommende Belastung nach dem angegebenen Verfahren
errechneten Horizontalkrafte

H, = 51,4 t gegen 47,7 t nach der Elastizititstheorie,
H; = 365,0 t gegen 400,12 t nach der Elastizitiatstheorie
wobei die Integrationskonstanten die nachstehenden Werte haben:

C, = 0131,346, C, = 25884,968, C;, = — 953,223, C, = — 53809,097.
Die Verteilung der Lasten p, auf den Triager p, und auf die Kette p,, die
Momente, Querkrifte und Durchbiegungen sind in Fig. 14 eingetragen.

Die Momente wurden auch nach der Elastizititstheorie gerechnet und
sind in Fig. 14 strichliert eingetragen. Die genauen positiven Momente sind
um 11,309, die negativen um 12,69 kleiner als jene der Elastizitits-
theorie.

Die Ergebnisse sind auch in der Tabelle II eingetragen.

Tabelle Il. Ergebnisse der halbseitigen Belastung nach der Verformungs-

theorie.

Pkt. Pt P Q M b
0 | 1,603t/m| 0,777t/m| 139,793 t | — 1542,000 tm J 0,000 m
1 1,511 0,869 117,617 200,491 | 0,161
3 | 1,370 1,010 77046 | 3106425 { 0,435
6 | 1270 1,110 20,561 | 5111,353 | 0,829
9 | 1,284 1,096 | -33,625 | 4834,203 0,835

12 | 1416 0964 |-90012 | 2192,337 0,678
12" |-0,964 0964 |-90,012 | 2192,337 0,678
9 |-0,812 0812 |-53685 |- 839,727 0,364
6 |-0732 0732 | -20,560 . | —2432.867 0,104
3 |-0,721 0,721 10,262 | -2651,328 | -0,016
1 |-0,729 0,729 31,160 | -2063,049 |-0018
0 |-0,776 0,776 42,031 | —1542,000 0,000

Beachtenswert ist der Verlauf der Hangestangen-Krifte. In den beiden
Beispielen sind die Hingestangen, die Normalkriafte im Riegel, wie die
Wirme nicht beriicksichtigt. Es sei hervorgehoben, daBl die Gleichungen sehr
empfindlich sind.

Zusammenfassung.

Ausgehend von einer parabolischen Kettenform, wird fiir eine Hinge-
briicke mit einem Zweigelenkrahmen als Versteifungstriger die strenge
Theorie mit Riicksicht auf die Verformung des Tragwerkes gegeben. Es
werden fiir dieses zweifach statisch unbestimmte System die beiden Haupt-
gleichungen abgeleitet und zwar fiir drei Fille, eine Vollbelastung (Fall I),
eine Teillast, die bis zum linken Trigerende reicht (Fall II), und fiir eine
beliebige Teillast (Fall I1I). Der erste Teil der Abhandlung ist ganz allgemein
gehalten und es werden dabei sowohl die Normalkrifte, die Hiangestangen,
als auch die Verformung der Stiele und Verschiebungen der Lagerpunkte be-
riicksichtigt. Die Hauptgleichung (I) wird aus der Gleichsetzung der inneren
und auBeren Arbeit ermittelt, die die Kette und die Pylonen bei ihrer Form-
inderung infolge der Belastung leisten. Die Differentialgleichung fur die
Durchbiegung ermoglicht es, den Ausdruck p, zu finden, der der Belastung
des Versteifungsrahmens im deformierten System entspricht, welcher fiir
stetige Belastungen der Briicke einen mit der Abszisse verdnderlichen Wert
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darstellt. Die zweite Hauptgleichung wird erhalten, indem der Rahmentrager
allein mit p; belastet wird und fiir diesen Zweigelenkrahmen der Horizontal-
schub gerechnet wird.

Zur Ermittlung der Integrationskonstanten werden die jeweiligen Rand-
bedingungen fiir die Triagerenden bezw. fiir die Grenzstellen der Teil-
belastungen herangezogen. Auch die Warmewirkung wird beriicksichtigt.

SchlieBlich wird ein Beispiel gerechnet und ein Verfahren angegeben,
in welcher Weise die Unbekannten, die nicht in expliziter Form ausdriick-
bar sind, ermittelt werden kénnen. Zum Vergleich sind in dem Beispiel auch
die beziiglichen Werte p;, pr, M, @ und die Durchbiegung #, die sich aus
der einfachen Elastizititstheorie ergeben, angefiihrt, wobei sich zeigt, daB
sich bei der Deformationstheorie kleinere Momente und Durchbiegungen
ergeben als nach der Elastizititstheorie. Dieses Ergebnis ist noch giinstiger,
wenn man fiir die Teilbelastungen (halbseitige Belastung) die Maximali-
momente errechnet.

Endlich wird noch gezeigt, daB die Durchbiegung nach der strengen
Theorie fiir das vorliegende Tragwerk um mehr als die Halfte kleiner ist
als fiir eine Hingebriicke mit einem Versteifungsbalken, was dieses
neue System, abgesehen von der sonstigen Wirtschaftlichkeit, fiir die An-
wendung besonders geeignet macht.

Résumé.

Partant d’une chaine de forme parabolique, 'auteur expose la théorie
rigoureuse des déformations des parties portantes dans le cas du pont
suspendu avec poutre raidisseuse constituée par un cadre a deux articulation.
I1 établit les deux équations principales concernant ce systeme statiquement
doublement indéterminé, cela dans les trois cas suivants: I. pour la pleine
charge, II. pour une charge partielle s’étendant jusqu’a ’extrémité de gauche
de la poutre, IIl. pour une charge partielle arbitraire.

Le probléeme est traité, dans sa premiére partie, d’une mauiére tout 2
fait générale, avec prise en considération des forces normales, des tringles
de suspension, de la déformation des montants ainsi que des déplacements
des points d’appui. L’équation principale (I) est obtenue en égalant le travail
interne et le travail externe effectués par la chaine et par les pylones dans
leurs déformations sous l'influence de la charge. L’équation différentielle
du fléchissement permet la détermination de I’expression p; qui correspond
a la charge du cadre raidisseur dans le systeme déformé et représentant, pour
des charges permanentes du pont, une valeur variable avec I’abscisse. La
deuxieme équation principale est obtenue en chargeant la poutre de cadre
seule avec p, et en calculant la poussée horizontale pour ce cadre a deux
articulations.

Pour déterminer les constantes d’intégration, on fait intervenir les con-
ditions limites du cas considéré correspondant aux extrémités de la poutre
ou aux positions limites des charges partielles. L’influence de la chaleur est
également prise en considération.

Enfin, auteur présente un exemple de calcul et indique une méthode
permettant la détermination des inconnues qu’il n’est pas possible d’exprimer
d’une maniére explicite. A titre de comparaison, il donne également les
valeurs correspondantes de py, p, M, Q et du fléchissement 5 telles que les
fournit la théorie de 1’élasticité. Cet exemple montre que les moments et
les fléchissements fournis par la théorie de la déformation sont plus faibles
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que ceux que donne la théorie de 1’élasticité. Ce résultat est encore plus
favorable lorsque l’on calcule les moments maxima pour les charges par-
tielles (charges portant sur la moitié de la longueur du pont).

Pour terminer, I’auteur montre également que suivant la théorie stricte,
le fléchissement des parties portantes est inférieur a la moitié de la valeur
qu’il atteint dans le cas d’une poutre raidisseuse simple. Outre les autres
avantages que l’on peut tirer de I'emploi d’un cadre raidisseur, le fait ci-
dessus rend ce systeme particulierement intéressant dans les applications a
la pratique.

Summary.

Starting with a parabolic form of chain, the strict theory with regard
to the deflections of the supporting structure is given for a suspension bridge
with a two-hinged frame as stiffening girder. For this doubly statically in-
determinate system the two main equations are derived, and this is done
for three cases: a full loading (case I), a partial load extending to the left
end of the girder (case II), and any desired partial load (case III). The first
part of the treatment is kept quite general, whereby the normal forces, the
suspension rods, the deformation of the girder bearing-legs, and also the
displacements of the bearing points are taken into consideration. The main
equation I is determined by equating the internal and external work done
by the chain and the towers in becoming deformed (deflected) in consequence
of the loading. The differential equation for the deflection makes it possible
to find the expression p;, corresponding to the loading of the stiffening frame
in the deformed system, and representing for constant loadings of the bridge,
a value varying with the abscissae. The second main equation is obtained by
loading the frame-girder alone with p, and calculating the horizontal thrust
for this two-hinged frame.

For determining the constants of integration, the momentary limiting
conditions for the ends of the girder or for the limiting positions of the
partial loads, are made use of. Also the effect of heat is considered.

Towards the end, an example is calculated and a method is given showing
how the unknowns, which cannot be expressed in explicit form, may be de-
termined. For comparison, the corresponding values for p;,, p:, M, @ and
the deflection » as found by the theory of elasticity are also given in the
example; from this it is seen that the moments and deflections given by the
deflection theory are smaller than those given by the theory of elasticity.
This result is still more favourable when the maximum moments are calculated
for the partial loads (loadings on half the length of the bridge).

Finally it is also shown that the deflection for the supporting structure
in question is, according to the strict theory, less than half of that for a
suspension bridge with a simple stiffening girder, and this, apart
from other advantages, makes the new system particularly suitable for prac-
tical application. '
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