Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 3 (1935)

Artikel: Verformungstheorie der Hängebrücke mit einem Zweigelenk-Rahmen-

Versteifungsträger

Autor: Hawranek, Alfred

DOI: https://doi.org/10.5169/seals-4149

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VERFORMUNGSTHEORIE DER HÄNGEBRÜCKE MIT EINEM ZWEIGELENK-RAHMEN-VERSTEIFUNGSTRÄGER

THÉORIE DE LA DÉFORMATION DES PONTS SUSPENDUS AVEC POUTRES RAIDISSEUSE EN FORME DE CADRE À DEUX ARTICULATIONS.

DEFLECTION THEORY OF SUSPENSION BRIDGES WITH A DOUBLE-HINGED STIFFENING GIRDER

Von Dr. Ing. ALFRED HAWRANEK, o. ö. Prof. der Deutschen Techn. Hochschule in Brünn (Č. S. R.).

Die Elastizitätstheorie für Hängebrücken mit einem Zweigelenkrahmen-Versteifungsträger wurde vom Verfasser in der Zeitschrift "Der Stahlbau", 1934, S. 137 und 145, veröffentlicht 1). In diesem Aufsatz sind auch die Vorteile des in den Fig. 1-6 wiedergegebenen Tragwerksystems und seiner Kombination bei mehreren Öffnungen ausführlich angegeben und begründet worden. Die Vorteile dieses Systems liegen in der Möglichkeit, durch exzentrische Aufstellung der Pendelstützen gegenüber den Rahmenfußachsen oder durch Anwendung von Gelenken in den Seitenöffnungen einen Momentenausgleich für den Rahmenriegel zu erzielen, den Windverband als teilweise an den Enden eingespannt zu berechnen, was zur Verringerung der maximalen Windmomente führt und deshalb für größere Spannweiten auch schmälere Brückenbreiten zuläßt. Der Horizontalschub und die Momente des Rahmens können durch auskragende Ballastarme vermindert werden. Der, wie dort gezeigt, weitgehend mögliche Momentenausgleich läßt die Ausbildung des Rahmenriegels mit wenig veränderlichem Querschnitt zu, die Durchbiegungen werden wesentlich geringer als bei einer Hängebrücke mit einem einfachen Versteifungsbalken, daher ist das vorliegende Tragwerksystem viel steifer als die gewöhnlichen versteiften Hängebrücken.

Außerdem überträgt der Versteifungsrahmen die Bremskräfte in viel günstigerer Weise als ein Versteifungsbalken. Gegenüber einem Bogen als Versteifungsträger entfällt bei dem vorliegenden System die ganze Fahrbahnabstützung und deren Querverbände, was in diesem Falle eine Gewichtsersparnis bringt. Dann ist auch die Wärmewirkung dieses Systems günstiger als bei Verwendung eines Bogens als Versteifungsträger.

Das System eignet sich auch für große Spannweiten mit großer freier Durchfahrtshöhe, wie für die Überbrückung von Flüssen in Städten mit anschließenden Quaistraßen und läßt eine, heute erwünschte, straffe Linienführung des Tragwerkes bei verminderter Riegelhöhe gegenüber einer gewöhnlichen Hängebrücke mit einem Versteifungsbalken zu, so daß die Untersuchung dieses Systems gerechtfertigt erscheint.

¹) Dr. Ing. A. Hawranek: Hängebrücken mit einem Zweigelenkrahmen-Versteifungsträger. "Der Stahlbau" 1934, S. 137, 145. 1935, S. 15.

In der vorliegenden Abhandlung soll nun dieses Tragsystem nach der strengen Verformungstheorie (Deflection theory) untersucht werden und zwar das System mit einer Öffnung, wie Fig. 2 zeigt, wobei die Rahmen mit Fußgelenken versehen sind. Das System ist zweifach statisch unbestimmt. Es soll symmetrisch angenommen werden. Die in parabolischer Form angenommene Kette ist auf Pendelpfeilern abgestützt.

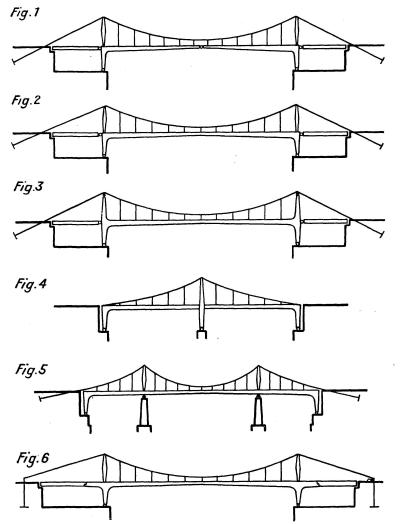


Fig. 1-6. Dispositions de l'ouvrage. Tragwerkausbildungen. Examples of supporting structures.

Statische Berechnung.

Als statisch unbestimmte Größen sind die beiden Horizontalkräfte H_1 für den Rahmen, H_2 für die Kette gewählt (Fig. 7a). Die Anfangslage von Kette und Rahmen ist darin voll ausgezogen. Bei einer Belastung oder bei einer Wärmewirkung biegt sich das System durch und die beiden Tragglieder, Kette und Rahmenriegel, gelangen in die strichliert gezeichnete Lage, wobei sich an der Stelle x des Versteifungsträgers eine Durchbiegung η ergibt, während bei Berücksichtigung der Dehnungen der Hängestangen um $\Delta \eta$ die Kette Senkungen um $\eta - \Delta \eta$ erfährt. Die Dehnung der Hängestangen ist im ersten Teil der Arbeit, um ihn allgemeiner zu halten, berücksichtigt, ebenso die angenäherte Wirkung der Normalkräfte. Da jedoch diese Einflüsse

im allgemeinen gering sind, so wurden diese im zweiten Teil der Arbeit und im anschließenden Beispiele vernachlässigt. Sie lassen sich aber, da die allgemeinen Ausführungen bis zu der Aufstellung der Endgleichungen geführt sind, ohne weiteres mit Hilfe der gegebenen Formeln rechnerisch verfolgen.

In der Arbeit wurde auch der Fall eingeschlossen, daß ein Teil des Eigengewichtes g' erst nach vollständigem Zusammenbau der Konstruktion aufgebracht wird (Fahrbahndecke, Gehsteigabdeckung, Rohrleitungen). Vor dem Aufbringen dieser Last g' sei der Versteifungsriegel spannungslos, der Rahmen ohne Horizontalschub und das gesamte Tragwerknetz in der An-

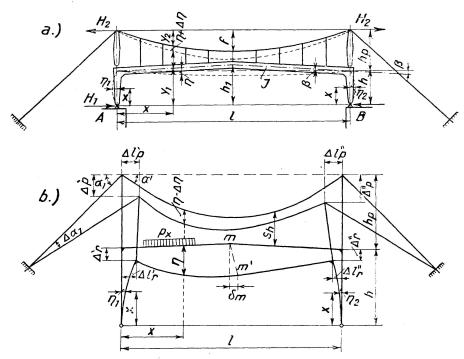


Fig. 7. a) et b). Le système porteur et ses déformations.

Tragwerknetz und dessen Verformung.

Supporting structure and its deformation.

fangslage, von welcher ausgegangen wird. Vom Eigengewicht g=g'+g'' wird g'' sofort auf die Kette gebracht und erzeugt den Horizontalzug H_{2K}'' , dann kommt eventuell g' hinzu, welche Last die waagerechte Kettenzugkraft H_{2K}' bewirkt und schließlich p_x und die Wärmewirkung (+t), die H_2 erzeugt, wobei $H_{2K}=H_{2K}'+H_{2K}''$

Der Rahmenriegel ist gegen die Mitte unter einem Winkel β geneigt angenommen. Alle sonstigen Abmessungen, Querschnittsflächen, Trägheitsmomente, Winkel, sind aus der Fig. 8 zu entnehmen.

In der Abhandlung ist zum ersten Male die Verformungstheorie für ein zweifach statisch unbestimmtes System gegeben.

I. Aufstellung der Gleichungen für die Formänderungen.

Es bedeuten (Fig. 8):

M' N' das Moment und die Normalkraft des Versteifungsrahmens nach der Elastizitätstheorie,

M,N das Moment und die Normalkraft des Versteifungsrahmens in x nach der Verformung infolge g', p_x und der Wärmezunahme,

 M_0, Q_0 das Moment und die Querkraft des Versteifungsrahmens für das statisch bestimmte Grundsystem (in B waagerecht verschieblich gelagert für die Lasten g' und p_x),

 M_1N_1 , M_2N_2 das Moment und die Normalkraft des linken bezw. rechten

Rahmenstiels,

 H_{1k} den Horizontalschub des Rahmens für jenen Teil des Eigengewichtes g', das bei der Montage nicht auf die Kette übertragen werden kann, bei normaler Temperatur,

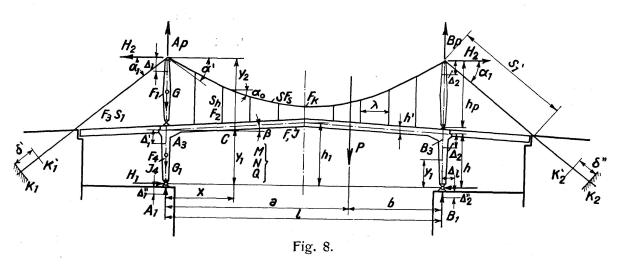
H_{2k} den Horizontalzug der Kette (des Kabels) für die an die Kette unmittelbar aufgebrachten Eigengewichtslasten einschließlich des Ketten-

gewichtes bei normaler Temperatur,

 H_1 den Horizontalschub des Versteifungsrahmens für die hinzukommende zufällige Last p_x und Wärmeänderung um t^0 ,

 H_2 der Horizontalzug der Kette für p_x und t,

g' den Teil des Eigengewichtes, der erst nach Montageschluß aufgebracht wird pro 1 m.



 p_x die gegebene zufällige Last in x pro Längeneinheit,

 p_k die zufällige Last, die von der Kette übernommen wird,

 p_t die zufällige Last, die vom Versteifungsträger übernommen wird,

 η die Senkung des Versteifungsträgers in x für die Lasten g', p_x und Wärmezunahme $(+t^{0})$, $\Delta \eta$ die Dehnung der Hängestangen für g', p_x und t^{0} ,

 $\eta - \Delta \eta$ die Senkung der Kette in x für g', p_x und t^0 ,

 η_1 bezw. η_2 die waagerechten Ausbiegungen der Rahmenstiele, nach innen positiv gezählt,

I, I4 die Trägheitsmomente des Riegels bezw. der Stiele des Versteifungsrahmens, die in jedem Bereich konstant angenommen werden,

F, F₄, F₂ die Querschnittsflächen des Riegels, der Stiele bezw. der Hänge-

E, E₁ das Elastizitätsmaß des Versteifungsrahmens, bezw. der Kette und Hängestangen,

l die Stützweite des Rahmens,

f die Pfeilhöhe der Kette,

h die Stielhöhe des Rahmens,

 h_1 den Pfeil des Rahmens in der Mitte,

h' die Trägerhöhe des Riegels,

 h_p die Länge des Pylons,

 s_h, L die Länge der Hängestangen bezw. ihre Kraft,

λ die Entfernung der Hängestangen,

 a_0 den Neigungswinkel der Kettenstäbe,

 a_l , a_r die einer Hängestange benachbarten Winkel der Kettenstäbe links bezw. rechts,

 β die Neigung des Versteifungsrahmens (Riegels) gegen die Mitte,

 $v' = tg \, a_l - t\bar{g} \, a_r = \text{konst.},$

 y_1, y_2 die Ordinaten des Rahmenriegels bezw. der Kette in x,

w, t 0, Δt die Wärmeausdehnungsziffer, die gleichmäßige Wärmezunahme bezw. den Wärmeunterschied zwischen Ober- und Untergurt des Riegels.

 H_{1k} , H_{2k} sind gegebene Größen. Der Wert H_{1k} ist Null zu setzen, wenn der Einfluß des bei der Montage nicht auf die Kette gebrachten Eigengewichtsanteiles g' auch nach der Verformungstheorie berechnet werden soll. Dann ist in den folgenden Ausdrücken g' statt p_x zu setzen.

 H_{1k} ist auch dann gleich Null anzunehmen, wenn das ganze Eigengewicht bei der Montage auf die Kette geleitet werden kann und der Einfluß der zufälligen Last p_x streng zu ermitteln ist.

Das Moment M' und die Normalkraft N' des Versteifungsrahmens nach der Elastizitätstheorie ist:

$$M' = M_0 - H_1 y_1 - H_2 y_2 N' = -Q_0 \sin \beta - H_1 \cos \beta + H_2 \tan \alpha \sin \beta$$
 (1)

Unter Berücksichtigung der Verformung ergibt sich für die hinzukommenden Lasten g', p_x , für die Wärmezunahme um $+t^0$ einschließlich der Dehnung der Hängestangen das Moment des Versteifungsträgers mit

$$M = M_0 - H_1 y_1 - H_2 y_2 + (H_{1k} + H_1) \eta - (H_{2k} + H_2) (\eta - \Delta \eta)$$

$$N \stackrel{\cdot}{=} N'$$
(2)

Die Normalkraftänderung ist gering, daher wird ihr ursprünglicher Wert N' beibehalten. Die Berücksichtigung der Änderung von N' bei der Verformung führt zu einer nichthomogenen Differentialgleichung, worüber an anderer Stelle berichtet wird.

Für den geradlinig gegen die Mitte ansteigenden Riegel ist

$$y_{1} = h + \frac{2(h_{1} - h)}{l} x \Big|_{0}^{\frac{l}{2}}$$
Mit
$$n = \frac{2(h_{1} - h)}{l} = \operatorname{tg} \beta = \text{konstant ist}$$

$$y_{1} = h + n x \Big|_{0}^{\frac{l}{2}} \quad y_{1} = h + n(l - x) \Big|_{\frac{l}{2}}^{l}$$
Für die Kette als Parabel gilt die Gleichung
$$y_{2} = \frac{4f}{l^{2}} x(l - x) = \frac{x(l - x)}{2r}$$
wobei
$$r = \frac{l^{2}}{8f}.$$
(3)

Setzt man
$$H_{1k} + H_1 = H_1'$$
 $H_{2k} + H_2 = H_2'$
weiter $c_1^2 = \frac{H_{1k} + H_1}{EJ} = \frac{H_1'}{EJ}$ $c_2^2 = \frac{H_{2k} + H_2}{EJ} = \frac{H_2'}{EJ}$
und da $c_2^2 > c_1^2 \cdot \cdot \cdot \cdot c_2^2 - c_1^2 = \alpha^2$ $c_0^2 = \frac{H_2}{EJ}$ (4)

wobei EI = konst., so ergibt sich nach Einsetzen in Gleichung (2)

$$M = M_0 - H_1 y_1 - H_2 y_2 - E J \alpha^2 \eta + E J c_2^2 \Delta \eta$$
 (2a)

Die Kraft L der Hängestangen

$$L = \nu' H_2'$$

soll auf die Längeneinheit reduziert werden, sodaß pro 1 m die Hängestangenkraft $\frac{L}{\lambda} = \frac{v' H_2'}{\lambda}$ bei einem Querschnitt $\frac{F_2}{\lambda}$ eine Längenänderung $\Delta \eta$ einschließlich der Wärmezunahme gibt von

$$\Delta \eta = \left(\frac{v' H_2'}{E_1 F_2} + \omega t\right) s_h
s_h = h_p - y_2 - n x = h_p - \frac{x(l-x)}{2r} - n x$$
(5)

Für den linken Rahmenstiel ist

$$M_{1} = -H_{1}^{'} x + N_{1} \eta_{1}$$

$$N_{1} = N_{0}^{'} + H_{2}^{'} \operatorname{tg} \alpha_{1}$$
im rechten Stiel
$$M_{2} = -H_{1}^{'} x + N_{2} \eta_{2}$$

$$N_{2} = N_{0}^{''} + H_{2}^{'} \operatorname{tg} \alpha_{1}$$

$$(6)$$

Die allgemeine Differentialgleichung der Biegelinie lautet

$$-\eta'' = \left(\frac{M}{EJ} + \omega \frac{\Delta t}{h'}\right) \sec \beta + \frac{d\left[\left(\frac{N}{EF} + \omega t\right) \operatorname{tg} \beta\right]}{dx}$$
(7)

a) Rahmenstiele.

Für die Stiele gelten die Differentialgleichungen

$$\eta'' = \frac{1}{EJ_4} [H_1' x - N_1 \eta_1] \qquad \eta'' = \frac{1}{EJ_4} [H_1' x - N_2 \eta_2]$$
Mit $z_1^2 = \frac{N_1}{EJ_4} \qquad z_2^2 = \frac{N_2}{EJ_4} \qquad z_3^2 = \frac{H_1'}{EJ_4}$

$$\psi_1 = z_1 x \qquad \psi_2 = z_2 x \qquad \psi_1' = z_1 h \qquad \psi_2' = z_2 h$$
ergibt sich

ergibt sich

$$\eta_1 = V_1 \sin \psi_1 + W_1 \cos \psi_1 + \frac{H_1'}{N_1} x$$

$$\eta_1' = z_1 V_1 \cos \psi_1 - z_1 W_1 \sin \psi_1 + \frac{H_1'}{N_1}$$

wobei V_1 und W_1 aus den Randbedingungen zu bestimmen sind.

Für x=0 ist $\eta_1=0$, $\psi_1=0$, daraus folgt $W_1=0$ und bei einer waagerechten Verschiebung des linken Rahmeneckes um $\Delta l_r'$ nach innen ist

für
$$x = h$$

$$\eta_{1} = V_{1} \sin \psi_{1}' + \frac{H_{1}'h}{N_{1}} = \Delta l_{r}'$$
woraus
$$V_{1} = \frac{1}{\sin \psi'} \left[\Delta l_{r}' - \frac{H_{1}'h}{N_{1}} \right]$$
(7 b)

womit die Konstanten V_1 und W_1 bestimmt sind.

Für x = h ist außerdem

$$\eta_{1}' = z_{1} \cot y_{1}' \left[\Delta l_{r}' - \frac{H_{1}' h}{N_{1}} \right] + \frac{H_{1}'}{N_{1}}$$
und das Moment
$$M_{1} = \frac{\sin \psi_{1}}{\sin \psi_{1}'} [N_{1} \Delta l_{r}' - H_{1}' h]$$
für $x = h$

$$M_{h} = N_{1} \Delta l_{r}' - H_{1} h$$
(8)

Analoge Werte gelten für den rechten Stiel mit z_2 , ψ_2' , N_2 , $\Delta l_r''$. Verschieben sich die Rahmenecken infolge der Belastung um δ_1 , bezw. δ_2 nach innen, so ist (N positiv eingesetzt)

positive engesetzt)
$$\Delta l_r' = \delta_1 + \left(\frac{N}{EF} - \omega t\right) \frac{l}{2}$$

$$\Delta l_r'' = \delta_2 + \left(\frac{N}{EF} - \omega t\right) \frac{l}{2}$$
(9)

b) Rahmenriegel.

$$\eta'' = \left[-\frac{1}{EJ} \left(M_0 - H_1 y_1 - H_2 y_2 \right) + \alpha^2 \eta - c_2^2 \Delta \eta - \frac{\omega \Delta t}{h'} \right] \sec \beta - \left[p_x - \frac{EJ c_0^2}{r} \right] \frac{\sin \beta \operatorname{tg} \beta}{EF}$$
(10)

Dabei ist das letzte Glied näherungsweise ausgedrückt, in welchem außerdem im unbelasteten Bereich $p_x = 0$ zu setzen ist. Vernachlässigt man die geringe Neigung des Riegels ($\sec \beta = 1$) und bezeichnet man die konstanten Glieder, zusammengefaßt, mit

$$Z = +\frac{\omega \Delta t}{h'} + \left(p_x - \frac{EJc_0^2}{r}\right) \frac{\sin \beta \operatorname{tg} \beta}{EF}$$
 (11)

so vereinfacht sich die Differentialgleichung zu

$$\eta'' - \alpha^2 \eta = -\frac{1}{EI} (M_0 - H_1 y_1 - H_2 y_2) - c_2^2 \Delta \eta - Z$$

Für gleichmäßig verteilte Lasten, auch für Teillasten, kann man allgemein setzen

$$M_{0} = k + k_{1} x + k_{2} x^{2}$$

$$\frac{d M_{0}}{dx} = Q_{0} = k_{1} + 2 k_{2} x$$

$$\frac{d^{2} M_{0}}{dx^{2}} = -p_{x} = 2 k_{2}$$
(12)

so daß die Differentialgleichung die Form annimmt

$$\eta'' - \alpha^2 \eta = a + bx + cx^2$$

wenn y_1 , y_2 , M_0 , $\Delta \eta$ durch x ausgedrückt werden und in a alle Konstanten zusammengefaßt werden.

Das allgemeine Integral wird

$$\eta = A_1 e^{ax} + A_2 e^{-ax} - \frac{1}{a^2} \left[\frac{2c + a\alpha^2}{\alpha^2} + bx + cx^2 \right]$$
 (13)

Führt man anstelle der Integrationskonstanten A_1 und A_2 neue ein und zwar

$$C_1 = A_1 \alpha^2 EJ$$
 $C_2 = A_2 \alpha^2 EJ$ (14)

so entsteht unter Wiedereinführung von y1, y2

$$\eta = \frac{1}{EJ\alpha^{2}} \left\{ C_{1} e^{ax} + C_{2} e^{-ax} + (M_{0} - H_{1} y_{1} - H_{2} y_{2}) + \frac{1}{\alpha^{2}} \left[-p_{x} + \frac{H_{2}'}{r} \left(1 + \frac{EJ}{H_{2}'} c_{0}^{2} \frac{\Delta \eta}{S_{h}} \right) \right] + EJ c_{2}^{2} \Delta \eta + EJ Z \right\}$$
(15)

$$\eta' = \frac{1}{EJ\alpha^2} \left[\alpha (C_1 e^{\alpha x} - C_2 e^{-\alpha x}) + Q' - EJc_0^2 \frac{\Delta \eta}{S_h} (\lg \alpha_0 + \lg \beta) \right]$$
(16)

wobei

$$Q' = \frac{dM'}{dx} = Q_0 - H_1 n - H_2 \frac{(l-2x)}{2r}$$

$$Q_0 = k_1 + 2k_2 x$$
(17)

Die Bestimmung der Konstanten C_1 und C_2 erfolgt aus den Bedingungen, daß für x=0 und x=l; η gleich sein muß $\Delta r'$ bezw. $\Delta r''$ (Gl. (15)).

$$\Delta r' = \frac{N_1 h}{EF_4} - \omega t h \qquad \Delta r'' = \frac{N_2 h}{EF_4} - \omega t h \qquad (17a)$$

Bei symmetrischen Lasten muß für $x = \frac{l}{2}$; $\eta' = 0$ sein (Gl. (16)).

Diese zwei Bestimmungsgleichungen für die Integrationskonstanten reichen für Vollbelastung aus. Liegen Belastungen von Teilstrecken vor, so gibt es für jede stetige Teilbelastung zwei besondere Integrationskonstanten und dabei eigene η -Werte, wobei für die Lastscheiden für die links bezw. rechts der Lastscheide gelegene Belastung sowohl die bezüglichen η -Werte wie die η' -Werte gleich groß sein müssen, so daß so viel Gleichungen verfügbar sind, als unbekannte Integrationskonstante zu ermitteln sind. In unbelasteten Strecken ist in Gl. (15) und Gl. (16) $p_x = 0$ zu setzen. Wegen des Knicks der Riegelachse in Tragwerkmitte sind bei den Integrationen die Integrale an dieser Stelle zu teilen.

Für einen waagerechten Rahmenriegel ist in allen Gleichungen n=0 zu setzen.

Die Momente des Rahmenriegels ergeben sich:

$$M = -\left(C_1 e^{ax} + C_2 e^{-ax}\right) - \frac{1}{\alpha^2} \left[-p_x + \frac{H_2'}{r} \left(1 + \frac{EJ c_0^2}{H_2'} \frac{\Delta \eta}{s_h}\right)\right] - EJZ \quad (18)$$

Die Querkraft folgt aus der Differentiation von M nach x.

$$Q = -\alpha (C_1 e^{ax} - C_2 e^{-ax}) + EJ c_0^2 \frac{\Delta \eta}{S_h} (\operatorname{tg} \alpha_0 + \operatorname{tg} \beta)$$
wobei
$$\frac{\Delta \eta}{S_h} = \left(\frac{v' H_2'}{E_1 F_2} + \omega t\right)$$
(19)

Nochmals differenziert, erhält man den von dem Versteifungsträger zu übernehmenden Anteil p_t der Belastung p_x .

$$p_t = + \alpha^2 (C_1 e^{ax} + C_2 e^{-ax}) - EJ \frac{c_0^2}{r} \frac{\Delta \eta}{s_b}$$
 (20)

$$p_t = p_x - p_k \tag{21}$$

Bisher wurde die Ableitung allgemein gehalten 2).

II. Ermittlung der Integrationskonstanten.

Vollbelastung (Fall I).

Die Integrationskonstanten C_1 und C_2 lassen sich außer auf dem vorher angegebenen Wege auch aus den Momentengleichungen (18) bezw. (6) bestimmen, da für die Rahmenecken

$$M_{1(x=h)} = M_{(x=0)}$$
 bezw. $M_{2(x=h)} = M_{(x=l)}$.

Bei Vollbelastung ist $N_1 = N_2 \Delta l_r' = \Delta l_r''$. Für das linke Rahmeneck ist demnach

$$-H_{1}'h + N_{1} \Delta l_{r}' = -(C_{1} + C_{2}) - \frac{1}{\alpha^{2}} \left\{ -\rho_{x} + EJ\alpha^{2}Z + \frac{H_{2}'}{r} \left[1 + \frac{EJc_{0}^{2}}{H_{2}'} \left(\frac{H_{2}'v'}{E_{1}F_{2}} + \omega t \right) \right] \right\}$$
Mit
$$T' = \frac{EJc_{0}^{2}}{H_{2}'} \left(\frac{H_{2}'v'}{E_{1}F_{2}} + \omega t \right) \quad \text{und} \quad T = 1 + T'$$

lautet die erste Bestimmungsgleichung

$$-(C_{1}+C_{2})-\frac{1}{\alpha^{2}}\left[-p_{x}+EJ\alpha^{2}Z+\frac{H_{2}^{'}}{r}T\right]=-H_{1}^{'}h+N_{1}\Delta l_{r}^{'}$$
Für das rechte Rahmeneck ist die zweite Bestimmungsgleichung
$$-(C_{1}e^{\nu}+C_{2}e^{-\nu})-\frac{1}{\alpha^{2}}\left[-p_{x}+EJ\alpha^{2}Z+\frac{H_{2}^{'}}{r}T\right]=-H_{1}^{'}h+N_{1}\Delta l_{r}^{'}$$
(22)

Setzt man

$$R = \frac{1}{\alpha^{2}} \left[-p_{x} + EJ \alpha^{2} Z + \frac{H_{2}'T}{r} \right]$$

$$\Phi = 1 - \frac{N_{1}}{H_{1}'h} \Delta l_{r}'$$
(22 a)

so lauten die beiden Bestimmungsgleichungen

$$C_1 + C_2 + R = H_1' h \Phi$$

 $C_1 e^{\nu} + C_2 e^{-\nu} + R = H_1' h \Phi$

und damit

$$C_{1} = \frac{(H_{1}' h \Phi - R)(1 - e^{\nu})}{e^{\nu} - e^{-\nu}}$$

$$C_{2} = -\frac{(H_{1}' h \Phi - R)(1 - e^{\nu})}{e^{\nu} - e^{-\nu}}$$
(23)

Es erübrigt noch die Angabe der Verschiebung Al.'.

 $^{^2}$) Für eine schärfere Berechnung unter Berücksichtigung der veränderlichen Hängestangenkräfte wäre in der zweiten Gleichung von (19) p_k aus Gl. (21) und (20) einzuführen. Für $\eta=0$ läßt sich die Wirkung der Lagerreibung eines Versteifungs balkens ermitteln.

Mit

$$\delta_{1} = \frac{\rho_{x}}{EJ} \int_{0}^{l} \left[h \left(1 - \frac{h}{l} x \right) - H_{1}' y_{1} \right] \frac{x (l-x)}{2} \frac{dx}{\cos \beta} - \frac{\rho_{x}}{2EF} \int_{0}^{l} \left(H_{1}' + \frac{h}{l} n \right) (l-2x) \sin \beta \, dx$$
 (23 a)

wobei n und β in der rechten Riegelhälfte negativ ist, wird

$$\Delta l_r' = \delta_1 + \left(\frac{H_1'}{EF} - \omega t\right) \frac{l}{2}$$
 (23b)

Ohne Berücksichtigung der Wärmewirkung, der Zusammendrückung des Riegels und der Längenänderung der Hängestangen und wenn $g'=0, H_{1k}=0$, wird

$$R = \frac{1}{\alpha^2} \left(-\rho_x + \frac{H_2}{r} \right) \qquad \Phi = 1$$

und die Integrationskonstanten

$$C_{1} = \frac{(H_{1} h - R)(1 - e^{-\nu})}{e^{\nu} - e^{-\nu}}$$

$$C_{2} = -\frac{(H_{1} h - R)(1 - e^{\nu})}{e^{\nu} - e^{-\nu}}$$
(24)

Die Kontrolle gibt

$$C_1 + C_2 = (H_1 h - R) \tag{25}$$

III. Bestimmung der Unbekannten H_1 und H_2 .

Es sind zwei Gleichungen erforderlich.

Zur Bestimmung der Unbekannten wird die Arbeitsgleichung herangezogen, und zwar einmal die Arbeit der inneren und äußeren Kräfte an der Hängegurtung und den Rückhaltketten bei der Vertikalverschiebung η , die zur Gleichung (I) führt und dann die Arbeit, die der Versteifungsrahmen bei der Durchbiegung η leistet (Gl. (II)). Die Trennung des Tragwerkes in diese zwei Teile ist möglich, weil beide die Durchbiegung η erleiden und von der Berücksichtigung der geringen Formänderung der Hängestangen Abstand genommen worden ist.

1. Ableitung der Gleichung (I).

Bedeuten

g das Eigengewicht, das unmittelbar auf die Kette wirkt,

 g_k das Eigengewicht der Kette,

 p_k die zufällige Last, die von der Kette übernommen wird,

λ den Abstand der Hängestangen,

 E_1 die Elastizitätsziffer der Kette,

a₀ den Neigungswinkel der Kettenstäbe gegen die Waagerechte,

a₁ den Neigungswinkel der Rückhaltkette,

 $\Delta l_1, \Delta l_2$ die waagerechten Verschiebungen der Rahmenstützpunkte nach außen infolge Nachgebens der Widerlager $(\Delta l_1 + \Delta l_2 = \Delta l)$, Δ_1'', Δ_2'' die lotrechten Senkungen der Rahmenstützpunkte infolge Nachgebens

der Widerlager ($\Delta' + \Delta'' = \Delta$) (Fig. 8), δ' , δ'' die Verschiebungen der Ankerpunkte der Rückhaltketten in Richtung derselben infolge Nachgeben der Widerlager (Fig. 8),

so lautet die Arbeit A_1 , die die Belastungen bei der Senkung der Kette η leisten:

$$A_1 = \int_0^l \left(g + g_k + \frac{p_k}{2} \right) \eta \, dx = \frac{8f}{l^2} \left(H_{2k} + \frac{H_2}{2} \right) \int_0^l \eta \, dx \tag{26}$$

Die Arbeit A_2 , die infolge der Dehnung der Kette und der Senkung der oberen Kettenstützpunkte hervorgerufen wird und hier erstmalig berücksichtigt ist, ergibt sich unter Heranziehung der Bezeichnungen in Fig. 8 aus nachstehenden Teilgrößen:

a) Vorhandene Horizontalkraft:
$$H_{2k} + \frac{H_2}{2}$$
 in der Kette: $\left(H_{2k} + \frac{H_2}{2}\right) \sec \alpha_0$ in der Rückhaltkette: $\left(H_{2k} + \frac{H_2}{2}\right) \sec \alpha_1$ im Pylon: $-\left(H_{2k} + \frac{H_2}{2}\right) (\operatorname{tg} \alpha_1 + \operatorname{tg} \alpha')$ im Rahmenstiel: $-\left(H_{2k} + \frac{H_2}{2}\right) \operatorname{tg} \alpha_1$

b) Längenänderungen durch H_2

in der Kette:
$$\frac{H_2 \sec \alpha_0 \left(\lambda \sec \alpha_0\right)}{E_1 F_k}$$
 in der Rückhaltkette:
$$\frac{H_2 \sec \alpha_1 \cdot s_1}{E_1 F_3}$$
 im Pylon:
$$-H_2 \left(\operatorname{tg} \alpha_1 + \operatorname{tg} \alpha'\right) \frac{h_p}{E F_1}$$
 im Stiel:
$$-\frac{H_2 h \operatorname{tg} \alpha_1}{E F_4}$$

Werden auch die Wärmeänderung um $t^{\,0}$, sowie die Verschiebungen der Widerlager berücksichtigt, so wird

$$A_{2} = \left(H_{2k} + \frac{H_{2}}{2}\right) \left\{ \sum H_{2} \frac{\lambda \sec^{3} \alpha_{0}}{E_{1} F_{k}} + \frac{2 s_{1} H_{2} \sec^{2} \alpha_{1}}{E F_{3}} + \frac{2 H_{2} (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha')^{2} h_{p}}{E F_{1}} + \frac{2 H_{2} h \operatorname{tg}^{2} \alpha_{1}}{E F_{4}} \pm \omega t \left[2 s_{1} \sec \alpha_{1} + \sum_{0}^{l} \lambda \sec^{2} \alpha_{0} + 2 h_{p} (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha') - 2 h \operatorname{tg} \alpha_{1} \right] + \left(\delta' + \delta'' \right) \sec \alpha_{1} + \Delta \operatorname{tg} \alpha_{1} + (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha') \left(\frac{\Delta l_{1}^{2}}{2 h_{p}} + \frac{\Delta l_{2}^{2}}{2 h_{p}} \right) \right\}$$
(27)

Die Gleichsetzung der äußeren mit der inneren Arbeit

$$A_1 = A_2$$

ergibt nach Kürzung durch $H_{2k} + \frac{H_2}{2}$ und Multiplikation mit EJ: mit den vereinfachenden Bezeichnungen:

$$L_{s} = \sum_{0}^{l} \frac{\lambda \sec^{3} \alpha_{0} EJ}{E_{1} F_{k}} + 2 s_{1} \sec^{2} \alpha_{1} \frac{EJ}{E_{1} F_{3}} + 2 h_{p} (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha')^{2} \frac{J}{F_{1}} + 2 h \operatorname{tg}^{2} \alpha_{1} \frac{J}{F_{4}}$$

$$L_{t} = \sum_{0}^{l} \lambda \sec^{2} \alpha_{0} + 2 s_{1} \sec \alpha_{1} + 2 h_{p} (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha') - 2 h \operatorname{tg} \alpha_{1}$$

$$L_{v} = (\delta' + \delta'') \sec \alpha_{1} + \Delta \operatorname{tg} \alpha_{1} + (\operatorname{tg} \alpha_{1} + \operatorname{tg} \alpha') \left(\frac{\Delta l_{1}^{2}}{2 h_{p}} + \frac{\Delta l_{2}^{2}}{2 h_{p}}\right)$$

$$E L^{8} \int_{0}^{l} dx = U L_{v} + E L_{v} dL_{v} + E L$$

$$EJ\frac{8f}{l^2}\int_0^l \eta \ dx = H_2 L_s \pm EJ \omega t L_t + EJ L_v \tag{28}$$

Nun wird η aus Gleichung (15) in die letzte Gleichung eingesetzt; es entsteht vorerst

$$\int_{0}^{l} \eta \, dx = \frac{1}{E I \alpha^{2}} \int_{0}^{l} \left[C_{1} e^{ax} + C_{2} e^{-ax} + \frac{1}{\alpha^{2}} \left(\frac{H_{2}}{r} - p_{x} \right) + (M_{0} - H_{1} y_{1} - H_{2} y_{2}) \right] dx$$

und wenn die Ausdrücke aus Gleichung (3) und (4) für y_1 und y_2 eingeführt werden

$$\int_{0}^{l} \eta \, dx = \frac{1}{EJ\alpha^{2}} \left[\int_{0}^{l} (C_{1} e^{\alpha x} + C_{2} e^{-\alpha x}) \, dx + \frac{H_{2} l}{r\alpha^{2}} - \int_{0}^{l} \frac{p_{x} \, dx}{\alpha^{2}} + \right.$$

$$\left. + \int_{0}^{l} M_{0} \, dx - H_{1} l \left(h + \frac{n \, l}{4} \right) - \frac{H_{2} \, l^{3}}{12 \, r} \right].$$

Aus der Gleichsetzung von

$$A_1 = A_2$$
 (Gl. (28))

entsteht nach Ordnung der Glieder und Multiplikation mit

$$r^2$$

die erste Hauptgleichung

$$H_{1} l\left(h + \frac{n l}{4}\right) + H_{2} \left[\frac{l^{3}}{12 r} - \frac{l}{r\alpha^{2}} + r\alpha^{2} L_{s}\right] = \int_{0}^{l} (C_{1} e^{ax} + C_{2} e^{-ax}) dx + \int_{0}^{l} \left(M_{0} - \frac{p_{x}}{\alpha^{2}}\right) dx \mp rEJ\alpha^{2} \omega t L_{t} - rEJ\alpha^{2} L_{v}$$
Gl. I

Stetige Vollbelastung mit p_x/m (Fall I).

Die Integrale in der Gleichung (I) nehmen für die Belastung folgende Werte an

$$\int_{0}^{l} (C_{1} e^{ax} + C_{2} e^{-ax}) dx = \frac{1}{\alpha} \left[C_{1} e^{ax} - C_{2} e^{-ax} \right]_{0}^{l} = \frac{1}{\alpha} \left[(C_{1} e^{v} - C_{2} e^{-v}) - (C_{1} - C_{2}) \right]$$

$$\int_{0}^{l} (M_{0} - \frac{p_{x}}{\alpha^{2}}) dx = \int_{0}^{l} \left[\frac{1}{2} p_{x} x (l - x) - \frac{p_{x}}{\alpha^{2}} \right] dx = p_{x} l \left[\frac{l^{2}}{12} - \frac{1}{a^{2}} \right]$$
(28b)

 C_1 und C_2 sind aus Gl. (24) zu ermitteln, alle vorstehenden Werte in Gl. (I) einzusetzen und geben die erste Bestimmungsgleichung. Gl. (I) unter Berücksichtigung der Normallast im Riegel, der Längenänderungen der Hängestangen, der ungleichmäßigen Wärme und der Widerlagerverschiebungen.

Die Gl. (26) lautet dann

$$A_{1} = \frac{1}{r} \left(H_{2k} + \frac{H_{2}}{2} \right) \int_{0}^{l} (\eta - \Delta \eta) dx$$

$$\frac{1}{r} \int_{0}^{l} \eta dx = \frac{1}{EJr\alpha^{2}} \left[\int_{0}^{l} (C_{1} e^{ax} + C_{2} e^{-ax}) dx + \int \left(M_{0} - \frac{p_{x}}{\alpha^{2}} \right) dx - H_{1} \int y_{1} dx - H_{2} \int y_{2} dx + \frac{H_{2}}{r\alpha^{2}} \int \left(1 + \frac{EJ}{H_{2}} c_{0}^{2} \frac{\Delta \eta}{s_{h}} \right) dx + EJc_{2}^{2} \int \Delta \eta dx + EJZ \int dx \right] \quad \text{(a)}$$

$$\frac{1}{r} \int \Delta \eta dx = \frac{1}{r} \left(\frac{H_{2} v'}{E_{1} F_{2}} + \omega t \right) \int \left(h_{p} - nx - \frac{x(l-x)}{2r} \right) dx \quad \text{(b)}$$
Mit
$$s_{m} = \left(h_{p} - \frac{2}{3} f - \frac{nl}{4} \right)$$
wird
$$\frac{1}{r} \int \Delta \eta dx = \frac{1}{r} \left(\frac{H_{2} v'}{E_{1} F_{2}} + \omega t \right) s_{m} l$$
Gl. (27)
$$A_{2} = \left(H_{2k} + \frac{H_{2}}{2} \right) \left(\frac{H_{2}}{EJ} L_{s} \pm \omega t L_{t} + L_{v} \right),$$

wobei in L_s und L_t noch die Glieder für die Hängestangen hinzukommen und zwar

in
$$L_s$$
 das Glied $+\frac{EJ}{E_1F_2}v'\Sigma s_h$, in L_t das Glied $+\Sigma s_h$.

Wird $A_1 = A_2$ gesetzt und mit $E I r a^2$ beiderseits multipliziert, so erhält man nach Ordnung der Glieder folgende Gleichung (I):

$$H_{1} l\left(h + \frac{n l}{4}\right) + H_{2} \left[\frac{l^{3}}{12 r} - \frac{l}{r \alpha^{2}} \left(1 + c_{0}^{2} \frac{EJ}{E_{1} F_{2}} v'\right) - c_{1}^{2} \frac{EJ}{E_{1} F_{2}} v' s_{m} l + r \alpha^{2} L_{s}\right] =$$

$$= \int (C_{1} e^{\alpha x} + C_{2} e^{-\alpha x}) dx + \int \left(M_{0} - \frac{p_{x}}{\alpha^{2}}\right) dx + EJZ l \mp r EJ \alpha^{2} \omega t L_{t} +$$

$$+ EJ \omega t l\left(s_{m} c_{1}^{2} + \frac{c_{0}^{2}}{r \alpha^{2}}\right) - r EJ \alpha^{2} L_{v}.$$
Gl. If

Will man auch eine ungleiche Wärme zwischen Versteifungsrahmen (t) und der übrigen Tragwerksglieder (t_1) berücksichtigen, so ist im Faktor von L_t statt t der Wert t_1 zu setzen, mit Ausnahme des vom Rahmenstiel abhängigen Gliedes.

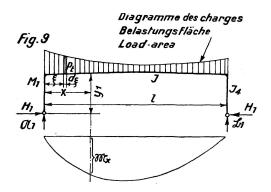
2. Ableitung der Gleichung (II).

Die zweite Bestimmungsgleichung für die Ermittlung der Unbekannten H_1 und H_2 kann mit Hilfe des auf den Versteifungsrahmen entfallenden Anteiles p_t der gegebenen stetigen Last gewonnen werden, da die Beziehungen der beiden Unbekannten H_1 und H_2 entsprechend der gemeinsamen Wirkung von Kette und Rahmen, in diesem Werte bereits enthalten sind. Denkt man sich daher den Rahmen im Riegel mit p_t belastet, so ist der Horizontalschub H_1 des derart belasteten Rahmens bereits die eine Unbekannte H_1 . Nach Gl. (20) ist

$$p_t = \alpha^2 (C_1 e^{ax} + C_2 e^{-a})$$

 C_1 und C_2 sind nur für einen stetigen Bereich der Belastung konstant, haben aber für unbelastete Streckenteile andere Werte und alle folgenden Integrationen müssen an den Grenzen zwischen belasteten und unbelasteten Strecken für die bezüglichen Bereiche geteilt werden. Auch Unstetigkeiten in der Trägerform verlangen dies.

Im Folgenden gelten die Bezeichnungen der Fig. 9.



Die Belastungsfläche des Riegels ist

$$G = \int_0^l p_t dx = \alpha^2 \int_0^l (C_1 e^{ax} + C_2 e^{-ax}) dx$$

und die Stützendrücke der Belastung pt

$$\mathfrak{A}_{1} = \frac{1}{l} \int_{0}^{l} p_{t}(l-x) dx$$

$$\mathfrak{B}_{1} = \frac{1}{l} \int_{0}^{l} p_{t}x dx$$
(29)

Das Moment des Versteifungsträgers an der Stelle x ist

$$\mathfrak{M}_{x} = \mathfrak{A}_{1} x - \int_{\xi=0}^{\xi=x} p_{t}(x-\xi) d\xi \tag{30}$$

und der Horizontalschub des Zweigelenkrahmens

$$H_{1} = \frac{\int_{0}^{l} \mathfrak{M}_{x} y_{1} \frac{ds}{J} \pm E \omega t l}{\int y_{1}^{2} \frac{ds}{J} + \int \frac{ds}{F}} = \frac{Z \pm E \omega t l}{N}$$
 Gl. II

wobei für

$$x < \frac{l}{2} \qquad y_1 = h + nx$$

$$x > \frac{l}{2} \qquad y_1 = h + n(l - x)$$
(31)

(Trägheitsmoment und Querschnittsfläche des Riegels sind J, F, die bezüglichen Größen für die Rahmenstiele J_4 , F_4 . Z nicht mit Gl. (11) verwechseln.) Um die Unbekannte H_1 zu erhalten, hat man für \mathfrak{M}_x und y_1 die Werte

der Gleichung (30) und (31) in die Gl. (II) einzusetzen.

Der Nennerausdruck N in dieser Gleichung ist unabhängig von der Belastung. Ist H_1 bestimmt, so läßt sich das Rahmeneckmoment M_1 bestimmen.

$$M_1 = -H_1 h \tag{32}$$

oder wenn man mit μ den Einspannungsgrad des Rahmens bezeichnet, auch

$$M_1 = \mu \, \mathfrak{M}_{max} \tag{33}$$

und das Moment des Versteifungsträgers an beliebiger Stelle

$$M_x = \mathfrak{M}_x - H_1 y_1 \tag{34}$$

Vollbelastung des Riegels mit p_x (Fall I) ohne Wärmewirkung. In diesem Fall wird mit Beachtung der aus Gl. (22) abgeleiteten Beziehung

$$C_{1} + C_{2} = C_{1} e^{\nu} + C_{2} e^{-\nu}$$
Der Stützdruck Gl. (29) $\mathfrak{A}_{1} = -\alpha (C_{1} - C_{2})$
und aus Gl. (30) das Moment $\mathfrak{M}_{x} = (C_{1} + C_{2}) - (C_{1} e^{\alpha x} + C_{2} e^{-\alpha x})$
und für $x = \frac{l}{2}$

$$\mathfrak{M}_{max} = (C_{1} + C_{2}) - (C_{1} e^{\nu'} + C_{2} e^{-\nu'})$$
(35)

Der Zähler Z der Gl. (II) wird mit ds=dx sec β und mit Beachtung, daß für diesen Lastfall $C_1e^{\nu\prime}-C_2e^{-\nu\prime}=0$

$$Z = \int_0^l \mathfrak{M}_x y_1 \frac{ds}{J} = \frac{2 \sec \beta}{J} \int_0^{\frac{l}{2}} \left[(C_1 + C_2) - (C_1 e^{\alpha x} + C_2 e^{-\alpha x}) \right] (h + n x) dx =$$

$$= \frac{2 \sec \beta}{J} \left\{ (C_1 + C_2) \left[\frac{l h}{2} + n \left(\frac{l^2}{8} - \frac{1}{\alpha^2} \right) \right] + \frac{n}{\alpha^2} (C_1 e^{\nu'} + C_2 e^{-\nu'}) + \frac{h}{\alpha} (C_1 - C_2) \right\}$$

und der Nenner N

$$N = \int_0^l y_1^2 \frac{ds}{J} + \int \frac{ds}{F} = 2 \int_0^h \frac{y_1^2 dy}{J_4} + \frac{2}{J} \int_0^{\frac{l}{2}} (h + n x)^2 dx \sec \beta + \frac{2h}{F_4} + \frac{l \sec \beta}{F} =$$

$$= \frac{2}{3} \frac{h^3}{J_4} + \frac{l \sec \beta}{J} \left[\left(h + \frac{n l}{4} \right)^2 + \frac{1}{48} n^2 l^2 \right] + \frac{2h}{F_4} + \frac{l \sec \beta}{F}$$

Nach Multiplikation von Zähler und Nenner mit $J \cos \beta$ wird

$$H_{1} = \frac{2\left\{ (C_{1} + C_{2}) \left[\frac{lh}{2} + n \left(\frac{l^{2}}{8} - \frac{1}{\alpha^{2}} \right) \right] + \frac{n}{\alpha^{2}} (C_{1} e^{\nu'} + C_{2} e^{-\nu'}) + \frac{h}{\alpha} (C_{1} - C_{2}) \right\}}{l \left[\left(h + \frac{nl}{4} \right)^{2} + \frac{1}{48} n^{2} l^{2} \right] + 2h \cos \beta \frac{J}{F_{4}} + \frac{2}{3} \cos \beta h^{3} \frac{J}{J_{4}} + \frac{lJ}{F}}$$
(II)
(36)

und für einen waagerechten Rahmenriegel

mit
$$n = 0$$
, $h = h_1$, $\beta = 0$

$$H_1 = \frac{2\left\{ (C_1 + C_2) \frac{l\alpha}{2} + (C_1 - C_2) \right\}}{\alpha \left[l\left(h + \frac{J}{hF}\right) + \frac{2}{3}h^2 \frac{J}{L} + 2\frac{J}{F_4} \right]}$$
(37)

Für Wärme kommt zum Wert Z noch der Wert $E \omega t l$ hinzu und für eine Widerlagerverschiebung $-E \Delta l$.

IV. Bestimmung der Integrationskonstanten für Teillasten.

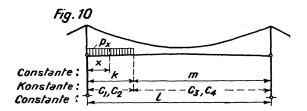
1. Teilbelastung p_x von x = 0 bis x = k (Fall II).

Die vier Integrationskonstanten, $C_1 C_2$ für die Laststrecke und $C_3 C_4$ für die unbelastete Strecke, ergeben sich aus den Bedingungen, daß für x=0 und x=l das Moment M in Gl. (18) gleich $-H_1h$ sein muß, weiter daß das Moment M_x für x=k am rechten Ende der Laststrecke gleich sein müsse dem Moment M_k ' für x=k am linken Ende der unbelasteten Strecke. Die vierte Gleichung ergibt sich aus Gl. (19), indem die Querkraft Q_k für x=k am rechten Ende der belasteten Strecke der Querkraft Q_k ' am linken Ende der unbelasteten Strecke für x=k gleich sein muß (Fig. 10).

Für die unbelastete Strecke ist

$$p_x = 0$$

zu setzen.



Es ist nach Gl. (18)

für
$$x < k$$
:

$$M = -(C_1 e^{ax} + C_2 e^{-ax}) - \frac{1}{\alpha^2} \left(\frac{H_2}{r} - p_x \right), \quad Q = -\alpha \left(C_1 e^{ax} - C_2 e^{-ax} \right)$$
für $x > k$:
$$M = -(C_3 e^{ax} + C_4 e^{-ax}) - \frac{1}{\alpha^2} \frac{H_2}{r}, \quad Q = -\alpha \left(C_3 e^{ax} - C_4 e^{-ax} \right)$$

Danach erhält man die vier Bedingungsgleichungen:

Aus Gl. (18) für
$$x = 0$$
:

$$M = -(C_{1} + C_{2}) - \frac{1}{\alpha^{2}} \left(\frac{H_{2}}{r} - p_{x} \right) = -H_{1}h$$

$$x = k \qquad M_{k} = -(C_{1}e^{ak} + C_{2}e^{-ak}) - \frac{1}{\alpha^{2}} \left(\frac{H_{2}}{r} - p_{x} \right) = M'_{k}$$

$$x = k \qquad M'_{k} = -(C_{3}e^{ak} + C_{4}e^{-ak}) - \frac{1}{\alpha^{2}} \frac{H_{2}}{r}$$

$$x = l \qquad M_{l} = -(C_{3}e^{al} + C_{4}e^{-al}) - \frac{1}{\alpha^{2}} \frac{H_{2}}{r} = -H_{1}h$$
Aus Gl. (19):
$$x = k \qquad Q_{k} = -\alpha(C_{1}e^{ak} - C_{2}e^{-ak}) = Q'_{k}$$

$$Q'_{k} = -\alpha(C_{3}e^{ak} - C_{4}e^{-ak})$$
Mit
$$R_{1} = \frac{1}{\alpha^{2}} \left(\frac{H_{2}}{r} - p_{x} \right) \qquad R_{2} = \frac{1}{\alpha^{2}} \frac{H_{2}}{r} \qquad v = \alpha l \qquad (39)$$

lauten diese Gleichungen

$$\begin{array}{c}
C_{1} + C_{2} + R_{1} = H_{1} h \\
C_{1} e^{ak} + C_{2} e^{-ak} + R_{1} = C_{3} e^{ak} + C_{4} e^{-ak} + R_{2} \\
C_{3} e^{\nu} + C_{4} e^{-\nu} + R_{2} = H_{1} h \\
C_{1} e^{ak} - C_{2} e^{-ak} = C_{3} e^{ak} - C_{4} e^{-ak}
\end{array}$$

$$(40)$$

Nach den vier Unbekannten aufgelöst, ergibt sich mit m = (l - k) und

$$H_1 h - R_1 = D_1
 H_1 h - R_2 = D_2
 R_2 - R_1 = \frac{p_x}{\alpha^2} = D_1 - D_2
 - 2D_2 - 2D_1 e^{-\nu} + (R_2 - R_1)(e^{am} + e^{-am})$$
(41)

$$C_{1} = \frac{2D_{2} - 2D_{1}e^{-\nu} + (R_{2} - R_{1})(e^{am} + e^{-am})}{2(e^{\nu} - e^{-\nu})}$$

$$C_{2} = \frac{2D_{1}e^{\nu} - 2D_{2} - (R_{2} - R_{1})(e^{am} + e^{-am})}{2(e^{\nu} - e^{-\nu})}$$

$$C_{3} = \frac{2D_{2} - 2D_{1}e^{-\nu} + (R_{2} - R_{1})e^{-\nu}(e^{ak} + e^{-ak})}{2(e^{\nu} - e^{-\nu})}$$

$$C_{4} = \frac{2D_{1}e^{\nu} - 2D_{2} - (R_{2} - R_{1})e^{\nu}(e^{ak} + e^{-ak})}{2(e^{\nu} - e^{-\nu})}$$

$$(42)$$

2. Teilbelastung p_x von x = k bis x = w (Fall III). Die Integrationskonstanten sind (Fig. 11):

Für die Strecke
$$k$$
 C_1 , C_2 m C_3 , C_4 C_5 , C_6

Es sind sechs Bestimmungsgleichungen für diese Integrationskonstanten erforderlich. Sie werden erhalten, indem für x = 0 und x = l in Gl. (18) das Moment gleich $-H_1h$ sein muß, für x = k die Momentenwerte für beide Zweige der Momentenlinie gleich sein müssen, ebenso für x = w. Die beiden letzten Gleichungen werden aus der Querkraftsgleichung Gl. (19) gewonnen, indem für x = k, bezw. x = w die Q-Werte der benachbarten Zweige der Querkraftslinie gleich sein müssen.

Man erhält aus Gl. (18):

$$x = 0 M = -(C_1 + C_2) - \frac{H_2}{r\alpha^2} = -H_1 h$$

$$x = k M_k = -(C_1 e^{ak} + C_2 e^{-ak}) - \frac{H_2}{r\alpha^2} = M'_k$$

$$x = k M'_k = -(C_3 e^{ak} + C_4 e^{-ak}) - \frac{1}{\alpha^2} \left(\frac{H_2}{r} - p_x\right)$$

$$x = w M_w = -(C_3 e^{aw} + C_4 e^{-aw}) - \frac{1}{\alpha^2} \left(\frac{H_2}{r} - p_x\right) = M'_w$$

$$x = w M'_w = -(C_5 e^{aw} + C_6 e^{-aw}) - \frac{H_2}{r\alpha^2}$$

$$x = l M_l = -(C_5 e^v + C_6 e^{-v}) - \frac{H_2}{r\alpha^2} = -H_1 h$$
Aus Gl. (19)
$$x = k Q_k = -\alpha (C_1 e^{ak} - C_2 e^{-ak}) = -\alpha (C_3 a^k - C_4 e^{-ak})$$

$$x = w Q_w = -\alpha (C_3 e^{aw} - C_4 e^{-aw}) = -\alpha (C_5 e^{aw} - C_6 e^{-aw})$$

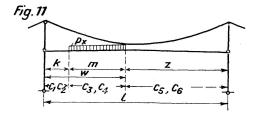
Mit
$$R_1 = \frac{1}{\alpha^2} \left(\frac{H_2}{r} - p_x \right), \quad R_2 = \frac{1}{\alpha^2} \frac{H_2}{r}, \quad v = \alpha l$$
 (44)

lauten diese sechs Gleichungen:

Gl. (1)
$$C_1 + C_2 + R_2 = H_1 h$$

(2) $C_1 e^{ak} + C_2 e^{-ak} + R_2 = C_3 e^{ak} + C_4 e^{-ak} + R_1$
(3) $C_3 e^{aw} + C_4 e^{-aw} + R_1 = C_5 e^{aw} + C_6 e^{-aw} + R_2$
(4) $C_5 e^{v} + C_6 e^{-v} + R_2 = H_1 h$
(5) $C_1 e^{ak} - C_2 e^{-ak} = C_3 e^{ak} - C_4 e^{-ak}$
(6) $C_3 e^{aw} - C_4 e^{-aw} = C_5 e^{aw} - C_6 e^{-aw}$

Diese Gleichungsgruppe ist nach den Unbekannten C₁ bis C₆ aufzulösen.



Aus Gleichungen (2), (3), (5) und (6) lassen sich die einfachen Gleichungen ableiten:

$$(C_1 - C_3)e^{ak} = -(C_2 - C_4)e^{-ak} + (R_1 - R_2)$$

$$(C_1 - C_3)e^{ak} = (C_2 - C_4)e^{-ak}$$

$$(C_3 - C_5)e^{aw} = (C_4 - C_6)e^{-aw}$$

$$(C_3 - C_5)e^{aw} = -(C_4 - C_6)e^{-aw} + (R_2 - R_1)$$

Mit den vereinfachenden Bezeichnungen:

$$D_{2}' = 2(H_{1}h - R_{2})(1 - e^{\nu})$$

$$D_{2}'' = 2(H_{1}h - R_{2})(1 - e^{-\nu})$$

$$z = l - w, \quad s = l - k$$

$$u = l + w, \quad q = l + k$$

$$(46)$$

haben die Integrationskonstanten nachstehende Werte:

$$C_{1} = \frac{(R_{2} - R_{1}) \left[e^{az} + e^{-az} - (e^{as} + e^{-as})\right] + D_{2}^{"}}{2 \left(e^{v} - e^{-v}\right)}$$

$$C_{2} = \frac{(R_{2} - R_{1}) \left[e^{as} + e^{-as} - (e^{az} + e^{-az})\right] - D_{2}^{'}}{2 \left(e^{v} - e^{-v}\right)}$$

$$C_{3} = \frac{(R_{2} - R_{1}) \left[e^{az} + e^{-az} - (e^{-as} + e^{-aq})\right] + D_{2}^{"}}{2 \left(e^{v} - e^{-v}\right)}$$

$$C_{4} = \frac{(R_{2} - R_{1}) \left[e^{aq} + e^{as} - (e^{az} + e^{-az})\right] - D_{2}^{'}}{2 \left(e^{v} - e^{-v}\right)}$$

$$C_{5} = \frac{(R_{2} - R_{1}) \left(e^{-az} + e^{-au} - e^{-as} - e^{-aq}\right) + D_{2}^{"}}{2 \left(e^{v} - e^{-v}\right)}$$

$$C_{6} = \frac{(R_{2} - R_{1}) \left(e^{aq} + e^{as} - e^{au} - e^{az}\right) - D_{2}^{'}}{2 \left(e^{v} - e^{-v}\right)}$$

V. Ermittlung der Gleichung I für Teilbelastung.

1. Für die Belastung p_x von x = 0 bis x = k (Fall II).

In der allgemeinen Gleichung (I) sind die von der Belastung abhängigen Integrale auf den vorliegenden Belastungsfall auszuwerten. Es ist

$$\int_0^l (C_1 e^{ax} + C_2 e^{-ax}) dx = \int_0^k (C_1 e^{ax} + C_2 e^{-ax}) dx + \int_k^l (C_3 e^{ax} + C_4 e^{-ax}) dx$$

Mit Rücksicht auf die vierte Bestimmungsgleichung wird

$$\int_{0}^{l} (C_{1} e^{ax} + C_{2} e^{-ax}) dx = -\frac{1}{\alpha} (C_{1} - C_{2}) + \frac{1}{\alpha} [C_{3} e^{\nu} - C_{4} e^{-\nu}]$$
 (48)

Anderseits wird das Integral

$$\int_{0}^{l} \left(M_{0} - \frac{p_{x}}{\alpha^{2}} \right) dx = \int_{0}^{l} \left[\frac{p_{x} k (2 l - k)}{2 l} x - \frac{p_{x} x^{2}}{2} - \frac{p_{x}}{\alpha^{2}} \right] dx + \int_{k}^{l} \frac{p_{x} k^{2} (l - x)}{2 l} dx =$$

$$= \frac{p_{x}}{12} k^{2} (3 l - 2 k) - \frac{p_{x} k}{\alpha^{2}}$$

$$(49)$$

Damit lautet die I. Gleichung zur Bestimmung der Unbekannten H_1 und H_2

$$H_{1} l\left(h + \frac{n l}{4}\right) + H_{2} \left[\frac{l^{3}}{12 r} - \frac{l}{r \alpha^{2}} + r \alpha^{2} L_{s}\right] =$$

$$= -\frac{1}{\alpha} (C_{1} - C_{2}) + \frac{1}{\alpha} \left[C_{3} e^{\nu} - C_{4} e^{-\nu}\right] + \left\{\frac{p_{x} k^{2}}{12} (3 l - 2 k) - \frac{p_{x} k}{\alpha^{2}}\right\} \mp r E J \alpha^{2} \omega t L_{t}$$
Gl. 1

Für halbseitige Belastung $k = \frac{l}{2}$ wird

$$\int_0^l \left(M_0 - \frac{p_x}{\alpha^2} \right) dx = \frac{p_x \, l}{2} \left(\frac{l^2}{12} - \frac{1}{\alpha^2} \right) \tag{50}$$

welches in Gl. (I) anstelle des in der geschlungenen Klammer stehenden Ausdruckes zu setzen ist.

2. Für Belastung p_x von x = k bis x = w (Fall III). In diesem Falle lautet die Gleichung (I):

$$\int_{0}^{l} (C_{1} e^{ax} + C_{2} e^{-ax}) dx = \int_{0}^{k} (C_{1} e^{ax} + C_{2} e^{-ax}) dx + \int_{k}^{w} (C_{3} e^{ax} + C_{4} e^{-ax}) dx + \int_{w}^{l} (C_{5} e^{ax} + C_{6} e^{-ax}) dx$$

Mit Bezug auf die 5. und 6. Gleichung wird

$$\int_0^l (C_1 e^{ax} + C_2 e^{-ax}) dx = -\frac{1}{\alpha} (C_1 - C_2) + \frac{1}{\alpha} (C_5 e^{\nu} - C_6 e^{-\nu})$$
 (51)

Das Belastungsintegral wird in diesem Falle

$$\int_{0}^{l} \left(M_{0} - \frac{p_{x}}{\alpha^{2}} \right) dx = \int_{0}^{k} \frac{p_{x} m}{l} \left(z + \frac{m}{2} \right) x \, dx + \int_{k}^{w} \left[\frac{p_{x} m}{l} \left(z + \frac{m}{2} \right) x - \frac{p_{x} (x - k)^{2}}{2} \right] dx - \int_{k}^{w} \frac{p_{x}}{\alpha^{2}} dx + \int_{w}^{l} \frac{p_{x} m}{l} \left(k + \frac{m}{2} \right) (l - x) \, dx$$

$$\int_{0}^{l} \left(M_{0} - \frac{p_{x}}{\alpha^{2}} \right) dx = \frac{p_{x} m}{4 \, l} \left[(2 \, z + m) \, w^{2} + (2 \, k + m) \, z^{2} \right] - p_{x} m \left(\frac{m^{2}}{6} + \frac{1}{\alpha^{2}} \right)$$

4 4

Damit lautet die I. Gleichung zur Bestimmung der Unbekannten H_1 und H_2

$$H_{1} l\left(h + \frac{n l}{4}\right) + H_{2} \left[\frac{l^{3}}{12 r} - \frac{l}{r \alpha^{2}} + r \alpha^{2} L_{s}\right] =$$

$$= -\frac{1}{\alpha} (C_{1} - C_{2}) + \frac{1}{\alpha} (C_{5} e^{\nu} - C_{6} e^{-\nu}) + \left\{\frac{p_{x} m}{4 l} \left[(2z + m) w^{2} + (2k + m) z^{2}\right] - \right\}$$

$$- p_{x} m \left(\frac{m^{2}}{6} + \frac{1}{\alpha^{2}}\right) \right\} \mp r E J \alpha^{2} \omega t L_{t}$$
Gl. I

VI. Gleichung II für eine Teilbelastung p_x von x = 0 bis x = k. (Fall II) (Fig. 10)

Die Belastung des Riegels ist

Für
$$x < k$$

$$p_t = \alpha^2 (C_1 e^{ax} + C_2 e^{-ax})$$
$$x > k$$

$$p_t = \alpha^2 (C_3 e^{ax} + C_4 e^{-ax})$$

und die Gesamtbelastung

$$G = \alpha^{2} \int_{0}^{k} (C_{1} e^{ax} + C_{2} e^{-ax}) dx + \alpha^{2} \int_{k}^{l} (C_{3} e^{ax} + C_{4} e^{-ax}) dx =$$

$$= -\alpha (C_{1} - C_{2}) + \alpha (C_{3} e^{v} - C_{4} e^{-v})$$
(52)

Die Stützendrücke ergeben sich mit

links
$$\mathfrak{A}_{1} = \frac{p_{x}}{\alpha^{2} l} - \alpha (C_{1} - C_{2}) - \frac{1}{l} (C_{1} + C_{2}) + \frac{1}{l} (C_{3} e^{\nu} + C_{4} e^{-\nu})$$
rechts
$$\mathfrak{B}_{1} = -\frac{p_{x}}{\alpha^{2} l} + \frac{1}{l} (C_{1} + C_{2}) + \alpha (C_{3} e^{\nu} - C_{4} e^{-\nu}) - \frac{1}{l} (C_{3} e^{\nu} + C_{4} e^{-\nu})$$
(53)

Bezeichnet man die Momente im belasteten Teil mit $\mathfrak{M}_{x'}$, im unbelasteten mit $\mathfrak{M}_{x''}$, so erhält man nach Einsetzen der Werte \mathfrak{A}_{1} bezw. \mathfrak{B}_{1} in Gl. (30)

$$\mathfrak{M}'_{x} = \mathfrak{A}_{1} x - \alpha^{2} \int_{\xi=0}^{\xi=x} (C_{1} e^{a\xi} + C_{2} e^{-a\xi}) (x - \xi) d\xi = \\
= \frac{x p_{x}}{l \alpha^{2}} + (C_{1} + C_{2}) \left(1 - \frac{x}{l}\right) + \frac{x}{l} (C_{3} e^{\nu} + C_{4} e^{-\nu}) - (C_{1} e^{ax} + C_{2} e^{-ax}) \\
\text{für } x > k \quad \mathfrak{M}''_{x} = -\frac{p_{x}}{\alpha^{2}} \left(1 - \frac{x}{l}\right) + (C_{1} + C_{2}) \left(1 - \frac{x}{l}\right) + \frac{x}{l} (C_{3} e^{\nu} + C_{4} e^{-\nu}) - (C_{3} e^{ax} + C_{4} e^{-ax}) \right\} (54)$$

Das Größtmoment von $\mathfrak{M}_{x'}$ tritt ein, wenn

$$\frac{d \,\mathfrak{M}_x'}{dx} = 0 = \frac{p_x}{l \,\alpha^2} - \frac{1}{l} (C_1 + C_2) + \frac{1}{l} (C_3 \,e^{\nu} + C_4 \,e^{-\nu}) - \alpha (C_1 \,e^{\alpha x} - C_2 \,e^{-\alpha x})$$

$$K - \alpha (C_1 \,e^{\alpha x} - C_2 \,e^{-\alpha x}) = 0$$

Die Entfernung x läßt sich bestimmen aus der Gleichung

$$e^{2ax} - \frac{K}{\alpha C_1} e^{ax} = \frac{C_2}{C_1}$$

Der Zähler Z der Gleichung (II) wird für $k < \frac{\iota}{2}$

$$Z = \int_{0}^{k} \mathfrak{M}'_{x} y_{1} \frac{ds}{J} + \int_{k}^{\frac{l}{2}} \mathfrak{M}''_{x} y_{1} \frac{ds}{J} + \int_{\frac{l}{2}}^{l} \mathfrak{M}''_{x} y_{1} \frac{ds}{J}$$
 (55)

wobei die Werte $\mathfrak{M}_{x'}$ und $\mathfrak{M}_{x''}$ aus Gl. (39) und im 3. Integral für y_1 der zweite Wert der Gl. (31) einzusetzen sind.

Danach ergibt sich bei Beachtung von $C_1e^{ak}-C_2e^{-ak}=C_3e^{ak}-C_4e^{-ak}$ der mit $J\cos\beta$ multiplizierte Wert von Z mit

$$J\cos\beta \cdot Z = -\frac{p_{x}}{\alpha^{2}} \left\{ \left(\frac{l}{2} - k \right) \left[h + \frac{n}{2} \left(\frac{l}{2} + k \right) \right] \right\} + (C_{1} + C_{2}) \left[\frac{l}{8} \left(4h + n \, l \right) - \frac{n}{\alpha^{2}} \right] + (C_{3}e^{\nu} + C_{4}e^{-\nu}) \left[\frac{l}{8} \left(4h + n \, l \right) - \frac{n}{\alpha^{2}} \right] + \frac{h}{\alpha} (C_{1} - C_{2}) + \frac{n}{\alpha^{2}} \left(C_{1}e^{ak} + C_{2}e^{-ak} \right) + (C_{3}e^{\nu'} + C_{4}e^{-\nu'}) \frac{2n}{\alpha^{2}} - \left(C_{3}e^{ak} + C_{4}e^{-ak} \right) \frac{n}{\alpha^{2}} - \left(C_{3}e^{\nu} - C_{4}e^{-\nu} \right) \frac{h}{\alpha} \right\}$$

$$(56)$$

und

$$H_{1} = \frac{Z}{l\left[\left(h + \frac{n l}{4}\right)^{2} + \frac{1}{48}n^{2}l^{2}\right] + \frac{lJ}{F} + \frac{2}{3}h^{3}\cos\beta\frac{J}{J_{4}} + 2h\cos\beta\frac{J}{F_{4}}}$$
(57)

Reicht die Belastung über die Brückenmitte hinaus, ist also $k > \frac{l}{2}$, so wird

$$Z = \int_0^{\frac{l}{2}} \mathfrak{M}'_x y_1 \frac{ds}{J} + \int_{\frac{l}{2}}^{k} \mathfrak{M}'_x y_1 \frac{ds}{J} + \int_{k}^{l} \mathfrak{M}''_x y_1 \frac{ds}{J}$$

und für y_1 ist in den beiden letzten Integralen der zweite Wert der Gl. (31) einzufügen.

Gleichung (II) für halbseitige Belastung. Mit $k = \frac{l}{2}$ wird aus Gl. (56)

$$J\cos\beta \cdot Z = (C_1 + C_2) \left[\frac{l}{8} (4h + nl) - \frac{n}{\alpha^2} \right] + (C_3 e^{\nu} + C_4 e^{-\nu}) \left[\frac{l}{8} (4h + nl) \right] + (C_1 - C_2) \frac{h}{\alpha} + \left[C_1 e^{\nu'} + C_2 e^{-\nu'} \right] \frac{n}{\alpha^2} - (C_3 e^{\nu} - C_4 e^{-\nu}) \frac{h}{\alpha}$$
(58)

und für einen waagerechten Riegel mit

$$J \cdot Z = \frac{h}{\alpha} \left\{ (C_1 + C_2) \frac{l\alpha}{2} + (C_1 - C_2) + (C_3 e^{\nu} + C_4 e^{-\nu}) \frac{l\alpha}{2} - (C_3 e^{\nu} - C_4 e^{-\nu}) \right\}$$
und
$$H_1 = \frac{(C_1 + C_2) \frac{l\alpha}{2} + (C_1 - C_2) + (C_3 e^{\nu} + C_4 e^{-\nu}) \frac{l\alpha}{2} - (C_3 e^{\nu} - C_4 e^{-\nu})}{\alpha \left[lh + \frac{lJ}{hF} + \frac{2}{3} h^2 \frac{J}{L} + 2 \frac{J}{F} \right]}$$
(59)

Gleichung (II). Teilbelastung p_x von x = k bis x = w (Fall III) Fig. 11.

Für einen waagerechten Riegel

$$n=0$$
 $\beta=0$ $y_1=h=$ konst.

Mit den drei Belastungswerten der drei Teilstrecken k, m, z (Fig. 11)

$$p_t' = \alpha^2 (C_1 e^{ax} + C_2 e^{-ax})$$
 von 0 bis k
 $p_t'' = \alpha^2 (C_3 e^{ax} + C_4 e^{-ax})$, k , w
 $p_t''' = \alpha^2 (C_5 e^{ax} + C_6 e^{-ax})$, w , l

erhält man bei Belastung des Riegels den Stützendruck

$$\mathfrak{A}_{1} = -\alpha (C_{1} - C_{2}) - \frac{1}{l} (C_{1} + C_{2}) + \frac{1}{l} (C_{5} e^{\nu} + C_{6} e^{-\nu})$$
 (60)

181

und für die drei Teilbereiche die Momente \mathfrak{M}'_x , \mathfrak{M}''_x , \mathfrak{M}''_x

$$\mathfrak{M}'_{x} = (C_{1} + C_{2}) \left(1 - \frac{x}{l} \right) + \frac{x}{l} (C_{5} e^{\nu} + C_{6} e^{-\nu}) - (C_{1} e^{ax} + C_{2} e^{-ax})$$

$$\mathfrak{M}''_{x} = \frac{p_{x}}{\alpha^{2}} + (C_{1} + C_{2}) \left(1 - \frac{x}{l} \right) + \frac{x}{l} (C_{5} e^{\nu} + C_{6} e^{-\nu}) - (C_{3} e^{ax} + C_{4} e^{-ax})$$

$$\mathfrak{M}''_{x} = (C_{1} + C_{2}) \left(1 - \frac{x}{l} \right) + \frac{x}{l} (C_{5} e^{\nu} + C_{6} e^{-\nu}) - (C_{5} e^{ax} + C_{6} e^{-ax})$$

$$(61)$$

und die Gleichung für H1

$$H_{1} = \frac{1}{N} \left[\int_{0}^{k} \mathfrak{M}'_{x} y_{1} \frac{ds}{J} + \int_{k}^{w} \mathfrak{M}''_{x} y_{1} \frac{ds}{J} + \int_{w}^{l} \mathfrak{M}'''_{x} y_{1} \frac{ds}{J} \right] = \frac{Z}{N}$$

Nach Integration, Beachtung der Gleichungen (45) und Reduktion wird

$$Z = \frac{h}{J} \left[\frac{m p_x}{\alpha^2} + \frac{l}{2} \left(C_1 + C_2 + C_5 e^{\nu} + C_6 e^{-\nu} \right) + \frac{1}{\alpha} \left(C_1 - C_2 \right) - \frac{1}{\alpha} \left(C_5 e^{\nu} - C_6 e^{-\nu} \right) \right]$$

und unter Benutzung des bereits gerechneten Wertes für N

$$H_{1} = \frac{\frac{mp_{x}}{\alpha^{2}} + \frac{l}{2} \left(C_{1} + C_{2} + C_{5} e^{\nu} + C_{6} e^{-\nu} \right) + \frac{1}{\alpha} \left[\left(C_{1} - C_{2} \right) - \left(C_{5} e^{\nu} - C_{6} e^{-\nu} \right) \right]}{lh + \frac{l}{h} \frac{J}{F} + \frac{2}{3} h^{2} \frac{J}{J_{4}} + 2 \frac{J}{F_{4}}}$$
(62)

VII. Gleichung II. Wärmewirkung.

Die Gleichung (II) läßt sich nach den gleichen Grundsätzen ableiten, wenn der für die Wärmewirkung gültige Belastungswert p_{t1} des Rahmenriegels bekannt ist.

Dieser läßt sich aus der allgemeinen Gleichung (I) ableiten.

Auf der rechten Seite dieser Gleichung stehen die Belastungsglieder und auch das von der Wärme abhängige Glied

$$\mp rEJ\alpha^2\omega tL_t,$$

das dem

$$\int_0^l (C_1 e^{ax} + C_2 e^{-ax}) dx$$

entspricht.

Mit Bezug auf die Gleichung (20) ist

$$\int_{0}^{t} (C_{1}e^{ax} + C_{2}e^{-ax}) dx = \int_{0}^{t} \frac{p_{t_{1}}}{\alpha^{2}} dx = \mp rEJ\alpha^{2} \omega t L_{t}$$

Nach Integration ergibt sich

$$\frac{l\,p_{t_1}}{\alpha^2} = \mp \,rEJ\alpha^2\,\omega\,t\,L_t$$

und die Belastung des Rahmenriegels für die Wärme

$$p_{t_1} = \mp \frac{rEJ\alpha^4 \omega t L_t}{l} = \text{konstant}.$$

In der Gleichung (II) für H_1 wird mit $\mathfrak{M}_t = \frac{p_{t_1}}{2}x(l-x)$

$$Z = \frac{p_{t_1} \sec \beta}{J} \int_0^{\frac{l}{2}} x(l-x)(h+nx) dx = \frac{p_{t_1} \sec \beta}{192J} (16h+5nl)$$

und mit dem schon errechneten Nenner N

$$H_{1} = \frac{\mp rEJ^{2} \alpha^{4} \omega t l^{2} L_{t} (16 h + 5 n l)}{192 \left\{ l \left[\left(h + \frac{n l}{4} \right)^{2} + \frac{1}{48} n^{2} l^{2} \right] + \frac{lJ}{F} + \frac{2}{3} h^{3} \frac{J}{I_{4}} \cos \beta + 2 h \frac{J}{F_{4}} \cos \beta \right\}}$$

und für waagerechten Riegel

$$H_{1} = \frac{\mp rEJ^{2} \alpha^{2} \omega t l^{2} L_{t}}{12 \left[lh + \frac{l}{h} \frac{J}{F} + \frac{2}{3} h^{2} \frac{J}{J_{4}} + 2 \frac{J}{F_{4}} \right]}$$

VIII. Lösung des Gleichungssystems.

In diesem zweifach statisch unbestimmten System können die beiden Unbekannten H_1 und H_2 , die den zwei Gleichungen (I) und (II) genügen müssen, nicht explizite ausgedrückt werden, weil sie auch in den Werten αv , C_1 und C_2 enthalten sind und der erstgenannte Wert α im Exponenten von e erscheint. Es ist daher zur Lösung beider Gleichungen ein Annäherungsverfahren erforderlich, das insofern schwieriger ist, als es sich um zwei Unbekannte handelt, die gegenseitig in Beziehung stehen und zwei Mannigfaltigkeiten für die erste Annahme von H_1 und H_2 vorliegen.

Die einfachen Beziehungen zwischen H_1 und H_2 , wie sie bei Anwendung

Die einfachen Beziehungen zwischen H_1 und H_2 , wie sie bei Anwendung eines Parabelbogens als Versteifungsträger vorhanden sind (siehe Melan, Handbuch der Ingenieurwissenschaften, Theorie der eisernen Bogenbrücken, IV. Auflage 1925, Seite 195, Formel 464) und die die Auswertung der Gleichungen erleichtern würden, fehlen hier. Man kann sich davon überzeugen, wenn man die beiden Gleichungen nach H_1 und H_2 auflöst und deren Verhältnis bestimmt. (Man vergleiche Gleichung (36) mit der später folgenden Gleichung (III').)

Anhaltspunkte für die erste Annahme von H_1 und H_2 geben die Werte, die man nach der einfachen Elastizitätstheorie für die gleiche Belastung erhält.

Bei Teilbelastungen sind für die Teilstrecken die bezüglichen Konstanten C zu berücksichtigen. Bei Mitberücksichtigung der Wärmewirkung ist in Gleichung (I) das letzte Glied gleichfalls in die Rechnung einzubeziehen. Soll die Wärmewirkung allein berücksichtigt werden, so sind die von den Belastungen abhängigen Glieder bei den Gleichungen fortzulassen.

Da bei der Verformungstheorie das Superpositionsgesetz nicht gilt, sind auch die a und C-Werte für den jeweiligen Anfangszustand des Tragwerkes verschieden und sind immer gesondert zu berechnen.

Der Rechnungsvorgang für die Lösung der beiden Gleichungen ist folgender.

Es wird zuerst die Gleichung (II) herangezogen, die bloß die Unbekannte H_1 enthält. (Bei Vollbelastung Gleichung (36).) Man wählt einen passenden Wert H_1' und drei verhältnismäßig weit auseinander liegende Werte von H_2' (I, II, III), dann einen zweiten Wert H_1'' und die gleichen drei Werte H_2' und rechnet für jedes Paar die bezüglichen Größen α , C und bestimmt aus der Gleichung (II) den Rechnungswert H_{1r} . Diese Rechnungswerte trägt

man in einem Koordinatensystem auf (Fig. 12), wobei die angenommenen Werte H_1' als Abszissen und die errechneten H_1 , in gleichem Maßstabe nach abwärts aufgetragen werden. War die Annahme richtig, so ist $H_1' = H_1$, und der bezügliche Punkt im Koordinatensystem muß auf einer von 0 aus unter 45° gezogenen Geraden G_1 liegen. Da aber die ersten Annahmen nicht

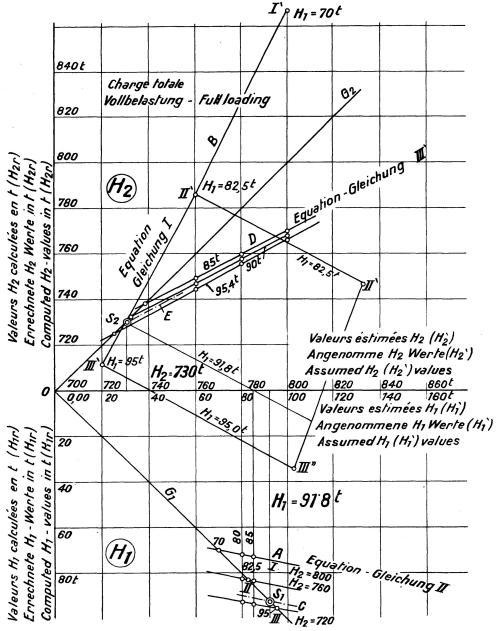


Fig. 12. Solution du système d'équations. Lösung des Gleichungssystems. Solution of the system of equations.

gleich zutreffen werden, liegen die bezüglichen H_{1r} -Werte außerhalb und man kann die, jedem I, II, III zugehörigen H_{1r} -Werte durch eine Kurve A verbinden. Im Schnittpunkte dieser sehr mäßig gekrümmten Kurven, die fast gerade sind, mit der Geraden G_1 erhält man drei Werte H_{1r}^0 (in der Fig. I, II, III bezeichnet). Mit diesen H_{1r}^0 -Werten und den zugehörigen H_2 '-Werten (I, II, III) geht man in die Gleichung (I), wobei man die für das betreffende Paar

früher errechnete Größe a, C benützt und ermittelt die Größe H_{2r} .

In dem Koordinatensystem werden nun auf der gleichen Abszissenachse die angenommenen H_2 '-Werte aufgetragen und dort als Ordinaten in gleichem Maßstabe die H_{2r} -Werte eingetragen. Dabei erhält man die drei Punkte I', III' (Fig. 12). Durch eine Kurve B verbunden, ergibt sich im Schnittpunkte mit der Geraden G_2 der endgültige H_2 -Wert.

Um nun den zugehörigen richtigen H_1 -Wert zu erhalten, interpoliert man zwischen zwei auf verschiedenen Seiten der Geraden G_2 liegenden Punkten (in Fig. zwischen II' und III'), da jedem dieser Punkte I', II', III' ein zugehöriges H_1 entspricht, das auch in der Figur eingetragen ist. Eventuell kann man die Interpolation graphisch durch Umklappen auf einer Kurve II", III" vollziehen, indem man zur Sehne II', III' senkrecht die betreffenden H_1 -Werte aufträgt und den Abstand von der Kurve für den Schnittpunkt S_2 sucht, der das richtige H_1 ergibt. Für diese H_1 und H_2 sind die a, C, C_2 neu zu berechnen.

Eine Kontrolle ergibt sich, indem man für das H_1 unterhalb der Abszissenachse in der Geraden G_1 den Punkt S_1 sucht, der auf einer Kurve C liegen muß, die dem richtigen H_2 -Werte entspricht. Besonders hervorgehoben soll werden, daß alle hier erwähnten Kurven A, B, C von einer Geraden nur sehr wenig abweichen.

Eine zweite Kontrolle ist auf folgende Weise möglich.

Man drückt aus Gleichung (22) H_1 aus

$$H_1 = \frac{1}{h} \Big[(C_1 + C_2) + \frac{1}{\alpha^2} \Big(\frac{H_2}{r} - \rho_x \Big) \Big]$$

und setzt diesen Wert in Gleichung (I) ein, um daraus H_2 zu rechnen; es entsteht allgemein

$$H_{2} = \frac{\int_{0}^{l} (C_{1}e^{\alpha x} + C_{2}e^{-\alpha x}) dx + \int_{0}^{l} (M_{0} + \frac{p_{x}}{\alpha^{2}}) dx + \frac{p_{x}l}{\alpha^{2}h} (h + \frac{nl}{4}) - (C_{1} + C_{2}) \frac{l}{h} (h + \frac{nl}{4}) \mp rEJ\alpha^{2}\omega tL_{t}}{\left[\frac{l^{2}}{4r} \left(\frac{l}{3} + \frac{n}{\alpha^{2}h}\right) + r\alpha^{2}L_{s}\right]}$$
(III)

und für Vollbelastung

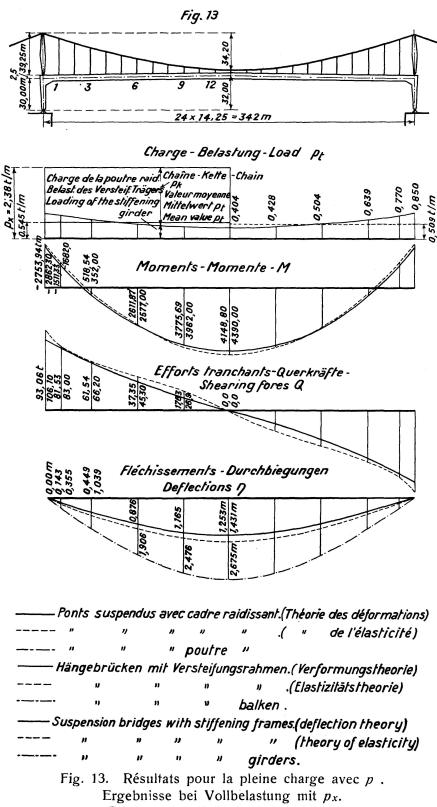
$$H_{2} = \frac{\frac{p_{x} l^{2}}{4} \left(\frac{l}{3} + \frac{n}{\alpha^{2} h}\right) - \frac{2}{\alpha} (C_{1} - C_{2}) - (C_{1} + C_{2}) l \left(1 + \frac{n l}{4 h}\right) \mp r E J \alpha^{2} \omega t L_{t}}{\left[\frac{l^{2}}{4 r} \left(\frac{l}{3} + \frac{n}{\alpha^{2} h}\right) + r \alpha^{2} L_{s}\right]}.$$
 (III')

für einen waagerechten Riegel

$$H_{2} = \frac{p_{x} \frac{l^{3}}{12} - \frac{2}{\alpha} (C_{1} - C_{2}) - l(C_{1} + C_{2}) \mp rEJ\alpha^{2} \omega t L_{t}}{\left[\frac{2}{3} f l + r\alpha^{2} L_{s}\right]}$$
(III")

Diese Gleichungen (III) für die Unbekannte H_2 und die Gleichung (I) für H_1 sind zugehörige Bestimmungsgleichungen für die Ermittlung von H_1 und H_2 .

Man kann also die Kontrolle durchführen und in Gleichung (III) für angenommene H_1' und verschiedene H_2' wieder Werte H_{2r} rechnen, sie im Koordinatensystem auftragen und Werte H_2' , die einem H_1' entsprechen, verbinden (Fig. Kurven D). Die den richtigen H_2 -Wert entsprechende E-Linie (strichpunktiert) muß durch S_2 hindurchgehen, was der Fall ist.



Results when fully loaded with p_x .

Der in Fig. 12 eingetragene Vorgang bei der Lösung entspricht der Vollbelastung in dem anschließenden Beispiel.

Die im Vorliegenden entwickelte Verformungstheorie für die Hängebrücken mit einem Zweigelenkrahmen als Versteifungsträger läßt sich in ähnlicher Weise auch für die Verwendung eines Zweigelenkbogens als Versteifungsträger durchführen, wobei die Ordinaten y_1 in Gleichung (3) der Gleichung der Bogenachse entsprechen müssen. Ist diese Bogenachse parabolisch, wie die Form der Kette, so ergeben sich Vereinfachungen, worüber an anderer Stelle berichtet wird.

IX. Beispiel.

Gewählt wird eine Kabelhängebrücke nach dem Entwurf des Verfassers mit der Spannweite $l=342~\mathrm{m}=24\times14,25~\mathrm{m}$, einer Pfeilhöhe $f=34,2~\mathrm{m}$ des Kabels. (Die gleiche Brücke wie in der Abhandlung im Stahlbau 1934.) Die sonstigen Abmessungen sind in der Fig. 13 a und außerdem im folgenden gegeben.

```
tg \alpha_1 = 0.3312, sek \alpha_1 = 1.0534
f|_{l} = 0.1
h = 30 \text{ m}
                                      \operatorname{tg} \alpha' = 4f/l = 0.4
                                     \widetilde{c_2} = \operatorname{tg} \alpha_1 + \operatorname{tg} \alpha' = 0,7312
h_1 = 32,0 \text{ m}
h' = 5,0 \text{ m}
                                              = \operatorname{tg} \beta = 0.011695
                                      n
h_p = 39.25 \text{ m}
                                      c_1 = \cos \beta = 0.99993
s_1 = 226,688 \text{ m}
                                      \sin \beta = 0.0116951
s_1' = 119,62 \text{ m} (ohne Verankerung im Schacht).
\operatorname{tg} \alpha_l - \operatorname{tg} \alpha_r = 0.033333 konst. f. Parabel.
(\operatorname{tg} \alpha_l - \operatorname{tg} \alpha_r)^2 = 0.001110889
Versteifungsrahmen: F = 0.16205 \text{ m}^2, J = 1.61416 \text{ m}^4
                                  F = 0.0541 \text{ m}^2,

F_1 = 0.19898 \text{ m}^2,
Kabel:
Pendelpfeiler:
                                 F_4 = 0.24568 \text{ m}^2, J_4 = 0.13578 \text{ m}^4

F_2 = 0.004564 \text{ m}^2,
Rahmenstiel:
Hängestangen:
                                 F_3 = 0.05412 \text{ m}^2
Rückhaltkabel:
                                     J/F_3 = 29,8255 \text{ m}^2
I/F = 9.9609 \text{ m}^2
I/F_1 = 8.1122 \text{ m}^2
                                     J/F_4 = 6.2837 \text{ m}^2
                                     J/J_4 = 11,888
J/F_2 = 353,672 \text{ m}^2
E = 21,000\,000\,\mathrm{t/m^2}
                                     (Versteifungsträger, Pendelpfeiler)
E_1 = 16,000\,000\,\mathrm{t/m^2}
                                     (Hängesäulen als Drahtseile)
E_2 = 19,000\,000 \text{ t/m}_2

EJ = 33,897\,360 \text{ tm}^2
                                     (Kabel)
\Sigma s_h = 332,534 \text{ m}.
```

Belastungen: $g_k = 3,940$ t/m Eigengewicht pro Kabel einschließlich des Kabelgewichtes, davon wird g' = 1,000 t/m nicht auf das Kabel übertragen. $p_x = 2,38$ t/m die zufällige Last für den Versteifungsrahmen.

1. Vollbelastung der Brücke mit $p_x = 2{,}38 \text{ t/m}$ (Unbekannte H_1, H_2).

Der Anfangszustand ist gegeben durch die Kabelbelastung von $g_k - g' = 2,94 \text{ t/m}$ und die Belastung des Versteifungsrahmens mit g' = 1,0 t/m.

Damit werden die beiden Horizontalkräfte nach der Elastizitätstheorie

$$H_{1k} = 40,09 \text{ t}, H_{2k} = 1256 + 336,24 = 1592,24 \text{ t}.$$

Der in der Abhandlung angegebene Lösungsvorgang für die beiden Unbekannten, wobei gerechnete Werte des Annäherungsverfahrens in Fig. 13 mit Kreisen bezeichnet sind, gibt die endgültigen Werte:

Mit diesen Werten und mit $M_0 = \frac{1}{2} p_x \cdot x (l - x)$ wurden nach

Gl. (20)
$$p_t$$
, p_k (Fig. 13b)
(18) M (Fig. 13c)
(19) Q (Fig. 13d)
(15) η (Fig. 13e)

gerechnet, und in der folgenden Tabelle sowie in Fig. 13 eingetragen.

Tabelle I. Ergebnisse bei Vollbelastung nach der Verformungstheorie.

Pkt.	p_t	p_k	Q	М	η .
0 1 3 6 9	0,850 t/m 0,770 0,639 0,504 0,428 0,404	1,530 t/m 1,610 1,741 1,876 1,952 1,976	93,063 t 81,530 61,540 37,356 17,627 0,000	- 2753,944 tm - 1511,331 518,540 2611,870 3775,691 4148,799	0,000 m 0,143 0,449 0,876 1,165 1,253

Außerdem wurden darin die bezüglichen Werte aus der Berechnung nach der einfachen Elastizitätstheorie strichliert ersichtlich gemacht.

Aus diesen Figuren ist zu ersehen, daß die Belastung des Versteifungsrahmens p_t nicht konstant ist, wie dies die Elastizitätstheorie ergibt (0,509 t/m). Sie beträgt an den Trägerenden 0,850 t/m, in der Mitte 0,404 t/m und im Mittel 0,545 t/m. Dieses ist größer als jenes nach der Elastizitätstheorie 0,509 t/m. Die Hängestangen sind also an den Enden wesentlich niedriger beansprucht als in Brücken-Mitte, werden also an den Enden kleinere spezifische Dehnungen erfahren als in der Mitte, die Momente und en te des Versteifungsträgers für die zufällige Last sind für Vollbelastung bis auf einen kleinen Bereich durchwegs geringer als nach der Elastizitätstheorie, in der Brückenmitte sind die positiven Momente um 6,0 % geringer, an den Enden ist der Unterschied kleiner. Jedenfalls werden Ersparnisse erzielt. Für Teillasten sind die Ersparnisse wesentlich größer. Die Querk räfte verlaufen ähnlich wie bei der Näherungstheorie, der Größtwert an den Brückenenden beträgt bloß 93,06 t gegen 106,10 t nach der Elastizitätstheorie.

Dagegen zeigt die Durchbiegung für die zufällige Vollast den Betrag von bloß 1,253 m gegenüber dem Wert von 2,67 m für eine Hängebrücke mit Versteifungsbalken mit gleichem Trägheitsmoment nach der

Elastizitätstheorie, was eine Verringerung der Durchbiegung um 57 % ergibt. Dies liegt einmal an der Anwendung des Versteifungsrahmens und dann an der Entlastung der p_t in der Brückenmitte. Die Durchbiegung ist auch gegen-

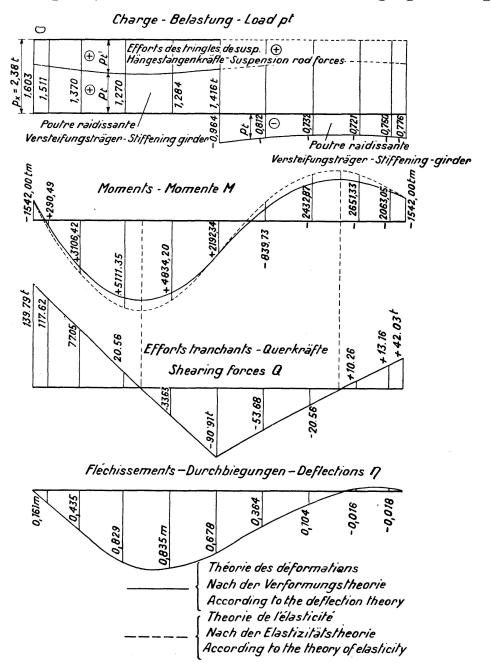


Fig. 14. Résultats pour charge sémi-latérale avec p_x . Ergebnisse bei halbseitiger Belastung mit p_x . Results when loaded with p_x on half the span.

über jener aus der Elastizitätstheorie (1,431 m) für das gleiche System um 14 % geringer.

2. Halbseitige Belastung der Brücke mit $p_x=2,38\,\mathrm{t/m}.$ In diesem Falle sind

$$H_{1k} = 40,09 \text{ t}$$

 $H_{2k} = 1424,12 \text{ t}$

und die für die hinzukommende Belastung nach dem angegebenen Verfahren errechneten Horizontalkräfte

 $H_1 = 51,4$ t gegen 47,7 t nach der Elastizitätstheorie,

 $H_2 = 365,0$ t gegen 400,12 t nach der Elastizitätstheorie

wobei die Integrationskonstanten die nachstehenden Werte haben:

 $C_1 = 6131,346, C_2 = 25884,968, C_3 = -953,223, C_4 = -53809,097.$

Die Verteilung der Lasten p_x auf den Träger p_t und auf die Kette p_k , die Momente, Querkräfte und Durchbiegungen sind in Fig. 14 eingetragen.

Die Momente wurden auch nach der Elastizitätstheorie gerechnet und sind in Fig. 14 strichliert eingetragen. Die genauen positiven Momente sind um 11,3%, die negativen um 12,6% kleiner als jene der Elastizitätstheorie.

Die Ergebnisse sind auch in der Tabelle II eingetragen.

Tabelle II. Ergebnisse der halbseitigen Belastung nach der Verformungstheorie.

Pkt.	p_t	p_k	Q	М	η
0	1,603 t/m	0,777 t/m	139,793 t	- 1542,000 tm	0,000 m
1	1,511	0,869	117,617	290,491	0,161
3	1,370	1,010	77,046	3106,425	0,435
6	1,270	1,110	20,561	5111,353	0,829
9	1,284	1,096	- 33,625	4834,203	0,835
12	1,416	0,964	-90,912	2192,337	0,678
12'	-0,964	0,964	-90,912	2192,337	0,678
9'	-0.812	0,812	- 53,685	- 839,727	0,364
6'	-0.732	0,732	-20,560.	- 2432,867	0,104
3'	-0,721	0,721	10,262	-2651,328	-0.016
1'	-0.729	0,729	31,160	- 2063,049	-0.018
0′	-0,776	0,776	42,031	- 1542,000	0,000

Beachtenswert ist der Verlauf der Hängestangen-Kräfte. In den beiden Beispielen sind die Hängestangen, die Normalkräfte im Riegel, wie die Wärme nicht berücksichtigt. Es sei hervorgehoben, daß die Gleichungen sehr empfindlich sind.

Zusammenfassung.

Ausgehend von einer parabolischen Kettenform, wird für eine Hängebrücke mit einem Zweigelenkrahmen als Versteifungsträger die strenge Theorie mit Rücksicht auf die Verformung des Tragwerkes gegeben. Es werden für dieses zweifach statisch unbestimmte System die beiden Hauptgleichungen abgeleitet und zwar für drei Fälle, eine Vollbelastung (Fall I), eine Teillast, die bis zum linken Trägerende reicht (Fall II), und für eine beliebige Teillast (Fall III). Der erste Teil der Abhandlung ist ganz allgemein gehalten und es werden dabei sowohl die Normalkräfte, die Hängestangen, als auch die Verformung der Stiele und Verschiebungen der Lagerpunkte berücksichtigt. Die Hauptgleichung (I) wird aus der Gleichsetzung der inneren und äußeren Arbeit ermittelt, die die Kette und die Pylonen bei ihrer Formänderung infolge der Belastung leisten. Die Differentialgleichung für die Durchbiegung ermöglicht es, den Ausdruck p_t zu finden, der der Belastung des Versteifungsrahmens im deformierten System entspricht, welcher für stetige Belastungen der Brücke einen mit der Abszisse veränderlichen Wert

darstellt. Die zweite Hauptgleichung wird erhalten, indem der Rahmenträger allein mit p_t belastet wird und für diesen Zweigelenkrahmen der Horizontalschub gerechnet wird.

Zur Ermittlung der Integrationskonstanten werden die jeweiligen Randbedingungen für die Trägerenden bezw. für die Grenzstellen der Teilbelastungen herangezogen. Auch die Wärmewirkung wird berücksichtigt.

Schließlich wird ein Beispiel gerechnet und ein Verfahren angegeben, in welcher Weise die Unbekannten, die nicht in expliziter Form ausdrückbar sind, ermittelt werden können. Zum Vergleich sind in dem Beispiel auch die bezüglichen Werte p_t , p_k , M, Q und die Durchbiegung η , die sich aus der einfachen Elastizitätstheorie ergeben, angeführt, wobei sich zeigt, daß sich bei der Deformationstheorie kleinere Momente und Durchbiegungen ergeben als nach der Elastizitätstheorie. Dieses Ergebnis ist noch günstiger, wenn man für die Teilbelastungen (halbseitige Belastung) die Maximalmomente errechnet.

Endlich wird noch gezeigt, daß die Durchbiegung nach der strengen Theorie für das vorliegende Tragwerk um mehr als die Hälfte kleiner ist als für eine Hängebrücke mit einem Versteifungsbalken, was dieses neue System, abgesehen von der sonstigen Wirtschaftlichkeit, für die Anwendung besonders geeignet macht.

Résumé.

Partant d'une chaîne de forme parabolique, l'auteur expose la théorie rigoureuse des déformations des parties portantes dans le cas du pont suspendu avec poutre raidisseuse constituée par un cadre à deux articulation. Il établit les deux équations principales concernant ce système statiquement doublement indéterminé, cela dans les trois cas suivants: I. pour la pleine charge, II. pour une charge partielle s'étendant jusqu'à l'extrémité de gauche de la poutre, III. pour une charge partielle arbitraire.

Le problème est traité, dans sa première partie, d'une manière tout à fait générale, avec prise en considération des forces normales, des tringles de suspension, de la déformation des montants ainsi que des déplacements des points d'appui. L'équation principale (I) est obtenue en égalant le travail interne et le travail externe effectués par la chaîne et par les pylônes dans leurs déformations sous l'influence de la charge. L'équation différentielle du fléchissement permet la détermination de l'expression p_t qui correspond à la charge du cadre raidisseur dans le système déformé et représentant, pour des charges permanentes du pont, une valeur variable avec l'abscisse. La deuxième équation principale est obtenue en chargeant la poutre de cadre seule avec p_t et en calculant la poussée horizontale pour ce cadre à deux articulations.

Pour déterminer les constantes d'intégration, on fait intervenir les conditions limites du cas considéré correspondant aux extrémités de la poutre ou aux positions limites des charges partielles. L'influence de la chaleur est également prise en considération.

Enfin, l'auteur présente un exemple de calcul et indique une méthode permettant la détermination des inconnues qu'il n'est pas possible d'exprimer d'une manière explicite. A titre de comparaison, il donne également les valeurs correspondantes de p_t , p_k , M, Q et du fléchissement η telles que les fournit la théorie de l'élasticité. Cet exemple montre que les moments et les fléchissements fournis par la théorie de la déformation sont plus faibles

que ceux que donne la théorie de l'élasticité. Ce résultat est encore plus favorable lorsque l'on calcule les moments maxima pour les charges par-

tielles (charges portant sur la moitié de la longueur du pont).

Pour terminer, l'auteur montre également que suivant la théorie stricte, le fléchissement des parties portantes est inférieur à la moitié de la valeur qu'il atteint dans le cas d'une poutre raidisseuse simple. Outre les autres avantages que l'on peut tirer de l'emploi d'un cadre raidisseur, le fait cidessus rend ce système particulièrement intéressant dans les applications à la pratique.

Summary.

Starting with a parabolic form of chain, the strict theory with regard to the deflections of the supporting structure is given for a suspension bridge with a two-hinged frame as stiffening girder. For this doubly statically indeterminate system the two main equations are derived, and this is done for three cases: a full loading (case I), a partial load extending to the left end of the girder (case II), and any desired partial load (case III). The first part of the treatment is kept quite general, whereby the normal forces, the suspension rods, the deformation of the girder bearing-legs, and also the displacements of the bearing points are taken into consideration. The main equation I is determined by equating the internal and external work done by the chain and the towers in becoming deformed (deflected) in consequence of the loading. The differential equation for the deflection makes it possible to find the expression p_t , corresponding to the loading of the stiffening frame in the deformed system, and representing for constant loadings of the bridge, a value varying with the abscissae. The second main equation is obtained by loading the frame-girder alone with p_t and calculating the horizontal thrust for this two-hinged frame.

For determining the constants of integration, the momentary limiting conditions for the ends of the girder or for the limiting positions of the

partial loads, are made use of. Also the effect of heat is considered.

Towards the end, an example is calculated and a method is given showing how the unknowns, which cannot be expressed in explicit form, may be determined. For comparison, the corresponding values for p_t , p_k , M, Q and the deflection η as found by the theory of elasticity are also given in the example; from this it is seen that the moments and deflections given by the deflection theory are smaller than those given by the theory of elasticity. This result is still more favourable when the maximum moments are calculated for the partial loads (loadings on half the length of the bridge).

Finally it is also shown that the deflection for the supporting structure in question is, according to the strict theory, less than half of that for a suspension bridge with a simple stiffening girder, and this, apart from other advantages, makes the new system particularly suitable for prac-

tical application.