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VERFORMUNGSTHEORIE DER HÄNGEBRÜCKE MIT
EINEM ZWEIGELENK-RAHMEN-VERSTEIFUNGSTRÄGER

THEORIE DE LA DEFORMATION DES PONTS SUSPENDUS
AVEC POUTRES RAIDISSEUSE EN FORME DE CADRE Ä DEUX

ARTICULATIONS.

DEFLECTION THEORY OF SUSPENSION BRIDGES WITH A
DOUBLE-HINGED STIFFENING GIRDER

Von Dr. Ing. ALFRED HAWRANEK, o. ö. Prof. der Deutschen Techn. Hochschule
in Brunn (C. S R.).

Die Elastizitätstheorie für Hängebrücken mit einem Zweigelenkrahmen-
Versteifungsträger wurde vom Verfasser in der Zeitschrift „Der Stahlbau",
1934, S. 137 und 145, veröffentlicht1). In diesem Aufsatz sind auch die
Vorteile des in den Fig. 1—6 wiedergegebenen Tragwerksystems und seiner
Kombination bei mehreren Öffnungen ausführlich angegeben und begründet
worden. Die Vorteile dieses Systems liegen in der Möglichkeit, durch
exzentrische Aufstellung der Pendelstützen gegenüber den Rahmenfußachsen
oder durch Anwendung von Gelenken in den Seitenöffnungen einen
Momentenausgleich für den Rahmenriegel zu erzielen, den Windverband als
teilweise an den Enden eingespannt zu berechnen, was zur Verringerung der
maximalen Windmomente führt und deshalb für größere Spannweiten auch
schmälere Brückenbreiten zuläßt. Der Horizontalschub und die Momente
des Rahmens können durch auskragende Ballastarme vermindert werden.
Der, wie dort gezeigt, weitgehend mögliche Momentenausgleich läßt die
Ausbildung des Rahmenriegels mit wenig veränderlichem Querschnitt zu, die
Durchbiegungen werden wesentlich geringer als bei einer Hängebrücke mit
einem einfachen Versteifungsbalken, daher ist das vorliegende Tragwerksystem

viel steifer als die gewöhnlichen versteiften Hängebrücken.
Außerdem überträgt der Versteifungsrahmen die Bremskräfte in viel

günstigerer Weise als ein Versteifungsbalken. Gegenüber einem Bogen als
Versteifungsträger entfällt bei dem vorliegenden System die ganze Fahrbahn-
abstützung und deren Querverbände, was in diesem Falle eine Gewichtsersparnis

bringt. Dann ist auch die Wärmewirkung dieses Systems günstiger
als bei Verwendung eines Bogens als Versteifungsträger.

Das System eignet sich auch für große Spannweiten mit großer freier
Durchfahrtshöhe, wie für die Überbrückung von Flüssen in Städten mit
anschließenden Quaistraßen und läßt eine, heute erwünschte, straffe
Linienführung des Tragwerkes bei verminderter Riegelhöhe gegenüber einer
gewöhnlichen Hängebrücke mit einem Versteifungsbalken zu, so daß die
Untersuchung dieses Systems gerechtfertigt erscheint.

*) Dr. Ing. A. Hawranek: Hängebrücken mit einem Zweigelenkrahmen-Versteifungsträger.
„Der Stahlbau" 1934, S. 137, 145. 1935, S. 15.
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In der vorliegenden Abhandlung soll nun dieses Tragsystem nach der
strengen Verformungstheorie (Deflection theory) untersucht werden und
zwar das System mit einer Öffnung, wie Fig. 2 zeigt, wobei die Rahmen mit
Fußgelenken versehen sind. Das System ist zweifach statisch unbestimmt.
Es soll symmetrisch angenommen werden. Die in parabolischer Form
angenommene Kette ist auf Pendelpfeilern abgestützt.
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Fig. 1 —6. Dispositions de l'ouvrage. Tragwerkausbildungen.

Examples of supporting structures.

Statische Berechnung.
Als statisch unbestimmte Größen sind die beiden Horizontalkräfte Ht

für den Rahmen, H2 für die Kette gewählt (Fig. 7 a). Die Anfangslage von
Kette und Rahmen ist darin voll ausgezogen. Bei einer Belastung oder bei
einer Wärmewirkung biegt sich das System durch und die beiden Tragglieder,
Kette und Rahmenriegel, gelangen in die strichliert gezeichnete Lage, wobei
sich an der Stelle x des Versteifungsträgers eine Durchbiegung rj ergibt,
während bei Berücksichtigung der Dehnungen der Hängestangen um Arj die
Kette Senkungen um r\ — Arj erfährt. Die Dehnung der Hängestangen ist
im ersten Teil der Arbeit, um ihn allgemeiner zu halten, berücksichtigt, ebenso

die angenäherte Wirkung der Normalkräfte. Da jedoch diese Einflüsse
Abhandlungen III. 11



162 A. Hawranek

im allgemeinen gering sind, so wurden diese im zweiten Teil der Arbeit und
im anschließenden Beispiele vernachlässigt. Sie lassen sich aber, da die
allgemeinen Ausführungen bis zu der Aufstellung der Endgleichungen geführt
sind, ohne weiteres mit Hilfe der gegebenen Formeln rechnerisch verfolgen.

In der Arbeit wurde auch der Fall eingeschlossen, daß ein Teil des
Eigengewichtes g' erst nach vollständigem Zusammenbau der Konstruktion
aufgebracht wird (Fahrbahndecke, Gehsteigabdeckung, Rohrleitungen). Vor
dem Aufbringen dieser Last g' sei der Versteifungsriegel spannungslos, der
Rahmen ohne Horizontalschub und das gesamte Tragwerknetz in der An-

ir
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Fig. 7. a) et b). Le Systeme porteur et ses deformations.
Tragwerknetz und dessen Verformung.

Supporting structure and its deformation.

fangslage, von welcher ausgegangen wird. Vom Eigengewicht g g' -|- g"
wird g" sofort auf die Kette gebracht und erzeugt den Horizontalzug Ff'ix,
dann kommt eventuell g' hinzu, welche Last die waagerechte Kettenzugkraft
HiK bewirkt und schließlich px und die Wärmewirkung (-f- t), die H2
erzeugt, wobei H2K H'2K + H'iK

Der Rahmenriegel ist gegen die Mitte unter einem Winkel ß geneigt
angenommen. Alle sonstigen Abmessungen, Querschnittsflächen, Trägheitsmomente,

Winkel, sind aus der Fig. 8 zu entnehmen.
In der Abhandlung ist zum ersten Male die Verformungstheorie für ein

zweifach statisch unbestimmtes System gegeben.

I. Aufstellung der Gleichungen für die Formänderungen.
Es bedeuten (Fig. 8):

M' N' das Moment und die Normalkraft des Versteifungsrahmens nach der
Elastizitätstheorie,

M, N das Moment und die Normalkraft des Versteifungsrahmens in x nach
der Verformung infolge gf, px und der Wärmezunahme,
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M0, Q0 das Moment und die Querkraft des Versteifungsrahmens für das sta¬
tisch bestimmte Grundsystem (in B waagerecht verschieblich gelagert
für die Lasten gf und px),

M±NU M2N2 das Moment und die Normalkraft des linken bezw. rechten
Rahmenstiels,

Hlk den Horizontalschub des Rahmens für jenen Teil des Eigengewichtes g',
das bei der Montage nicht auf die Kette übertragen werden kann, bei
normaler Temperatur,

H2k den Horizontalzug der Kette (des Kabels) für die an die Kette unmittel¬
bar aufgebrachten Eigengewichtslasten einschließlich des
Kettengewichtes bei normaler Temperatur,

Hx den Horizontalschub des Versteifungsrahmens für die hinzukommende
zufällige Last pK und Wärmeänderung um t°,

H2 der Horizontalzug der Kette für px und t,
g' den Teil des Eigengewichtes, der erst nach Montageschluß aufgebracht

wird pro 1 m,

Ap

äl

JV5

m F.3CA3 Bs
A2' N*t J*

mK,

fl"Ai

Fig. 8.

px die gegebene zufällige Last in x pro Längeneinheit,
pk die zufällige Last, die von der Kette übernommen wird,
pt die zufällige Last, die vom Versteifungsträger übernommen wird,
rj die Senkung des Versteifungsträgers in x für die Lasten g', px und Wärme¬

zunahme (-f-1°),
At] die Dehnung der Hängestangen für g', px und t°,
f] —Ar] die Senkung der Kette in x für gf, px und t°,
7],^ bezw. f]2 die waagerechten Ausbiegungen der Rahmenstiele, nach innen

positiv gezählt,
/, /4 die Trägheitsmomente des Riegels bezw. der Stiele des Versteifungs¬

rahmens, die in jedem Bereich konstant angenommen werden,
f7yf7±yf72 die Querschnittsflächen des Riegels, der Stiele bezw. der Hänge¬

stangen,
E, Ex das Elastizitätsmaß des Versteifungsrahmens, bezw. der Kette und

Hängestangen,
/ die Stützweite des Rahmens,
/ die Pfeilhöhe der Kette,
h die Stielhöhe des Rahmens,
h{ den Pfeil des Rahmens in der Mitte,
//' die Trägerhöhe des Riegels,
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hp die Länge des Pylons,
sh, L die Länge der Hängestangen bezw. ihre Kraft,
l die Entfernung der Hängestangen,
a0 den Neigungswinkel der Kettenstäbe,
ai, ar die einer Hängestange benachbarten Winkel der Kettenstäbe links bezw.

rechts,
ß die Neigung des Versteifungsrahmens (Riegels) gegen die Mitte,
v' tgat — tg ar konst.,
ylyy2 die Ordinaten des Rahmenriegels bezw. der Kette in x,
co/t°,At die Wärmeausdehnungsziffer, die gleichmäßige Wärmezunahme

bezw. den Wärmeunterschied zwischen Ober- und Untergurt des
Riegels.

ffik, ff2k sind gegebene Größen. Der Wert Fflk ist Null zu setzen, wenn
der Einfluß des bei der Montage nicht auf die Kette gebrachten
Eigengewichtsanteiles g' auch nach der Verformungstheorie berechnet werden soll.
Dann ist in den folgenden Ausdrücken g' statt pK zu setzen.

Hlk ist auch dann gleich Null anzunehmen, wenn das ganze Eigengewicht
bei der Montage auf die Kette geleitet werden kann und der Einfluß der
zufälligen Last px streng zu ermitteln ist.

Das Moment M' und die Normalkraft N' des Versteifungsrahmens nach
der Elastizitätstheorie ist:

M' M0-H1y1-ff2y2 \

N' — Q0 sin ß — Hx cos ß + H2 tg a sin ß \ (1)

Unter Berücksichtigung der Verformung ergibt sich für die
hinzukommenden Lasten g', px, für die Wärmezunahme um + /° einschließlich der
Dehnung der Hängestangen das Moment des Versteifungsträgers mit

M M0
N N'

ffiyi — H2y2 + (Hlk + fix) /, - (H2k + H2) - A h)
(2)

Die Normalkraftänderung ist gering, daher wird ihr ursprünglicher Wert
N' beibehalten. Die Berücksichtigung der Änderung von N' bei der
Verformung führt zu einer nichthomogenen Differentialgleichung, worüber an
anderer Stelle berichtet wird.

Für den geradlinig gegen die Mitte ansteigenden Riegel ist

yi h + 2(A1-/z),
/

Mit 2(A,— h)
n /_ tgß — konstant ist

y1-=z h + nx yx h + n(l- ¦x)\±
2

Für die Kette als Parabel gilt die Gleichung
x(l~x)4/

y2 j2Lx(l~ -X)

wobei r
P_

8}

(3)
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Setzt man

weiter

und da

Hik + Hx Hi H2k + H2 H2

cy
Hik + Hi Hi

C2 ^> C\ ' ' • C2
~"

C±

c*<
ff2k + ff2 ff2

EJ ~ EJ
ffi

c0' EJ

(4)

(2 a)

wobei EJ konst., so ergibt sich nach Einsetzen in Gleichung (2)
M M0 - Hxyi -H2y2— EJa* h + EJCy A /,

Die Kraft L der Hängestangen
L v'H2'

soll auf die Längeneinheit reduziert werden, sodaß pro 1 m die Hängestangen-
L v' H' Fkraft — —r-2- bei einem Querschnitt ~- eine Längenänderung Ar\ ein-
A A A

schließlich der Wärmezunahme gibt von

A>( — l^r-J- 4- W/)5Ä
EiF2

x(l— x)
s/z A^ — y2 — nx hp — —; - — nx

Für den linken Rahmenstiel ist

Mi ^—H1/x + Ni?n
M =K + ^2rtg^

im rechten Stiel

M2 — — HAf x + N2il2
N2 N0" + H2'tga1

Die allgemeine Differentialgleichung der Biegelinie lautet
N

fe + " y) SeCß + dx

a) Rahmenstiele.
Für die Stiele gelten die Differentialgleichungen

V ~ [H/x - N, ,n] ri" J- [//,'*- /V2 ,/8]
A/4 W4

Mit

Vi *i *
ergibt sich

9
Ml

y>2 z2 x Vi

2 _ ML
ej,
Zi h \p2 z2h

)x v1 sin^i + Wi cos ^1 + -rj-x

.„' zx v1 cos Vi — Zi Wx sin ^ 4-

wobei Vi und IVj aus den Randbedingungen zu bestimmen sind.

(5)

(6)

(7)

(7 a)
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Für x 0 ist rj1 0, yji 0, daraus folgt W± 0 und bei einer
waagerechten Verschiebung des linken Rahmeneckes um AI/ nach innen ist

Hihfür x h

woraus

Vi Fi sin vi + Ni
AI/

v. +-W-*i\sin v L Nx \

(7 b)

womit die Konstanten Vx und Wi bestimmt sind.
Für x A ist außerdem

und das Moment

Hi =ZiCO\gViyAlr—-j^\ + j;j-

sinv,
sin vi

(8)

für x h Mh — NiA 1/ — Hi h

Analoge Werte gelten für den rechten Stiel mit z2, yj2', N2, AI/'.
Verschieben sich die Rahmenecken infolge der Belastung um du bezw.

d2 nach innen, so ist (N positiv eingesetzt)

AI/ — d1 -4-

A1/ — d2 +

(—¦

fTF

»H
o>t

(9)

b) Rahmenriegel.

,," [- ^j (M0 — Hxyx- ff,y2) + a*,, - ct* A

T £yr02]sinjJtg^— \P*~ r J EF

co At
^Jsec/i-

(10)

Dabei ist das letzte Glied näherungsweise ausgedrückt, in welchem außerdem
im unbelasteten Bereich px 0 zu setzen ist. Vernachlässigt man die
geringe Neigung des Riegels (sec/5 — 1) und bezeichnet man die konstanten
Glieder, zusammengefaßt, mit

(ii)ioAt I EJtf\ sinßtgßz + -jr + \Px- ~~7~! ~ef-
so vereinfacht sich die Differentialgleichung zu

»,' - «2», - ~ (M0 - Hxyx - Hay3) - tf A,t-Z
Für gleichmäßig verteilte Lasten, auch für Teillasten, kann man allgemein
setzen

M0 k + ki x + k2 x2

dM0
dx

d2M0
~dx¥

Qo k\ + 2A2 x

— px 2 k2

(12)
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so daß die Differentialgleichung die Form annimmt
//' — a1 it — a + b x -f- cxl

wenn yu y2, M0, Ai] durch x ausgedrückt werden und in a alle Konstanten
zusammengefaßt werden.

Das allgemeine Integral wird

/y Axeax 4- A2e~ax — l~\^~J^ + bx + cxA (13)

Führt man anstelle der Integrationskonstanten Ax und A2 neue ein und zwar
d Axa*EJ C2 =A2a*EJ (14)

so entsteht unter Wiedereinführung von yu y2

h Ejtf[cieax + c*e~ax + Wo - H*yi - H*y*) + «\[-^ +

wobei dM' (l—2x) \
U f - (Ja — Hi n — H2 -—- -^ r \ 07)
Qo K 4- 2 A2 * J

Die Bestimmung der Konstanten C\ und C2 erfolgt aus den Bedingungen, daß
für x 0 und x /; rj gleich sein muß Ar' bezw. Ar" (Gl. (15)).

Ni h „ N2 h t1 _ vzlr -^ w/A Ar" =~^=r— (oth (17a)

Bei symmetrischen Lasten muß für x — ; r\' =-= 0 sein (Gl. (16)).
Diese zwei Bestimmungsgleichungen für die Integrationskonstanten

reichen für Vollbelastung aus. Liegen Belastungen von Teilstrecken vor, so
gibt es für jede stetige Teilbelastung zwei besondere Integrationskonstanten
und dabei eigene ^-Werte, wobei für die Lastscheiden für die links bezw.
rechts der Lastscheide gelegene Belastung sowohl die bezüglichen ^-Werte
wie die ^'-Werte gleich groß sein müssen, so daß so viel Gleichungen
verfügbar sind, als unbekannte Integrationskonstante zu ermitteln sind. In
unbelasteten Strecken ist in Gl. (15) und Gl. (16) px 0 zu setzen. Wegen
des Knicks der Riegelachse in Tragwerkmitte sind bei den Integrationen die
Integrale an dieser Stelle zu teilen.

Für einen waagerechten Rahmenriegel ist in allen Gleichungen n -= 0
zu setzen.

Die Momente des Rahmenriegels ergeben sich:

M - (Q e«* + C2 e-) - -J,[- Px + ^ +^ ^)] - EJZ (18)
/2 Sit-

Die Querkraft folgt aus der Differentiation von M nach x.

q _ a(Ci e«x - C2 er«*) + EJc<? ^ (tg«o + *gß)

wobei j, lv' H>

Sh ^1 r2

(IQ)
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Nochmals differenziert, erhält man den von dem Versteifungsträger zu
übernehmenden Anteil pt der Belastung px.

pt= + cc* (Ci e"x 4- C2 e-°*) -EJ^L^ (20)

pt-px — pk (21)
Bisher wurde die Ableitung allgemein gehalten2).

II. Ermittlung der Integrationskonstanten.
Vollbelastung (Fall I).

Die Integrationskonstanten Ci und C2 lassen sich außer auf dem vorher
angegebenen Wege auch aus den Momentengleichungen (18) bezw. (6)
bestimmen, da für die Rahmenecken

ML(X=h) M(x==Q bezw. M2(x=h) M(x=i).
Bei Vollbelastung ist N± N2 AI/ AI/'.

Für das linke Rahmeneck ist demnach

-H;k+N1Ai;=-(C1 + C2)-±\-px + EJa>Z +^[\ + ^p^(ff/+tot)]]

lautet die erste Bestimmungsgleichung

— (C, + Q) — ^\-px + EJa*Z ±^ 7-J -Hih + NxAi;
Für das rechte Rahmeneck ist die zweite Bestimmungsgleichung

— (Q/+QO - ±-^-Px±EJa*Z+ ^- T\ —tfih + NxAi;

(22)

Setzt man

K U-p* + E-/a2z+flI]

0 \--^-ai;
so lauten die beiden Bestimmungsgleichungen

Q + C2 + R Hxh(S>
Cxev 4- C2er* -f R fixhd>

und damit

(fi;hO-R)(\-e")
1

e" — e~v

(Ef;hQ> — R){\ — ev)

ev — e~v

Es erübrigt noch die Angabe der Verschiebung AI/.

(22 a)

C2 =-
(23)

2) Für eine schärfere Berechnung unter Berücksichtigung der veränderlichen
Hängestangenkräfte wäre in der zweiten Gleichung von (19) pk aus Gl. (21) und (20)
einzuführen. Für 7] 0 läßt sich die Wirkung der Lagerreibung eines Versteifungs b a 1 k e n s
ermitteln.
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Mit Px {'[.(. h \ ^x(l-x) dx* ^J>('-^)-".'-]^ COS/?

~tEf\ iHl' + 1 n)(l~~2x)sinßäx (23a)

wobei n und ß in der rechten Riegelhälfte negativ ist, wird

AI/ di +(§~- «')4 (23b)

Ohne Berücksichtigung der Wärniewirkung, der Zusammendrückung des
Riegels und der Längenänderung der Hängestangen und wenn g'= 0, Hik — 0,
wird

* ?(-*¦-•-*) •=•
und die Integrationskonstanten

(ff1h — R){\-e~v)
e" — e~"

(ff1h-R)(\ — e")
ev — e~v

(24)

Die Kontrolle gibt
Ci + C2 (Hih — R) (25)

III. Bestimmung der Unbekannten H\ und //2.
Es sind zwei Gleichungen erforderlich.
Zur Bestimmung der Unbekannten wird die Arbeitsgleichung

herangezogen, und zwar einmal die Arbeit der inneren und äußeren Kräfte an der
Hängegurtung und den Rückhaltketten bei der Vertikalverschiebung rj, die
zur Gleichung (I) führt und dann die Arbeit, die der Versteifungsrahmen bei
der Durchbiegung rj leistet (Gl. (II)). Die Trennung des Tragwerkes in
diese zwei Teile ist möglich, weil beide die Durchbiegung r] erleiden und von
der Berücksichtigung der geringen Formänderung der Flängestangen
Abstand genommen worden ist.

1. Ableitung der G 1 ei chu n g (I).
Bedeuten

g das Eigengewicht, das unmittelbar auf die Kette wirkt,
gk das Eigengewicht der Kette,
pk die zufällige Last, die von der Kette übernommen wird,
/ den Abstand der Hängestangen,
E± die Elastizitätsziffer der Kette,
a0 den Neigungswinkel der Kettenstäbe gegen die Waagerechte,
ax den Neigungswinkel der Rückhaltkette,
Alx,Al2 die waagerechten Verschiebungen der Rahmenstützpunkte nach außen

infolge Nachgebens der Widerlager \Al± -\- Al2 AI),
A/',A2" die lotrechten Senkungen der Rahmenstützpunkte infolge Nachgebens

der Widerlager (Af + A" A) (Fig. 8),
d', ö" die Verschiebungen der Ankerpunkte der Rückhaltketten in Richtung

derselben infolge Nachgeben der Widerlager (Fig. 8),
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so lautet die Arbeit Au die die Belastungen bei der Senkung der Kette rj
leisten:

H>+ft+iV FK+T)l> (26)

Die Arbeit A2, die infolge der Dehnung der Kette und der Senkung der
oberen Kettenstützpunkte hervorgerufen wird und hier erstmalig
berücksichtigt ist, ergibt sich unter Heranziehung der Bezeichnungen in Fig. 8 aus
nachstehenden Teilgrößen:

a) Vorhandene Horizontalkraft: H2k + -~

in der Kette: [n2k + ^2) sec a0

in der Rückhaltkette: \H2k 4- ~A sec at

im Pylon : — \H2k 4- ^j (tg ax 4- tg a)
'1*

2
im Rahmenstiel: — (H2k 4- ^f) tg ax

b) Längenänderungen durch H2

IX H2 sec a^(l sec a/\
in der Kette: -?A_ ^

in der Rückhaltkette: H2 sec «! • Si

im Pylon: — H2(tgax + tga')-^
AA

y^ 4- tcrr/'^

Oi- i ff2 A tgfiS
im Stiel: S^z: r4

Werden auch die Wärmeänderung um t°, sowie die Verschiebungen der
Widerlager berücksichtigt, so wird

V 2/1 Ei Fk EF3

2H,(igai+tgg^ 2^^ + w
r

ec£A ^A l
4-S^sec2«0 4 2A„(tga1 4- tg«') — 2Atga2 4-

o J

+ (<T + d") seca1 +Atga1+ (tgat + tg«') (/// + ^)j (27)

Die Gleichsetzung der äußeren mit der inneren Arbeit
Ai A2

TT

ergibt nach Kürzung durch H2k A und Multiplikation mit EJ:

mit den vereinfachenden Bezeichnungen:
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Ls i^p^I+2siSec,ai^L +ExFk E,E3

+ 2A„(tga1 + tga')^±2htg*a1^r
i

Lt — 2/lsec'2°;o +2siSeco! +2A^(tg«i -f tg«') — 2 A tgax
o

Iv (d' + d')secai + Jtg«x + (tg«, + tg«')(4^ + AU"
2hp 2hp

(27a)

EJ ¥\>,dx HsLs±EJ(otLt + EJLv (28)

Nun wird ?; aus Gleichung (15) in die letzte Gleichung eingesetzt; es
entsteht vorerst

j0'y dX
Eja^ ]0 tCl 6<lX + Ca '"" + i (t" ~ ^) + (Mo - //i yi - //2 J'a)] ^

und wenn die Ausdrücke aus Gleichung (3) und (4) für yx und y2 eingeführt
werden

("* nja [{<c-'" + c' *~> * + "i ~i^ + -

Aus der Gleichsetzung von
Ax A2 (Gl. (28))

entsteht nach Ordnung der Glieder und Multiplikation mit
r2 a

die erste Hauptgleichung

Hj{h + ^) + H2[^r-/^Jrr^Ls\^\l{C1e^ + C2e-^)dx +
~\- [M0 — -^j dx + rEJa2 (otLt — rEJa2Lv

Stetige Vollbelastung mit pxlm (Fall I).
Die Integrale in der Gleichung (I) nehmen für die Belastung folgende

Werte an

•'o

ifa-$h=lll"-«'-'» - $h=*'[£ - h\
C1 und C2 sind aus Gl. (24) zu ermitteln, alle vorstehenden Werte in Gl. (I)
einzusetzen und geben die erste Bestimmungsgleichung. Gl. (I) unter
Berücksichtigung der Normallast im Riegel, der Längenänderungen der
Hängestangen, der ungleichmäßigen Wärme und der Widerlagerverschiebungen.

Gl.

*+C2£T«*)<fe -^[C1e«*-C2^^
(28 b)
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Die Gl. (26) lautet dann

\0'<dX EjFtf[l0(Cl *"* + Q e~"X) dX + \K ~ £) dX ~ Ml \yi dX ~~

- ff, j"y2 dx +^ j" (l + §^02 ^) rf« + E/c2* j*A,, dx + EJZ^ dx] (a)

±h dx v{fk + ^)^-nx-x^A)dx o»

Mit Sm=(A/;_|_/_^)

wird —\Aitdx — —\-=A-=--\-cot)sml

Ol. (27) A, (ff2k + ^) (0 Z.5 ± (a tU -f- £„)

wobei in Ls und A noch die Glieder für die Hängestangen hinzukommen und
zwar

Efin Ls das Glied -\--=^=-v 2sh9 in Lt das Glied -j-^ä.A A
Wird Al A2 gesetzt und mit E Jra2 beiderseits multipliziert, so erhält man
nach Ordnung der Glieder folgende Gleichung (I):

\(C1eax + C2erax)dx+ \(MQ-^)dx + EJZ/ + rEJa2cotLt +

+ EJtotl(smcl*+^)-rEJa*Lv.

Will man auch eine ungleiche Wärme zwischen Versteifungsrahmen (t)
und der übrigen Tragwerksglieder (t/) berücksichtigen, so ist im Faktor von
Lt statt / der Wert t1 zu setzen, mit Ausnahme des vom Rahmenstiel
abhängigen Gliedes.

2. Ableitung der Gleichung (II).
Die zweite Bestimmungsgleichung für die Ermittlung der Unbekannten

Hi und H2 kann mit Hilfe des auf den Versteifungsrahmen entfallenden
Anteiles pt der gegebenen stetigen Last gewonnen werden, da die Beziehungen
der beiden Unbekannten H1 und H2 entsprechend der gemeinsamen Wirkung
von Kette und Rahmen, in diesem Werte bereits enthalten sind. Denkt man
sich daher den Rahmen im Riegel mit pt belastet, so ist der Horizontalschub
Hi des derart belasteten Rahmens bereits die eine Unbekannte Hx. Nach
Gl. (20) ist

ptz= a2(Cieax + C2e-a)

Gl. r
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Cx und C2 sind nur für einen stetigen Bereich der Belastung konstant, haben
aber für unbelastete Streckenteile andere Werte und alle folgenden
Integrationen müssen an den Grenzen zwischen belasteten und unbelasteten
Strecken für die bezüglichen Bereiche geteilt werden. Auch Unstetigkeiten
in der Trägerform verlangen dies.

Im Folgenden gelten die Bezeichnungen der Fig. 9.

fig.3
Diagramme des changes
BelasZungsFZäche
load area I

^TTTTTTTTrrTTTTTfpmn
Mj

J4

H,

\3kOli

m.

Die Belastungsfläche des Riegels ist

G f ptdx a* f (Cieax + C2e-ax)dx
Jo Jo

und die Stützendrücke der Belastung pt

21, yj Pt(l—x)dx

i — y ptxdx

Das Moment des Versteifungsträgers an der Stelle x ist

Wtx 21, x - pt(x — £)d£

und der Horizontalschub des Zweigelenkrahmens

fV* ds

Hi J ±Ewtl

wobei für
KM ds

Z±Ewtl
N

x< yi h-\- nx

yt h-\-n{l— x)

(29)

(30)

Gl. II

(31)

(Trägheitsmoment und Querschnittsfläche des Riegels sind J, F, die bezüglichen

Größen für die Rahmenstiele /4, A- Z nicht mit Gl. (11) verwechseln.)
Um die Unbekannte Ht zu erhalten, hat man für 3KV und yx die Werte

der Gleichung (30) und (31) in die Gl. (II) einzusetzen.
Der Nennerausdruck N in dieser Gleichung ist unabhängig von der

Belastung. Ist H1 bestimmt, so läßt sich das Rahmeneckmoment M1 bestimmen.

M1 —H1h (32)
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oder wenn man mit p den Einspannungsgrad des Rahmens bezeichnet, auch

Mi u mmax (33)

und das Moment des Versteifungsträgers an beliebiger Stelle

Mx mx~Hxyi (34)

Vollbelastung des Riegels mit px (Fall I) ohne Wärmewirkung.
In diesem Fall wird mit Beachtung der aus Gl. (22) abgeleiteten

Beziehung

d +C2 Ciev-\-C2e~v

Der Stützdruck Gl. (29) % — «(C, - C2)
und aus Gl. (30) das Moment Wlx (Q -f C2) — (d eax -f- C2 *-«*)

und für jc — ' '35'

mit y
al Wmax (Q + C2) — (d *v' + d ^')

Der Zähler Z der Gl. (II) wird mit ds dx sec/? und mit Beachtung, daß für
diesen Lastfall Cxev' — C%e~v' 0

Z [ Mxyi~ ^^ fY[(d + C2) - (d e"* + C2ir°*)](k + nx)dx
Jo J J Jo

und der Nenner N

N [l ds [ds „ [h y^dy 2 (y„

__2h* IsecW niy ± 1 2A /sec^
3/4 J l\ 4) +48n l \+ E, F

2A /sectf
sec/* + -- +--

Nach Multiplikation von Zähler und Nenner mit /cos/? wird

Ih //2 1

~2
ff,

2 (C1 + C2)
':

+ >\i-^Y^eV' + C^+ha^-CA
4(A+lT + Ä*2/i + 2Acos/*^~ + f cos^A3f + y

(")
(36)

und für einen waagerechten Rahmenriegel

mit n 0, A A,, />' 0

"i
2J(C1 + C2)y + (C1-C8)

(37)

J4 l 4J

Für Wärme kommt zum Wert Z noch der Wert Ecotl hinzu und für eine
Widerlagerverschiebung — E AI.
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IV. Bestimmung der Integrationskonstanten für Teillasten.
1. Teilbelastung/7A.vonx 0bisx A (Fall II).

Die vier Integrationskonstanten, d C2 für die Laststrecke und C3 d für
die unbelastete Strecke, ergeben sich aus den Bedingungen, daß für x 0
und x l das Moment M in Gl. (18) gleich ~H±h sein muß, weiter daß
das Moment Mx für x k am rechten Ende der Laststrecke gleich sein müsse
dem Moment Mk' für x k am linken Ende der unbelasteten Strecke. Die
vierte Gleichung ergibt sich aus Gl. (19), indem die Querkraft Qk für x-=k
am rechten Ende der belasteten Strecke der Querkraft Qk' am linken Ende
der unbelasteten Strecke für x k gleich sein muß (Fig. 10).

Für die unbelastete Strecke ist

Px 0
zu setzen.

Fig. 10

<E
um

Constante l
Konstante ChC2-^ -oS/c4

l (M2
Q a (d eax — d erax)

Constante "£.

Es ist nach Gl. (18)
für x<Ch:

M — (d eax + d e~ax)

für x /> k:
1 h

M — (C3 eax + Q er") — -t —*, Q - cc (C8 e<™ — Q <r«)

Danach erhält man die vier Bedingungsgleichungen:

Aus Gl. (18) für x 0:

M =-(C1 + C2)-^(^2-/7,)=-//1A
x A

x A

x l

Mk= — (C1eak + C2e-ak)
1 ///«

0*) Afi

Af* (C3 ea* -4- C4 <r0*) —
1 H2

Mi- — (C8 eal -f C4 <r°0 —

Aus Ol. (19):
je k Qk= — a (Cx eak — C2 e~aÄ)

Ql __ a (Ca ea* — C4 e~ak)

Mit J ///2
a- \ r

lauten diese Gleichungen

— P> R^

i^=-"i*
<3*

1 ä*
«2 /•

(38)

al (30)
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C, -f C2 + Rx Hx h
Cx eak -j- C2 e~ak + Rx C3 e«A + C4 <ra* -j- R2

C3e" -{-de-' + R, fixh
Cx eak — C2 e~ak C3 eak — Q <ra*

Nach den vier Unbekannten aufgelöst, ergibt sich mit m (l — k) und
ff1h — Rx=Dx
ffx h — R2 — D2

(40)

R2 — Ri " DX A
(41)

__
2D2 -2D1er* + (R2 -Rx)(eam + e~am)

1 — 2(ev — e~v)

d

d -

2Di ev — 2£>2 — (A — R/)(eam + £-«"')
2 (^ — *-")

2D2—2DX e~v + (A — Ri)e-V(eak + *-«*)
(42)

2(^ —*r")

_ 2D1e* — 2D2 - (A-A)^(^ + ^~^)
4 2 (*"_*-")

2. Teilbelastung/^ von x A bis x=tv (Fall III).
Die Integrationskonstanten sind (Fig. 11):

Für die Strecke k Ct, C2

v v v nt C3, C4

Es sind sechs Bestimmungsgleichungen für diese Integrationskonstanten
erforderlich. Sie werden erhalten, indem für x 0 und x l in Gl. (18) das
Moment gleich —AA sein muß, für x k die Momentenwerte für beide
Zweige der Momentenlinie gleich sein müssen, ebenso für x w. Die beiden
letzten Gleichungen werden aus der Querkraftsgleichung Gl. (19) gewonnen,
indem für x k, bezw. x w die Q-Werte der benachbarten Zweige der
Querkraftslinie gleich sein müssen.

Man erhält aus Gl. (18):
x 0

x k

x — k

M =-(Cl + Ci)--Q-=-Hlh

Mh=- (C, e"k + C2 er*") — ^ M'k
ra-

M^ -(C3eak + C4e~ak)

Mw

1 (Ht
~Px

(Ce^+C^--)--^2 ¦ pxj M'w
\ (43)

x l

Aus Gl. (19)

Mi

(Cbeaw -\-Cüe-aw)
Ho

(Cbe* + Cae-")-£±= — H1h

x k Qk =—u(Cl e"'! — C2 e~ak) — a (C, "* — C4 e~ak)

x w Qw =—a(C3 eaw — C4 e-aw) — a (C3 ea ' — Q <rttW)
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Mit * £(£-*]. /?*
1 H.

v al (44)

lauten diese sechs Gleichungen:
Gl. (1) Cx + C2+R2 fixh

(2) d eak + C2 <r«* -f R2 Cs eak + C4 e~ak + /?x

(3) C3 eaw -f- C4<"-<"" + Rx ¦= C-a eaw +• C6 £-«"' -j- /?2

(4) Cbev-\-Cae-* + Rt Hlh
(5) Q ea* — C2 e-aA C3 <?«* — C4 e-«*

(6) C3 eaw — C4 e-"1" C6 e01" — C6 ^r"1"

Diese Gleichungsgruppe ist nach den Unbekannten Cx bis Ce aufzulösen.

Fig.11

(45)

T2^-7-
TDlj(fm i i i i i i i i n

* i m z
r V »v

~%.4? " ^?rCi—CSiC4
*"

¦Ri)

Aus Gleichungen (2), (3), (5) und (6) lassen sich die einfachen Glei
chungen ableiten:

(Cx - C3)eak - (C8 - C4)^-a* + (Ri - Rs)
(C1-C,)e«* (C2-C4)<r«*
(C8 —C6)««»'= (C4-Ce)e-a»'
(C3 - C6) e™ — (C4 - C6)e-«- 4- (/?8

Mit den vereinfachenden Bezeichnungen:

Dt' 2(tfxh — Rt)(\ — e")

D2"=2(Hxh — R2)(l-e-")
z l — w, s / — A

u l-\-w, q l-\-k
haben die Integrationskonstanten nachstehende Werte:

(R2 — Rx) [eaz -f- e~a* — (eas + e~as)] + D,"

(46)

Cl
2{ev — e-")

n _(R2—RX) [eas + e~as — (eaz -f e~az)] ¦D.
2 (ev — trv)

r _ (R2 — Rx) [eaz + g~az — (e~as + er»«)] -f D2"
3 —

2(ev — e-v)

C4
(^2 -- Ri) \eaq + eas — (eaz + £~"2)] — D2

2(ev - e~v)

__
(R2 — Rx){eraz -f- e~au — eras - <raa) l- D2"

6 ~~ 2(g"-<r")

Q

Abhandlungen III.

(Ri—Rl)(e!"i+ea d:
2 (ev — e~v)

(47)
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V. Ermittlung der Gleichung I für Teilbelastung.
1. Für die Belastung px von x 0 bis x =k (Fall II).
In der allgemeinen Gleichung (I) sind die von der Belastung abhängigen

Integrale auf den vorliegenden Belastungsfall auszuwerten. Es ist

(d eax + d e~ax) dx (d eax + C2 e~ax) dx -f- (C3 eax + C4 erax) dx
Jo Jo Ja

Mit Rücksicht auf die vierte Bestimmungsgleichung wird

f (d eax + d e~ax)dx -~(Ci~ d) + ~ [C3*" — d ^1 (48)

Anderseits wird das Integral

^*.(3/-2*)-^* (49)

Damit lautet die I. Gleichung zur Bestimmung der Unbekannten H\ und H2

„xl{h + $+H^--Lt+ra*l/[
-^(C1-C2) + l[C3e*-Cie-n + {^f(3l-2k)-^} + rEJa»-totL(

Für halbseitige Belastung k --= - wird

Gl.

welches in Gl. (I) anstelle des in der geschlungenen Klammer stehenden
Ausdruckes zu setzen ist.

2. Für Belastung /?* von x k bis x w (Fall III).
In diesem Falle lautet die Gleichung (I):

/»/ [k /»W

(Ci eax -j- d e~ax) dx (d eax + C2 e~ax) dx + (Cs eax + d ^~a*) <& +
J 0 ^0 »A

+ f (C6 ea* + C6 e~ax) dx
J w

Mit Bezug auf die 5. und 6. Gleichung wird
1

1 1

(Cx ea* + C2 e-*) dx — -(C1 — Ci)-\-- (C5 «" - C6*-) (51)
/0 a a

Das Belastungsintegral wird in diesem Falle

l'K-f)^={¥Ki)^+ii[^h-i)'-i^!]--
i
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Damit lautet die I. Gleichung zur Bestimmung der Unbekannten Hv und H2

//1/(A+^)+//2[/;r-^+-^]
-^(d-C2) + ^(d^-C60 + {^f[(2^ + ^)iv2 + (2A + ^)z2]

-Pxm[~ft- + /C2)\+ rEJa*iotLt

Gl. I

VI. Gleichung II für eine Teilbelastung px von x 0 bis x k.
(Fall II) (Fig. 10)

Die Belastung des Riegels ist
Für x < k pt a2 (d eax + d e~ax)

x > k pt a2(C3 eax -f d erax)

und die Gesamtbelastung

G «2 (d ^ax + C2 <ra*) rf* + a2\ (d ea* + Q e~ax) dx
Jo Ja

(52)

(53)

— a (d — C,) + a (C„ e" — C4 *"•)
Die Stützendrücke ergeben sich mit
',nkS ^ -ah ~ a (Cl - Q) ~ 7(Cl + c»> + 7(Ca *" + c* ^v)

rechts
s8i=_^ + |(Ci + C2) + a(C3^_C4ß-v)_|(C3^ + C4g_r)

Bezeichnet man die Momente im belasteten Teil mit Tt/, im unbelasteten mit
Wlx", so erhält man nach Einsetzen der Werte 2^ bezw. 35x in Gl. (30)
für *<A f£=*

9W; SI1 x- a2 (d ^+ d *r«*) (jc-f)rff
J|=o

^ + (Cl+C2)(1"7) + 7(C8e"+Q^,')"(Clßaj; + C2^a'v)

für x>A w _^^_^ + (Ci+Cs)^_*j+*(QeV+QO_(Q^+Q^
Das Größtmoment von Tt/ tritt ein, wenn

^ 0 - -fe _ |(Cl + d) + y (C3 e* + d,-) - a(Cie«x- C2 *—)

oder K—cc(Ci eax — C2 <*-«*) 0

Die Entfernung x läßt sich bestimmen aus der Gleichung

Q
/

(54)

K eax ^2
aCx

Der Zähler Z der Gleichung (II) wird für A<

Z= m'xyXJ +h J Jk
J'i

«b
(55)
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wobei die Werte 9K/ und Wlx" aus Gl. (39) und im 3. Integral für y± der
zweite Wert der Gl. (31) einzusetzen sind.

Danach ergibt sich bei Beachtung von Cxeak — C2e~ak Czeak — C±e~ak
der mit / cos ß multiplizierte Wert von Z mit

/cos,-.Z -f{(fA)[A + |(fA)]} + (C1+C2)[j(4A+«/)-A]

+(c3^+c4o["8-(4Ä+w/)-^] + ^(Q-c2)+^(c]^+c2ß-a*)

+ (C8 e* + C4 e-"')^ - (C3 eak + Q *-«*) ~ - (C3 e* - C4 e~") ~

(56)

und

ll(h + ^)2 + ~nHz]/^ + ~k*cosßZL + 2hcosßj/

Reicht die Belastung über die Brückenmitte hinaus, ist also A > —, so wird

Z fWi y + f 2»i J'i y + fW* yJo 7 Jy J Jk J
und für j^ ist in den beiden letzten Integralen der zweite Wert der Gl. (31)
einzufügen.

Gleichung (II) für halbseitige Belastung.
Mit k — wird aus Gl. (56)

(58)
/cos/?.Z=(d + C2)[|-(4A + Ä/)-^ +(C3^ + C4£ro[^(4A + /z/)]

und für einen waagerechten Riegel mit
A — Ax /? 0 « 0

7¦ Z A {(Cl + Cs) y + (Q - Q) + (C, *' + C4*-") y - (C„«' - C4 e-"))

U"d
(Q + C)y + (Crg + (C,«'+C1«-')y-(CJe'-C4r')

//i f ^7—2 7 Tt (59)

Gleichung (II). Teilbelastung ^vonx A bis x =- w (Fall III)
Fig. 11.

Für einen waagerechten Riegel
n 0 ß — 0 yi A konst.

Mit den drei Belastungswerten der drei Teilstrecken A, m, z (Fig. 11)

pt — a2 (Ci eax + C2 £-"*) von 0 bis k

Pt" a2(C3eax + C4e~ax) „ k „ w

pt'"=--a2(C5e«x + CQe~«x) „ w „ l
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erhält man bei Belastung des Riegels den Stützendruck

SI, =_a(c1-C8)-y(C1 + Ca) + y(C6^ + Cfl^ (60)

und für die drei Teilbereiche die Momente Wl'x, Wlx, Wlx

x\ x

(61)

* h[fc»7 + fc*7+fc>*l

Wx (CX + Q) ^1 - yj + j(C5 C +¦ C6 er<) - (Cxe«x + C2 e-x)

m* ^ + (Ci +C2)(l-y) + j(C6e" +- C9e-") - (C8*a*+C4r—)

a»r (Q + C2) (l- j) + *-(C5*" -f- Q e-") - (C5*a* + C6^«)
und die Gleichung für Ht

Z
N

Nach Integration, Beachtung der Gleichungen (45) und Reduktion wird

z 7 [¥+1(Cl+Q-+ Q e"+Ca ^v) + 7(Cl - Ca) -1(Q g"- Q *"">]

und unter Benutzung des bereits gerechneten Wertes für N

"^ + 4 (Q + Q + Q *' + Q e-") + f [(Cx- C2) - (Q *>-Q *-)]
7/1 TT 2 J 1 (62)

VII. Gleichung II. Wärmewirkung.
Die Gleichung (II) läßt sich nach den gleichen Grundsätzen ableiten,

wenn der für die Wärmewirkung gültige Belastungswert ptl des Rahmenriegels

bekannt ist.
Dieser läßt sich aus der allgemeinen Gleichung (I) ableiten.
Auf der rechten Seite dieser Gleichung stehen die Belastungsglieder und

auch das von der Wärme abhängige Glied

+ rEJa2 totLt,
das dem rl

(Cieax+ C2e~ax)dx
Jo

entspricht.
Mit Bezug auf die Gleichung (20) ist

(Cieax+ C2e'ax)dx \ ~dx T rEJa2 totLt
Jo J oa

Nach Integration ergibt sich

Z#= TrEJa2cotLt
a-

und die Belastung des Rahmenriegels für die Wärme

_ rE Ja^wtLt i
pti -) *— konstant.
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In der Gleichung (II) für Hx wird mit Wlt ?±x(l — x)

Z==^^J^(/-*)(A + «*)A ^^(16Ä + 5/i/)

und mit dem schon errechneten Nenner Af

+ rEßattotPLtilöh+Snl)Hx
192J/[(A + ^/)ä + ^^^] + ^ + |A^cos/5 + 2A^cos^

und für waagerechten Riegel
+ rEf2a2tütl2LtHi

u[lk+jF + h2i+2i4
VIII. Lösung des Gleichungssystems.

In diesem zweifach statisch unbestimmten System können die beiden
Unbekannten H± und H2, die den zwei Gleichungen (I) und (II) genügen
müssen, nicht explizite ausgedrückt werden, weil sie auch in den Werten a v,

d und C2 enthalten sind und der erstgenannte Wert a im Exponenten von e
erscheint. Es ist daher zur Lösung beider Gleichungen ein Annäherungsverfahren

erforderlich, das insofern schwieriger ist, als es sich um zwei
Unbekannte handelt, die gegenseitig in Beziehung stehen und zwei Mannigfaltigkeiten

für die erste Annahme von Ht und H2 vorliegen.
Die einfachen Beziehungen zwischen H± und H2, wie sie bei Anwendung

eines Parabelbogens als Versteifungsträger vorhanden sind (siehe Melan,
Handbuch der Ingenieurwissenschaften, Theorie der eisernen Bogenbrücken,
IV. Auflage 1925, Seite 195, Formel 464) und die die Auswertung der
Gleichungen erleichtern würden, fehlen hier. Man kann sich davon überzeugen,
wenn man die beiden Gleichungen nach Ht und H2 auflöst und deren
Verhältnis bestimmt. (Man vergleiche Gleichung (36) mit der später folgenden
Gleichung (III').)

Anhaltspunkte für die erste Annahme von H± und H2 geben die Werte,
die man nach der einfachen Elastizitätstheorie für die gleiche Belastung erhält.

Bei Teilbelastungen sind für die Teilstrecken die bezüglichen Konstanten
C zu berücksichtigen. Bei Mitberücksichtigung der Wärmewirkung ist in
Gleichung (I) das letzte Glied gleichfalls in die Rechnung einzubeziehen. Soll
die Wärmewirkung allein berücksichtigt werden, so sind die von den
Belastungen abhängigen Glieder bei den Gleichungen fortzulassen.

Da bei der Verformungstheorie das Superpositionsgesetz nicht gilt, sind
auch die a und C-Werte für den jeweiligen Anfangszustand des Tragwerkes
verschieden und sind immer gesondert zu berechnen.

Der Rechnungsvorgang für die Lösung der beiden Gleichungen ist
folgender.

Es wird zuerst die Gleichung (II) herangezogen, die bloß die Unbekannte
Ht enthält. (Bei Vollbelastung Gleichung (36).) Man wählt einen passenden
Wert H/ und drei verhältnismäßig weit auseinander liegende Werte von H/
(I, II, III), dann einen zweiten Wert H/' und die gleichen drei Werte H/
und rechnet für jedes Paar die bezüglichen Größen a, C und bestimmt aus
der Gleichung (II) den Rechnungswert Hlr. Diese Rechnungswerte trägt
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man in einem Koordinatensystem auf (Fig. 12), wobei die angenommenen
Werte H/ als Abszissen und die errechneten Hlr in gleichem Maßstabe
nach abwärts aufgetragen werden. War die Annahme richtig, so ist H/ Hlr
und der bezügliche Punkt im Koordinatensystem muß auf einer von 0 aus
unter 45 ° gezogenen Geraden G± liegen. Da aber die ersten Annahmen nicht
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Fig. 12. Solution du Systeme d'equations.
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H2=720

Lösung des Gleichungssystems,
of equations.

gleich zutreffen werden, liegen die bezüglichen Hlr-Werte außerhalb und
man kann die, jedem I, II, III zugehörigen //„-Werte durch eine Kurve A
verbinden. Im Schnittpunkte dieser sehr mäßig gekrümmten Kurven, die fast
gerade sind, mit der Geraden Gx erhält man drei Werte H% (in der Fig. I, II, III
bezeichnet). Mit diesen //?,-Werten und den zugehörigen ///-Werten (I, II,
III) geht man in die Gleichung (I), wobei man die für das betreffende Paar
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früher errechnete Größe a, C benützt und ermittelt die Größe H2r.
In dem Koordinatensystem werden nun auf der gleichen Abszissenachse

die angenommenen ///-Werte aufgetragen und dort als Ordinaten in gleichem
Maßstabe die //2,-Werte eingetragen. Dabei erhält man die drei Punkte V,
IF, III' (Fig. 12). Durch eine Kurve B verbunden, ergibt sich im Schnittpunkte

mit der Geraden G2 der endgültige //2-Wert.
Um nun den zugehörigen richtigen //x-Wert zu erhalten, interpoliert

man zwischen zwei auf verschiedenen Seiten der Geraden G2 liegenden
Punkten (in Fig. zwischen II' und III'), da jedem dieser Punkte F, IF, IIP
ein zugehöriges Ht entspricht, das auch in der Figur eingetragen ist. Eventuell

kann man die Interpolation graphisch durch Umklappen auf einer Kurve
II", III" vollziehen, indem man zur Sehne IF, III' senkrecht die betreffenden
A/i-Werte aufträgt und den Abstand von der Kurve für den Schnittpunkt S2

sucht, der das richtige Hx ergibt. Für diese Hx und H2 sind die a, C, C2 neu
zu berechnen.

Eine Kontrolle ergibt sich, indem man für das H1 unterhalb der
Abszissenachse in der Geraden Gt den Punkt Si sucht, der auf einer Kurve C
liegen muß, die dem richtigen //2-Werte entspricht. Besonders
hervorgehoben soll werden, daß alle hier erwähnten Kurven A, B, C von einer
Geraden nur sehr wenig abweichen.

Eine zweite Kontrolle ist auf folgende Weise möglich.
Man drückt aus Gleichung (22) Hx aus

und setzt diesen Wert in Gleichung (I) ein, um daraus H2 zu rechnen; es
entsteht allgemein

f (Cie«x+C2e-«x)dx + \ U^WM/^
und für Vollbelastung

.„ ¥ (i + ^)-§(C-c,)-(c1 + c,)/(1 + fi)T^ „ «,

für einen waagerechten Riegel

px £ — - (Q - C2) - l(Cx + C8) + rEJ«2 ta tLt
H2 —1? «

(UI»)

Diese Gleichungen (III) für die Unbekannte H2 und die Gleichung (I)
für Hx sind zugehörige Bestimmungsgleichungen für die Ermittlung von Ht
und H2.

- Man kann also die Kontrolle durchführen und in Gleichung (III) für
angenommene /// und verschiedene H2 wieder Werte H2r rechnen, sie im
Koordinatensystem auftragen und Werte ///, die einem H±' entsprechen,
verbinden (Fig. Kurven D). Die den richtigen //2-Wert entsprechende f-Linie
(strichpunktiert) muß durch 52 hindurchgehen, was der Fall ist.



Verformungstheorie der Hängebrücke mit Versteifungs-Zweigelenkrahmen 185

**.73

¦*>£i_
s^**

24x74,25 342m

Charge - ße/asfang - Load p^

Charge de tapoutre/^/d^tnelfette ~L

Betastdes^^ff^Lrmoyerrrri ^Load/ng tftt>est//renrn9\niZte/wertpt f
—-f- ^ 9/nder \Mean valuep/. 5

-Cham

* .5

LI rz j
5>

*f I? Moments - Momente - //S»
«IN)ev«»

II

or*>
^w>
s».«: >*>ö«o

"^^ Efforts tranchants-Querkräfte -

Shearingfores Q

£*>!<> S&q2ji ^^ ffe'ch/ssements - Durchbiegungen
Deftections Q

X
8* § I t3?m

1

^^^^ ' y< sr^_
**»*

NT» r^^' " s\ —-- ¦ /\ In» fc
> 1 .J ^
N* <o ^.¦^

<N,' -J ¦

— fo/7As suspendus avec cadre raidissant.(Thiorie des deformations)
— " » " * " / " de felasticite)
— " " » poutre "
-Hängebrücken mit Verstei]ungsrahmen.(Verformungstheorie)

u » » .(tlasiizitätstheorie)
" u balken.

-Suspension bridges with stiffening frames(deflection theory)
" " " " " (theory ofelasticity)
v i/ .» » girders.

Fig. 13. Resultats pour la pleine charge avec p
Ergebnisse bei Vollbelastung mit px.
Results when fully loaded with px.



186 A. Hawranek

Der in Fig. 12 eingetragene Vorgang bei der Lösung entspricht der
Vollbelastung in dem anschließenden Beispiel.

Die im Vorliegenden entwickelte Verformungstheorie für die
Hängebrücken mit einem Zweigelenkrahmen als Versteifungsträger läßt sich
in ähnlicher Weise auch für die Verwendung eines Zweigelenkbogens
als Versteifungsträger durchführen, wobei die Ordinaten y1 in Gleichung (3)
der Gleichung der Bogenachse entsprechen müssen. Ist diese Bogenachse
parabolisch, wie die Form der Kette, so ergeben sich Vereinfachungen,
worüber an anderer Stelle berichtet wird.

IX. Beispiel.
Gewählt wird eine Kabelhängebrücke nach dem Entwurf des Verfassers

mit der Spannweite / 342 m 24 X 14,25 m, einer Pfeilhöhe / 34,2 m
des Kabels. (Die gleiche Brücke wie in der Abhandlung im Stahlbau 1934.)
Die sonstigen Abmessungen sind in der Fig. 13 a und außerdem im folgenden
gegeben.

/// 0,1 igcci 0,3312, sekai 1,0534
h 30 m tg a Af\L 0,4
fh 32,0 m c2 tg «i + tg a' 0,7312
//' 5,0 m n \gß =0,011695
hP 39,25 m d cos ß 0,99993
Si 226,688 m sin ß 0,0116951
s[ 119,62 m (ohne Verankerung im Schacht).
tg at — tg ar 0,033333 konst. f. Parabel.
(tg«/ — tg ar)2 0,001110889

Versteifungsrahmen: F 0,16205 m2, / 1,61416 m4
Kabel: F =0,0541 m2,
Pendelpfeiler: Fi 0,19898 m2,
Rahmenstiel: Ft 0,24568 m2, /4 0,13578 m4
Hängestangen: F2 0,004564 m2,
Rückhaltkabel: F3 0,05412 m2,

JF 9,9609 m2 JjF* 29,8255 m2

JiFi 8,1122 m2 J\F± 6,2837 m2
JlF2 353,672 m2 ///4 11,888
E 21,000 000 t/m2 (Versteifungsträger, Pendelpfeiler)
Ei 16,000 000 t/m2 (Hängesäulen als Drahtseile)
E2 19,000 000 t/m2 (Kabel)
EJ 33,897 360 tm2
Zsh= 332,534 m.

Belastungen: gk 3,940 t/m Eigengewicht pro Kabel einschließlich des
Kabelgewichtes, davon wird

g 1,000 t/m nicht auf das Kabel übertragen.
px 2,38 t/m die zufällige Last für den Versteifungsrahmen.

1. Vollbelastung der Brücke mit pv 2,38 t/m (Unbekannte
Ht;H2).

Der Anfangszustand ist gegeben durch die Kabelbelastung von gk — gf
2,94 t/m und die Belastung des Versteifungsrahmens mit %' 1,0 t/m.
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Damit werden die beiden Horizontalkräfte nach der Elastizitätstheorie
Hlk 40,09 t,
Hik 1256 + 336,24 1592,24 t.

Der in der Abhandlung angegebene Lösungsvorgang für die beiden
Unbekannten, wobei gerechnete Werte des Annäherungsverfahrens in Fig. 13
mit Kreisen bezeichnet sind, gibt die endgültigen Werte:

Hx 91,8 t gegen 95,41 t nach der Elast. Theorie
H2 7301 gegen 800,24 t „

0,00803848 m-2 v
0,000064617126 m-4 ev

791,3576006 trn3 e~

12368,5161733 tm8 ev'

EJa2= 2190,35 tm-2 e~l

r 427,5 m
Mit diesen Werten und mit M0 1/2 Px- x (l — x) wurden nach

Gl. (20) pt,pk (Fig. 13b)
(18) M (Fig. 13 c)
(19) Q (Fig. 13d)
(15) 1; (Fig. 13 e)

gerechnet, und in der folgenden Tabelle sowie in Fig. 13 eingetragen.

Tabelle I. Ergebnisse bei Vollbelastung nach der Verformungstheorie.

a
a2
Cx
G

2,749159
15,629490

'= 0,063982
3,953415
0,252946

Pkt. Pt Pk Q M >/

0 0,850 t/m 1,530 t/m 93,063 t -2753,944 tm 0,000 m
1 0,770 1,610 81,530 -1511,331 0,143
3 0,639 1,741 61,540 518,540 0,449
6 0,504 1,876 37,356 2611,870 0,876
9 0,428 1,952 17,627 3775,691 1,165

12 0,404 1,976 0,000 4148,799 1,253

Außerdem wurden darin die bezüglichen Werte aus der Berechnung nach
der einfachen Elastizitätstheorie strichliert ersichtlich gemacht.

Aus diesen Figuren ist zu ersehen, daß die Belastung des
Versteifungsrahmens pt nicht konstant ist, wie dies die Elastizitätstheorie
ergibt (0,509 t/m). Sie beträgt an den Trägerenden 0,850 t/m, in der Mitte
0,404 t/m und im Mittel 0,545 t/m. Dieses ist größer als jenes nach der
Elastizitätstheorie 0,509 t/m. Die Hängestangen sind also an den Enden
wesentlich niedriger beansprucht als in Brücken-Mitte, werden also an den
Enden kleinere spezifische Dehnungen erfahren als in der Mitte, die
Momente des Versteifungsträgers für die zufällige Last sind für Vollbelastung
bis auf einen kleinen Bereich durchwegs geringer als nach der Elastizitäts-
theone, in der Brückenmitte sind die positiven Momente um 6,0 % geringer,
an den Enden ist der Unterschied kleiner. Jedenfalls werden Ersparnisse
erzielt. Für Teillasten sind die Ersparnisse wesentlich größer. Die
Querkräfte verlaufen ähnlich wie bei der Näherungstheorie, der Größtwert an
den Brückenenden beträgt bloß 93,06 t gegen 106,10 t nach der Elastizitätstheorie.

Dagegen zeigt die Durchbiegung für die zufällige Vollast den
Betrag von bloß 1,253 m gegenüber dem Wert von 2,67 m für eine Hängebrücke
mit V e r s t ei f u n gs b a 1 k e n mit gleichem Trägheitsmoment nach der
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Elastizitätstheorie, was eine Verringerung der Durchbiegung um 57 o/o ergibt.
Dies liegt einmal an der Anwendung des Versteifungsrahmens und dann an
der Entlastung der pt in der Brückenmitte. Die Durchbiegung ist auch gegen-

Charge - Betastung - Loadpt

®\
®:

Tffortsdestringlesdesusp^Q) \

Hangestangenkratte-Suspens/on rodforces-

Poutre ra/d/ssante' <o

Verste/fungsträgen - Sltffe/rrnggirder^
©

Poutre rardrssante
Versteifungsträger -Stiftenr'ng -girder

— IMoments - Momente M

Di

Effortstranchants -Querkräfte

Shearing forces Q

Flechissements -Durchbiegungen-Deflect/ons ff

Theorie des deformations
Nach der Verformungstheorie
Accordmg to the cieftection theory
Theorie de Te'lastielte'
Nach der Elastizitä/s/heorie
According to the theory ofeiasticity

Fig. 14. Resultats pour charge semi-laterale avec px.
Ergebnisse bei halbseitiger Belastung mit px.

Results when loaded with px on half the span.

über jener aus der Elastizitätstheorie (1,431 m) für das gleiche System um
14 0/0 geringer.

2. Halbseitige Belastung der Brücke mit px 2,38 t/m.
In diesem Falle sind

Hik 40,09 t
H2k 1424,12 t
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und die für die hinzukommende Belastung nach dem angegebenen Verfahren
errechneten Florizontalkräfte

Hi 51,4 t gegen 47,7 t nach der Elastizitätstheorie,
H2 365,0 t gegen 400,1 2 t nach der Elastizitätstheorie

wobei die Integrationskonstanten die nachstehenden Werte haben:

d 6131,346, C2 25884,968, C3 —953,223, C4 — 53809,097.
Die Verteilung der Lasten px auf den Träger pt und auf die Kette pk, die
Momente, Querkräfte und Durchbiegungen sind in Fig. 14 eingetragen.

Die Momente wurden auch nach der Elastizitätstheorie gerechnet und
sind in Fig. 14 strichliert eingetragen. Die genauen positiven Momente sind
um 1 1 3 o/o, die negativen um 1 2, 6 °o kleiner als jene der Elastizitätstheorie.

Die Ergebnisse sind auch in der Tabelle II eingetragen.

Tabelle II. Ergebnisse der halbseitigen Belastung nach der Verformungs¬
theorie.

Pkt. Pt Pk Q M '/

0 1,603 t/m 0,777 t/m 139,793 t - 1542,000 tm 0,000 m
1 1,511 0,869 117,617 290,491 0,161
3 1,370 1,010 77,046 3106,425 0,435
6 1,270 1,110 20,561 5111,353 0,829
9 1,284 1,096 - 33,625 4834,203 0,835

12 1,416 0,964 -90,912 2192,337 0,678
12' - 0,964 0,964 -90,912 2192,337 0,678
9' -0,812 0,812 - 53,685 - 839,727 0,364
6' -0,732 0,732 - 20,560 - 2432,867 0,104
3' -0,721 0,721 10,262 -2651,328 -0,016
1' - 0,729 0,729 31,160 - 2063,049 -0,018
0' -0,776 0,776 42,031 -1542,000 0,000

Beachtenswert ist der Verlauf der Hängestangen-Kräfte. In den beiden
Beispielen sind die Hängestangen, die Normalkräfte im Riegel, wie die
Wärme nicht berücksichtigt. Es sei hervorgehoben, daß die Gleichungen sehr
empfindlich sind.

Zusammenfassung.
Ausgehend von einer parabolischen Kettenform, wird für eine Hängebrücke

mit einem Zweigelenkrahmen als Versteifungsträger die strenge
Theorie mit Rücksicht auf die Verformung des Tragwerkes gegeben. Es
werden für dieses zweifach statisch unbestimmte System die beiden
Hauptgleichungen abgeleitet und zwar für drei Fälle, eine Vollbelastung (Fall I),
eine Teillast, die bis zum linken Trägerende reicht (Fall II), und für eine
beliebige Teillast (Fall III). Der erste Teil der Abhandlung ist ganz allgemein
gehalten und es werden dabei sowohl die Normalkräfte, die Hängestangen,
als auch die Verformung der Stiele und Verschiebungen der Lagerpunkte
berücksichtigt. Die Hauptgleichung (I) wird aus der Gleichsetzung der inneren
und äußeren Arbeit ermittelt, die die Kette und die Pylonen bei ihrer
Formänderung infolge der Belastung leisten. Die Differentialgleichung für die
Durchbiegung ermöglicht es, den Ausdruck pt zu finden, der der Belastung
des Versteifungsrahmens im deformierten System entspricht, welcher für
stetige Belastungen der Brücke einen mit der Abszisse veränderlichen Wert
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darstellt. Die zweite Hauptgleichung wird erhalten, indem der Rahmenträger
allein mit pt belastet wird und für diesen Zweigelenkrahmen der Horizontalschub

gerechnet wird.
Zur Ermittlung der Integrationskonstanten werden die jeweiligen

Randbedingungen für die Trägerenden bezw. für die Grenzstellen der
Teilbelastungen herangezogen. Auch die Wärmewirkung wird berücksichtigt.

Schließlich wird ein Beispiel gerechnet und ein Verfahren angegeben,
in welcher Weise die Unbekannten, die nicht in expliziter Form ausdrückbar

sind, ermittelt werden können. Zum Vergleich sind in dem Beispiel auch
die bezüglichen Werte pt, /?&, M, Q und die Durchbiegung rj, die sich aus'
der einfachen Elastizitätstheorie ergeben, angeführt, wobei sich zeigt, daß
sich bei der Deformationstheorie kleinere Momente und Durchbiegungen
ergeben als nach der Elastizitätstheorie. Dieses Ergebnis ist noch günstiger,
wenn man für die Teilbelastungen (halbseitige Belastung) die Maximalmomente

errechnet.
Endlich wird noch gezeigt, daß die Durchbiegung nach der strengen

Theorie für das vorliegende Tragwerk um mehr als die Hälfte kleiner ist
als für eine Hängebrücke mit einem Versteifungsbalken, was dieses
neue System, abgesehen von der sonstigen Wirtschaftlichkeit, für die
Anwendung besonders geeignet macht.

Resume.
Partant d'une chaine de forme parabolique, Fauteur expose la theorie

rigoureuse des deformations des parties portantes dans le cas du pont
suspendu avec poutre raidisseuse constituee par un cadre ä deux articulation.
II etablit les deux equations principales concernant ce Systeme statiquement
doublement indetermine, cela dans les trois cas suivants: I. pour la pleine
charge, II. pour une charge partielle s'etendant jusqu'ä l'extremite de gauche
de la poutre, III. pour une charge partielle arbitraire.

Le probleme est traite, dans sa premiere partie, d'une maniere tout ä

fait generale, avec prise en consideration des forces normales, des tringles
de Suspension, de la deformation des montants ainsi que des deplacements
des points d'appui. L'equation principale (I) est obtenue en egalant le travail
interne et le travail externe effectues par la chainie et par les pylönes dans
leurs deformations sous Finfluence de la charge. L'equation differentielle
du flechissement permet la determination de Fexpression pt qui correspond
ä la charge du cadre raidisseur dans le Systeme deforme et representant, pour
des charges permanentes du pont, une valeur variable avec l'abscisse. La
deuxieme equation principale est obtenue en chargeant la poutre de cadre
seule avec pt et en calculant la poussee horizontale pour ce cadre ä deux
articulations.

Pour determiner les constantes d'integration, on fait intervenir les
conditions limites du cas considere correspondant aux extremites de la poutre
ou aux positions limites des charges partielles. L'influence de la chaleur est
egalement prise en consideration.

Enfin, l'auteur presente un exemple de calcul et indique une methode
permettant la determination des inconnues qu'il n'est pas possible d'exprimer
d'une maniere explicite. A titre de comparaison, il donne egalement les
valeurs correspondantes de pt, pk, M, Q et du flechissement rj telles que les
fournit la theorie de Felasticite. Cet exemple montre que les moments et
les flechissements fournis par la theorie de la deformation sont plus faibles
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que ceux que donne la theorie de Felasticite. Ce resultat est encore plus
favorable lorsque l'on calcule les moments maxima pour les charges
partielles (charges portant sur la moitie de la longueur du pont).

Pour terminer, l'auteur montre egalement que suivant la theorie stricte,
le flechissement des parties portantes est inferieur ä la moitie de la valeur
qu'il atteint dans le cas d'une poutre raidisseuse simple. Outre les autres
avantages que l'on peut tirer de l'emploi d'un cadre raidisseur, le fait ci-
dessus rend ce Systeme particulierement interessant dans les applications ä
la pratique.

Summary.
Starting with a parabolic form of chain, the strict theory with regard

to the deflections of the supporting structure is given for a Suspension bridge
with a two-hinged frame as stiffening girder. For this doubly statically
indeterminate system the two main equations are derived, and this is done
for three cases: a füll loading (case I), a partial load extending to the left
end of the girder (case II), and any desired partial load (case III). The first
part of the treatment is kept quite general, whereby the normal forces, the
Suspension rods, the deformation of the girder bearing-legs, and also the
displacements of the bearing points are taken into consideration. The main
equation I is determined by equating the internal and external work done
by the chain and the towers in becoming deformed (deflected) in consequence
of the loading. The differential equation for the deflection makes it possible
to find the expression pt, corresponding to the loading of the stiffening frame
in the deformed system, and representing for constant loadings of the bridge,
a value varying with the abscissae. The second main equation is obtained by
loading the frame-girder alone with pt and calculating the horizontal thrust
for this two-hinged frame.

For determining the constants of integration, the momentary limiting
conditions for the ends of the girder or for the limiting positions of the
partial loads, are made use of. Also the effect of heat is considered.

Towards the end, an example is calculated and a method is given showing
how the unknowns, which cannot be expressed in explicit form, may be
determined. For comparison, the corresponding values for pt, pk, M, Q and
the deflection rj /as found by the theory of elasticity are also given in the
example; from this it is seein that the moments and deflections given by the
deflection theory are smaller than those given by the theory of elasticity.
This result is still more favourable when the maximum moments are calculated
for the partial loads (loadings on half the length of the bridge).

Finally it is also shown that the deflection for the supporting structura
in question is, according to the strict theory, less than half of that for a
Suspension bridge with a simple stiffening girder, and this, apart
from other advantages, makes the new system particularly suitable for practical

application.
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