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DIE BERECHNUNG AUSSERLICH STATISCH
UNBESTIMMTER PRISMATISCHER SCHEIBENWERKE

LE CALCUL DES CONSTRUCTIONS PRISMATIQUES A PAROIS
MINCES, EXTERIEUREMENT HYPERSTATIQUES

DESIGN OF PRISM-SHAPED STRUCTURES WITH THIN PARTITIONS
EXTERNALLY STATICALLY INDETERMINATE

Ing. Dr. techn. ERNST GRUBER, Hannover.

A. Einleitung.

Im Eisenbetonbau finden Schalenkonstruktionen in steigendem MafBe
Verwendung. Waihrend nun die stetig gekriimmten Schalen in ihrer Theorie
schon weitgehend erforscht sind, wurden iiber die sogenannten Scheiben-
werke — das sind Schalen, welche aus ebenflichigen Teilen zusammengesetzt
sind — bisher nur wenige Untersuchungen angestellt. Eine griindliche Kennt-
nis der Statik dieser neuartigen Gebilde ist jedoch sehr erwiinscht, da diese
Tragwerksformen bei der Losung verschiedener Bauaufgaben mit Vorteil ver-
wendet werden koénnen. Fig. 1—3 zeigen hiefiir einige einfache Beispiele.
In solchen Tragwerken wirken die einzelnen Scheiben abcd als Trager,
die in den Querscheiben A4, B, C usw. gestiitzt und lings der Kanten » mit-
einander unverschieblich verbunden sind. Wir nehmen zunichst an, daf die
Verbindung lings der Kanten gelenkig sei, so daB von einer Scheibe zur
anderen nur Schubkrifte 7" iibertragen werden konnen (Fig. 1). Eine Uber-
leitung von Biegemomenten X,, deren Drehachsen in den jeweiligen Kaaten
liegen, und von Querkriften @,, deren Richtungen normal zu den jeweiligen
Scheibenebenen stehen, wire sonach unméglich. Die Ausbildung der schar-
nierartigen Gelenke bereitet jedoch erhebliche konstruktive Schwierigkeiten.
Man schlieBt daher, dem monolithischen Charakter der Eisenbetonbauweise
entsprechend, die einzelnen Scheiben miteinander biegesteif zusamnien und
gelangt so zu den sogenannten steifknotigen Scheibenwerken. Die Span-
nungen, welche durch diese steifen Verbindungen in das Tragwerk kommen,
sind in vielen Fallen von ausschlaggebender Bedeutung und diirfen nur unter-
driickt werden, wenn sich die Querschnitte des Scheibenwerkes nicht zu stark
verformen. In dieser Hinsicht ergibt die nihere Untersuchung folgendes:

1. Fiir offene Scheibenwerke werden die Verformungen umso kleiner,
je groBer die Neigungswinkel y der aufeinanderfolgenden Einzelfldchen sind
(Fig. 1). Bei Winkel iiber 40° wird der Fehler infolge Vernachldssigung
der Steifknotigkeit in der Regel unbedeutend.

2. In sich geschlossene Scheibenwerke (Fig. 3) sind in dieser Hinsicht
giinstiger als offene (Fig. 1).

3. Die Verformung der Querschnitte eines Scheibenwerkes wird ganz
erheblich vermindert, wenn man in gr6Beren Abstinden, besonders in den
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Querschnitten groBter Formanderung, biegungsfeste Querrahmen oder Quer-
schoten einbaut. Als Beispiel hiezu diene der in Fig. 3 dargestellte Kamin-
kithler mit oberem Versteifungsring, der durch den dort notwendigen Re-
visionssteg gebildet wird. Bei ausreichender Anordnung obiger MaBnahmen
kann das steifknotige System ohne erheblichen Fehler durch ein Gelenkwerk
ersetzt werden.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramiden-
artigen Scheibenwerken geringer als bei prismatischen t).

Fiir die Berechnung des vielfach statisch unbestimmten steifknotigen
Scheibenwerkes wihlen wir zweckmaBig das lings der Kanten gelenkig ver-
bundene Scheibenwerk — von nun an kurz ,Gelenkwerk® genannt —
als Grundsystem. Wir miissen uns daher zuerst mit letzterem beschaftigen.

Toit en Forme de fournelle
Tonnendach
Barrel vaulfed roof

Fourre simple en construction en parg!
_ Balkensclresbenwerk
Girder panelled structure

Fig. 1

B. Das gelenkige Scheibenwerk.

Im allgemeinen wird das Tragwerk von Lasten angegriffen werden,
welche zwischen den Knotenpunkten ~ und » -+ 1 liegen. Diese Lasten er-
setzt man zuerst durch zwei gleichwertige, in den Ecken » und n - 1 wir-
kenden Knotenlasten P, und P, ., (Fig. 4). StoBen in einem Punkte 7z nur
zwel Scheiben zusammen, so kann man P, auf statisch bestimmtem Wege in
die beiden Komponenten

COS @,y

S —= - = = P, -a a

n, n+1 n sin ((Y,z__l — C(,Z) n n, n+1 ( )
COS «

Szz,lz—1 = Iy < = IFp Qp ony (b)

sin (c,_y — ¢p)
zerlegen, von welchen die erste in der Scheibe 7,7 41 und die zweite in der

1) Siehe die Abhandlung des Verfassers ,,Die Berechnung pyramidenartiger Schei-
benwerke und ihre Anwendung auf Kaminkiihler‘* in den ,,Abhandlungen der Internatio-
nalen Vereinigung fiir Briickenbau und tHochbau‘, Band 'II, 1933/34.
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Scheibe # — 1, n wirkt ). Fiihrt man diese Zerlegung fiir jede Knotenlast P,
durch, so erhilt man fiir jede Scheibe 7,7 -1 zwei Krifte S, ,.,und S, ;. ,
welche sich zur Transversallast

Pnynynr — Sn+1,n - SIZ,IZ—H (C)
zusammensetzen. Neben dieser wird im allgemeinen noch eine in der Ebene
des Tragers n,n 41 wirkende verteilte Achsiallast 7, , ., und eine verteilte
Momentenlast m, ,.,vorhanden sein. Sowohl p als auch 7 und m sind uber
die Lange der Scheibenachsen stetig verteilt gedacht.

Schneiden wir aus zwei benachbarten Scheiben » — 1,2 und n,2--1
zwei Elemente m und m --1 heraus und bringen an deren Schmttstellen die
freiwerdenden Schnittkréfte @, N und M neben 7, -dx an, so miissen diese
mit den Belastungen, p, » und m ein ebenes Gleichgewichtssystem bilden.
In Fig. 5 sind die beiden Elemente in eine Ebene geklappt zur Darstellung
gebracht. Es folgen nun fiir das Element . die Gleichgewichtsbedingungen)

Qr’zﬂ,rz = — Pun-.n (1
N;Iz—1,n = Tpny — Tp—Mp_1,n (2)
M;z-x,n = — Iy hm,n — Tp_y - /Zm.n—l =+ Qrz~v_,n — My _y,n. (3)

Fiir das Element m <1 erhidlt man die analogen Gleichungen (1’), (2’) und
(3’), indem man in Gl. (1), (2) und (3) den Zeiger » um eins vermehrt.

AuBerdem miissen langs der Kanten n die bezogenen Dehnungen der
anliegenden Rander zweier benachbarter Scheiben in jedem Punkte iiberein-
stimmen. Das heifit

d Emyn = Cmy1.n (4)
oder ’
1 [M’Z'—] n ’Z 1, ﬂ] 1 [ Mfl ﬂ+] Nﬂ n+]]
— T . e A /] D Al A
Joon "V R AT ELT S P YR ©)

Unter der Annahme, daB bei jeder Scheibe fiir sich F und J konstant sind,
ergibt die Differentiation der Gl. (5) nach x

hm, . /E’i’il o . ,,,;f:‘,’f _ «{Vf’ﬂlf‘
_/IZ 1,7 n”+l _/n nt1 Fn 1, n Frz,/z+1

Setzt man Gl. (2) und (3), Gl. (2) und (3’) in Gl. (6) ein, ordnet um und diffe-
rentiert nachher nochmals nach x, so ergibt sich unter Bedachtnahme auf
Gl (1) und (1%)
2
1

o (}zm,n hmay 14 L ,(/zf,l,z | P .

I4
Mrz—l,n :

= 0. (6)

+
Jn-l./z Ffz—] n’ jn«l n jn n+1 FIZ——I,IZ Fn,rz+1
/lm+1 n"* /zm+1 nty 1 nn n+1 nr'z—-l n
_—- — ) = 4 dnoen
s ,//z n+1 th n+1 Fn n+1 Fn-—l n
m+1 n )
— (I]n-l n+ mn-] rz) j (/?n Ryl + mn, n+1) j (7)
n-1,n n, n+1

Haben die einzelnen Scheiben rechteckigen Querschnitt und wechselt
die Dicke d,  ,., derselben mit der Abszisse x (Fig. 1), so lautet Gl. (5)

EZ,IZ+1 ] [6Mﬂ~1,ﬂ + er—l,”] = [— —G—A/Iilzi_‘l‘ + Nﬂ,’l+1] (53)

Fﬂ—] n /ZIZ-—I n hll n+1

2) Die Relhenfolge der Indices gibt die positive Kraftwirkung an.
3) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Riicksicht ge-
nommen.
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Nehmen wir an, daB

_ Anni1 = %nngr * f(x),
wobei die Funktion f fiir jede Scheibe dieselbe Gestalt haben soll, so er-
- gibt sich
1 _ B _ Onnes Dwns _ fwnes nns

En\(:x‘) *—7 Fn—x,n o bnﬂ,n }lll—],ﬂ. B “n-1,n hrz—],n
Differentieren wir Gl. (5a) einmal nach x, setzen in die so erhaltene Gleichung
Gl. (2), (3), (2) und (3’) ein, ordnen um und differentieren nachher noch-
mals nach x, so ergibt sich unter Beriicksichtigung der Gl. (1) und (1’)

3 kn

’ . ’
o (Prer,nt Maein) = 5= (Pr,nar + My g1
hn—l,n h”, n+1

= konstant.

Thy + 21k k) T+ By Ty = —

— % ’2/,1—1,11 -+ %”;z, n+1 (73)

Fig. 2

Wir sind nun in der Lage, auch Scheibenwerke zu berechnen, bei welchen
die Scheibendicken mit der Abszisse x wechseln. Die einzige Voraussetzung
dabei ist, daB sich bei allen Scheiben die Dicke gleichartig Andert, was man
bei der konstruktiven Durchbildung leicht einhalten kann.

Da fiir jede Kante n eine solche Beziehung (7) oder (7a) aufgestellt
werden kann, gewinnt man ebensoviele Gleichungen als Kanten, somit als
unbekannte Funktionen z,(x) vorhanden sind. Die Gl. (7) sind somit die Be-
stimmungsgleichungen des Problems. Da wir bei der Herleitung dieser Glei-
chungen iiber die Art der Belastung und des Tragwerkes keinerlei besondere
Voraussetzungen treffen muBten, gilt das System (7) auch ganz allgemein fiir
jedes prismatische gelenkige Scheibenwerk. Bei der Bildung der ersten und
letzten Gleichung von (7) sind die jeweiligen Randbedingungen zu beriick-
sichtigen. So ist z. B. fiir einen freien Rand 7,=0 (Fig. 1) und fiir sym-
metrische Tragwerke unter symmetrischer Belastung das in der Symmetrie-
ebene liegende © = 0. Ferner sind bei antisymmetrischer Belastung die zur
Symmetrieebene symmetrisch liegenden 7 einander gleich usw. Lost man das
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mit Hilfe dieser sogenannten Randbedingungen ,erster Art“ gebildete
System (7) auf, so erhidlt man «’, (x¥) als Funktion von x, woraus sich

Uy = J' Tp* dx + C, = 1, + Crz (8)
ergibt.

Die in Gl. (8) enthaltenen Integrationskonstanten C, ergeben sich aus
der Belastungsart des Scheibenwerkes. Wir wollen diese C, allgemein fiir
ein Scheibenwerk, bei welchem die einzelnen Trager abcd in den End-
scheiben 4 und C balkenartig gelagert sind, ermitteln. Solche Tragwerke
nennt man gelenkige ,,Balkemchelbenwerko“. Im allgemeinen werden die
Lasten nur abteilungsweise stetig sein, wie es in Fig. 6, in der das Scheiben-
werk in eine Ebene geklappt zur Darstellung gebracht wurde, ersichtlich ist.
Legt man durch jede Unstetigkeitsstelle der Belastung eine zu den End-
scheiben parallele Ebene, so wird das Scheibenwerk in g Sektionen zerlegt.
Schreibt man fiir eine ]ede von diesen ein Bestimmungssystem (7) an und
lost es auf, so ergibt sich fiir jede Sektion je eine Gleichung

o=m o=m

Ty, v — 2 ano (/]o o1y ’ng,o+1 V dx %+ Z bno Ny, o+1'v+C12 v = Tyt Cn pe (83)

o=0

Da 1mks und rechts einer Belastungsunstetigkeitsstelle die Schubspannungen
einander gleich sein miissen, bestehen die Beziehungen

Thy (xv+1) = Tn,p:1 (xv+1)7 (9)
welche unter Bedachtnahme auf Gl. (8a) in
Cll v Ctz,v+1 - AIZ, v+1 (10)

iibergehen. In diesen Gleichungen stellt 4, .., den Sprung dar, den die
Funktion 7, , beim Ubergang von der vten in die » -}-1te Sektion macht.
Solche Beziehungen (10) gibt es « — 1 je Kante. Addiert man die ersten v
der Gleichungen (10), so erhédlt man

y=y

Cn,v — ZO An,v+1 + Ch!,O) (11)
woraus mit Gl. (8 a)
Tn,y — En, y ; Arz, V-H1 + Cﬂ,O (12)

folgt. Wir haben nun in der Kante n alle C, , durch C, , ausgedriickt und
dadurch die Anzahl der noch zu bestimmenden Konstanten C, , auf die
Kantenzahl m 1 vermindert. Da die einzelnen Scheiben in den Endscheiben
balkenartig gelagert sind, muBl jede Scheibe gegen achsparallele Verschie-
bung im Gleichgewicht stehen. Es folgt daher die Relation

w1

(— Tnv + Tngr,w + Mnyn) dx =0, . (13)

v

w—1
D)
0

welche durch Einsetzen der Gl. (12) in
V-—,u -1 ¢ v 41
L. [Cn+1, o~ Ca, o] < [ v, Izz (An+1 i1 — A, v+1) + J( (;rz, v =Tnpt,v— ”n,n+1) a’x] (14)

o

'vll — xv+1 - xv

iibergeht. Aus diesen zweigliederigen Gleichungen koénnen unter Hinzu-
ziehung der Randbedingungen ,erster Art‘“ die Integrationskonstanten C, ,
bestimmt werden.
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‘Wie rasch dieses Verfahren zum Ziele fithrt, soll an dem Belastungs-
fall der Fig. 7 gezeigt werden. Man teilt das Tragwerk in drei Sektionen.
Nachdem in der ersten und dritten Sektion p = 0, so folgt

o=m
’ . ’ m—— . ’ —
Tn1 = 0 Tn,2 = Zeang *Po,o+1 5 Tn,g3 — (15)
Q:
o=m
Tp1 — Cn,o; Tp,g — X Zoana'p@,@ﬂ + Crey  Tns = Cp,s. (153)
9:

Annesu de raidissement (Section € )
Versteifungsring (Querschmtf C)
Stifferning - ring (Cross - Sectron C)

B, net
! G [
d |
Z |
|
[ !
Axe dela construction en parors | !
Achse des Scherbenwerkes _{.._____..i |
Axis of panelled sfructure | P ——-1\\
AT |
A l 2%
—
7 i ! }
Jectron !
009/*.5-0/70/77‘_/ I %
Cross - Sectron I {
| i 1
| " ’!’ \\

Tour refrigérante — Aublfurm ~ Cooling fower

Construction em paross enporte-s-foux.
Aragscheibenwerk - Candilever paneled structure.

Fig. 3
Mit Hilfe der Gl. (10) und (11) erhalten wir die Gl. (12) in der Form
Tny — CIZ,()
By = Z‘Oan,_ “Po,ort * (x—14) + Cyo (16)

Tnys = Iy 2 Ang * Po,o+1 T Cryo -

0=0
Setzt man Gl. (16) in GIl. (13) ein, so ergibt sich die Differenzengleichung
erster Ordnung

1 (1, ——
Cn,o - Cn+1,0 — *L" 2 + 13 : Zo(an,a - an+1,9) ly - Po, o041+ (17)
o=

Sind die Kanten 0 und 7 freie Rinder, so muB 7, = tv,, = 0 oder nach Gl. (16)
C, ,=C,, o= 0sein Da fir n = o und n = m die o, , nicht bestehen,
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lautet die den Randbedingungen angepaBte Lésung von Gl. (17)
1 (1 e
Coo =+ (?2 + 13) § — g,n* Po, o1 (18)
i n=12....m—1
Schrumpft /, auf Null zusammen, so gelangen wir zu Einzellasten P, , . ,,

welche in 122 angreifen. Gl. (18) geht also iiber in
l- @:m—-l
Cro = [’j Zl—“ An,q * Po, 041 - (19)

Aus GIl. (18) ergeben sich unter Zuhilfenahme der Gl. (16) die Schub-
spannungen 7.

Dieses Verfahren ist exakt und dann leicht anwendbar, wenn die Auf-
l6sung der zu einer Sektion gehorigen FElastizitiatsgleichungen einfach von

Fig. 4

statten geht. Ist dies nicht der Fall, so ist es zweckméBiger, die unstetigen
Belastungen in eine Fourier’sche Reihe zu entwickeln. Jedes Glied dieser
Reihe stellt eine Partialbelastung des Tragwerkes dar, welche von Endscheibe
zu Endscheibe stetig ist. Eine Zerlegung des Tragwerkes in Sektionen ist
daher nicht mehr nétig. Nach dem Superpositionsgesetz ergibt sich das Ge-
samtresultat als Summe der zu jeder Teilbelastung gehorigen Teilresultate.
Fiir die Scheibe 7,7 + 1 lauten allgemein die Reihenentwicklungen

2 L kax [F . knE y J . kax
p”r”““”f«%jsm I 'jopn,n+1(5)'51n_'Fd§ —Z‘;Ak;n,m-l'swl T (20)
23 kax (F kg 2 & kmx
”n.n+1:Bo+‘f;C05 12 'Jonn,n+1(5)'COST:—L—;Bk;n,n_i.l-COST (21)
1 L
B, = z'j Rnyni (E) - A& (22)
0
und
, 2 & L . kax (F knk
Ry e 'L””’”ﬂ(‘f"cos L 9=
V 2 & L . kax
— f; Bk;ﬂ,ﬂ+1 _k;‘.;l,' : S]nT . (23)
Analog ergibt sich fiir
, 2L . kax (F k&
My nyg = — *Z’le’la . Sm‘z— ‘.0’”n,n+x(§)'COSL_d§ =

2 L . kax .
.~ _Z ) L. 2
L 7 Cka n, n+1 k 7T sin L ( 4)
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Setzt man Gl. (20), (23) und (24) in die rechte Seite der Gl. (7) ein, so er-
hialt man die Storuangsfunktion in der Form

2 . kaa
T 21)[),2;,2 Ssin-o—, (25)
wobei
L h
Dk?n _ (Ak;n-l,n - Ck;n—l,n . ‘k;;;) * ‘7,;:7—1;,_”;
L\ &
- (Ak; non+l T Ck;n,n+1 : kﬂi) : ﬁzﬁz
L. L
B, nyngr Eﬁ,?ﬂ: + Bpnoa,n - k_ﬁn——:; (26)
bedeutet. Die allgemeine Losung des Systems (7) lautet somit
h=m kX
TH;Zané, ZDM sin~—— +(r=0,1,2.... m). (27)

3

Diese allgemeine Lésung ist sodann mit Hilfe der Randbedingungen ,,erster
Art‘ an das jeweilige Tragwerk anzupassen.

Q@ er m+/
Lowr il HHIU'HHH‘HIM
MMy, per *d1,
2,101, mn,n«’l’m"ﬂ?" et 0!
-~
Noyner . _:‘_‘___\4,L s Nopnet ANy ey
k Pnynet
) ﬂmOI, n
S | S A
@t @n,ne1 *dQp ey
LPr-1
T, || 2
m,
-1, et < r-t,n*
Mo-tn NI A’ 777\\ ‘\ Np-t,n* ANy -y,
gl
Vn- hn ,/'. J
/7m,n 7
e ——— s o 0 Z:-,-/ -ax
{f Qp-1,0 +dQ,.y, ,
Fig. 5

Somit wire die Balkentonne vollstindig erledigt. Bei gréBeren Werten
der Freilage L muB man aus konstruktiven Griinden vom einfachen Balken-
scheibenwerk abgehen und zu &duBerlich statisch unbestimmten Scheiben-
werken iibergehen, bei welchen die einzelnen Triger n,n -1 entweder alle
oder nur einzelne statisch unbestimmt gelagert sind. So sind z. B. in Fig. 2
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alle Einzeltriger Durchlauftrager, in Fig. 13 ist jeder der beiden Randtrager
als Zweigelenkrahmen ausgebildet und endlich in Fig. 3 sind samtliche
Scheiben im oberen Versteifungsring elastisch abgestiitzt.

Um diese Tragwerke berechnen zu konnen, miissen wir uns vorerst mit
den Formanderungen der gelenki- ¢n Scheibenwerke im allgemeinen befassen.
Denkt man sich das Gelenkwerk iings der Kante n aufgeschnitten, so kénnte
sich jede Scheibe n — 1,7 in ihrer Ebene um y, , , durchbiegen. Es k&énnte
sich also der Punkt # als Punkt der Scheibe # — 1, n nach »’ und als Punkt
der Scheibe n,n 41 nach n” bewegen. Der Zusammenhang der Scheiben bei
n kann nur wieder so hergestellt werden, indem sich »” normal auf 7,n -1
und »’ normal auf n — 1,7 bewegt. Wir erhalten im Schnitt dieser beiden
normalen Bewegungsrichtungen den Punkt 7z, in welchem sich # nach der
Deformation befinden wird. Eine Auflosung des Viereckes nn’nzn” ergibt
(siehe Fig. 8) '

Jn—1,
Ynynyy — (COS(a,,lll :a;) — Vn, n+1> . COtg ((1/1._1 = O!rz)
( Y, ne1 \
in,n-1 ~— (y —t,n P (all;l — a’l)) ' COtg (C‘ -1 C‘n) . (28)

Vermehrt man in diesen Gleichungen den Zeiger » um 1, so ergeben sich die
fiir die weitere Rechnung nétigen Werte #, ., ,+. und %,., , Aus Fig. 8
folgt weiters der zur Scheibe 7,7 -+ 1 gehorige Sehnendrehwinkel zu
v=41
Nnv1,n = Yn,n+1

Yy = = 21 €y Vv, ntvei - (29)
p—=

Sn, n+1

Ferner besteht zwischen Durchbiegung und Biegemoment die bekannte Be-
ziehung

E - Ju it 'J’le,"ﬂ = — My, n41 - (30)
Differentieren wir diese Gleichung zweimal nach x, so erhalten wir unter

Bedachtnahme auf Gl. (1) und (3) die zur Bestimmung der Durchbiegung
maBgebende Differentialgleichung

1% ’ , ' I
EJuynir * Ynyner = Tn * Bmga,n + Tnoy * Benga, npr + Mnyniy + Poyngr - (31)

Bezeichnet man bei Festhaltung des Koordinatenanfangspunktes eine Achs-
verkiirzung als positiv, so folgen letztere aus

{4
.E L Fﬂ,'l—{-l . Aﬂ,fl+l = T,; a Tﬂ+1 I ”’Z,n%[ . (32)

Die zu Gl. (31) gehorigen vier Randbedingungen ergeben sich aus den Lage-
rungsbedingungen der einzelnen Triger a bcd in den Endscheiben A und B.
Und zwar ist in A und B, also fiir x = 0; x = L die Durchbiegung
Vu,n+1 = 0. Die zwei fehlenden Randbedingungen ergeben sich aus Gl. (30).
So ist z. B. fiir das Balkenscheibenwerk (Fig. 1) fiir x = 0; x = L das Biege-
moment M, , ., = 0. Fiir das Tragwerk der Fig. 13 ist bei den zwei Rand-
tragern fir x=0; x=L My = My_ 1, » = —H -4 und bei allen iibrigen
Scheiben M, ,,, = 0. Die beiden zur GIl. (32) gehdrigen Integrations-
konstanten folgen aus der Gro68e der Normalkraft N, ,., in den beiden
Endscheiben 4 und B.

Nach diesen Vorbereitungen kann man nun zur Losung der duBerlich
statisch unbestimmten Scheibenwerke iibergehen. Man wihlt hiezu das ge-

-
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wohnliche Balkenscheibenwerk als innerlich statisch unbestimmtes Grund-
system, das heifit man belastet dieses mit den gegebenen duBleren Lasten und
den iiberzihligen Auflagerreaktionen der einzelnen Triger. Die Auflésung
des so belasteten Balkenscheibenwerkes wird die oben erwihnten iiber-
zahligen Auflagerkriafte als Unbekannte enthalten. Die Bestimmungsglei-
chungen fiir diese ergeben sich aus den Auflagerbedingungen der statisch un-
bestimmt gelagerten Einzelscheiben. So ist z. B. in Fig. 2 fiir jede Scheibe
in der Mittelscheibe C die Durchbiegung gleich Null. Das ergibt ebenso-
viele Bedingungen als Triger, somit als unbekannte Reaktionen C,, , ., vor-
handen sind. Fiir Fig. 13 muB fiir die Randtriger die Entfernung der Rahmen-
fuBpunkte 1—2 erhalten bleiben. Es stehen also den beiden unbekantiten
Horizontalschiiben H, und H, zwei Bedingungsgleichungen gegeniiber.

Ist der Mittelquerschnitt durch eine starre Scheibe versteift, so miissen
im Querschnitt C die Neigungswinkel y, zweier benachbarter Scheiben er-

Sect/ion

Abschartt |9 v vl pe2 A
Jection ';
X B -
[ oot Axe du|dlsque=Scheibenachse _ Poretnet
| f;l,nfl /ov,'n,n‘l WAXIS 0/ IDGHE///}’g m,a-l;ln,rvl » ;
. m+I,n
‘n
< | Tl
. . I N,
oo e s clsgueSiherbengonse S | I
<§ ! oy Axss|of panelling Moe2;n-1,n fo-1,n l Er~§“ Amop-1
S 0§} eS8t
$ :?, 3 [ X% ‘k.'
R % L X (424 : V
NN 33
2 E E i L .2S
SN 8%
S
S

Fig. 6

halten bleiben. Also muB bei der mit den duBeren Lasten und den Ver-
bindungskriften P, ,., (Fig. 1) belasteten Balkentonne fiir x = L,;
P, nt1— O t1,n+2=0gelten. Die Unverdnderlichkeit der beiden, den Rand-
tragern anliegenden Winkeln y, und y, _,, darf nicht als Bestimmungs-
bedingung gezihlt werden, da die Anderung dieser Winkel infolge der nicht
vorhandenen Torsionsfihigkeit der Randtrager 2) beliebig sein kann und durch
die oben erwihnten Belastungen iiberhaupt nicht ausdriickbar ist. Bei m vor-
handenen Scheiben gibt es also m — 3 Winkelbedingungen. Da die von den
Berithrungskriaften P, ,., ergriffene Mittelscheibe C im Gleichgewicht
stehen mufBl, kommen zu den obigen m — 3 Bedingungen noch die drei Gleich-
gewichtsbedingungen XM = 2 H = XV = 0 hinzu und wir erhalten im
Gesamten m Gleichungen zur Bestimmung der m unbekannten P, , ;..

Ist ein Querschnitt des Tragwerkes nicht durch eine starre Scheibe, son-
dern nur durch einen biegungssteifen Rahmen ausgesteift, so wihlt man
zweckmiBig die Eckmomente des Rahmens als Uberzihlige. Diese Momente
M, erzeugen in den Scheiben normal zu deren Achsen wirkende Berithrungs-
kriafte P, ,., von der GroBe

8) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Riicksicht ge-
nommen. :
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Sin (v, + 7ns1)
Sn,ni1 Sin Vn ¢ S Y 41

sz,n+1 — (Mn - M/z-H)

- (Mrz+1 - M/z+2) T e '\L'

5n+1 nye S Gy

(My— M) —— L (33)

Sn—1,n * S 0ty

Bedeuten 5,, »+1 die Sehnendrehwinkel in Querschnitt C des mit P, , . .
und den duBeren Lasten belasteten und vom Versteifungsrahmen losgelosten
Gelenkwerkes, so kann fiir jede Ecke eine Dreimomentengleichung

Sn_l,rz M, +2 (SnAl,n + 5/1,n+1) M, + 511, 141 'M/z+1 - OE./( n—1,n = rz,n+x) =0 (34)

aufgestellt werden, womit wir die Gleichungen fiir die Ermittlung der M, ge-
funden haben.

Samtliche in diesen Rechnungen vorkommenden Auflagerbedinguangen
und Verformungen ergeben sich selbstverstindlich aus den durch Gl. (31)
und (32) errechneten Biegelinien der einzelnen Scheiben n,n 1.

Wie schion anfangs dieses Abschnittes erwihnt wurde, ist die Zerlegung
der Knotenlasten P, in die Komponenten S, , ., nur dann auf statisch be-
stimmtem Wege moglich, wenn in einer Kante nur zwei Scheiben zusammen-
stoBen. Treffen in einer Kante n» u Scheibenziige zusammen (Fig. 9), so er-
gibt sich zunéchst durch eine dhnliche Betrachtung wie fiir zwei Scheiben die
Gleichungsgruppe

'I" (/Zm,rz * hm,v—l — 1 ) o Tr ( /ll;l n 1 ) +
A _In, v—1 Flz, v—1 b ./Ii,v 1 Fﬂ, v—1
’ hfn+1 v 1 ) r( /Zm—x n* }Zm+1 v 1 )
i .5 N TR - o AN i 3 LK —
+ ’( /P A A Wy A Fas
R, n ’ R, v ’Zn v ny v—1
n.y— mﬂ V— ’ - n, v ' n v]) * T T . . 35
(p 1 + 1) _/tz,v . (p ,v T n, ) J/z , + ”’v Fn,y__l ) ( )

wobei die Schubspannungen z,., , und 7,., in den Schnitten v —1 und v
wirken. So wie fiir die beiden Scheibenziige v — 1 und v 148t sich fiir je zwei
weitere Scheibenziige v und v 1 eine solche Gleichung aufstellen. Das gibt
@ — 1 Gleichungen. Trennt man lings der Schnitte v — 1, v, v 4+ 1 usw. die
Trager n,v —1; n,v; n,v-+1 usw. ab, so bleibt ein Fragment # iibrig, auf
welchem die Schubkrafte =, . _1; t,,,; 7o, v+1 Uusw. wirken. Da nim Gleich-
gewicht stehen muB, folgt die ute Bedingung fiir die z, ,

M tn, =0, o (36)
1

In den Gleichungen (35) sind die Komponenten S, , der Knotenlast P, in
den p,, , noch latent enthalten. Fiir deren Bestimmung gelten zunichst die
beiden Gleichgewichtsbedingungen
2 Sn,v . Sinaﬂ,u = P, - sinq,
v=1 (37)

v=p

> Sp,-COS@,, = P, COSa,.
v=1

Die ldngs der Riander n losgelosten Scheiben n, v wiltrden sich um den Betrag
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Vu,v in ihrer Ebene durchbiegen. Da jedoch alle ¢ Scheiben bei # tatsdchlich
zusammenhingen, miissen die Rander n, der im obigen Sinne freigemachten
Scheiben, alle dieselbe Verschiebungskomponente &, und #, haben. Fillt man
also in den Endpunkten der Durchbiegungsvektoren y, , ., auf die dazu-
gehorigen Scheibenebenen die Normalen, so miissen sich letztere alle im
Punkte 7 schneiden. Es besteht also fiir jede Scheibe die Beziehung

Y,y = tjn+SiNet, , + &, - COSy,,,. (38)

Setzt man die aus Gl. (35) errechneten ¢, , in die Gl. (31) ein und integriert
diese mit Hilfe der schon besprochenen Randbedingungen, so ergeben sich
w Gleichungen, in welchen &,, %, und S, , noch als Unbekannte vorkommen.
Nimmt man zu diesen u Beziehungen noch die beiden Gl. (37) hinzu, so ist
man im Besitze von u -2 Beziehungen, aus welchen sich die u -+ 2 Unbe-
kannten &,,%, und S, , (v =1, 3... u) berechnen lassen.

B rer

Y . A
| I n+7
e MO M Ceper B

| 7
S JOII IO e B
F ! n-7
Lo 4 52,, ¢s |

i |

Fig. 7

Hat man nun die Schubspannungen = und auch die etwaigen auBerlich
unbestimmten Auflagerkrifte bestimmt, so ergeben sich die Normalkrifte zu
X

Npnpy = j (Tn — Tnyy) dx + Ry, 4 (39)
0

und die Momente zu
X

‘ﬂ':{ﬂ,tl+1 = — j. (tn : /1m+1,n + Tppg /2m+1,n+1) dx + 9:Rn, n+1) (40)
0

worin N, , ., bezw. M, , ., die Normalkraft bezw. das Moment ist, welches

von der duBeren Belastung und den eventuell vorhandenen unbestimmten

Auflagerkriften herrithrt. Hernach ergeben sich aus

er,n+1 M

MO + _&b_fl_, n+1
Ffz,n+1 - ,/rz,/z+1
die Randspannungen der Scheibe n,7n-}-1. Ermitteln wir die Spannung in der
Kante » das eine Mal als Randspannung der Scheibe 7,7 -1 und das zweite
Mal als Randspannung der Scheibe 7 — 1, », so miissen dieselben Werte her-
auskommen. Dieser Umstand kann fiir die Gelenkwerke als durchgrei-
fende Rechenkontrolle beniitzt werden.

Nach diesen Betrachtungen iiber die Gelenkwerke gehen wir nun zu den
steifknotigen Scheibenwerken iiber.

: hnz+1,Z+1 (41)

Ony1 =
n

C. Das steifknotige Scheibenwerk.

Wie aus der Einleitung hervorgeht, werden bei den steifknotigen Schei-
benwerken die Biegemomente X, und die Querkrifte Q, von Scheibe zu
Scheibe iibertragen. Schneidet man aber aus einer Scheibe ein Element von

Abhandlungen III. 10
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der Lange dx heraus, so miissen an diesem wegen der allseitigen Platten-
wirkung auBer den bereits erwidhnten Wirkungen M, N, Q, X, @, und 7 noch
die neu hinzukommenden WirkungsgroBen M, und @, als Schnittkrifte an-
gebracht werden®) (Fig. 10). Wir konnen aber aus folgenden Griinden A,
und @, praktisch geniigend genau gleich Null setzen.

a) Die Dicke der Scheibe ist wohl in Bezug auf deren Linge L immer
sehr klein.

~b) Jede Scheibe n —1,n ist eine Platte, welche in den Querscheiben

A, B, C usw. fest und in den Kanten » — 1 und # nachgiebig gelagert ist. Da
nun jede Scheibe ein Rechteck ist, dessen Linge L gegeniiber seiner Hohe
S, — 1, grof ist, kann man die Biegewirkung iiber die groBle Spannweite L
gegeniiber der Biegewirkung iiber die kleine Spannweite s, , , vernach-
lassigen. Selbstverstindlich werden aber in der Nihe der Querscheiben A,
B, C usw. die M, doch gréBere Werte AM’, annehmen. Dieses Nichtzutreffen
der obigen Niherung bleibt jedoch ortlich begrenzt, da die Riickwirkung der
M, auf das Gesamttragwerk fast Null ist. Man bedenke, dafl Wirkungs-
grofen, die nur an den Auflagern eines Triagers angreifen, auf seine Mitte
nahezu keinen EinfluB haben.

-Die Querdehnungszahl m. setzen wir, wie es bei Betontragwerken 1iiblich
- ist, gleich co. In Wirklichkeit ist 2 = 10. Der in der Plattentheorie auf-

2

9 2

tretende, die Querdehnungen beriicksichtigende Faktor m//)z i
zu 1—909—0 = 1, Diese Niherung ist daher sehr gut erfiillt.

Wir kénnen uns nach diesen Erliuterungen die Wirkungsweise des Trag-
werkes so vorstellen, daB wir uns jede Scheibe in unendlich viele Elemente
von der Breite dx zerlegt denken. Diese Elemente miissen aber lings der
Schnitte so verbunden werden, dal zwar die GroBen M, N, Q, X, z und Q,,
nicht aber M, und @, von einem Element zum anderen iibertragen werden
koénnen. Man denke sich also zwischen zwei Scheibenelementen nach Fig. 11
ein unendlich schmales Fachwerk eingebaut. Lings der Kante # sind jedoch
die Elemente zweier benachbarter Scheiben miteinander steif verbunden. Nach
diesen Erlauterungen kommen also beim steifknotigen Scheibenwerk zu den
bereits bekannten Wirkungsgrofen M, N, Q, und = der Gelenkwerke nur noch
die Eckmomente X, (x) und Q, neu hinzu.

In allen Fillen wihlen wir das gelenkige Balkenscheibenwerk als inner-
lich statisch unbestimmtes Grundsystem. Wir belasten also letzteres mit den
gegebenen Lasten P, und den Eckmomenten X,. Handelt es sich um duBer-
lich statisch unbestimmte steifknotige Scheibenwerke, so miissen, so wie beim
Gelenkwerk, zu den obigen Wirkungen noch die iiberzihligen Auflagerreak- .
tionen der einzelnen Scheiben am Grundwerk als duBere Belastung ange-
bracht werden. Die X, wandelt man am besten in mit P, gleichgerichteten
Knotenlasten @, um. HAilt man den in Fig. 12 angebrachten Drehsinn fest,
so ergeben sich letztere zu

P— Eﬂ — X, lfz,ll-l-l + lrz,rz_1 + ZX,Z_H

ln, n—1 n, 41

ergibt sich dann

(42)

lfz, nt” lﬂ—l,n

Es wirkt nun in jedem Knoten die Gesamtlast
P, = 1, + P,. | (43)

Diese verwandelt man nach Gl. (a), (b) und (c) in Transversallasten p, .,

3) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Riicksicht ge-
nommen.
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welche in den einzelnen Scheibenebenen normal zu deren Achsen wirken.
Sind auBerdem noch duBerlich statisch unbestimmte Auflagerreaktionen der
einzelnen Triger vorhanden, so werden diese nach Gl. (20) in Fourier’sche
Reihen entwickelt. Man erhilt daher durch Addition aller dieser Wirkungen
schlieBlich die Gesamtbelastung des Grundsystems zu

v=n-+1 b
JaxX
P, ni1 = Puyne + Z avX = "‘Z Ap; nyngr + SI0 12 (44)
v=pn—32
_ y: L akx
’ ’
n =n —_ Bg. L .sin ——-
n, in+1 7, n+1 L ; ks n,nt1 le L
— ; 2 & L . #akx
m = m — Cs. e .8 —.
1, n+1 1y 141 + L 21: ki n, n41 k L

Fig. 8

Lost man nun das in obigem Sinne belastete gelenkige Grundwerk mit Hilfe
des Systems (7) auf, so erhdlt man unter Benutzung der GI. (26) und (27)

v=m—1 =m k=oo

kn
Ty = Z [bv Pvvir + mv v+1) + ¢ - ”v :+1] + anno Z D} 0 smT +
+ 34, X, | (45)

y=0
In dieser Gleichung stammt der erste Ausdruck von der gegebenen Belastung
des Tragwerkes, der zweite von den iiberzahligen Auflagerkriften der ein-
zelnen Scheiben und endlich der dritte von den Eckmomenten X,. Nach vier-
maliger Differentiation und entsprechender Subtraktion folgt aus Gl. (29)
. p=d1
Jrlzlil,n Jn , 41— Z fv yn—{-v. H4+v41 » (46)

Setzen wir in Gl. (31) fiir die 7’ Ny und m’ die 7/, p und m" der Gl. (44) und
(45) ein, so erhalten wir mit Hilfe der GL. (46)

v=m—1

v v ,
Iy, n— I np1 = 2 [gv (/71», vi1 T M, u+1) + A, - ’7:’/, v+1] +

k==co v=m

b S Fuesinf7F 4 23 v X (47)

k=1
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Diese Gleichung stellt die Anderung des Neigungswinkels, der der Kante »
benachbarten Scheiben 7,74+ 1 und » —1,n, dar. Wenden wir daher fiir
jede Ecke, in welcher ein Moment X, auftritt, den ,,Dreimomentensatz‘* an, so
erhalten wir mit Gl. (47)

5,—1, - X+ 2(5;1—1,11 -+ SI’Z,IH—I) - X + SI,Z,IH—] - Xt
- ()Ej(l()rz—l,n — ‘(}IZ,IZ+1) — -Qn,tz—l -+ ~Qn,tz+1 . (48) i

In dieser Gleichung stellen die s’ die reduzierten Lingen der Polygonseifen
n,n-+1 und J das Vergleichtrigheitsmoment von 1 m Scheibenldnge dar.
Die Belastungsglieder £ rithren von dem Umstande her, daB die Lasten
zwischen den Knoten n angreifen. Differentieren wir Gl. (48) viermal nach
X, SO ergibt sich mit Hilfe von Gl. (47)

Sni, nt 1 =+ 2(511 1,2+ Sk nﬂ) X ~ Szz,u+1 : ){{z‘:—l
v=m—1
—6E] - Z/V Xy = 0E]+ 2 [ (Pryuus + Miyvia) + o 1] +
k3 . kmx .
+ 6E./ 2 -Ek,il - sm T + -Qn, n-y + Qrz,n+1 = Su, . (49)
k=1

worin wir die Elastizititsgleichungen des Problems gefunden haben. Sie
sind simultane Differentialgleichungen vierter Ordnung, genau so wie beim
elastisch gebetteten Trager, da es sich ja auch bei dieser Aufgabe um Triger
handelt, die sich gegenseitig elastisch stiitzen. Die normale Integration dieses
Gleichungssystems ist numerisch nahezu unméglich. Wir beschreiten daher
einen Niherungsweg, in dem wir die gesamten Stérungsfunktionen S, in
Fourier’sche Reihen entwickeln. Es ergibt sich also

S = Z Fy p - sin EE (50)
i=1 L .

Besteht die Stérungsfunktion nur aus einem Sinusglied F, i-sin Eﬂ—x(rz =

, L
0,1, 2, ... m), so lautet die Lésung von GI. (49)
kax
Tnk = Pk sin—Z— (n=0,1,2....m)), ~ (51)

wobei ¢,, noch zu bestimmende konstante Beiwerte bedeuten. Setzt man
Gl. (51) in Gl. (49) ein, so erkennt man, da GIl. (49) nur dann von GL..(51)
befriedigt wird, wenn

, ka\* , , ha\t , ka\4
Sn—1,n * (‘[i) *@Pn-1,k + 2(511—1,12 + Sn,n+1) (_L_JT> * Qnk + Sn,nt1 (T) * Onya,k
—GEJZ/V o =0EJ-Fo,r (n=0,1,2....m) (52)

erfullt ist. Gl. (52) smd lineare Gleichungen, welche zur Bestimmung der
unbekannten Beiwerte ¢, ; hinreichen. Nach einem bekannten Satze iiber
nicht homogene, lineare Differentialgleichungen ergibt sich das den Rand-
bedingungen angepaBte Integral zu
k=oco
‘ X,z::Z(p,zk-Sin%x n=01,2....m. (53)

Fiir jedes Glied der Sinusreihe muB ein lineares Glelchungssystem (52) auf-
gelost werden.
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Der genaue Nachweis, daBl die Losung (53) tatsdchlich auch allen Rand-
bedingungen geniigt, wurde vom Verfasser in seiner Abhandlung ,,Berech-
nung prismatischer Scheibenwerke‘ erbracht¢). Wir wollen daher diesen
Beweis hier nicht wiederholen.

Handelt es sich um die Berechnung einer Balkentonne, so ist in Gl. (45)
der zweite Summenausdruck gleich Null. Liegt jedoch ein duBerlich statisch
unbestimmtes steifknotiges Scheibenwerk vor, so enthilt das zweite Glied
von Gl. (45) die iiberzidhligen Auflagerreaktionen der einzelnen Trager abcd.
Die Bestimmungsgleichungen fiir diese findet man genau so wie beim Ge-
lenkwerk aus den Auflagerbedingungen der einzelnen Scheiben. Es gilt also
hiefiir das in Abschnitt B Besprochene.

Fig. 9

D. Praktische Anwendung.

Wir fithren in diesem Abschnitt die Berechnung eines steifknotigen
Scheibenwerkes fiir das Eigengewicht durch, bei welchem die Randtriger
01 und 0’1" infolge der groBen Spannweite von 25 m als Zweigelenkrahmen
ausgebildet sind. Aus Fig. 13 sind die Abmessungen des Tragwerkes er-
sichtlich. '

Zuerst ermitteln wir die Knotenlasten P, fiir das Eigengewicht:

Betonplatte 7 cm stark . . 0,168 t/m?
Pappe . . . . . . . . 0022 ,
: 0,190 t/m?
Dachrinne . . 0,022 t/m?2.
Daraus folgt Py = Py = P, = 230- 1,90 = 0,437 t/m
und P = 1,15-0,190 + 1,00 - 0,15 - 2,4 + 0,022 = 0,600 t/m.

Nach Gl. (a) und (b) folgen die fiir die Zerlegung der P, in S, , ., und
S, +1,, nOtigen Beiwerte a, ,,, zZu .

ay; = 4,828; a,, = 4;446; a5, — 5,034; a,, — 4,828; a,; = 5,0335.
Mit Hilfe dieser Werte ergeben sich fiir das Eigengewicht die Transversal-

4) Siehe die Abhandlung des Verfassers , Die Berechnung der prismatischen Schei-
benwerke‘“ in den ,,Abhandlungen der Internationalen Vereinigung fir Briickenbau und
Hochbau‘‘, Band 1, 1932.



150 Ernst Gruber

belastungen zu
por = 0,600 t/m; p,, = 2,110 t/m; p,; = 0,257 t/m; p,, = 0,0806 t/m. (54)

Als itberzihlige GroBen wiahlen wir die Eckmomente X, und den Hori-
zontalschub /. Nachdem das Tragwerk sieben Kanten besitzt, ergeben sich
zunichst sieben unbekannte Momente X,. Infolge der Symmetrie um die
Achse I — I, sinkt die Zahl der Unbekannten X, zunichst auf 4. Da weiters
der untere Rand der Rahmenscheibe frei ist und letztere keine Torsionsfahig-
keit besitzt, ist auch X, = 03). Es sind somit nur mehr 3 Unbekannte X,,
X, und X, zu bestimmen. Ferner werden durch den am FuB der Stiitze an-
greifenden Horizontalschub H in den Riegel 01 des Rahmens R die bei
x=o0 und x = L angreifenden Wirkungen N=H und M= —h-H=—5-H
iibertragen. Diese unstetigen Lasten entwickeln wir nach Gl. (20) in die
folgenden Fourier’schen Reihen

RO :-‘“4‘[11(003-{-(2 53—[—+C 57”5_}_ ..... ) (55)
”201 — g%!:l (\ 9 ” 1) + """ ) (56)
, Aah 3nx . Dax
gy, = Vil (sm—— + sin 7 + sin T A asxas ) (57)
: 207 h
my = — LZ ( ” ” y e > (58)

Verwandelt man die X, in Knotenlasten x,, und diese nachher wieder in Trans-
versalbelastungen und addiert letztere zu Gl. (54) hinzu, so erhalten wir
Por = 0,600 -+ 0,4948 X,; p,. = 2,110 — 4,952 X, + 2,199 X, ;
P25 = 0,257 + 6,513 X, — 6,513 X, + 2,199 X, ; (59)
Psa == 0,0806 — 2,199 X, + 8,7045 X; — 6,5076 X .

Wir bringen nun am Balkengelenkwerk — das wir ja als Grundsystem
wihlen — die Wirkungen #o,, 7o, Poi, Pie, Psy Und py, als duBere Lasten an
und losen es auf. Zu diesem Behufe stellen wir unter Bedachtnahme der
Randbedingungen ,,erster Art‘ 7,=1,= 0 das Gleichungssystem (7) auf und
erhalten

4,146 7 + 7, = —3,22 5, — 1,30 51y
— 3,22 mo'l —_ 0,5367 Ilél (60)
7+ 47 + 7 = — 1,30 5, — 1,30 pyy
7y + 473 = — 1,30 ps — 1,30 Pas -

Setzen wir in Gl. (60) die Werte von Gl. (57), (58) und (59) ein und lésen
hernach die Gl. (60) auf, so ergibt sich

7y = —1,0026 + 1,2077 X, — 1,1747 X, + 0,2936 X, — 0,8300 m,, — 0,1383
7, = —0,5245 - 0,6146 X, +2,0035 X; — 1,2175 X, + 0,2212 mq, + 0,0307 ny,
; = +0,0185 - 1,2513 X, — 1,2174 X, + 1,7005 X, — 0,0553 i, — 0,0002 1, . (61)
~ Wir kénnen nun zur Aufstellung der Elastizititsgleichungen iibergehen.

Zu diesem Zwecke driicken wir zuerst nach Gl. (29) die Sehnendrehwinkel
Dny 44 durch die Durchbiegungen y,. ,+; aus und erhalten

230 9,5 = — 1,1379 yo; + 5,5025 y,5 — 5,0582 5
2,30 9, — 50582y, + 90,9190 y,; — 5,0582 y,,
230 9, | 50582y, - 149772y,,.  (62)
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Mit Hilfe der Differentialgleichung (31) ergeben sich mit /,, = 0.0125 m*
und /;, = 0.07097 m* unter Beniitzung der Gl. (61) die vierten Ableitungen
der y, ,+1 zu
EJ sy = +0,56604 +6,2307 X, - 3,3352 X, +0,8335 X, + 3,3216 m,, — 0,3926 2,
EJ syl = +0,3538 - 3,0090 X, + 3,1528 X, ~1,0625 X, —-0,7001 m,, — 0,1168 75,
EJ,pyi = —0,3240+4,3671 X, —5,0082 X, +2,7650 X, +0,1908 1, -+ 0,0316 rz,,,
EJ syl = +0,1100 - 3,6359 X, + 7,3045 X, —4,5417 X, —0,0036 2, — 0,0106 2, . (63)
Differentiert man Gl. (62) viermal nach x und setzt hernach GIl. (63) ein,
so erhalten wir nach Substraktion immer zweier aufeinanderfolgenden Glei-
chungen
EJ3-2,30- (915 - 94%) = 8,5258 — 132,15 X, + 159,03 X; — 76,50 X, .

~ 14,3532 my, — 1,3135 ny,
EJ\-2,30- (95— 9%) = — 88792 + 158,03 X, - 247,28 X, + 137,73 X, +

+ 17,6730 my, + 1,2764 n,,
EJ.5-230 . 9 = + 3,3059 - 76,545 X, + 137,77 X, — 82,01 X,

~1,9176 m,, — 0,3186 o, . (64)

Fig. 10
Beriicksichtigen wir, dafi X; = o und X, = X', ist, so ergeben sich endlich
nach Gl. (49) die mit dem Faktor 2’9(?7]‘2 = 051,89 vervielfachten Elasti-

zitatsgleichungen in der Form

8757,436 X" + 2180,350 X! 1 132,151 X, — 159,026 X, + 76,503 X,
— 85258 — 14,3532 m;, — 1,3135 7, + (21 + 017 - 951,80
2180,350 X 1 8757,436 X' +2189,350 X" — 158,031 X, + 247,283 X, — 137,730 X,
~—8,8792 + 7,0730 m, + 1,2764 n), + (21 1 Q) . 051,80
- 2189,350 XV +4378,718 X! + 76,545 X, — 137,768 X, + 82,008 X,
— 3,3059 — 1,0176 m,, - 0,3186 1., + £2,, - 951,80. (65)

Unsere niachste Aufgabe besteht nun in der Auflosung des Systems (65).
Zu diesem Zwecke miissen wir die rechten Seiten derselben in Fourier’sche
Reihen entwickeln. Das von der Knotenzwischenbelastung herriihrende Be-
lastungsglied @, , , lautet allgemein

Oy ) = 0,190“: L COS 1y, . (66)
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Daraus folgen die zu jeder Gleichung gehorigen Werte

3 3
Qg+ Qg = - 034705 Dy 2 == 0350 35 2y, =-0170°-,  (67)

4 ;
deren Entwicklungen
83 T . JT 5 axX ]
Q4+ OF = 7(L) s;nfx—;—SS-sx HTNJ ..... d
"23 + 934 - 07359 ” L ” ” ”» _J
Qéz = — 071 79 ” ” ” 9 J (68)

lauten. Stellt man auch die Konstanten der rechten Seiten in einer Reihe

4 3nx sin S5ax )

P 7 |
R:;(sng—{—g-s ~———!— —L-—# (69)

dar, so ergeben sich unter Zuhilfenahme der Entwicklungen (57) und (58)
die Fourier’schen Reihen der Stérungsfunktionen §, von Gl. (63) zu

S, = (105364 + L4168 H)-sin 7 x + (~4,0045 + 4,3504 H) -sin 7%

L
+(~37,7030 + 6,7605 H)-sin > *
Sy = (~11,6270 - 0,457 H)-sin T x + (- 12,4760 -~ 2,2371 H). sm%_ﬁ
+ (42,5736 — 3,7285 H)-sin ELEi‘ .
= (+4,0371 + 0,1863 )-sin 7 x + (- 3,0436 + 05580 /7)-sin >~ 4
+(~ 19,7347 +0,9315 H) -si 52”“ (70)

Zu jedem Gliede dieser Storungsfunktionen gehdrt eine Partiallosung, zu
deren Bestimmung wir drei Gleichungssysteme (52) brauchen. Dieses lautet

fiir das erste Glied sin x

L
134,3350 ¢,, — 158,4795 ¢,5 + 76,5027 ¢,y = a,
— 157,4850 ¢,y -+ 249,4669 ¢,, — 137,1838 ¢;, = &, (71)
76,5453 ¢, — 137,2224 @5 + 83,0007 ¢;, = ¢,
fiir das zweite Glied sin :—)’wg{
200,0422 ¢, — 114,8027 o3 + 76,5027 oy — a,
— 113,8082 @y, + 424,1741 ¢y — 93,5070 ¢yy = b, (72)
76,5453 ¢y — 93,5456 o5 + 258,8088 oy = ¢,

und endlich fiir das dritte Glied sin 5Lx

1497,0512 gy + 182,200 grg5 + 76,5027 g, = a
182,2000 g, + 1612,183 ¢gy -~ 203,496 ¢y, = b, (73)
76,5453 ¢y + 203,496 gy + 1446,008 ¢g, = c; .
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Nimmt man die Ausdriicke (70) fir die Gl. (71), (72) und (73) als rechte
Seiten, so lauten die Auflosungen obiger Gleichungen

01y = — 0,00707; qgy = — 0,04263; g = — 0,02201 ;
@13 = — 0,22550; @3 = — 0,04418; ¢33 = — 0,02270; (74)
@ = — 0,31723; ¢oy = — 0,01510; ¢4, = — 0,00027;
12 = + 0,0312; ¢y = + 0,02171; ¢y, = -+ 0,00504;
@15 = + 0,02309; ¢35 = — 0,00042; ¢33 = — 0,00307; (75)
01s = + 001160; @, — — 0,00441; @y, = -+ 0,00080.
Mit diesen Ergebnissen ergibt sich die Zwischenlésung
X == (- 0,00707 +0,03120 H) sin % + (~0,04263 + 0,02171 H) sin 32’;—"
+(~0,02200 + 0,00504 H)- sin 52—5"
Xs = (~0,22556 + 0,02300 H)-sin 7% + (- 0,04418 ~ 0,00042 H) sin 32’?
(76) .
+(~0,02270 - 0,00307 H)-sin 52"’5"
Xy = (-0,31723 +0,01160 H)-sin 2% + (~0,01510 - 0,00441 /) -sin 32";
+(~0,00027 + 0,00080 F)-sin %7351‘

Bord-Kante-Edge n-/
Fig. 11

In diesen Gleichungen kommt der noch unbekannte Horizontalschub /H vor.
Dieser ergibt sich aus der Bedingung, daBl bei den mit H, py, 7y, m, und
7, belasteten Rahmen die Entfernung 1 — 2 erhalten bleiben muB. Fiir den
so belasteten Rahmenriegel 01 ergibt sich der Endverdrehungswinkel ¢, aus
der Differentialgleichung (31), welche in unserem besonderen Falle

E Joi- yo = +0,0087 + (0,07818 — 0,03776 H) smg +

+(- 0,02330 — 015714H)sm§*%+( 0,01221 — 0,20377 H) sin 2"

25

lautet. Integrieren wir Gl. (77) dreimal, so erhalten wir mit den Rand-
bedingungen
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L L
x= o5 =05 x=0y{=0; x= o,y =
den Endverdrehungswinkel an der Stelle x = 0 zu
E-Jou - yiy = -+ 103,181 — 23,130 /. (78)
x=0

Ebenso ergibt sich aus der folgenden, nach Gl. (32) aufgestellten Differential-
gleichung,

E-Fy, - AT — 11,0026 + (- 0,16335 — 0,11476 /) sin

ax

25

(79)
1 (+0,00402 — 0,32773 H) sin o™ 3 ¥ 1 (0,00263 - 0,51330 /) sin 2o

Bax
25

unter Benutzung der Randbedingungen

x__L A =0; 4} =4l ; x=0,d,, =0
x=0 )t—L

2 )
die Achsverkiirzung des Rahmenriegels in halbe Spannweite zu
E-Fy - do;) , = — 567,50 + 05,794 . : (80)

Betragt die Nachgiebigkeit des Stieles 4, = 550,0 /E, so lautet nun die
Bedingung, daBl die Entfernung 1—2 unveridndert bleibt.

5 le AOI _"* A = 0 (81)
Wertet man Gl. (81) mit Hilfe der GI. (78) und (80) Zlffernmaﬁlg aus, so
erhalten wir

x=0

H = + 4,40 ton. (82)
Mit diesen Ergebnissen folgen aus Gl. (77) die Eckmomente X, endgiiltig zu

— 40,13021 sin ¥ 4 0,05280 sin > 1 0,00018 sin > -*
25 25 25 (83)
X; =-0,12306 , -0,04603 , -0,03621
X, —-026579 , -003450 , -0,00575 ,
Fiihrt man diese Werte in die Gl. (59) und (61) ein, so folgt
Por = + 0,600 + 0,06442 sin o~ +002617 sin ——— o +000009 sin kil
25 25 25
P2 = +2,110-087056 , -0,34400 ,  -0,08046 » (84)
pes = +0,257+1,07086 , +056830 ,  +0,22433 ”
pse = +0,0806 +0,36447 , -0,20232 ,  -0,27836 .
und '
37 5ax
— ~1,0026 + 0,57981 sin =~ | , 17258 sin ——- i1 ,81347 sin —~
25 25 25 (85)
t; —-0,5245-0,00888 , -036503 , -053017 ,
7, —+0,0185-0,44285 , +0,00214 ,  +0,15220 ,,

Unsere nichste Aufgabe ist nun die Berechning der Spannungén und
Formidnderungen. Zu diesem Zwecke stellen wir zunichst fiir jede Scheibe
die Differentialgleichungen (31) auf. Diese lauten
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EJ,s Y = + 0,5604 — 0,50000 sin Zg - 4,13319 sin %365—)5 —7,40366 sin %%Jf

EJi, ¥ =+03538-0,31792 , +0,58279 s  +1,38047 ” (86)
EJi ¥ = -0,3249 + 0,44688 ,, +0,14802 » - 0,22004 ”

EJs ¥ =+0,1100 - 0,14481 ~, —-0,20029 » —0,10300 »

Ferner folgen aus Gl. (2) durch einmalige Differentiation die Bestimmungs-
gleichungen fiir die Normalkrifte N, , ., der einzelnen Scheiben. Unter Be-

Jection ~ Schnilt—Jection 17 Jection—-Jchnifi-Section I-I
4
‘ z !
ooz "
* 0 a0 3 bseuzs”

920 o | o E'

> , OCanlyeh Q.

8 i N\ ""28°30'15 ';’|

Farors mince du cadre 07 | I

_r._—*_}‘?abmeﬂse/;e/be — frame paneliing | § 0 E;

$ Cedre — Rahmen — frame R | ,?:I

S & . 35

0 ol g

. g z
3 S
< N
g
H ' s‘l
zg/z .
-]
— z
Fig. 13

nutzung von Gl. (85) und (57) erhalten wir fiir unseren besonderen Fall

aX 3mx Brx

II . . N . _ s 270 N it
a = + 1,0026 - 0,06828 sin 5 1,43799 sin 55 2,25582 sin 55

NL =-04781 +0,67869 , +153761. ,  +234496 (87)

NE =-05430+0,34397 , -036717 , -062843

NI =400185-044285 , +000214 , +0,15226
Integriert man GL (86) zweimal nach x, so erhalten wir unter Zuhilfenahme

der Randbedingungen

L

x:~2—,y’”:0; M :M“
x=0 lx=L

die Momente der einzelnen Scheiben zu

2

L L\* . mx L\ 3 L\®
M,, = ~0,5604 [~ — —) ~0,50000 (~> sin %~ 413319 (~> sin > ~7,40366 ) sin >
2 x ) %95 25 5 '

2 T s 25
M, =-0,3538 ’ -0,31792 ” +0,58279 ’ +1,38047 . (88)
Moy = +0,3249 ’ + 0,44683 - +0,14892 ’ -0,22004 "
Mz, =-0,1100 ’ -0,14481 ’ -0,29029 ’ -0,10309 ’s

Ebenso ergeben sich aus Gl. (87) die Normalkrafte N,;HH .. Bei der hiezu
notigen zweimaligen Integration sind die Randbedingungen
N =N ; N ,=0
(x=0 lx==L f.vzfzr

zu beriicksichtigen. Man erhilt



156 ' : Ernst Gruber

X2 x \ L\2 =wx L\? 3= L\2 bHnx
== 26| ———L | +0,66828 | — | sin — + 1,437 —— —_—
Noy = +1,00 6(2 5 )+ (n)sm e 99(391) sin =~ +225582(5n) sin >
Nz = —0,4781 ,  —0,67869 . -1,53761 . ~2,34496 ” (89)
N,s =—0,5430 ,  —0,34397 . +0,36717 " +0,62843
N,, = +0,0185 ,  +0,44285 ., -0,00214 . ~0,15226 .,
Daraus ergeben sich fiir x = L/, die Momente und Normalkrifte zu
My, =+3955 t ; Ny, = -40,413 t
M, =+6,726 , ; Ny =~ 0,747 ,, (00)
Myy =+1315 | Ny =+ 19,801

My, = +1275 N, = +26,229

Mit Hilfe der Gl. (41) erhilt man nun endlich die Randspannungen der ein-
zelnen Scheiben zu

0% = 11,12 kglem?; of,=-10,485 kgfcm?; 0% =-14,42 kgjem?; of, = 18,27 kg/cm? o1
oy =4276 , ; o= 11415 , ; o%=-10,18 , ; 05,=14,13 )
Unseren Ausfithrungen entsprechend wurden diese zweimal berechnet. Als
endgiiltige Resultate nehmen wir die Mittel zweier doppelt gerechneter
Werte.

Tensions normales de /o section 17
Normalspannungen im Schaift -1
Normal stresses in the sectron I-d

- 183 Kg/em?

713 Point dintlexion N 16'9 Kgfem?

Wendepunkt - Foint of l//;f/ex/bn

/
/Poutre-tournelle
4 A Balkentonne

S Girder-barrel
: I'd/(g/cﬁ'?2

e

Biegelinie — |Curve of deflection

7 -
/ \ Moments fléchissants-Blegemormente

Bending maoments

|
\
!
2021 2199 2289 -

{ -4y Kgfem* = =428 Kgfem?
¢ Traction - Zug - Tension
Fig. 14

Von groBem Interesse sind noch die Verformungen des Tragwerkes.
Diese ergeben sich aus den y,, , , {, welche durch zweimalige Integration der

Gl. (88) gefunden werden. Dabei sind die Randbedingungen x = é*: y = 0;
= 0, y = 0 zu beriicksichtigen. Man erhilt

¥ L L3 L\* L\¢ 3 L\*
E Jis-yor =0, 5604(—~ e —)-0,5,0009(_[) smﬂz 4 13319(——) -sin~Z—x-7,4O366<5—> sin>r*
7 ﬂ

24 127 24 | L
EJi2y10 =+0,3538 , ~031792  ,  +0,58279 , +1,38047
EJ1sys5 =—0,3249 , +0,44688  ,,  +0,14802 " -0,22004 (92)
EJ1a'y50=+0,1100 " ~0,14481 »  —0,20029 , -0,10309

Fiir x = —g ergibt sich daraus mit £ = 1,000000 t/m?
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E Ji3 yor = +1001,89 tm3 Vor = 0,00251 m

EJiz y12 =+ 504,71 vie = 0,00715 93
EJis yss = + 13093 Yoy = 0,00185 93)
EJIZ Va4 — — 2’88 ” y34:_0,0000405 m.

In Fig. 13 sind Verformung und Spannungen fiir den Mittelquerschnitt
(x = L/2) dargestellt.

Vergleicht man die Spannungen des in diesem Aufsatze berechneten
Rahmentragwerkes von 25 m Spannweite mit den Spannungen des in der
Abhandlung ,,Berechnung prismatischer Scheibenwerke‘ berechneten Balken-
tragwerkes von 18 m Spannweite ¢), so sieht man, daB die maBgebende Zug-
spannung des gefihrdeten Riegels 01 in beiden Fillen fast gleich ist. Die
Erhohung der Druckspannungen spielt praktisch keine Rolle. Man kann also
ohne die Abmessungen des Querschnittes zu verstirken die freie Spannweite
von 18 auf 25 m vergroBern. Man erkennt daran die kriaftig wirkende Ent-
lastung der steif angeschlossenen Stiitzen. Hingegen sind die Verformungen
der Querschnitte und die Biegemomente X fiir das Tragwerk mit 25 m Spann-
weite schon erheblich gréBer als fiir das Tragwerk mit nur 18 m Spannweite,
so daB man bei noch gréBeren Spannweiten die Mittelquerschnitte schomn
durch steife Querscheiben oder biegesteife Rahmen verstirken miiBte. Wie
sich der Verfasser iiberzeugt hat, konnen bei entsprechender Erhohung der
Randtriger und bei entsprechender Verstirkung der Plattenstirke d Spann-
weiten von 40 bis 45 m erreicht werden. Selbstverstindlich sind in solchen
Fallen die Querschnitte alle 15 bis 20 m durch steife Querrahmen gut aus-
zusteifen. Zum Schlusse erwiahnen wir noch, daf der Horizontalschub #/ auch
auf die Biegemomente X einen giinstigen EinfluB ausiibt, indem der absolute
Wert derselben verkleinert wird.

Zusammenfassung.

- Der Verfasser hat im 1. Band, Jahrgang 1932 dieser Abhandlungen die
Theorie der gelenkigen und steifknotigen prismatischen Scheiben- oder
Flachenwerke im Prinzip festgelegt. Dabei wurde aber nur der einfachste
Fall, nidmlich das ,,Balkenscheibenwerk mit von x unabhingigen Wand-
dicken (Fig. 1), ausfiihrlich behandelt. Geht man auf grofere Abmessungen
iber, so miissen zur Vermeidung gefihrlicher Forminderungen Vorkehrungen
getroffen werden und zwar unter anderen:

1. Der Einbau von freischwebenden steifen Scheiben oder biegungsfesten
Ringen, ‘

2. die Ausbildung der Randtriger a) als Durchlauftrager oder b) als
Rahmen.

3. Werden simtliche Scheiben an denselben Stellen mehrfach unterstiitzt,
so entstehen die ,,durchlaufenden Scheibenwerke*.

Man kommt so auf die in diesem Aufsatz behandelten duBerlich statisch un-
bestimmten Faltwerke.

Um an bleibender Last zu sparen, paBt man die Wanddicken den mit x
wechselnden Kraftwirkungen an. Es entstehen so die Scheibenwerke mit ver-
dnderlicher Dicke, fiir welche an dieser Stelle®*die erweiternden Elastizitits-
gleichungen aufgestellt wurden.

*) Siehe ,,Abhandlungen der Internationalen Vereinigung fiir Briickenbau und Hoch-
bau®, Bd. I, 1932.
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Kuppelt man mehrere zueinander parallel liegende Scheibenwerke zu-
sammen, so werden an den Berithrungskanten im allgemeinen mehr als zwei
Flichen zusammenstoflen. In solchen Punkten ist die Aufteilung der Knoten-
last auf die einzelnen Scheiben statisch unbestimmt. Auch diese Aufgabe
wird fiir den Fall, daB » Flichen in einer Kante zusammenstoBen, allgemein
gelost.

Als Grundsystem wahlen wir am besten wieder das gelenkige ,,Balken-
scheibenwerk‘. Fiir dieses werden die Elastizititsgleichungen ermittelt.
Diese ergeben sich als simultane Differentialgleichungen erster Ordnung,
welche sich leicht integrieren lassen. Fiir die Bestimmung der dazugehorigen
Integrationskonstanten werden zwei Verfahren mit daranschlieBender An-
wendung wiedergegeben. Mit Hilfe dieser beiden Methoden und eingehender
Verformungsbetrachtungen werden die oben erwahnten AuBerlichen Unbe-
stimmtheiten behandelt. Der Fall 2b wird vollstindig ziffernmiBig durch-
gefiithrt. Dabei wird derselbe Tonnenquerschnitt genommen wie in der ersten
Abhandlung des Verfassers von 1932,

Durch die nun groBere Steifheit der Randtrager werden die Forminde-
rungen des Tonnenquerschnittes geringer, wodurch sich die Spannungsver-
teilung in der Mitte der Stiitzweite mehr der Ebene nihert.

Résumé.

Dans les présents Mémoires, Pauteur a publié, des ’année 1932, le prin-
cipe de la théorie des parois minces prismatiques articulées et rigides. Il n’a
toutefois traité dans le détail, a cette époque, que le cas le plus simple, celui
de la paroi mince constituant une poutre et dans laquelle "épaisseur de la
paroi elle-méme est indépendante de x, (figure 1). Lorsque les dimensions

~des ouvrages deviennent plus importantes, il devient nécessaire, pour éviter
des déformations dangereuses, de prendre des dispositions particulieres,
parmi lesquelles:
1. P’incorporation de tympans rigides a mouvements libres ou de ceintures
rigides;
2. la constitution des poutres de retombée a) sous forme de poutres con-
tinues, b) sous forme de cadres;
3. la disposition comportant un appui multiple de tous les éléments de
parois aux mémes endroits, ce qui conduit a la ,,paroi mince continue.

On en arrive ainsi aux systémes constitués par un ensemble de parois
portantes, statiquement indéterminés extérieurement et qui font I’objet de la
présente étude.

Pour réaliser une économie sur la charge permanente, on fait varier les
epa1sseurs des parois suivant les effets produits par les charges qui varient
elles-mémes avec r. On obtient ainsi des systémes de parois minces avec
épaisseurs de parois variables, auxquelles 'auteur a étendu dans ce rapport
les équations de 1’élasticité.

Si Pon groupe ensemble plusieurs parois orientées parallélement les tines
aux autres, les arétes de contact constituent en général des assemblages de
plus de deux surfaces. En ces endroits, la repartltlon de la charge du noeud
d’assemblage entre les différentes partles qui le constituent est statiquement
indéterminée. L’auteur résout’le probléme pour le cas général correspondant
a l’assemblage de n surfaces sur une aréte.

I1 choisit & nouveau comme systeme de base la poutre A parois minces
articulée. Il détermine dans ce cas les équations de 1’élasticité, qui se pré-
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sentent sous la forme d’équations différentielles simultanées du premier
ordre, que l’on peut intégrer facilement. Pour la détermination des
constantes d’intégration correspondantes, deux procédés sont indiqués, ainsi
que leur utilisation pratique. Ces deux méthodes, ainsi que la considération
approfondie des déformations, permettent de résoudre les indéterminations
extérieures indiquées plus haut.-Le cas 2b est entiérement traité par le
calcul. La section de vofite adoptée est la méme que dans le premier mémoire
de Pauteur de 1932,

Par suite de la plus grande rigidité actuelle des poutres de retombée, les
déformations de la section de la vofite mince sont maintenant plus faibles et
la répartition des contraintes au milieu de la portée se rapproche ainsi
davantage du plan.

Summary.

In the 1932 volume of these Publications, the author determined in prin-
ciple the theory of hinged and rigidly-jointed prismatic flat-shell or panelled
structures. Then, however, only the simplest case was considered thoroughly,
namely the ,,girder panelled structure’ with the thicknesses of the panelling
independent of x (fig. 1). If one proceeds to greater dimensions, certain pre-
cautions must be taken to prevent dangerous changes of shape; amongst these
are the following:

1. Insertion of suspended stiff panelling or rigid rings.

2. Designing the edge girders a) as continuous girders, or b) as frames.

3. When all panellings have several supports at the same positions we get
the ,,continuous panelled structure.

- In this way we come to the outwardly statically indeterminate flat struc-
tures dealt with in this article.

In order to save in dead load, the panelling thicknesses are suited to the
actions of the forces varying with x. In this way we get the panelled struc-
tures with varying thickness, for which the extended equations of elasticity
have been determined here.

If several panelled structures lying parallel to each other are coupled
together, more than two surfaces will in general meet at the contact edges.
At such points the distribution of the load at the joint on the separate
panellings is statically indeterminate. Also this problem is solved in general
for the case where 7 surfaces meet together at one edge.

As basic system we do best to select again the hinged ,,girder panelled
structure’“. For this, the equations of elasticity are determined. They are
simultaneous differential equations of the first order, which can easily be
integrated. For determining their constants of integration, two methods,
followed by applications of them, are given. With the help of these two
methods and close consideration of changes of shape, the above-mentioned
outwardly indeterminate conditions are dealt with. Case 2b is treated entirely
numerically. In doing so, the same cross-section of the barrel vaulting is taken
as in the author’s first article in 1932.

Through the now greater stiffness of the edge beams, the changes of
shape of the cross-section of the barrel vaulting will be slighter, and the
distribution of stress in the middle of the span will approximate more to
the plane.
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