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DIE BERECHNUNG ÄUSSERLICH STATISCH
UNBESTIMMTER PRISMATISCHER SCHEIBENWERKE

LE CALCUL DES CONSTRUCTIONS PRISMATIQUES Ä PAROIS
MINCES, EXTERIEUREMENT HYPERSTATIQUES

DESIGN OF PRISM-SHAPED STRUCTURES WITH THIN PARTITIONS
EXTERNALLY STATICALLY INDETERMINATE

Ing. Dr. techn. ERNST GRUBER, Hannover.

A. Einleitung.
Im Eisenbetonbau finden Schalenkonstruktionen in steigendem Maße

Verwendung. Während nun die stetig gekrümmten Schalen in ihrer Theorie
schon weitgehend erforscht sind, wurden über die sogenannten Scheiben-
werke — das sind Schalen, welche aus ebenflächigen Teilen zusammengesetzt
sind — bisher nur wenige Untersuchungen angestellt. Eine gründliche Kenntnis

der Statik dieser neuartigen Gebilde ist jedoch sehr erwünscht, da diese
Tragwerksformen bei der Lösung verschiedener Bauaufgaben mit Vorteil
verwendet werden können. Fig. 1—3 zeigen hiefür einige einfache Beispiele.
In solchen Tragwerken wirken die einzelnen Scheiben ab cd als Träger,
die in den Querscheiben A, B, C usw. gestützt und längs der Kanten n
miteinander unverschieblich verbunden sind. Wir nehmen zunächst an, daß die
Verbindung längs der Kanten gelenkig sei, so daß von einer Scheibe zur
anderen nur Schubkräfte T übertragen werden können (Fig. 1). Eine
Überleitung von Biegemomenten Xn, deren Drehachsen in den jeweiligen Kanten
liegen, und von Querkräften Qz, deren Richtungen normal zu den jeweiligen
Scheibenebenen stehen, wäre sonach unmöglich. Die Ausbildung der
scharnierartigen Gelenke bereitet jedoch erhebliche konstruktive Schwierigkeiten.
Man schließt daher, dem monolithischen Charakter der Eisenbetonbauweise
entsprechend, die einzelnen Scheiben miteinander biegesteif zusammen und
gelangt so zu den sogenannten steifknotigen Scheibenwerken. Die
Spannungen, welche durch diese steifen Verbindungen in das Tragwerk kommen,
sind in vielen Fällen von ausschlaggebender Bedeutung und dürfen nur
unterdrückt werden, wenn sich die Querschnitte des Scheibenwerkes nicht zu stark
verformen. In dieser Hinsicht ergibt die nähere Untersuchung folgendes:

1. Für offene Scheibenwerke werden die Verformungen umso kleiner,
je größer die Neigungswinkel y der aufeinanderfolgenden Einzelflächen sind
(Fig. 1). Bei Winkel über 40° wird der Fehler infolge Vernachlässigung
der Steifknotigkeit in der Regel unbedeutend.

2. In sich geschlossene Scheibenwerke (Fig. 3) sind in dieser Hinsicht
günstiger als offene (Fig. 1).

3. Die Verformung der Querschnitte eines Scheibenwerkes wird ganz
erheblich vermindert, wenn man in größeren Abständen, besonders in den



Berechnung äußerlich statisch unbestimmter prismatischer Scheibenwerke 135

Querschnitten größter Formänderung, biegungsfeste Querrahmen oder
Querschoten einbaut. Als Beispiel hiezu diene der in Fig. 3 dargestellte Kaminkühler

mit oberem Versteifungsring, der durch den dort notwendigen
Revisionssteg gebildet wird. Bei ausreichender Anordnung obiger Maßnahmen
kann das steifknotige System ohne erheblichen Fehler durch ein Gelenkwerk
ersetzt werden.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramidenartigen
Scheibenwerken geringer als bei prismatischen1).

Für die Berechnung des vielfach statisch unbestimmten steifknotigen
Scheibenwerkes wählen wir zweckmäßig das längs der Kanten gelenkig
verbundene Scheibenwerk — von nun an kurz „Gelenk werk" genannt —
als Grundsystem. Wir müssen uns daher zuerst mit letzterem beschäftigen.

i>ni

ToTt en Forme de tournetZe
Tonnen dach

Barre/ vauZfedroof
Poutre sirnpZe en construct/on en

Ba/kenscfterbenwerk
6/rderpane/Zed structure

W

0*d*c
a"e

pa>

*«txb* £ng
<Pp>>

„r^V,sIfid'aT

Fig. 1

B. Das gelenkige Scheibenwerk.
Im allgemeinen wird das Tragwerk von Lasten angegriffen werden,

welche zwischen den Knotenpunkten n und n + 1 liegen. Diese Lasten
ersetzt man zuerst durch zwei gleichwertige, in den Ecken n und n -j- 1

wirkenden Knotenlasten Pn und Pn + 1 (Fig. 4). Stoßen in einem Punkte n nur
zwei Scheiben zusammen, so kann man Pn auf statisch bestimmtem Wege in
die beiden Komponenten

^nyn+i — / n

^rz,n-l — / n

COS an^
sin (an_, — an)

COS an

— / n ' CLfi^+i

/ n ' Cln. n-

(a)

(b)
sm («„__! — ctn)

zerlegen, von welchen die erste in der Scheibe n,n-\-\ und die zweite in der

x) Siehe die Abhandlung des Verfassers „Die Berechnung pyramidenartiger
Scheibenwerke und ihre Anwendung auf Kaminkühler" in den „Abhandlungen der Internationalen

Vereinigung für Brückenbau und Hochbau", Band If, 1933/34.
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Scheibe n — \,n wirkt2). Führt man diese Zerlegung für jede Knotenlast Pn
durch, so erhält man für jede Scheibe /z, /z +1 zwei Kräfte S,t) n + und Sn + Un
welche sich zur Transversallast

zusammensetzen. Neben dieser wird im allgemeinen noch eine in der Ebene
des Trägers n,n-\~\ wirkende verteilte Achsiallast nn%n + 1 und eine verteilte
Momentenlast mn n + 1 vorhanden sein. Sowohl p als auch n und m sind über
die Länge der Scheibenachsen stetig verteilt gedacht.

Schneiden wir aus zwei benachbarten Scheiben n — \,n und n,n-\-\
zwei Elemente m und m +1 heraus und bringen an deren Schnittstellen die
freiwerdenden Schnittkräfte Q, N und M neben tn • dx an, so müssen diese
mit den Belastungen, p, n und m ein ebenes Gleichgewichtssystem bilden.
In Fig. 5 sind die beiden Elemente in eine Ebene geklappt zur Darstellung
gebracht. Es folgen nun für das Element m die Gleichgewichtsbedingungen)

y«-l,« Pn-i,n (1

Nn-\,n — rn-\ rn ^/z-i,« (2)

z*^n-\,n =: — tn ' flm,n — Tn_, ' "-m,n-l + (Jn-i7n ftln \tn. \3)
Für das Element m~\-\ erhält man die analogen Gleichungen (V), (2') und
(3'), indem man in Gl. (1), (2) und (3) den Zeiger n um eins vermehrt.

Außerdem müssen längs der Kanten n die bezogenen Dehnungen der
anliegenden Ränder zweier benachbarter Scheiben in jedem Punkte
übereinstimmen. Das heißt

oder

nmn ^_ nm^un -+- — \p)
*— *~Jn-\,n l n-\,n * *- L Jn,n+l * n,n+\ *

Unter der Annahme, daß bei jeder Scheibe für sich F und / konstant sind,
ergibt die Differentiation der Gl. (5) nach x

M'n.un ¦ -^L + M'a,„+l ¦ ^- + %h* -^ 0. (6)
Jn-\,n Jn,n+i *n-i,n *n,n+i

Setzt man Gl. (2) und (3), Gl. (2') und (3') in Gl. (6) ein, ordnet um und diffe-
rentiert nachher nochmals nach x, so ergibt sich unter Bedachtnahme auf
Gl. (1) und (V)

t (l^m,n ' nm,n-\ 1 \ / / f^m,n ^m+i,/z * 1

Tn-i I j p + rMT~ r 7 h -p h ^ +Jn-i,n in-\,n sJn-\,n Jnyn+\ 'n-iyn * «, ft+l

\hm+\,n ' ^-m+\,n-iri *¦ \ ftn,n+i ^«-i,/2+ tn+1\ - - — I

\ In. /z-ui •* n. /z-ui 'Jn,n+i *n,rt+i' in,n+i *rn-i,n

— (Pn-un + r7ln-i,n) y~J (Pn,n+i + mnfn+1)~ '- \ (1)

Haben die einzelnen Scheiben rechteckigen Querschnitt und wechselt
die Dicke dnj/l + 1 derselben mit der Abszisse x (Fig. 1), so lautet Gl. (5)

^ • f^hü + a^J [_ «£**! + NW] (5 a)

2) Die Reihenfolge der Indices gibt die positive Kraftwirkung an.
3) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Rücksicht

genommen.
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Nehmen wir an, daß

dn,n+i — *n,n+i ' f (x)y

wobei die Funktion / für jede Scheibe dieselbe Gestalt haben soll, so
ergibt sich

1 *n,n+i Un,n+i 'ln,n+\ "t-n, n+i fln,n+{

^/z-l, n
konstant.

f<n\X) *n—i,n Üfi-\,n Un-\^n ^n-\,n hn—\^n

Differentieren wir Gl. (5a) einmal nach x, setzen in die so erhaltene Gleichung
Gl. (2), (3), (2') und (3') ein, ordnen um und differentieren nachher nochmals

nach x, so ergibt sich unter Berücksichtigung der Gl. (1) und (!')
Tn_± +2(\+k„)r'n + kn Tn+1

3 3 kn
(Pn-un + m'n^n) - - — • (pn,n+i + mthn n, n+i)

(7a)

**/

Fig. 2

Wir sind nun in der Lage, auch Scheibenwerke zu berechnen, bei welchen
die Scheibendicken mit der Abszisse x wechseln. Die einzige Voraussetzung
dabei ist, daß sich bei allen Scheiben die Dicke gleichartig ändert, was man
bei der konstruktiven Durchbildung leicht einhalten kann.

Da für jede Kante n eine solche Beziehung (7) oder (7 a) aufgestellt
werden kann, gewinnt man ebensoviele Gleichungen als Kanten, somit als
unbekannte Funktionen rn(x) vorhanden sind. Die Gl. (7) sind somit die
Bestimmungsgleichungen des Problems. Da wir bei der Herleitung dieser
Gleichungen über die Art der Belastung und des Tragwerkes keinerlei besondere
Voraussetzungen treffen mußten, gilt das System (7) auch ganz allgemein für
jedes prismatische gelenkige Scheibenwerk. Bei der Bildung der ersten und
letzten Gleichung von (7) sind die jeweiligen Randbedingungen zu
berücksichtigen. So ist z.B. für einen freien Rand t0 0 (Fig. 1) und für
symmetrische Tragwerke unter symmetrischer Belastung das in der Symmetrieebene

liegende % 0. Ferner sind bei antisymmetrischer Belastung die zur
Symmetrieebene symmetrisch liegenden t einander gleich usw. Löst man das
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mit Hilfe dieser sogenannten Randbedingungen „erster Art" gebildete
System (7) auf, so erhält man x'n (x) als Funktion von x, woraus sich

Oi ~ J rn • dx + Cn rn + Cn (8)
ergibt.

Die in Gl. (8) enthaltenen Integrationskonstanten C„ ergeben sich aus
der Belastungsart des Scheibenwerkes. Wir wollen diese Cn allgemein für
ein Scheibenwerk, bei welchem die einzelnen Träger abcd in den
Endscheiben A und C balkenartig gelagert sind, ermitteln. Solche Tragwerke
nennt man gelenkige „Balkenscheibenwerke". Im allgemeinen werden die
Lasten nur abteilungsweise stetig sein, wie es in Fig. 6, in der das Scheiben-
w erk in eine Ebene geklappt zur Darstellung gebracht wurde, ersichtlich ist.
Legt man durch jede Unstetigkeitsstelle der Belastung eine zu den
Endscheiben parallele Ebene, so wird das Scheibenwerk in ß Sektionen zerlegt.
Schreibt man für eine jede von diesen ein Bestimmungssystem (7) an und
löst es auf, so ergibt sich für jede Sektion je eine Gleichung

o=//z Q—m

rn,v Zj üno ] \Po,o+l;v + ^ß,o+l;v) ^ + Zj ^no ' ^q, o+i; v^ ^n, v —~ ^nv~^^n,y (**v

Da links und rechts einer Belastungsunstetigkeitsstelle die Schubspannungen
einander gleich sein müssen, bestehen die Beziehungen

welche unter Bedachtnahme auf Gl. (8 a) in

übergehen. In diesen Gleichungen stellt A,ljV + 1 den Sprung dar, den die
Funktion 7llyV beim Übergang von der vten in die i>-flte Sektion macht.
Solche Beziehungen (10) gibt es p— 1 je Kante. Addiert man die ersten v
der Gleichungen (10), so erhält man

v—v

L-/& v z=z — Zj ^n, v+i F (^n, o y \ * V
v=0

woraus mit Gl. (8 a)
V

T n, v z=— rn,v Zj ^n,v+\ + ^«, o \ * ^)
0

folgt. Wir haben nun in der Kante n alle C//>v durch C«, 0 ausgedrückt und
dadurch die Anzahl der noch zu bestimmenden Konstanten Cnj0 auf die
Kantenzahl m -+-1 vermindert. Da die einzelnen Scheiben in den Endscheiben
balkenartig gelagert sind, muß jede Scheibe gegen achsparallele Verschiebung

im Gleichgewicht stehen. Es folgt daher die Relation
W—1 f>V+l

S (— Tn,v + rn+uv + nn,n+l)dx 0, (13)
0 Jv

welche durch Einsetzen der Gl. (12) in
V=// — 1 r V pV -\-l -I

E' [C/z+1) 0 — C/2 o] z= ^j L\ -K,nZj (^/z+l, v+\ ~~ d/r, v+\) + \Jn,v~i;n+\, v~ nn}n+\) &% I V'^V
v=0 L 0 Jv 1

Z^vll —- %v-\-\ %v

übergeht. Aus diesen zweigliederigen Gleichungen können unter
Hinzuziehung der Randbedingungen „erster Art" die Integrationskonstanten Cflj0
bestimmt werden.
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Wie rasch dieses Verfahren zum Ziele führt, soll an dem Belastungsfall
der Fig. 7 gezeigt werden. Man teilt das Tragwerk in drei Sektionen.

Nachdem in der ersten und dritten Sektion p 0, so folgt

<i o 0

'n,l

Oz, 2 — Zj ®tiQ ' Pq,q+1 y Tn,\
£=0

Q—m

Wz, 0> xny 2 ~ x Zj atiQ'pQ,Q+\ + Cn, 2> Tn,3 wz,«

Anneau de raidissemenf (Section C
Versteifungsring (Querschnitt C)
Stiffening - ring (Cross - Section C)

*h,n*1

Axe de Za construction enparois
Achse des SctreiZbenwerkes ~

AxZs ofpane/Zectstructure

Section
Querschnitt'
Cross - Section

d
zzzzzzzzzznzzz

~1
J---

\
YL

>--

(15)

(15a)

Tour refriaerante - Kühtturm — Cooting tower
Construction enparois enporte-a-faux.
Kragscheibenwerk - Canotitever panei/eot structure.

Fig. 3

Mit Hilfe der Gl. (10) und (11) erhalten wir die Gl. (12) in der Form
Oz, 1 ^>/Z, 0

Q—m

Ln,2 Zj Ung ' Pq,q+1 ' \X ll) + ^n, o
0=0

Q—m

Oz, 3 -— ^2 Zj &tiQ ' Pq,q+i "t" ^n, o •

(16)

0 0

Setzt man Gl. (16) in Gl. (13) ein, so ergibt sich die Differenzengleichung
erster Ordnung

1 IL
Cn, o wz+i, 0 — / V 9 3 / ^ V*ni Q an+\ ,q) ' '2 ' Pq, q

Q=m

(17)

Sind die Kanten 0 und m freie Ränder, so muß x0 xm 0 oder nach Gl. (16)
C0)0 Cnlj0 0 sein.s Da für n o und n m die nQ> n nicht bestehen,
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lautet die den Randbedingungen angepaßte Lösung von Gl. (17)

1/4 N e=-_1
Ln,o — "T \~?f "T 's I ' 2-1 — ae,n • ' £>,e+l ¦

«=1,2.
(18)

/^ 1

Schrumpft l2 auf Null zusammen, so gelangen wir zu Einzellasten P,h n + x,

welche in -^- angreifen. Gl. (18) geht also über in

Cn, o (19)
Q—m—1

T Zj ^fl-iQ ' ' QyO + 1 'L Q=i
Aus Gl. (18) ergeben sich unter Zuhilfenahme der Gl. (16) die
Schubspannungen T.

Dieses Verfahren ist exakt und dann leicht anwendbar, wenn die
Auflösung der zu einer Sektion gehörigen Elastizitätsgleichungen einfach von

^bv1 /,*(*• tf
&

ow

Fig. 4

statten geht. Ist dies nicht der Fall, so ist es zweckmäßiger, die unstetigen
Belastungen in eine Fourier'sche Reihe zu entwickeln. Jedes Glied dieser
Reihe stellt eine Partialbelastung des Tragwerkes dar, welche von Endscheibe
zu Endscheibe stetig ist. Eine Zerlegung des Tragwerkes in Sektionen ist
daher nicht mehr nötig. Nach dem Superpositionsgesetz ergibt sich das
Gesamtresultat als Summe der zu jeder Teilbelastung gehörigen Teilresultate.
Für die Scheibe n, /z +1 lauten allgemein die Reihenentwicklungen

2 ^ knx f
Pn,n+i =];ZjSin7- • J Pn,n+i(£)'

n 2 ^ knx [
nn)n+i B0 + -rZjCOS—r— ' n^L i L Ja

kn£
sm—j-dg

n+l(£)-COS- L

r zLJ <zik\n,n+\L l

~7~2j^k;n,i
L i

sin
knx

• cos
knx

und

1 [L

2 ^ L knx [L _

(20)

(21)

(22)

dS

Analog ergibt sich für

2^1 knx [L
mn,n+i — t-Zjj- - sin-y- • /rc„, «+!(£)¦

L \ kn L Jn

~T~^jBk-n,
L i "+1*

Z. Atta:
— -sin—^—
n L

(23)

cos ——dg

L l
knx

kn L
(24)
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Setzt man Gl. (20), (23) und (24) in die rechte Seite der Gl. (7) ein, so
erhält man die Störungsfunktion in der Form

2 sr\ ^ • kna
~rZjDk;n - Sin —-L i L

wobei

Dk-n ^k;n-i,n Ck-,n-\,n
K

- A ; n, n+i — Ck-n}
L

Jn-i, n

n-m+ii ti

B,k;n,n+i '

kn! Jn,n

+ Bk-n-\,n
nn • in,n+i RTL * *n—\,n

bedeutet. Die allgemeine Lösung des Systems (7) lautet somit

Q—m k—OG

t'n — YjanQ • S Dk;n ' sin
£ 0 Ä=l

ik-x
-j— (n — 0, 1, 2 m).

(25)

(26)

(27)

Diese allgemeine Lösung ist sodann mit Hilfe der Randbedingungen „erster
Art" an das jeweilige Tragwerk anzupassen.

m+f

?„./ dx
Pn, n*f

Ff, m*f o*rn,n*r mn.n+t
* \Mo.n+f

r?o,n*r _y

zrm*m*r,n

*~ Cn dX

«n-/,n
Pn-ITn dx

« im ii ii iiiiTmiTTittti-H-i

m,n

M.n-f,n
¥ nAk- r,n

n-r,n /

Qn,n*f +dQn>n.f

m

t%-f,n+dZ%_,t„

Nn-l,n+dNn-,)n

^ Tn.f dx

\Qn-f,n+dQn^n

Fig. 5

Somit wäre die Balkentonne vollständig erledigt. Bei größeren Werten
der Freilage L muß man aus konstruktiven Gründen vom einfachen
Balkenscheibenwerk abgehen und zu äußerlich statisch unbestimmten Scheibenwerken

übergehen, bei welchen die einzelnen Träger n,n + 1 entweder alle
oder nur einzelne statisch unbestimmt gelagert sind. So sind z. B. in Fig. 2
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alle Einzelträger Durchlaufträger, in Fig. 13 ist jeder der beiden Randträger
als Zweigelenkrahmen ausgebildet und endlich in Fig. 3 sind sämtliche
Scheiben im oberen Versteifungsring elastisch abgestützt.

Um diese Tragwerke berechnen zu können, müssen wir uns vorerst mit
den Formänderungen der gelenki ^n Scheibenwerke im allgemeinen befassen.
Denkt man sich das Gelenkwerk längs der Kante n aufgeschnitten, so könnte
sich jede Scheibe n — \,n in ihrer Ebene um yn__x,n durchbiegen. Es könnte
sich also der Punkt n als Punkt der Scheibe n — 1,/z nach n' und als Punkt
der Scheibe n, n +1 nach n" bewegen. Der Zusammenhang der Scheiben bei
n kann nur wieder so hergestellt werden, indem sich n" normal auf n,nA~\
und n' normal auf n — \,n bewegt. Wir erhalten im Schnitt dieser beiden
normalen Bewegungsrichtungen den Punkt h, in welchem sich n nach der
Deformation befinden wird. Eine Auflösung des Viereckes nn'nn" ergibt
(siehe Fig. 8)

^-, =(^1,„-cos^b^)-cotg(« _,-„„). (28)

Vermehrt man in diesen Gleichungen den Zeiger n um 1, so ergeben sich die
für die weitere Rechnung nötigen Werte r)n + lt n^2 und rjn + lfn. Aus Fig. 8

folgt weiters der zur Scheibe /z, /z +1 gehörige Sehnendrehwinkel zu

l'ntn+\ — — Zj cvsn+v, n+v+i • V^^/

Ferner besteht zwischen Durchbiegung und Biegemoment die bekannte
Beziehung

£* -Jn,»+i ' J#Ä+i — M„,w (30)

Differentieren wir diese Gleichung zweimal nach x, so erhalten wir unter
Bedachtnahme auf Gl. (1) und (3) die zur Bestimmung der Durchbiegung
maßgebende Differentialgleichung

£ 'Jn,n+i ' yn,n+i ~= ^n ' ^m+i,n + ^'n-\ ' ^/fl+l,/z+l + ^n,n+i + Pn,n+\ • W*/
Bezeichnet man bei Festhaltung des Koordinatenanfangspunktes eine
Achsverkürzung als positiv, so folgen letztere aus

£ * /"*n, /z+i ' za n,n+i ==: ^n Tn+i ^/z, az-j-i • W^/

Die zu Gl. (31) gehörigen vier Randbedingungen ergeben sich aus den
Lagerungsbedingungen der einzelnen Träger abcd in den Endscheiben AundB.
Und zwar ist in A und B, also für x 0; x L die Durchbiegung
yn,r> + i 0. Die zwei fehlenden Randbedingungen ergeben sich aus Gl. (30).
So ist z. B. für das Balkenscheibenwerk (Fig. 1) für x 0; x L das
Biegemoment MHin + 1 0. Für das Tragwerk der Fig. 13 ist bei den zwei
Randträgern fürx 0; x L M01 Mm-ltm —Ff - h und bei allen übrigen
Scheiben Mn,n + i 0. Die beiden zur Gl. (32) gehörigen Integrationskonstanten

folgen aus der Größe der Normalkraft Nnjn + 1 in den beiden
Endscheiben A und B.

Nach diesen Vorbereitungen kann man nun zur Lösung der äußerlich
statisch unbestimmten Scheibenwerke übergehen. Man wählt hiezu das ge-
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wohnliche Balkenscheibenwerk als innerlich statisch unbestimmtes Grundsystem,

das heißt man belastet dieses mit den gegebenen äußeren Lasten und
den überzähligen Auflagerreaktionen der einzelnen Träger. Die Auflösung
des so belasteten Balkenscheibenwerkes wird die oben erwähnten
überzähligen Auflagerkräfte als Unbekannte enthalten. Die Bestimmungsgleichungen

für diese ergeben sich aus den Auflagerbedingungen der statisch
unbestimmt gelagerten Einzelscheiben. So ist z. B. in Fig. 2 für jede Scheibe
in der Mittelscheibe C die Durchbiegung gleich Null. Das ergibt ebenso-
viele Bedingungen als Träger, somit als unbekannte Reaktionen Cni „ + t
vorhanden sind. Für Fig. 13 muß für die Randträger die Entfernung der
Rahmenfußpunkte 1—2 erhalten bleiben. Es stehen also den beiden unbekannten
Horizontalschüben H1 und H2 zwei Bedingungsgleichungen gegenüber.

Ist der Mittelquerschnitt durch eine starre Scheibe versteift, so müssen
im Querschnitt C die Neigungswinkel yn zweier benachbarter Scheiben er-

Sect/on
Abscbn/tt L °._J V

„ v** *
i>+2 f{\Section 1

I

/>+/ - l

1 *

halten bleibe

(rrnTTTT!

En,n-f

Axe du flrffl! V'fn*/,n*/TTiiiiirr d/sque -Scherbenachse

Pv,n,n*f Ax/s ofpan Alling M/i-f\n,n+r

1
«K

l^m^n

i— —1
Axe du drs que-Sche/h wachse ¦vMM J»-/,n ane/Z/n \h/7J,/7

n-f Ax/s ofpaneZZ/r9 nv+2,n-1,n En-f ,n m l^m.n-f

i * 1

%v*f :.**
l

in. A lso muß bei de

Fig.

r mit

5

den äußeren La ste

k-8

n und den Ver-
bindungskräften Pn,n + i (Fig- 1) belasteten Balkentonne für x Li;
^,« + 1 — &n + i,/z + 2 0 gelten. Die Unveränderlichkeit der beiden, den
Randträgern anliegenden Winkeln yt und ym — ly darf nicht als Bestimmungs-
bedingung gezählt werden, da die Änderung dieser Winkel infolge der nicht
vorhandenen Torsionsfähigkeit der Randträger3) beliebig sein kann und durch
die oben erwähnten Belastungen überhaupt nicht ausdrückbar ist. Bei m
vorhandenen Scheiben gibt es also m — 3 Winkelbedingungen. Da die von den
Berührungskräften Pn> n + 1 ergriffene Mittelscheibe C im Gleichgewicht
stehen muß, kommen zu den obigen m — 3 Bedingungen noch die drei
Gleichgewichtsbedingungen 2M 2H 2V=0 hinzu und wir erhalten im
Gesamten m Gleichungen zur Bestimmung der m unbekannten PHf n ± t.

Ist ein Querschnitt des Tragwerkes nicht durch eine starre Scheibe,
sondern nur durch einen biegungssteifen Rahmen ausgesteift, so wählt man
zweckmäßig die Eckmomente des Rahmens als Überzählige. Diese Momente
M„ erzeugen in den Scheiben normal zu deren Achsen wirkende Berührungskräfte

P„t n + i von der Größe

3) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Rucksicht
genommen.
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sin (yn + yn+i)
Pn,n+1 (Mn — Mn+l)-

sin yn • sin /n+i

- (Mlt+1 - Mn+2) - • +
ön+i, n+2 bl11 an+2

+ (M„ - M^) K-— (33)

Bedeuten $fhn + 1 die Sehnendrehwinkel in Querschnitt C des mit Pn,n-ri
und den äußeren Lasten belasteten und vom Versteifungsrahmen losgelösten
Gelenkwerkes, so kann für jede Ecke eine Dreimomentengleichung
Sn-l,n-Mn-1+2(sn„hn + Snfn+i)-Mn-\-Sn,n+i-Mn+1 - 6 EJ-(&n_lt„ - i>n,n+i) 0 (34)

aufgestellt werden, womit wir die Gleichungen für die Ermittlung der Mn
gefunden haben.

Sämtliche in diesen Rechnungen vorkommenden Auflagerbedingungen
und Verformungen ergeben sich selbstverständlich aus den durch Gl. (31)
und (32) errechneten Biegelinien der einzelnen Scheiben n, n-\-\.

Wie schon anfangs dieses Abschnittes erwähnt wurde, ist die Zerlegung
der Knotenlasten Pn in die Komponenten SHj n +1 nur dann auf statisch
bestimmtem Wege möglich, wenn in einer Kante nur zwei Scheiben zusammenstoßen.

Treffen in einer Kante n ijl Scheibenzüge zusammen (Fig. 9), so
ergibt sich zunächst durch eine ähnliche Betrachtung wie für zwei Scheiben die
Gleichungsgruppe

>z, n ' ntny v—\ l \ / nm. n i
+ Tn,v-x\-j + ~p ¦) +

J n, v-l * n, v— \' yJn,v—l A /z, v-

/ / ftm+i,v 1 \ f "-m-i.n ' nm+\ v
1 \

+ -Cn, v [—, + -r— + TV( - y~v Jnv ' n,vf \ Jn,v l n,v'

— (pfl. v-i + mn, v_x) • —-? (pny v + mn,v) * -j h ß ß y (35)
Jn,v-\ Jn,v *n,v *n, v-l

wobei die Schubspannungen xn;v_x und xn.v in den Schnitten v — 1 und v
wirken. So wie für die beiden Scheibenzüge v — 1 und v läßt sich für je zwei
weitere Scheibenzüge v und v +1 eine solche Gleichung aufstellen. Das gibt
p — 1 Gleichungen. Trennt man längs der Schnitte v— 1, v, v+-1 usw. die
Träger n, v — 1; n, v; n,v-\-\ usw. ab, so bleibt ein Fragment n übrig, auf
welchem die Schubkräfte xfl}V_1; x,hv; rnyV + 1 usw. wirken. Da /zim
Gleichgewicht stehen muß, folgt die ^te Bedingung für die xUyV

2*^ 0. (36)
i

In den Gleichungen (35) sind die Komponenten Sn,v der Knotenlast Pn in
den plh v noch latent enthalten. Für deren Bestimmung gelten zunächst die
beiden Gleichgewichtsbedingungen

2 Sn, v • sin a„ „ Pn • sin an
=i

V~jLl
(37)

2 Sn,v ' COS a„tV Pn • COS C(n

v=l
Die längs der Ränder n losgelösten Scheiben n, v würden sich um den Betrag
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yn,v in ihrer Ebene durchbiegen. Da jedoch alle ^ Scheiben bei n tatsächlich
zusammenhängen, müssen die Ränder n, der im obigen Sinne freigemachten
Scheiben, alle dieselbe Verschiebungskomponente £n und rjn haben. Fällt man
also in den Endpunkten der Durchbiegungsvektoren y,ljn + 1 auf die
dazugehörigen Scheibenebenen die Normalen, so müssen sich letztere alle im
Punkte li schneiden. Es besteht also für jede Scheibe die Beziehung

yntv Un ' S\nan,v + Sn ' COSan^v. (38)
Setzt man die aus Gl. (35) errechneten x'HyV in die Gl. (31) ein und integriert
diese mit Hilfe der schon besprochenen Randbedingungen, so ergeben sich
p Gleichungen, in welchen f„, r\n und Sn v noch als Unbekannte vorkommen.
Nimmt man zu diesen p Beziehungen noch die beiden Gl. (37) hinzu, so ist
man im Besitze von p-\-2 Beziehungen, aus welchen sich die p + 2
Unbekannten ^n,f]n und S„,v (v 1, 3 /j) berechnen lassen.

rn,n+f

| llU^äUUlUilJIUi!MI]^lUlüL%/-/_

\n*f

\n

1—
1

JMimiMlUlMWlUBozlO 1

1

1

h— i, ~« p~
l*

1

—H
n-f

Fig. 7

Hat man nun die Schubspannungen x und auch die etwaigen äußerlich
unbestimmten Auflagerkräfte bestimmt, so ergeben sich die Normalkräfte zu

cx

(39)Nn, n+i .<* n - rn+1) dx + Kn +1

und die Momente ZU
^ 0

M„tfl+1 - - IV« •

•'O
Um+\,n + Tn+1 ' llm+\)n+\) dx 4- ,,+i) (40)

worin 9l„t n +1 bezw. 9KÄj „ + t die Normalkraft bezw. das Moment ist, welches
von der äußeren Belastung und den eventuell vorhandenen unbestimmten
Auflagerkräften herrührt. Hernach ergeben sich aus

__
Nn,n+i Mn,n+i

+1 ,,n
n l n,n+i Jn, n+i

die Randspannungen der Scheibe n,n-\-\. Ermitteln wir die Spannung in der
Kante n das eine Mal als Randspannung der Scheibe n, n-\-\ und das zweite
Mal als Randspannung der Scheibe n — 1,/z, so müssen dieselben Werte
herauskommen. Dieser Umstand kann für die Gelenkwerke als durchgreifende

Rechenkontrolle benützt werden.
Nach diesen Betrachtungen über die Gelenkwerke gehen wir nun zu den

steifknotigen Scheibenwerken über.

C. Das sleifknoiige Scheibenwerk.
Wie aus der Einleitung hervorgeht, werden bei den steifknotigen

Scheibenwerken die Biegemomente Xn und die Querkräfte Qz von Scheibe zu
Scheibe übertragen. Schneidet man aber aus einer Scheibe ein Element von

Abhandlungen III. 10
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der Länge dx heraus, so müssen an diesem wegen der allseitigen
Plattenwirkung außer den bereits erwähnten Wirkungen M, N, Q, X, Qz und rnoch
die neu hinzukommenden Wirkungsgrößen My und Qy als Schnittkräfte
angebracht werden3) (Fig. 10). Wir können aber aus folgenden Gründen Mv
und Qy praktisch genügend genau gleich Null setzen.

a) Die Dicke der Scheibe ist wohl in Bezug auf deren Länge L immer
sehr klein.

b) Jede Scheibe n — 1,/z ist eine Platte, welche in den Querscheiben
A, B, C usw. fest und in den Kanten n — 1 und n nachgiebig gelagert ist. Da
nun jede Scheibe ein Rechteck ist, dessen Länge L gegenüber seiner Höhe
sn — i,n groß ist, kann man die Biegewirkung über die große Spannweite L
gegenüber der Biegewirkung über die kleine Spannweite sn_1>n
vernachlässigen. Selbstverständlich werden aber in der Nähe der Querscheiben A,
B, C usw. die My doch größere Werte M'y annehmen. Dieses Nichtzutreffen
der obigen Näherung bleibt jedoch örtlich begrenzt, da die Rückwirkung der
M'v auf das Gesamttragwerk fast Null ist. Man bedenke, daß Wirkungsgrößen,

die nur an den Auflagern eines Trägers angreifen, auf seine Mitte
nahezu keinen Einfluß haben.

Die Querdehnungszahl m. setzen wir, wie es bei Betontragwerken üblich
ist, gleich oo. In Wirklichkeit ist m 10. Der in der Plattentheorie auf-

m2
tretende, die Querdehnungen berücksichtigende Faktor —^-^ ergibt sich dann

100 m'~l
zu ~ocT ~ *' Diese Näherung ist daher sehr gut erfüllt.

Wir können uns nach diesen Erläuterungen die Wirkungsweise des
Tragwerkes so vorstellen, daß wir uns jede Scheibe in unendlich viele Elemente
von der Breite dx zerlegt denken. Diese Elemente müssen aber längs der
Schnitte so verbunden werden, daß zwar die Größen M, N, Q, X, x und Qz,
nicht aber My und Qy von einem Element zum anderen übertragen werden
können. Man denke sich also zwischen zwei Scheibenelementen nach Fig. 11
ein unendlich schmales Fachwerk eingebaut. Längs der Kante n sind jedoch
die Elemente zweier benachbarter Scheiben miteinander steif verbunden. Nach
diesen Erläuterungen kommen also beim steifknotigen Scheibenwerk zu den
bereits bekannten Wirkungsgrößen M, N, Q, und x der Gelenkwerke nur noch
die Eckmomente Xn (x) und Qz neu hinzu.

In allen Fällen wählen wir das gelenkige Balkenscheibenwerk als innerlich

statisch unbestimmtes Grundsystem. Wir belasten also letzteres mit den
gegebenen Lasten Pn und den Eckmomenten Xn. Handelt es sich um äußerlich

statisch unbestimmte steifknotige Scheibenwerke, so müssen, so wie beim
Gelenkwerk, zu den obigen Wirkungen noch die überzähligen Auflagerreaktionen

der einzelnen Scheiben am Grundwerk als äußere Belastung
angebracht werden. Die Xn wandelt man am besten in mit Pn gleichgerichteten
Knotenlasten nn um. Hält man den in Fig. 12 angebrachten Drehsinn fest,
so ergeben sich letztere zu

Xn-\ v ln,n+\ ~r ln,n-i Xn+\ ZAn\nn - Xn — h 7 (42)
in,n-i ^z,«+i ' ln-\,n ^«,/z+l

Es wirkt nun in jedem Knoten die Gesamtlast

Pn Kn + Pn. (43)

Diese verwandelt man nach Gl. (a), (b) und (c) in Transversallasten pn,n^u
3) Auf die Torsionssteifigkeit der einzelnen Scheiben wurde keine Rücksicht

genommen.
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welche in den einzelnen Scheibenebenen normal zu deren Achsen wirken.
Sind außerdem noch äußerlich statisch unbestimmte Auflagerreaktionen der
einzelnen Träger vorhanden, so werden diese nach Gl. (20) in Fourier'sche
Reihen entwickelt. Man erhält daher durch Addition aller dieser Wirkungen
schließlich die Gesamtbelastung des Grundsystems zu

v—n-{-l
s <—. ä"it r

(44)Pn,n+i — Pnfn+\ T" 2j av Xv -\ — Zj Akyn,n+i ' Sin —-
v=n-2 L* 1 L

ln}n+i 7~2j Bk; n,L i

n,n+i — Tnn n+\ ~\ V Zj Ck: n,L i

L nkx

L nkx

jft+i

n*/

V»*/,**?

\ \ \

M/r*/

n+fUnj7-r

n'r^ \

Z7+2

Fig. 8

Löst man nun das in obigem Sinne belastete gelenkige Grundwerk mit Hilfe
des Systems (7) auf, so erhält man unter Benutzung der Gl. (26) und (27)

v=m—l Q~m k=co

Tn 2 [bv(Pv,v+i 4- m'v>v+l) + cv • nytV+1] + 2 ano • 2 Dk,p - sin ~^~ +
v=o ß=_o

w k=i L
v=m

+ %dv-Xv. (45)
v=0

In dieser Gleichung stammt der erste Ausdruck von der gegebenen Belastung
des Tragwerkes, der zweite von den überzähligen Auflagerkräften der
einzelnen Scheiben und endlich der dritte von den Eckmomenten Xn. Nach
viermaliger Differentiation und entsprechender Subtraktion folgt aus Gl. (29)

v=+l
<)IV ,jyv n,n+\ Sc IV

fv ' yn+v.
v=—2

(46)

Setzen wir in Gl. (31) für die x\ p und m7 die r', p und m der Gl. (44) und
(45) ein, so erhalten wir mit Hilfe der Gl. (46)

v—m—1

&n—\,n ü/i,n+i 2j \gv(Pv>v+l + ftlv,p+i) + hv • nVyV+^] +
k=oo t v—m

+ 2 £k,n - sin ~^— + 2 jv ' Xn• (47)
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Diese Gleichung stellt die Änderung des Neigungswinkels, der der Kante n
benachbarten Scheiben n, /z + 1 und n — 1,/z, dar. Wenden wir daher für
jede Ecke, in welcher ein Moment Xn auftritt, den „Dreimomentensatz" an, so
erhalten wir mit Gl. (47)

5 -1, * X _! + £\Sn-\,n + sn}n+i) ' Xn + Sn,n+\ ' Xn+\
— 6EJ(!>n-Un — &ntn+i) t2n,n-i + &n,n+l (48)

In dieser Gleichung stellen die 5' die reduzierten Längen der Polygonseiten
n, n +-1 und / das Vergleichträgheitsmoment von 1 m Scheibenlänge dar.
Die Belastungsglieder ü rühren von dem Umstände her, daß die Lasten
zwischen den Knoten n angreifen. Differentieren wir Gl. (48) viermal nach
x, so ergibt sich mit Hilfe von Gl. (47)

c' YIV 4.9^' ' c' ^ XIV-L c' vIV^n-i.n * s\n—l ~T~ £*\&n l,n T *n,/z+1/ -^ n i ~/Z, az+i ' **n-\-i
v=m v=m—1

— 6£/ • 2/v • Xv 6EJ • 2 [gv(Pp,p+i + tn'v,v+i) + K nVyV+1] +
V 0 Vr=0

Ä=oo

+ 6f/ 2 Ek,n • sin -^ + ß«,^ + ß„)/m Snj (49)
Ä=l /-

worin wir die Elastizitätsgleichungen des Problems gefunden haben. Sie
sind simultane Differentialgleichungen vierter Ordnung, genau so wie beim
elastisch gebetteten Träger, da es sich ja auch bei dieser Aufgabe um Träger
handelt, die sich gegenseitig elastisch stützen. Die normale Integration dieses
Gleichungssystems ist numerisch nahezu unmöglich. Wir beschreiten daher
einen Näherungsweg, in dem wir die gesamten Störungsfunktionen Sn in
Fourier'sche Reihen entwickeln. Es ergibt sich also

Sn= 2 F,hk -sin ~ (50)

kn xBesteht die Störungsfunktion nur aus einem Sinusglied F,liksin——(n
0, 1, 2} m), so lautet die Lösung von Gl. (49)

,,M cpnk • sin -^ (n 0,1, 2 tn), (51)

wobei cpnk noch zu bestimmende konstante Beiwerte bedeuten. Setzt man
Gl. (51) in Gl. (49) ein, so erkennt man, daß Gl. (49) nur dann von Gl. (51)
befriedigt wird, wenn

(fn-uk + 2(s'n-i,n + ^>/I+1) \-j-J • <pnk + Sn,n+i ' y-j-J ' <Pn+i,k

v=m
— 6Ej'Ejv-<pv,k 6EJ-Fn,k (n 0,\,2....m) (52)

V=0

erfüllt ist. Gl. (52) sind lineare Gleichungen, welche zur Bestimmung der
unbekannten Beiwerte epn%k hinreichen. Nach einem bekannten Satze über
nicht homogene, lineare Differentialgleichungen ergibt sich das den
Randbedingungen angepaßte Integral zu

< Xn— 2<P«,£ • sin-—-* '
n 0,1,2 m. (53)

Für jedes Glied der Sinusreihe muß ein lineares Gleichungssystem (52)
aufgelöst werden.
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Der genaue Nachweis, daß die Lösung (53) tatsächlich auch allen
Randbedingungen genügt, wurde vom Verfasser in seiner Abhandlung „Berechnung

prismatischer Scheibenwerke" erbracht4). Wir wollen daher diesen
Beweis hier nicht wiederholen.

Handelt es sich um die Berechnung einer Balkentonne, so ist in Gl. (45)
der zweite Summenausdruck gleich Null. Liegt jedoch ein äußerlich statisch
unbestimmtes steifknotiges Scheibenwerk vor, so enthält das zweite Glied
von Gl. (45) die überzähligen Auflagerreaktionen der einzelnen Träger ab c d.
Die Bestimmungsgleichungen für diese findet man genau so wie beim
Gelenkwerk aus den Auflagerbedingungen der einzelnen Scheiben. Es gilt also
hiefür das in Abschnitt B Besprochene.

v-f
hm*r.v

V+f

m,v-r

n.v-f

hrn+
hm.n

«2<-Vö%>&*

n,v-f
y^

'dy».v-f

Fig. 9

D. Praktische Anwendung.
Wir führen in diesem Abschnitt die Berechnung eines steifknotigen

Scheibenwerkes für das Eigengewicht durch, bei welchem die Randträger
Ol und OT infolge der großen Spannweite von 25 m als Zweigelenkrahmen
ausgebildet sind. Aus Fig. 13 sind die Abmessungen des Tragwerkes
ersichtlich.

Zuerst ermitteln wir die Knotenlasten Pn für das Eigengewicht:
Betonplatte 7 cm stark 0,168 t/m2
Pappe 0,022 „

0,190 t/m2
Dachrinne 0,022 t/m2.

Daraus folgt P2 P3 P4 2,30 • 1,90 0,437 t/m
und P1 1,15; 0,190 + 1,00 0,15 2,4 + 0,022 0,600 t/m.
Nach Gl. (a) und (b) folgen die für die Zerlegung der Pn in Sntn + 1 und
Sn + i,n nötigen Beiwerte anjn + 1 zu

a21 — 4,828; a23 4,446; aB2 5,034; ß34 4,828; a43 5,0335.
Mit Hilfe dieser Werte ergeben sich für das Eigengewicht die Transversal-

4) Siehe die Abhandlung des Verfassers „Die Berechnung der prismatischen Schei-
benwerke" in den „Abhandlungen der Internationalen Vereinigung für Brückenbau und
Hochbauu, Band I, 1932.
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belastungen zu

p01 =0,600 t/m; pit 2,110 t/m; /723 0,257 t/m; /?34 0,0896 t/m. (54)
Als überzählige Größen wählen wir die Eckmomente Xn und den

Horizontalschub ff. Nachdem das Tragwerk sieben Kanten besitzt, ergeben sich
zunächst sieben unbekannte Momente Xn. Infolge der Symmetrie um die
Achse / — /, sinkt die Zahl der Unbekannten Xn zunächst auf 4. Da weiters
der untere Rand der Rahmenscheibe frei ist und letztere keine Torsionsfähigkeit

besitzt, ist auch X1 03). Es sind somit nur mehr 3 Unbekannte X2,
Xz und X± zu bestimmen. Ferner werden durch den am Fuß der Stütze
angreifenden Horizontalschub H in den Riegel 01 des Rahmens R die bei
x o und x L angreifenden Wirkungen N H und M — h- H — 5-//
übertragen. Diese unstetigen Lasten entwickeln wir nach Gl. (20) in die
folgenden FourieFschen Reihen

4H / nx 3nx 5nx \ __n01 ZTvcosX + cosT~ + cos~zr + /
*

20 H/ \
mol + —j— y „ „ * + j (56)

4nh [ nx *5nx bnx \ .„.^oi ~jj- (sin — + sin -j- + sin -j— + j (57)

2°^( „ „4- (58)

Verwandelt man die Xn in Knotenlasten nn, und diese nachher wieder in
Transversalbelastungen und addiert letztere zu Gl. (54) hinzu, so erhalten wir

pol 0,600 + 0,4948 X2; p12 2,110 — 4,952 X2 + 2,199 X,;
/723 0,257 +6,513 X2 — 6,513X3 + 2,199^; (59)

/?34 0,0896 — 2,199 X2 + 8,7045 X3 — 6,5076 X4.
Wir bringen nun am Balkengelenkwerk — das wir ja als Grundsystem

wählen — die Wirkungen nQU ni01,pol, pl2, prd und p34 als äußere Lasten an
und lösen es auf. Zu diesem Behufe stellen wir unter Bedachtnahme der
Randbedingungen „erster Art" to t4 0 das Gleichungssystem (7) auf und
erhalten

>

4,146 t\ + t2' - 3,22 ^ - 1,30 pu
— 3,22 /< — 0,5367 n'Ql

(60)
*i + 4^2 + t3 — 1,30 pn — 1,30 p2i

*2 + 4^3 — 1,30 p.m — 1,30 #*.
Setzen wir in Gl. (60) die Werte von Gl. (57), (58) und (59) ein und lösen
hernach die Gl. (60) auf, so ergibt sich
Tx - 1,0026 + 1,2077 X2 - 1,1747 X3 + 0,2936 XA - 0,8300 m'ol - 0,1383 /z01

72 - 0,5245 - 0,6146 X2 + 2,0035 X3 - 1,2175 X± + 0,2212 m^ + 0,0367 n01

VA + 0,0185 - 1,2513 X2 - 1,2174 X3 + 1,7095 X4 - 0,0553 //z0] - 0,0092 n,x. (61)
Wir können nun zur Aufstellung der Elastizitätsgleichungen übergehen.

Zu diesem Zwecke drücken wir zuerst nach Gl. (29) die Sehnendrehwinkel
d>n>n + i durch die Durchbiegungen yn>,n + i aus und erhalten

2,30 #12 — 1,1379y0l + 5,5025y12 — 5,0582y25
2,30 #23 — 5,0582y12 + 9,9190yrd — 5,0582yu
2,30 #34 — 5,0582y23 + 14,9772 j34. (62)
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Mit Hilfe der Differentialgleichung (31) ergeben sich mit /01 =- 0.0125 m1
und J12 0.07097 m4 unter Benützung der Gl. (61) die vierten Ableitungen
der yni„ + ± zu

£7i2joi + 0,5604 +6,2367 Xs-3,3352^3+ 0,8335X4+ 3,3216 ^--0,3926^
EJ\ %?u + 0,3538 - 3,9099 X2 + 3,1528 Xz -1,0625 X4 - 0,7001 /<- 0,1168 /z01

EJi 2yZ - 0,3249 + 4,3671 X2 - 5,6082 X3 + 2,7650 X4 + 0,1908 m0l + 0,0316 nol

EJi*tä +0,1109 - 3,6359 X2 +7,3045 X3-4,5417 X4-0,0636/^i -0,0106/^. (63)

Differentiert man Gl. (62) viermal nach x und setzt hernach Gl. (63) ein,
so erhalten wir nach Substraktion immer zweier aufeinanderfolgenden
Gleichungen

£y12.2,30.(#&- dg) 8,5258 - 132,15 X, + 159,03 X?i - 76,50 Xx
- 14,3532/Ho!- 1,3135 <

£/12-2,30-(^:- #£) - 8,8792 + 158,03 X9 - 247,28 X3 + 137,73 XA +
+ 7,6730/^ + 1,2764^,

£y18 -2,30 • 0» + 3,3059 - 76,545 X2 + 137,77 X, - 82,01 X4
- 1,9176 m'ol - 0,3186 /z01. (64)

ÄK

3
^

Kor ^s<
ä«

/^
x*-/

n-r.r

"„-/,/,

Fig. 10

Berücksichtigen wir, daß Xt o und J\4 X'4 ist, so ergeben sich endlich
O ^XCK 1

nach Gl. (49) die mit dem Faktor -2-*-y1- 951,89 vervielfachten

Elastizitätsgleichungen in der Form

8757,436 A7/+ 2189,359 X3F+ 132,151 X, - 159,026 X, + 76,503 X4
8,5258 - 14,3532 m^ - 1,3135 tim + (ß}J + ß{J) • 951,89

2189,359 Xf + 8757,436Xf+2189,359 X;4F-158,031X2 + 247,283 AT, -137,730 X4
-8,8792 + 7,6730 0^+ 1,2764 ^ + (ßX + ß'gj) • 951,89

2189,359 X? + 4378,718 X\v + 76,545 X> - 137,768 X3 + 82,008 XA
3,3059 - 1,9176 tfz/n - 0,3186 n'()] + ß34 • 951,89. (65)

Unsere nächste Aufgabe besteht nun in der Auflösung des Systems (65).
Zu diesem Zwecke müssen wir die rechten Seiten derselben in Fourier'sche
Reihen entwickeln. Das von der Knotenzwischenbelastung herrührende
Belastungsglied ß„_lj/; lautet allgemein

oM 0,190
s°

COS «,2-1 • (66)
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Daraus folgen die zu jeder Gleichung gehörigen Werte

ß12 + ßä3 -0,347-^; ß„ + ßs<=- 0,359 ~; ß34 -0,179~
deren Entwicklungen

S2\l + ß£ - 0,347 • ~ (^f [sin ~ x + 3S • sin~ + 53 • sin^ + • •

ßI[+ß34F=-0,359 „

(67)

¦0,179 (68)

lauten. Stellt man auch die Konstanten der rechten Seiten in einer Reihe

4 / nx 1 3nx 1 bnx \ ,^v^ ^(sinx + Tsin^r + ysmT--t (69>

dar, so ergeben sich unter Zuhilfenahme der Entwicklungen (57) und (58)
die Fourier'schen Reihen der Störungsfunktionen S„ von Gl. (65) zu

5, (10,5364+l,4168//)sin^x + (-4,9945 + 4,3504//).sin^ +

+ (- 37,7039 + 6,7605 ff) • sin^ +

52 (-11,6279 - 0,7457 ff) ¦ sin ~x + (-12,4760 - 2,2371 ff) • sin^ +

+ (42,5736 - 3,7285 ff) • sin ~ +

53 (+4,0371 + 0,1863 ff)- sin ^ * + (-3,0436 + 0,5589//)• sin^ +

+ (-19,7347+ 0,9315//). sin 5jtx
(70)

Zu jedem Gliede dieser Störungsfunktionen gehört eine Partiallösung, zu
deren Bestimmung wir drei Gleichungssysteme (52) brauchen. Dieses lautet

nxfür das erste Glied sin-r-

für das zweite Glied sin

134,3350 cp12 — 158,4795 tp13 + 76,5027 <pu ax

157,4850 q>19 + 249,4669 <p13 —137,1838 <pu bx

76,5453 <pls — 137,2224 <p13 + 83,0997 cpu Cl

3nx

209,0422 cp99 — 114,8027 q?23 + 76,5027 <p24 a2
113,8082 <p2i + 424,1741 <p23 — 93,5070 <pu b2

76,5453 <p22 — 93,5456 99,3 + 258,8988 <p24 c2

5^xund endlich für das dritte Glied sin:
L

1497,0512 ^32 + 182,200 ^33 + 76,5027 cpM as
182,2000 <pS2 + 1612,183 <p33 + 203,496 cpu b3

76,5453 <p32 + 203,496 <p33 + 1446,908 <^34 c3.

(71)

(72)

(73)
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Nimmt man die Ausdrücke (70) für die Gl. (71), (72) und (73) als rechte
Seiten, so lauten die Auflösungen obiger Gleichungen

cp12 — 0,00707; <p22 — 0,04263; zpZ2 — 0,02201
<p13 — 0,22556; <^23 — 0,04418; ^33 — 0,02270
<p±\ — 0,31723; <p24 — 0,01510; <?34 — 0,00927

<p12 + 0,0312; cp22 + 0,02171; cp,2 + 0,00504
(p1B z= + 0,02309; tp99 — 0,00042; ^33 — 0,00307
<Pu + 0,01169; zp2 ¦0,00441; cpu= + 0,00080.

Mit diesen Ergebnissen ergibt sich die Zwischenlösung
nx
25

+ (- 0,02200 + 0,00504 H). sin

nx

X2 (- 0,00707 + 0,03120 ff) • sin ^| + (- 0,04263 + 0,02171 ff) • sin -^
5nx
25

3nx

(74)

(75)

X3 (- 0,22556 + 0,02309 ff) ¦ sin ^ + (- 0,04418 - 0,00042 ff) ¦ sin ~^-

+ (- 0,02270 - 0,00307 ff) ¦ sin^
X4 (-0,31723 + 0,01169//)-sin || + (-0,01510-0,00441 ff).sin

5̂jtx
"25"'

(76)

+ (-0,00927 + 0,00080//)-sin

1HHKH,
%>+>

<W,>n~f,n

Bord-Kante - £ctge n-f
Fig. 11

*»-1
n+t
*n+t

*n-t
A3

ln-Z.n n.n+f

Fig. 12

In diesen Gleichungen kommt der noch unbekannte Horizontalschub Ff vor.
Dieser ergibt sich aus der Bedingung, daß bei den mit H, p01, n01, m0i und
it belasteten Rahmen die Entfernung 1 — 2 erhalten bleiben muß. Für den
so belasteten Rahmenriegel 01 ergibt sich der Endverdrehungswinkel q?h aus
der Differentialgleichung (31), welche in unserem besonderen Falle

nxEJoi-yZ +0,0987 + (0,07818-0,03776//) sin— +

+ (- 0,02330 - 0,15714H) sin^ + (-0,01221 - 0,29377//) sin bxn (77)

25 25

lautet. Integrieren wir Gl. (77) dreimal, so erhalten wir mit den
Randbedingungen
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*=y; y'"=°> * 0,jtf=0; x=L2,yl=0
den Endverdrehungswinkel an der Stelle x 0 zu

E-Joi -Xi + 103,181-23,130//. (78)
.*=o

Ebenso ergibt sich aus der folgenden, nach Gl. (32) aufgestellten Differentialgleichung,

nx
25"

o * (79)
+ (+0,00402 - 0,32773 H) sin^ + (0,00263 - 0,51330//) sin^

unter Benutzung der Randbedingungen

* y, 4f o; 4i 4i| ; x o, joi o

die Achsverkürzung des Rahmenriegels in halbe Spannweite zu

f. F0l -A0i\ L — 567,59 + 65,794. (80)

Beträgt die Nachgiebigkeit des Stieles As 550,0 HjE, so lautet nun die
Bedingung, daß die Entfernung 1—2 unverändert bleibt.

5-Xil — 4>il L—ds 0. (81)

Wertet man Gl. (81) mit Hilfe der Gl. (78) und (80) ziffernmäßig aus, so
erhalten wir

ff= + 4,40 ton. (82)

Mit diesen Ergebnissen folgen aus Gl. (77) die Eckmomente X„ endgültig zu

X2 + 0,13021 sin g + 0,05289 sin^ + 0,00018 sin^
Xa=- 0,12396 „ -0,04603 „ -0,03621

Xi - 0,26579 „ - 0,03450 „ - 0,00575 „
Führt man diese Werte in die Gl. (59) und (61) ein, so folgt

p0l + 0,600+0,06442 sin || + 0,02617 sin^ + 0,00009 sin ~
pia + 2,110-0,87056 „ -0,34409 „ -0,08046 „ (84)

p23 + 0,257+1,07086 „ +0,56830 „ +0,22433

pSi + 0,0896 + 0,36447 „ - 0,29232 „ - 0,27836
und

(83)

(85)
t[ - 1,0026 + 0,57981 sin || + 1,17258 sin^ + 1,81347 sin ~
%'t - 0,5245 - 0,09888 „ -0,36503 „ -0,53617 „
% + 0,0185-0,44285 „ +0,00214 „ +0,15226 „

Unsere nächste Aufgabe ist nun die Berechnung der Spannungen und
Formänderungen. Zu diesem Zwecke stellen wir zunächst für jede Scheibe
die Differentialgleichungen (31) auf. Diese lauten
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+ 0,5604 - 0,50009 sin 25-4,13319 sin 7,40366 sin

(86)

25 "' 25

E7i2 y[v> + 0,3538 - 0,31792 „ + 0,58279 „ + 1,38947

EJi 2 y\l - 0,3249 + 0,44688 „ + 0,14892 „ - 0,22004

£y12j& +0,1109-0,14481 „ -0,29029 „ -0,10309 „
Ferner folgen aus Gl. (2) durch einmalige Differentiation die Bestimmungs
gleichungen für die Normalkräfte A—+ ± der einzelnen Scheiben. Unter Be

Section - Schnztt-Sectzon I~I sSecfzon-Sc/?nnY-sSecf/on Jf-JT

\007 &

2£° o**>
o 1

~ Parois mince du cadre 07 1

Rahmenscheibe - Frame pane/lrng I

090
Cadre — Rahmen — Frame R 1

1,

'!#

S'42$
6'S

263075

015

Fig. 13

nutzung von Gl. (85) und (57) erhalten wir für unseren besonderen Fall

Ni[ + 1,0026 - 0,66828 sin nx
25

1,43799 sin
3 nx 5nx
25 -2>25582sin

25
N" - 0,4781 + 0,67869

rll
(87)+ 1,53761 „ +2,34496

Nii - 0,5430 + 0,34397 „ - 0,36717 „ - 0,62843

A# +0,0185-0,44285 „ +0,00214 „ +0,15226

Integriert man GL (86) zweimal nach x, so erhalten wir unter Zuhilfenahme
der Randbedingungen

x
L /"= 0; M\ =M\2 L=o \X=L

die Momente der einzelnen Scheiben zu

MQ1 - 0,5604 (—-x—\- 0,50009
L\2 nx L\2 3x f L\2 Sx

sin —-4,13319 — sin 7,40366— sin
25 \37iJ 25 \5n 25

A/12 =-0,3538 „ -0,31792 „ +0,58279 „ +1,38947

A/23 + 0,3249 „ +0,44688 „ +0,14892 „ -0,22004
AfS4 =-0,1109 „ -0,14481 „ -0,29029 „ -0,10309
Ebenso ergeben sich aus Gl. (87) die Normalkräfte N,hn + 1. Bei der hiezu
nötigen zweimaligen Integration sind die Randbedingungen

N\ — Nl ; TV" 0

(88)

\\-=L

zu berücksichtigen. Man erhält
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JVoi +1,0026

N12 - 0,4781

fx2 x \ rr ^ (Ly. nx L\2 3tiX iLL + 0,66828 — sin — + 1,43799 — sin + 2,25582 —
\2 2 W 25 \3n) 25 ' \5ti.

-0,67869 „ -1,53761 „ -2,34496

N2,=- 0,5430 „ -0,34397 „ +0,36717 „ +0,62843

N34 + 0,0185 „ +0,44285 „ -0,00214 „ -0,15226

Daraus ergeben sich für x L/2 die Momente und Normalkräfte zu

M01 +3,955
M12 + 6,726
Af2s +1,315
M3i + 1,275

5 ti x
i

25

(90)

t ; N01 =-40,413 t
Nia=- 0,747 „
AT« + 19,801 „
iV34 + 26,229 „

Mit Hilfe der Gl. (41) erhält man nun endlich die Randspannungen der
einzelnen Scheiben zu

<tf, 11,12 kg/cm2; < -10,485 kg/cm2; ag--14,42 kg/cm2; <= 18,27 kg/cm2

< 42,76 11,415 ; < -10,18 ; o£= 14,13

Unseren Ausführungen entsprechend wurden diese zweimal berechnet. Als
endgültige Resultate nehmen wir die Mittel zweier doppelt gerechneter
Werte.

(89)

(91)

&mm
1

-*\\\\0QirmmrtSj»rn

Ä O'OkmrriA'. ^ 1&'$ Kg/cm2
WbKgfcm1

^^~'~ ' Compression-Druck-

i Po/nZ d'inFZexZon \ -fO'dKg/cm

Wendepunkt-Point oF\mFZexion

Courbe eZastque
Curve oF deFZechonBiege/mie

B/egemomente I

-/&ir Kg/cm* .'
Moments FZechissanfs
Bending moments

TractZon - Zug - Tension

22892193Z02f

Tensions normaZes de Za sect/'on I~I
ZZorma/spannungen im Schnitt I-I
Normat stresses in the section J-I

\ f6'S Kg/cm*

/Poutre • iournet/e
\Balkentonne

/ Girder -harre/
WfXg/cm*

426 Kg/cm2

Fig. 14

Von großem Interesse sind noch die Verformungen des Tragwerkes.
Diese ergeben sich aus den yn,yll + u welche durch zweimalige Integration der

Gl. (88) gefunden werden. Dabei sind die Randbedingungen x —, y' 0;

x 0, y 0 zu berücksichtigen. Man erhält
/jc4 L L3\ /ZA4 nx

EJ12.y01 +0,5604^- - —**- _ j -0,50009— ¦ sin—-4, Ly 3nx (LV 5nx
13319 — -sin—--7,40366— -sin

3n L V57r/ L

(92)
EJ12-yl2 +0,3538 -0,31792 „ +0,58279 + 1,38947

EJiryn= -0,3249 + 0,44688 „ +0,14892 - 0,22004

£712^84 +0,1 109 -0,14481 „ -0,29029 -0,10309

Für x L2 ergibt sich daraus mit E 1,000000 t/m2
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£7i2 yoi +1001,89 tm3 yol 0,00251 m
£Ji2yi*=+ 504,71 „ Vl2= 0,00715,, ,Q^^/i2j23=+ 130,93 „ j/23= 0,00185 „ ^J'
£/i2j>84 - 2,88 „ j34 =-0,0000405 m.

In Fig. 13 sind Verformung und Spannungen für den Mittelquerschnitt
(x L/2) dargestellt.

Vergleicht man die Spannungen des in diesem Aufsatze berechneten
Rahmentragwerkes von 25 m Spannweite mit den Spannungen des in der
Abhandlung „Berechnung prismatischer Scheibenwerke" berechneten
Balkentragwerkes von 18 m Spannweite4), so sieht man, daß die maßgebende
Zugspannung des gefährdeten Riegels 01 in beiden Fällen fast gleich ist. Die
Erhöhung der Druckspannungen spielt praktisch keine Rolle. Man kann also
ohne die Abmessungen des Querschnittes zu verstärken die freie Spannweite
von 18 auf 25 m vergrößern. Man erkennt daran die kräftig wirkende
Entlastung der steif angeschlossenen Stützen. Hingegen sind die Verformungen
der Querschnitte und die Biegemomente X für das Tragwerk mit 25 m Spannweite

schon erheblich größer als für das Tragwerk mit nur 18 m Spannweite,
so daß man bei noch größeren Spannweiten die Mittelquerschnitte schon
durch steife Querscheiben oder biegesteife Rahmen verstärken müßte. Wie
sich der Verfasser überzeugt hat, können bei entsprechender Erhöhung der
Randträger und bei entsprechender Verstärkung der Plattenstärke d Spannweiten

von 40 bis 45 m erreicht werden. Selbstverständlich sind in solchen
Fällen die Querschnitte alle 15 bis 20 m durch steife Querrahmen gut
auszusteifen. Zum Schlüsse erwähnen wir noch, daß der Horizontalschub Ff auch
auf die Biegemomente X einen günstigen Einfluß ausübt, indem der absolute
Wert derselben verkleinert wird.

Zusammenfassung.
Der Verfasser hat im 1. Band, Jahrgang 1932 dieser Abhandlungen die

Theorie der gelenkigen und steifknotigen prismatischen Scheiben- oder
Flächenwerke im Prinzip festgelegt. Dabei wurde aber nur der einfachste
Fall, nämlich das „Balkenscheibenwerk" mit von x unabhängigen Wanddicken

(Fig. 1), ausführlich behandelt. Geht man auf größere Abmessungen
über, so müssen zur Vermeidung gefährlicher Formänderungen Vorkehrungen
getroffen werden und zwar unter anderen:

1. Der Einbau von freischwebenden steifen Scheiben oder biegungsfesten
Ringen,

2. die Ausbildung der Randträger a) als Durchlaufträger oder b) als
Rahmen.

3. Werden sämtliche Scheiben an denselben Stellen mehrfach unterstützt,
so entstehen die „durchlaufenden Scheibenwerke".

Man kommt so auf die in diesem Aufsatz behandelten äußerlich statisch
unbestimmten Faltwerke.

Um an bleibender Last zu sparen, paßt man die Wanddicken den mit x
wechselnden Kraftwirkungen an. Es entstehen so die Scheibenwerke mit
veränderlicher Dicke, für welche an dieser Stelle* die erweiternden Elastizitätsgleichungen

aufgestellt wurden.

4) Siehe „Abhandlungen der Internationalen Vereinigung für Brückenbau und Hochbau",

Bd. I, 1932.
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Kuppelt man mehrere zueinander parallel liegende Scheibenwerke
zusammen, so werden an den Berührungskanten im allgemeinen mehr als zwei
Flächen zusammenstoßen. In solchen Punkten ist die Aufteilung der Knotenlast

auf die einzelnen Scheiben statisch unbestimmt. Auch diese Aufgabe
wird für den Fall, daß n Flächen in einer Kante zusammenstoßen, allgemein
gelöst.

Als Grundsystem wählen wir am besten wieder das gelenkige
„Balkenscheibenwerk". Für dieses werden die Elastizitätsgleichungen ermittelt.
Diese ergeben sich als simultane Differentialgleichungen erster Ordnung,
welche sich leicht integrieren lassen. Für die Bestimmung der dazugehörigen
Integrationskonstanten werden zwei Verfahren mit daranschließender
Anwendung wiedergegeben. Mit Hilfe dieser beiden Methoden und eingehender
Verformungsbetrachtungen werden die oben erwähnten äußerlichen
Unbestimmtheiten behandelt. Der Fall 2 b wird vollständig ziffernmäßig
durchgeführt. Dabei wird derselbe Tonnenquerschnitt genommen wie in der ersten
Abhandlung des Verfassers von 1932.

Durch die nun größere Steifheit der Randträger werden die Formänderungen

des Tonnenquerschnittes geringer, wodurch sich die Spannungsverteilung
in der Mitte der Stützweite mehr der Ebene nähert.

Resume.
Dans les presents Memoires, Fauteur a publie, des Fannee 1932, le principe

de la theorie des parois minces prismatiques articulees et rigides. II n'a
toutefois traite dans le detail, ä cette epoque, que le cas le plus simple, celui
de la paroi mince constituant une poutre et dans laquelle Fepaisseur de la
paroi elle-meme est independante de x, (figure 1). Lorsque les dimensions
des ouvrages deviennent plus importantes, il devient necessaire, pour eviter
des deformations dangereuses, de prendre des dispositions particulieres,
parmi lesquelles:

1. Fincorporation de tympans rigides ä mouvements libres ou de ceintures
rigides;

2. la Constitution des poutres de retombee a) sous forme de poutres
continues, b) sous forme de cadres;

3. la disposition comportant un appui multiple de tous les elements de
parois aux memes endroits, ce qui conduit ä la „paroi mince continue".
On en arrive ainsi aux systemes constitues par un ensemble de parois

portantes, statiquement indetermines exterieurement et qui fönt Fobjet de la
presente etude.

Pour realiser une economie sur la charge permanente, on fait varier les
epaisseurs des parois suivant les effets produits par les charges .qui varient
elles-memes avec x. On obtient ainsi des systemes de parois minces avec
epaisseurs de parois variables, auxquelles Fauteur a etendu dans ce rapport
les equations de Felasticite.

Si Fon groupe ensemble plusieurs parois orientees parallelement les unes
aux autres, les aretes de contact constituent en general des assemblages de
plus de deux surfaces. En ces endroits, la repartition de la charge du noeud
d'assemblage entre les differentes parties qui le constituent est statiquement
indeterminee. L'auteur resout*le probleme pour le cas general correspondant
ä Fassemblage de n surfaces sur une arete.

II choisit ä nouveau comme Systeme de base la poutre ä parois minces
articulee. II determine dans ce cas les equations de Felasticite, qui se pre-
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sentent sous la forme d'equations differentielles simultanees du premier
ordre, que Fon peut integrer facilement. Pour la determination des
constantes d'integration correspondantes, deux procedes sont indiques, ainsi
que leur utilisation pratique. Ces deux methodes, ainsi que la consideration
approfondie des deformations, permettent de resoudre les indetermiriations
exterieures indiquees plus haut. • Le cas 2 b est entierement traite par le
calcul. La section de voüte adoptee est la meme que dans le premier memoire
de Fauteur de 1932.

Par suite de la plus grande rigidite actuelle des poutres de retombee, les
deformations de la section de la voüte mince sont maintenant plus faibles et
la repartition des contraintes au milieu de la portee se rapproche ainsi
davantage du plan.

Summary.
In the 1932 volume of these Publications, the author determined in principle

the theory of hinged and rigidly-jointed prismatic flat-shell or panelled
structures. Then, however, only the simplest case was considered thoroughly,
namely the „girder panelled structure" with the thicknesses of the panelling
independent of x (fig. 1). If one proceeds to greater dimensions, certain pre-
cautions must be taken to prevent dangerous changes of shape; amongst these
are the following:

1. Insertion of suspended stiff panelling or rigid rings.
2. Designing the edge girders a) as continuous girders, or b) as frames.
3. When all panellings have several supports at the same positions we get

the „continuous panelled structure".
In this way we come to the outwardly statically indeterminate flat structures

dealt with in this article.
In order to save in dead load, the panelling thicknesses are suited to the

actions of the forces varying with x. In this way we get the panelled structures

with varying thickness, for which the extended equations of elasticity
have been determined here.

If several panelled structures lying parallel to each other are coupled
together, more than two surfaces will in general meet at the contact edges.
At such points the distribution of the load at the Joint on the separate
panellings is statically indeterminate. Also this problem is solved in general
for the case where n surfaces meet together at one edge.

As basic system we do best to select again the hinged „girder panelled
structure". For this, the equations of elasticity are determined. They are
simultaneous differential equations of the first order, which can easily be
integrated. For determining their constants of integration, two methods,
followed by applications of them, are given. With the help of these two
methods and close consideration of changes of shape, the above-mentioned
outwardly indeterminate conditions are dealt with. Case 2 b is treated entirely
numerically. In doing so, the same cross-section of the barrel vaulting is taken
as in the author's first article in 1932.

Through the now greater stiffness of the edge beams, the changes of
shape of the cross-section of the barrel vaulting will be slighter, and the
distribution of stress in the middle of the span will approximate more to
the plane.
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