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DEFLECTION THEORY FOR ARCHES

THEORIE DE LA DEFORMATION DES ARCS

VERFORMUNGSTHEORIE FUR BOGEN
ALFRED FREUDENTHAL, C. E,, D. Sc., Warsaw, Poland.

1. Introduction.

The development of the theoretical analysis for arches, especially for
restrained concrete arches, does not entirely correspond with the progress
in reinforced concrete arch construction. The customary method, not con-
sidering the new conformation of the arch-axis after loading has proved in-
sufficient for the design of large-span arches with a low rise ratio, which are
no more infrequent now. The ordinary analysis, neglecting the influence of
arch-axis deformation on the values and the distribution of bending moments,
has been found to lead, for these structures, to an inadmissible high rate of
inaccuracy, as it will be shown by the numerical example, included in this
paper. Therefore it is necessary to take into account the deformed configu-
ration of the structure. — Different from suspension bridges, computation
of arches by the exact method of analysis does not yield lower stresses and
in consequence does not involve any saving of material. Reasons of safety
and not reasons of economy require the refinement of the customary theory
for the stress analysis.

The analysis presented in this paper is a Deflection Theory for flat
arches, developed for a symmetrical, parabolic axis, applicable to both
restrained and two-hinged types. By simply dropping the recognizable terms
due to fixed ends, the formulas are reduced to those for the two-hinged
arch. Moreover, permanent load is assumed to be uniformly distributed over
the span. It is evident that the theory might have been developed for any
other form of axis and distribution of permanent load without difficulties.
Simplifications have been adopted only to make algebraic expressions easy
to handle. — The law for variation of the moment of inertia / within the
span has been assumed as /. = [-cos? ¢, for variation of the section as
F. = F-cosq, I. and F, being the moment of inertia and the area for the
crown-section, but there seems no difficulty to introduce different laws, e. g.

the function —v[fjwr: 1 — 2~ usedin a similar form by Strassner for rational
[ cos2p /

arch design by the customary method.
We are dealing with a rigid arch, as shown in fig. 1. The following
nomenclature is common to the analysis presented.

E,I., = Youngs modulus and the moment of inertia for the crown section,
F, = the area of the crown section,
w = permanent load intensity at any point,
p = live load intensity at any point,
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H,, = the horizontal thrust due to dead load, acting at the support,
H, = the horizontal thrust due to live load, acting at the support,
H = the horizontal thrust due to permanent load, live load and secon-
dary effects, i. e. temperature change and shrinkage effect,
H® = the horizontal thrust of the arch, assumed as three-hinged, due to
permanent load,
M! M7 = the bending moments at the left or right hand support,
M, = the bending moment at any point of the arch considered as a simple
beam,
N — the normal component of the resultant thrust acting on a radial
section of the arch,
n = the deflection of the arch.

2. Basic Equations.

The deflection curve of a circular bar, » being the radius of curvature,
1s given by the equation -
@y o M N (1)
ds? r* EI rEF
For flat arches the difference between circular and parabolic axis may be
neglected.
The resulting moment M at any point of the span with deflection taken
into account, is given by the expression

M= My + H(y+1) + M — 5 (M — ) (2)

Substituting Eq. (2) in Eq. (1) and intfoducing the relation dx =ds - cos ¢, the
equation of the deflection curve of a restrained arch may be written in the
form

a? NI
El.cos®qp—= e + El 5 =M=M, +H(y+1,)+M’—»—(M1 Mf)——TL_ (1a)

For flat arches with parabohc axis we may write with sufficient accuracy

— 2 19 _f_ 2- 1 —_t&(pvm [ 4l§(i>]
=1+tg (p_1+3(1), sing COS(p"Htg?qp"tg 1- 3 (3)

cos? ¢
Introducing the abbreviation

[ A Ef“’]i. . _z
2 s {—E]c [1+ 3 (l) r‘z}v”fjc where /I, =7-cos?¢p and r = 8F (4)

and Eq. (3) in Eq. (1 a) we obtain the differential equation of the deflection
curve

d?y, o _ Mo+ M M—M x H H :

e TCN= g T EL 1 TELYTER )
The last term on the right hand, representing the longitudinal force correction
has proved very small, compared with the other terms and may be omitted.

The functions M, (316 ) , depending upon loading condition and y, depending
upon the form of the axis, practically may always be presented as polynoms

of integer order of ); Hence, the disturbing term of Eq. (5) may be de-
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veloped into a polynom for 3;— , Eq. (5) taking the form

oreer—ersli) () el e

. : / .
Introducing moreover the ratio 730;2 - as variable and depending upon % 3

the coefficient of # becomes a function of (Z) G =c- ' 1 — ,( Z) Eq. (5a)

is the basic equation of the Deflection Theory for rigid arches.
Assuming a parabolic axis
y = 4 )f x(l —x)
. 2
and uniformely distributed total or partial load, the right hand side of Eq. (5a)
reduces to a polynom of second order. The solution of the corresponding
differential equation

d2,,, 2

faven=ara(f) ool
is given by

- : 1 2 2

5 = C;cosex + C,sinex + p [(a — 679112—) +4- p’(/x-) + y<i> ] (7)

The constants C, a, f, y, depend upon the loading and edge conditions. For
partial load each span-segment, having a constant value of p, yields a diffe-
rential equation (7) for the corresponding part of the deflection curve.

In order to evaluate the statically indeterminate forces and reactions,
the arch has been made statically determinate, considering the horizontal
thrust A and the bending moments M‘ and M’ as redundant reactions. Their
values are yielded by the restrained conditions of the ends of the arch:

1. Horizontal projection of the deformed arch-axis is equal to the span
plus an eventual displacement of supports 4.
2. 3. The ends of the arch are rigidly fixed.

The first condition may be written in the form:
+1

(ds+ Adds)cos(p +Adde) =1+ 4 (8)
0 -
Considering that with sufficient accuracy
cosddyp =1; sinddep = Adde
and neglecting the specifié axial strain s in comparison with the unity,

ds
we obtain with

Vi . l
Adop = l ;OS(B and st cosp =/
: S 0
from Eq. (8)
l 1
(Ads-COng—Jdr;-Siﬂw-COSga: A 9)
o0 0

Introducing Eq. (3) and the relations
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N 0. __4f( Zx)_ _ .
Ads = ﬁds—es—i—ett tg(p——l— 1—7, N=H-cosp — Q-sing

where ¢ is the shrinkage strain factor, ¢ the thermal coefficient, we obtain
from Eq. (9) the basic equation for the horizontal thrust in the form:

A [ PRI 1) R

Condltlons 2. and 3. yield the equation

ﬁ'ﬁ) —0: (fﬁ) _
(dx x=0 =0; dx x:l_o (11)
resp.

Cyrct 5 /f~ 0; Cl-csincl——Cg-ccoscl—J—l[/J’+27] =0 (12

By Egs. (7), (10) and (12) the distribution of stress and stram for a
restrained symmetrical flat arch with parabolic axis is completely determined.
We shall now consider the different loading conditions.

¢ M
o p __f_f Fig. 1
-+ . +
pzzzzZzZzZZ27222222 7,
{ [
b | ’
1

3. Application to the Case of Full Loading.

The bending moment M and the shear V are given by the familiar ex-
pressions

wx /
My, = 5 (l—x); V= w(a— —x> (13)
so that
_ M 2 _ At 0
o = /. and B=—y= £/ [H\w— Hy) (14)

The constants C, and C, yield from the edge conditions: # = 0 for x = 0
and x = [:

o 2;/]. __ a1 [ 27]' cl
Cl —_ — ‘cfz [a — (cl_)z’ , CQ = Cl 'tg "5 = ;:? (04 (61)2_ 'tg 2 (15)
Introducing these values in Eq. (12) we obtain
__ 1B, 18 |
CETagl OF T ey (10)
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The equation of the deflection curve takes the form

4f(H} cl cl 2
7= clf (H—-l){ctg —r§~ctg 5 coscx——sxnqu—cl[(;)—(f) H (17)

Its first differential

dy = %lf (H—W~ 1) [cos cx-d(cx) — c‘[gé£ sinex d (ex) — d(cx) + szd(cx)] (18)

Substituting x = é in Eq. (17) we obtain the deflection of the crown:

| LR S I

2

The second term on the left of Eq. (1a) is small, compared with the first
and has been omitted [see Eq. (4)]. This approximation yields the simplified
formula for the bending moments at any point of the span

dry _ 4f g0 l cl . 2]
M = EI, e fCZ(H,,, Hy)ctg 5 " coscx + sinex — o (20)
~ Substituting x = 0, resp. x = —é~, we obtain the moment at the support
Moo= At mp|ace? —2] @
=0 = gz (Fw— el-ctg5 (20a)
and the moment at the mid-point of the span:
47 cl
sm—2—

In order to obtain the working formula for # we have to introduce Eq. (18)
in Eq. (10) and to perform the integration with regard to the relations (14).
- Eq. (10) takes the form:

[T e RN IS (o e

The horizontal thrust due to permanent load, without secondary effects, may
be obtained by writing zero for the right hand terms of Eq. (21).

The solution of this transcendent equation has to be determined graphi-
cally, considering the two left hand terms as functions ¢ (/) and — y (H),
evaluating them for different values of / and plotting these functions in a
coordinate system, the axis of // being the axis of abscissae. The real value
of H yields as the abscissa of the point of intersection of the functions ¢ (/)
and — v (H). The horizontal thrust due to permanent load in conjunction
“with secondary effects is obtained as the abscissa corresponding to a diffe-
rence

2
K +]6( ['| e = ey £
between the ordinates of ¢ (H) and — y (H).
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4. Application to the Case of Partial Live Load (Fig. 2).

In the Deflection Theory the bending moment is not simply proportional
to the load p that produces it, being affected by the permanent load stresses.
Consequently, influence lines can not be used. Stresses producible by com-
binations of loadings can not be found by adding algebraically the respective
stresses producible by the component loadings, but are to be determined
directly for the combined-loaded structure. In the subsequent treatment,
partial loading of a length 1 will be considered. The expressions for M,,
V, a, B, y, are different for the differently loaded span-segments of the
structure. We may write

O?x;—<:a MO == Ax )

a ? X :“<_b MO = Ax —V;‘I)(JC—LZ)‘Z (22)
b=x=1 My = (ph—A)(I—x)

where

il e )

The influence of shears due to live load upon the value of the horizontal
thrust may be neglected with sufficient accuracy. With regard to the Eqgs. (5)
and (22) we obtain for:

0=x =< a:
[ L AT, AL-(ML- M) 47
T R 3y
a<x£bl
o o A [y AP M=M] A (PP
- EJC(M ipa?); fo=F clﬁ,ﬁ-—-‘a‘f‘-— ]’ /2-——ET<H f> (24)
b<x§l:
1 4 A-ph)I-(M'-M" 4
ay = E*[Mlﬂplwél)ll;f’*?)—EJiW’*L—K)M )]’ T E/ffH

Considering the combination of partial live load and full permanent load,

we have to add to the expressions (24) the respective values according to (14).
The deflection curve consists of three segments. Edge conditions and

conditions of continuity yield the equations for the constants C,, ... C;:

1
x=0, y=0: C1+_c‘7< (7)_ 0

XxX=a, UB p—re

(-G coscat(Co-Csinaa—g (@) + ¢80+ &2 0 | =0

DA,
TEG g T dx
) 117§
(Crc?,)smm+(C2—C4)Cosca+c?'ll(ﬁz 31)+ (72 71)]
x:b, )/2:7132 (25)

(Co-Co)coscb(Co-Cafsimet (et (o) + L2 a7 =0
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dy2 d,Vs .
‘dx T dx

, 1 26
(Cs—Cs)sincb +(C,—Cg) cos cb + ) —67[({3’3“{32) t (7s— 72)] =

x==0b:

. 1 cl)2-2
x=1[; 13=0: Cf,cosclJrCGsmcl+?[oc3+/>’3+((il)2 73]—_—0

resp., introducing Eqgs. (24):

.___1 1[1 8f ]
“@=—wEMtw
(C —-C)cosca—}—(C —C)smca—_l__glf_
b o BZACE
(C1 *Cg) Sil‘l L‘(Z———(C2 —C4) cosca = O
C,~C b+ (C,— C,) sin cb 1 (252)
(C3~C;) cosch + (Cy— Cg) sin _——E—:/;W
(Cs - Cs) sinch — (Cy—Cg) cosch = 0
g 11 M 8f ]
C;coscl+ Cg-sincl = 5 ch[ +(cl)

For partial live load in conjunction with dead load, the first and the last
equation (25a) change into:

. 1 1 87 0
& == s | M+ g 1= 190 (25b)
C; coscl + Cq-sincl = — —; ! Elj [ r+(l)4 (H— va)]

The solution of Eqs. (25a) yields:

C1-——’—l L [Ml-l- Sf HP]

> EJ, (c1)?
R R N PP L8 g
Cy =~ CE/ [(M ~M!cos cl) (d) tg 5 ( l) ctg cl(cos cb—-cos ca) +

2
+ (Zl)z sin ¢b — sin ca)]
11 [ 8 pl? ] |
Co=-— M+ H,+~ - cosca
PTTEELLT @ T () (26)
11 _ ‘ 1 8f pl?
Cy _'_E‘EEJC[(M -M coscl)S (cl)2 H, tg 2 @
2
( )’ sin cb]
11 8f pl? ]
C;,_—?-EJ:[M @ H,— (1)2 (cos cb — cos ca)
Co=-—" ! [(M’ M’coscl) Sf H, tgl ctgcl(coscb——cosca)]
6 ¢ EJ. LY nel (cl)2 P2 T (cl)?
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For live load and dead load in conjunction we have to substitute in the so-
lutions (26) the value (H — #7°) instead of #,.

For a loading condition as shown in Fig. 3 we may introduce a = 0
and b = 4. The deflection curve consists of only two segments, continuous-
in x = 1. To evaluate the 4 constants we have the equations:

_ 11 M 8f /’lo]
Co= = g M e o+ e
(Cy—Cy) cosch+ (Cy— Cy) sineh = — - PE
1‘ 3 ' 2 4 EJ, (cl)* (27)
(Ci—-GCy)sinck — (C, — C,) cosch = ©
. 1 1 M 8f ]
C; coscl+ C,sincl = ~25ch[ +(l)2 H

772700 7 i

Azb
{ +

| L

l | | 1577

| | T

-,L/’—WL I 3,0ft

'l l Fig. 4
: 15/7

| :
i}

1 &t
l

Their solution yields:
2
Cﬁ:—iwl’LMl 87 h4 pl]

c*EJ. (cl)? ( 1)2 |
Co=- Elj [(M’ M (CSZ)fz Hytgl + o 1)2 ctgel(coscl-1)+ " 1)2 sin cl] (28)
ot -
q:-% . Jc[(/w Micosel) (3{2 gy + ( o " clg el{cos ch— 1)]

The bending moments at the abutements may now be determined by Egs. (12).
For partial load as shown in Fig. 2 these equations take the form:

— 1 1 l r]
C2 = — C2 E.]—CH,]"’— c[ (Al M +M)
1 47 1 : , (29)
—_ _— o —pl) [l — ’
Cysinel — Cg-coscl = - E/c{clH o [(A-pl)yi-—M +M]}
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With regard to Eq. (23) and (24) we obtain from (29):
M (clcoscl—sincl) + M7 (sincl —cl) =

L5 a4
({~a)] zpm_z 1_1 — |sinel——_; Hy(clsinel+2 cos e/ -2)

M (sin cl cl) + M” (cl coscl—sincl) = (30)

Al . .
:p [cosca— coscb] 1—plk[21 + smcl—4—ZH,](clsmcl+Zcoscl—2)

cl

With a == 0 and & = 1 we obtain the respective equations for loading-con-
ditions as shown in Fig. 2:

M (cl coscl—sinel) + M (sinel — cl) =

= pe [cosc(l—4)-coscl] - pll l2 - —J sin cl—4~ H,(clsin c/+2 cos cl-2)
cl / cl (30a)
M!(sincl - cl) + M” (¢l cos el — sincl) =
_pr

; (1-cosch) —-;—p)? sin ¢/ — ighf,,(cl sine/ + 2 coscl - 2)
In order to evaluate the horizontal thrust, we have to introduce the re-
lations
Vp= A for the segment 0 =x < a,Vp=A —p-(x—a) for the segmenta = x <
and Vp= A — p-1 for the segment 6 = x <
into Eq. (10). The basic equation for // takes the form:

R RUIET R )
FE EEPT b 1_1 _51 1+§l ’ C; | sinexd(cx)+C, | coscxd (cx)

a a a
ﬁl J dx + 271 j xdx+ ZZC1 { cx sin cxd(c&)‘—%Cz‘[ €x-COS cxd(cx)—gﬁij xdx

1) T ey Jo (@) ),
b b b
4y2jx2 dx — Csj sincxd(cx)JrC4 coscxd( / Ja’ g 2 27, j dx
2l (cf)? (32)
2 (. 2 [ 28, J 4 y, j
= - - 22| x2dx
+ C, ch sin cx d(cx) o C‘,‘ acx cos cxd(cx) @) axa’x 25

el ! l
9 2 .
- C; jsm exd(cx)+ Cg ( cos exd(cx) +- J dx =23 xa’x+ 2 C J cx sinex d(cx)
b b

(el)* Jo
2 - u ( 4 /3 “ 2
_d(,gjbcxcoscxd(cx) @) dx s de =0
By performing the integrations the basic equation reduces finally to:

{2l a2 ] o

- Y -22) (2 o2 ) =

" For the combination of partial live load, dead load, shrinkage effect, tempe-
rature change and displacement of supports the H-equation may be written
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in the form

(:1[)/( {/Jl~ [(b)2<3——2—?~) - (%)2(3 2 1)]+M1+Mr &(H—Hvﬁ)f} (33a)

a1 3] Yo+

For live load according to Fig. 3, this equation reduces, with « = 0 and
b =1 to

-2 40 (33 )
R Rt e B .y )

Omitting the influence of axial forces and substituting zero for the moments
at the supports, we obtain from (33) the familiar expression for the hori-

M,
P
920

018

016

o4

012

010

0,06

0,06 i

0,04

002 %

A1
(4] o1 02 03 0% 05 06 07 08 a9 100

Fig. 5.
Moments Mm a la clef dits a2 la charge permanente et divers cas de charge roulante.
Momente Mm im Scheitel fiir stindige Last und fiir verschiedene Fille der Verkehrslast.
Moments Mm at the crown for dead load and various amounts of live load.

zontal thrust of a two-hinged arch, computed by methods of customary statical
analysis.

Equations (30) and (33) are sufficient for the complete analysis of the
stress-distribution of an arch by the Deflection Theory. The solution of
this three equations however can not be found directly and has to be per-
formed graphically, the moments at the abutments to be determined first
for series of values H and the diagrams M/ (H) and M’ (H) plotted, where-
upon functions ¢ (/) and — v (/) may be computed in order to find their
point of intersection, as it was stated above.
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Resultant bending moments at any point‘ of the span are given by the
relation

——Ejf » *H(C coscx+ Cnyq-Sinex + (I)JC e ) (34)

the index n being the number of the considered span-segment.

5. Practical Application to a Concrete Arch of Large Span.

In order to consider the practical applicability of the Deflection Theory
and to establish data for comparison, the formulas developed in this paper
have been applied to the analysis of a concrete arch of large span. Stresses
were first computed by the ordinary Elastic Theory. This preliminary ana1y51s
yields the approximate loading conditions to be used as a guide for assuming
load length in the more exact analysis. The stresses were then evaluated by
the Deflection Theory, using the formulas and procedure developed in this

paper.
General Data. The following are the dimensional constants:

— 4504t f— r_ _ 167y _

= 4501, =501t r = o = 50631, £/f=0, 1+ 3*(1) 1,07.
Dimensions of crown-section see Fig. 4 (width of the considered section
B = 6ft).
.= 100 ftY, F,=225 {t?, E=5-10% Ib/{t? E-J.=50-10° Ib.ft2, E-F,=11,3-101b

v = I = 0,0804.

45 J.
l+7 25

The following are the loading constants (values per 6ft width):
Permanent load w = 4950 lb/ft, Live load p = 600 lb/ft.

HY = — ¥ — __2506.106 Ibs.

Design I (Elastic Theory). For the influence of a single load, acting
at the distance x from the left support, computed by methods of customary
statical analysis, we obtain:

reaction at the left support A4 = 71‘:—(1—~x)2 ({+2x)

horizontal thrust H = 145 fl; v([— x)? x? (35)

moment at the left support M/ = — TI: x (b —-x)Q(l— ~52~vx)

The horizontal thrust due to uniformly distributed dead load w is

H, = — + —v=—2456-10° lbs,

the corresponding moment at the support:
M = — llzwlz(l—-v)_———lﬁ?: 106 Ib. ft,

the moment at the crown:
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My =+ gy wi(1—5) = + 0815-10° Ib. t,

the horizontal thrust due to temperature variation of 4- 40° F, considered to
act through the neutral point of the structure

Ht - F —== w~€tf0-1) = F 0,053106 ]bS,

the thermal coefficient of concrete ¢ having generally been assumed as
6-10—¢ per degree F. The effect of shrinkage may be considered as equi-

® | 7 1)
| 71 A4
Y/ / /

A=g5 Vi A=0,3l

" / /

|
J/ 4 1/
i 7
k\<7§ J;\* /
95 7k $
0 % S
2 / <) 74 B
03 /4 / &\ H) / /7_, H
3 v Vi g(H)
024 71,,_-—b\ / -
5 /|
0,7 ¢+ //
. 2623 2554 , APasz6 | 2563
& | I
0
265 255 245 265 255 245
Fig. 6a. Fig. 6b.

Solution graphique des équations 30a et 33b.
Graphische Auflosung der Gleichungen 30a und 33b.
Graphic solution of Eq. 30a and 33b.

valent to a drop in temperature of 18° F. The horizontal thrust due to
shrinkage yields:

H, — 1+ "f b;f v = + 0,024.10° Ibs.
Introducing P = p-dx in Eq. (35) and performing the integration from
= 0 to x = 4, we obtain the values H, A, M!, for partial, uniformly

distributed load of the length 1 (see Fig. 3):
’ A2 1 (AN
A :’”l1“(7) +5 ()]
— gl [o—sg) +ol7)] (30
2 A 2
[

(a2 a2 (]




112 A. Freudenthal

For maximum negative moment at the left support a length of span extending
from the support to the right must be covered with live load. The partial
loading always stops at the zero-section of the influence line. This yields,
- with regard to (34)

L= % = 045/
Introducing this load-length into (36), we obtain the maximum negative
bending moment M/ = — 0,01737 p- 2 = — 576 p-l2= 2,1'1 .10s 1b. ft,
and the corresponding horizontal thrust # = — 0,398 g; —0,30-10¢ Ibs.

Maximum positive moment at the centre of the span is produced when
the central section of the span is symmetrically loaded with uniform live load
for a length 7,. The value of this moment yields from M = M, - H - f + M,

by introducing the equatlons (36) evaluated for the load p of a length l—|2- A
and the load — p of a length ii
2 3 7 \5
My = é pl? l04 b (/1[_1) + 0,738 (il) — 0,138 (%‘) ] (37)
The corresponding horizontal thrust
(L 0+ 30
=— 8; 8 81)+81_ (38)

The function (37) has a maximum for 1, = 0,28 /. Substituting this value
in (37) we obtain the maximum positive moment at the centre of span

M, = 18 p2.0,05 = 0,00625 p- 2 = 1;)0 p-2 = 0,76.10¢ lIb.ft. The ratio
8 M,,
= R as a function of —v) has been plotted in Fig. 5.

By combination of the most unfavourable loading-conditions we obtain
the maximum values of the bending moments at the supports and at the
crown and the corresponding values of the horizontal thrust and reactions
at the supports. Both, at the support and at the crown, maximum moments
are produced by permanent and live load at lowest temperature and with
consideration of shrinkage effect. We find:

at the support:
M} = ~1,67-10-0,67-50-5,3-10*-0,67-50-2,4-101-2,11-10¢=—6,35 - 10¢Ibft.
H =-245.100-53.104-24.10*-0,12-10¢=-249.10¢ Ibs.
A = 4950.225 +600-0,45-450-0,776 = 1,20-10°¢ Ibs.
at the crown:
My = 0,83-10¢ 4+ 0,33-50-5,3-10* + 0,33-50-2,4- 104 + 0,76 - 10¢ = 2,88 - 10¢ |bft.
H =-245.10°+53.10*+24-.10*-0,13-10° = - 2,50-10°¢ Ibs.

Design II. By referring to Eq. (21) we obtain the basic equation for
the horizontal thrust due to dead load and secondary effects. For different

values of H from — 2300 kips to —2800 kips quantities ¢/ and their trigono-
metric functions have been evaluated and are tabulated below.
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Hbs ()2 | sinc/ | coscl “ sin L coscl tg a ctgci H — HJbs
2 2 2 2

-2,80-106| 11,34 | 3,37 | -0,2264 | ~0,9740 | 0,9930 | -0,1140 |~ 8,72 |-0,1147| - 0,204 106
-2,75 11,14 | 3,34 |-0,1971 { - 0,9804 | 0,9951 | - 0,0990 | — 10,05 | — 0,0095 | - 0,244
- 2,70 10,93 | 3,31 |—0,1676 | - 0,0858 | 0,9965 | - 0,0841 | — 11,85 | - 0,0844 | ~ 0,194
- 2,65 10,74 | 3,28 | -0,1380 | - 0,9904 | 0,0976 | - 0,0601 | — 14,43 | - 0,0693 | - 0,144
-2,60 10,53 | 3,25 | -0,1082 | - 0,9947 | 0,9985 | - 0,0542 | — 18,43 | - 0,0543 | - 0,094
—2,568 10,33 | 3,21 |-0,0684 | —-0,9977 | 0,0094 | — 0,0342 | — 29,22 | - 0,0342 | - 0,044
-2,50 10,13 | 3,18 | -0,0384 | - 0,9993 | 0,9998 | - 0,0192 | - 52,09 | - 0,0192 | + 0,006
-2,45 9,93 | 3,15 | -0,0084 | - 1,0000  1,0000 | - 0,0042 238,10 | —0,0042 | +0,056
~ 2,40 0,73 | 3,12 | +0,0218 | — 0,9998 | 0,9999 | +0,0108 | + 92,62 | +0,0108 | + 0,106
-2,35 9,53 | 3,09 |+0,0519 | -0,9987 | 0,9997 | + 0,0258 | + 38,76 | +0,0258 | + 0,156
-230 9,33 | 3,05 |+0,0017 | ~0,9958 |0,9990 | +0,0458 | + 21,81 | +0,0458 | +0,206

The graphical solution of the H-equation, performed by aid of the tabulated
values, yields:
for dead load: H, — —2465-10°1bs, M’ (byEq.20a) = - 1,67-10¢ Ib.{t, and
M,, (by Eq.20b) = + 0,97-10¢ Ib. ft.
for dead load, drop of temperature (40° F) and shrinkage effect (18° F):
H =-2402.10¢ lbs, M’ (by Eq.20a) = —4,21.10¢ Ib.ft and
M,, (by Eq.20b) = +2,39-10¢ Ib. ft.
To obtain the maximum negative moment at the left support it is necessary
to load fully the span with dead load and a segment of it with live load at
lowest temperature. The load length for which the moment at the support

is maximum, must be determined by trial for certain length 1 of a continous
advancing live load. Moments M%7 are calculated for different values of H

and —?— by Eq. (30a). The graphical solution of the /H-equation

H B (1)2( A)] 45[ <x)‘z< x) 200H-H, 1 ]
Tos ~ 0165 -0,04 ) i 1,5--]+ + g6 (M+ M)

7 [ cl)? W [ 3 108

= @(H)-v(H) =121 -104[es + et-t0+§]

performed by aid of the computed values M%” yields the real horizontal
thrust and therewith the real moments at the supports. The maximum ne-
gative moment at the left support occurs when 4 = 0,5 /. The horizontal
thrust produced by dead and live load is found to be // = — 2,623 -10¢ lbs.,
the corresponding moment being M = — 3,63-10¢ 1b.ft., these values due
to dead and live load in conjunction with drop of temperature and shrinkage
effect are A = — 2,554-10¢ lbs. and M! = — 6,43 - 10¢ 1b.ft. The graphical

solution of Eq. (30 a) and (33 b) for )l"
— Comparison of maximum negative moments at the supports computed by
the Deflection Theory with the corresponding values obtained by the custo-
mary methods does not show any essential difference, whereas these diffe-
rences increase towards the centre of the span to a considerable rate (see
Fig. 7).

Maximum positive moment at the crown is produced by symmetrically
loading the central section of the span with live load for a length 1, in con-

= 0,5 has been plotted in Fig. 6 a.

Abhandlungen III. 8
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Comparaison des moments calculés d’apres la théorie de Pélasticité et d’aprés la théorie
de la déformation (Moments en 106 1b. ft.).

Vergleich der Momente, berechnet nach der Elastizitits- und nach der Verformungs-
theorie (Momente in 106 1b. ft.).

Comparison of moments by elastic and deflection theories (Moments in 10¢ Ib. ft.).
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Fig. 7a und 7b.

Charge permanente, charge roulante
A =051

Stindige Last, Verkehrslast A = 0,5 1.
Dead load, live load 4 = 0,5 1.

Fig. Ta. Sans effets secondaires.
Ohne Nebenwirkungen,
Without secondary effects.

Fig. 7b. A basse température et avec retrait.
Fiir tiefste Temperatur und Schwinden.

At lowest temperature and with
shrinkage.
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Fig. 8a und 8b.
Fig. 8a. Sans effets secondaires.

Ohne Nebenwirkungen.
Without secondary effects.

Fig. 8b. A basse température, avec retrait,
charge permanente et charge roulante
le = 0,3 1.

Fiir tiefste Temperatur und Schwinden,
stindige Last, Verkehrslast 4, == 0,3 1.

At lowest temperature and with shrinkage,
dead load, live load 4, = 0,3 1.
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junction with dead load, drop of temperature and shrinkage effect. In order
to find the load length producing maximum positive moment it is necessary
to assume different trial values 4, and to calculate the corresponding values
M! by use of the formulas (30):

Bl os€U=h) _ og el h)
&

1 .
Micl(coscl—1) = ﬁl— [cos g 0S5 ] - 7pl Aysinel

— Ag (H- Hyp)(clsinel + 2 coscl - 2),

(33a):

e ones-os ()= -2(8) (o 3 )1} - e 15 042

Loy ®

! /11)] 200 H-H, 2 z}_._ 4[ . A]
| (2+"1 +o3 e Fige M= 121104 e a0,
/

(26) and (34). The function M, (i?-> has been calculated by the Deflection
Theory for a few trial load-length, plotting the ratio 8 /;I'” in Fig. 5. The
maximum occurs for 1, = 0,3 /. The corresponding values H and M,,, produced
by dead load and live load are: H = — 2,626 -10¢1bs., M,, — -+ 2,61 10¢ 1b.{t.,
in conjunction with lowest temperature and shrinkage- effect H — — 2,563 - 10s
and M, = +4-4,68-10¢ lb.ft. Fig. 8 shows the moment-diagrams for these
two loading conditions, for comparison computed both by the customary
and by the Deflection Theory. Considerable differences between approxi-
mative and exact values prove the vital importance of exact analysis and the
great influence of deflections on the value and distribution of bending mo-

ments for flat arches. Differences in crown deflection reach 70 o, differences
in moments about 60 9.

For flat, large-span arches the customary stress analysis has proved to
be a not very close approximation and it is evident, that deductions relying
on this method are not to be treated as axiomatical. This is to be noticed for
the estimation of the different proceedings for ,,amelioration* of thrust-
lines and shape of arches, worked out especially in Germany and France. For
arches of large span and a low rise ratio the character of the line of thrust
and its connection with rational arch design has to be explored anew with
regard to the results of the Deflection Theory.

Summary.

The method presented here for calculating the stresses and change of
shape in arch bridges is derived from the differential equation of the circular
bar. This, in conjunction with geometrical conditions concerning the ends
of the arch, yields the differential equation for the deflection curve of a
restrained arch. Its solution and the conditions of equilibrum allow the
stresses to be determined. In applying the result to the analysis of a con-
crete arch, the considerable influence of deflection on the stresses is shown.
The Deflection Theory is found to yield an average increase of 50 9 and
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more in the bending moments near the crown, as previously found by the
customary method of statics.

Résumé.

La méthode ici présentée pour le calcul des efforts et des déformations
dans les ponts en arc est déduite de I’équation différentielle de la barre cir-
culaire. La méthode employée, concurremment avec la considération des
conditions géométriques relatives aux extrémités de ’arc, permet d’obtenir
Péquation différentielle de la courbe de déformation d’un arc encastré. La
solution et les conditions d’équilibre permettent de déterminer les efforts.
En appliquant les résultats obtenus a I’étude analytique d’un arc en béton
armé, 'auteur met en évidence l'influence considérable de la déformation
sur les efforts. Il constate que la théorie de la déformation donne, par rapport
aux méthodes ordinaires de la statique une augmentation moyenne de 50 9%
et plus pour les moments fléchissants aux environs de la clef.

Zusammenfassung.

Die vorliegende Methode zur Berechnung der Spannungen und der
Forminderung von Bogenbriicken ist von der Differentialgleichung des kreis-
formigen Stabes abgeleitet. Dies in Verbindung mit geometrischen Bedin-
gungen betreffend die Bogenenden, ergibt die Differentialgleichung fiir die
Verformungskurve eines eingespannten Bogens. Ihre Losung und die Gleich-
gewichtsbedingungen erlauben die Bestimmung der Spannungen. Die An-
wendung des Resultates auf die Berechnung eines Betonbogens zeigt den
bedeutenden EinfluB der Verformung auf die Spannungen. Auf Grund der
Verformungstheorie ergibt sich gegeniiber den gewohnlichen Methoden der
Statik eine durchschnittliche VergroBerung der Biegungsmomente im Scheitel
von 50 9% und mehr.
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