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DEFLECTION THEORY FOR ARCHES

THEORIE DE LA DEFORMATION DES ARCS

VERFORMUNGSTHEORIE FÜR BOGEN

ALFRED FREUDENTHAL, C. E.5 D. Sc, Warsaw, Poland.

1. Introduction.
The development of the theoretical analysis for arches, especially for

restrained concrete arches, does not entirely correspond with the progress
in reinforced concrete arch construction. The customary method, not con-
sidering the new conformation of the arch-axis after loading has proved in-
sufficient for the design of large-span arches with a low rise ratio, which are
no more infrequent now. The ordinary analysis, neglecting the influence of
arch-axis deformation on the values and the distribution of bending moments,
has been found to lead, for these structures, to an inadmissible high rate of
inaccuracy, as it will be shown by the numerical example, included in this
paper. Therefore it is necessary to take into account the deformed configuration

of the structure. — Different from Suspension bridges, computation
of arches by the exact method of analysis does not yield lower stresses and
in consequence does not involve any saving of material. Reasons of safety
and not reasons of economy require the refinement of the customary theory
for the stress analysis.

The analysis presented in this paper is a Deflection Theory for flat
arches, developed for a symmetrical, parabolic axis, applicable to both
restrained and two-hinged types. By simply dropping the recognizable terms
due to fixed ends, the formulas are reduced to those for the two-hinged
arch. Moreover, permanent load is assumed to be uniformly distributed over
the span. It is evident that the theory might have been developed for any
other form of axis and distribution of permanent load without difficulties.
Simplifications have been adopted only to make algebraic expressions easy
to handle. — The law for Variation of the moment of inertia / within the
span has been assumed as fc / • cos2 cp, for Variation of the section as
Fc F • cos cp, fc and Fc being the moment of inertia and the area for the
crown-sectioni, but there seems no difficulty to introduce different laws, e. g.

/ xthe function -— -—= 1 — / — used in a similar form by Strassner for rational
/cos2 cp l

arch design by the customary method.
We are dealing with a rigid arch, as shown in fig. 1. The following

nomenclature is common to the analysis presented.
E,IC Youngs modulus and the moment of inertia for the crown section,

Fc the area of the crown section,
w permanent load intensity at any point,
p live load intensity at any point,
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Ffw the horizontal thrust due to dead load, acting at the support,
fip the horizontal thrust due to live load, acting at the support,
Ff the horizontal thrust due to permanent load, live load and secon¬

dary effects, i. e. temperature change and shrinkage effect,
H°w the horizontal thrust of the arch, assumed as three-hinged, due to

permanent load,
Ml, M" -= the bending moments at the left or right hand support,

M0 the bending moment at any point of the arch considered as a simple
beam,

N the normal component of the resultant thrust acting on a radial
section of the arch,

f) the deflection of the arch.

2. Basic Equations.
The deflection curve of a circular bar, r being the radius of curvature,

is given by the equation

*-'< 4- 'L Äjx_JSJ m
ds2

"*" r2 Ef rEF K }

For flat arches the difference between circular and parabolic axis may be
neglected.

The resulting moment M at any point of the span with deflection taken
into account, is given by the expression

M M0 + H(y + h) + Ml — j (Ml — Mr) (2)

Substituting Eq. (2) in Eq. (1) and introducing the relation dx ds • cos cp, the
equation of the deflection curve of a restrained arch may be written in the
form

Ef.cos2cp^{+ El\ ^M M0^H{y^i) + Ml—X-{Ml-M")~1^ (la)

For flat arches with parabolic axis we may write with sufficient accuracy

_l_=Ulg.^1 + «(i)-! sinr.cos„ 1Ä*-^[.-«(i)'] «3,

Introducing the abbreviation

¦^-[1 + t(()1f)-=-Ä* Wher£ /' /'cos'*' and r -wf (4)

and Eq. (3) in Eq. (1 a) we obtain the differential equation of the deflection
curve

d'2 >t 9 __ jWojfAf _ Ml—AV_ x H^ _ Ff
~dx* +c'''- ~~Ej7~ ~^eJ7~T + IT/ Vefc (5)

The last term on the right hand, representing the longitudinal force correction
has proved very small, compared with the other terms and may be omitted.

The functions M0 (-r), depending upon loading condition and y, depending

upon the form of the axis, practically may always be presented as polynoms
xof integer order of Hence, the disturbing term of Eq. (5) may be de-
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veloped into a polynom for —, Eq. (5) taking the form

dx2
+ ^ « + KtMt)'+ "(7)* <5a>

I X
Introducing moreover the ratio-—^— as variable and depending upon —

the coefficient of rj becomes a function of (—j, cx c • J/i xi^\ Eq. (5 a)

is the basic equation of the Deflection Theory for rigid arches.
Assuming a parabolic axis

y *lX{l-x)
and uniformely distributed total or partial load, the right hand side of Eq. (5a)
reduces to a polynom of second order. The Solution of the corresponding
differential equation

is given by

- C, cos« + C2 sin« + -L [(a-~yX) + ß(£j + y[~J] (7)

The constants C, a, ß, y, depend upon the loading and edge conditions. For
partial load each span-segment, having a constant value of p, yields a
differential equation (7) for the corresponding part of the deflection curve.

In order to evaluate the statically indeterminate forces and reactions,
the arch has been made statically determinate, considering the horizontal
thrust Ff and the bending moments Ml and M" as redundant reactions. Their
values are yielded by the restrained conditions of the ends of the arch:

1. Horizontal projection of the deformed arch-axis is equal to the span
plus an eventual displacement of supports A.

2. 3. The ends of the arch are rigidly fixed.
The first condition may be written in the form:

\{ds + A ds) cos {cp + A dcp) / + A (8)

Considering that with sufficient accuracy
cos A dcp 1 ; sin A dcp ~ A dcp

J ds
and neglecting the specific axial strain —— in comparison with the unity,

we obtain with

ds

from Eq. (8)

\ A ds • cos cp — di/ • sin cp • cos cp A (9)
«o •'o

Introducing Eq. (3) and the relations

d)rcoscp [l
Adcp —'——- and J dscoscp /
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N j - ,o * 4//i 2x
A ds -^pds — es + ert°; tgq>=-j-[l / N //• cos cp — Q. sin cp

where es is the shrinkage strain factor, et the thermal coefficient, we obtain
from Eq. (9) the basic equation for the horizontal thrust in the form:

Conditions 2. and 3. yield the equation

M =0. (dh\
dx/x=0 ' \dxlx i

resp.
1 /j

Ct-c-\—-~- 0; C1-csinä- Co-c cos cl ¦

0

i4-P + 2yl/

Ol)

0 (12)

By Eqs. (7), (10) and (12) the distribution of stress and strain for a
restrained symmetrical flat arch with parabolic axis is completely determined.
We shall now consider the different loading conditions.

M M fH H Fig. 1.

Fig. 2.

3. Application to the Case of Füll Loading.
The bending moment M and the shear V are given by the familiär

expressions

M0=^(l-x); V=w(y
so that

Ml
EJc

and /' 7 -jpj [Hw—Ffw]
nJe

(13)

(14)

The constants C\ and C2 yield from the edge conditions: tj 0 for x 0
and x l:

cl (ciy-r ~z i ~b 2

Introducing these values in Eq. (12) we obtain
1 /

C^Q.tg^^-^fa-^.tg^ (15)

C2 —
c- cl '

1 ß cl
(16)
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The equation of the deflection curve takes the form

4////,
' cl \H,

Its first differential

1 ctg
cl cl

- Ctg -y- cos ex sin ex + cl Kt (17)

as./T1 ^ \ r / o ~~i

dti j[~ ~\)\ cos ex-d(cx) — ctg^ sin ex d (ex) — d(cx) + -^(cjc) (18)

Substituting x -^ in Eq. (17) we obtain the deflection of the crown:

cl \Ffw'
sin

cl cos
cF

(19)

The second term on the left of Eq. (la) is small, compared with the first
and has been omitted [see Eq. (4)]. This approximation yields the simplified
formula for the bending moments at any point of the span

«- «&
Substituting x

cl

0, resp. x

M(X=0)

(H„ ¦/#)[ctg cosex + smex
cl (20)

-=-, we obtain the moment at the support

(df {Mw~ H°w) iä' ctgT - 21 (20a)

and the moment at the mid-point of the span:

M(*+) - (elf K"w ¦ff2)
cl

sin
cl — 2 (20 b)

In order to obtain the working formula for fi we have to introduce Eq. (18)
in Eq. (10) and to perform the integration with regard to the relations (14).
Eq. (10) takes the form:

Hw—^w->)bW<"-<r^4hW4({ es±erP + ^)E/e (21)

The horizontal thrust due to permanent load, without secondary effects, may
be obtained by writing zero for the right hand terms of Eq. (21).

The Solution of this transcendent equation has to be determined graphi-
cally, considering the two left hand terms as functions cp (Ff) and —yj (fi),
exaluating them for different values of fi and plotting these functions in a
coordinate system, the axis of Ff being the axis of abscissae. The real value
of fi yields as the abscissa of the point of intersection of the functions cp (fi)
and —v(fi). The horizontal thrust due to permanent load in conjunction
with secondary effects is obtained as the abscissa corresponding to a difference

1

3 W (es ± et t°) EIc

between the ordinates of cp (fi) and —xp (fi).
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4. Application to the Case of Partial Live Load (Fig. 2).

In the Deflection Theory the bending moment is not simply proportional
to the load p that produces it, being affected by the permanent load stresses.
Consequently, influence lines can not be used. Stresses producible by
combinations of loadings can not be found by adding algebraically the respective
stresses producible by the component loadings, but are to be determined
directly for the combined-loaded structure. In the subsequent treatment,
partial loading of a length l will be considered. The expressions for M0,
V, a, ß, y, are different for the differently loaded span-segments of the
structure. We may write
0 <! X ^ Cl Mry Ax

a<^x<^b M0 Ax—-^p(x — a)2 (22)

*><tx<l M0 (pl — A)(l — x)
where

Pi[,-i.^i
The influence of shears due to live load upon the value of the horizontal
thrust may be neglected with sufficient accuracy. With regard to the Eqs. (5)
and (22) we obtain for:

0 <^ x <C a:
1

„„/ o 4/r^ Al-(Ml~Mr)~\ 4/

q <^ x < b:
1 lui i »\ 0 4/T» AA+pa)l-(Ml-M'y\ 4// pl*\

b <^ x <C /:
1 ru/ / i *xn * 4/T (A-pf\)l-(Mi-Mr)'\ 4/ „«3 =-£je[Ml+{pl-A)t\\ ß3=^\ffp+K /-^ 'J; y9=--^Lftp

Considering the combination of partial live load and füll permanent load,
we have to add to the expressions (24) the respective values according to (14).

The deflection curve consists of three segments. Edge conditions and
conditions of continuity yield the equations for the constants Cu C6:

* 0,, 0:C1 + i-(«l-2^F 0

x — ay itl )t2:

(C1-Cj)cosOT+(Cg-C4)sin«-^[(«,-a1)+|(/J,-/?1) + ^r=-(y,-y1)] 0

' dx dx'

(Q-Q) sin ca + (C,-C4) cos ca+^^[(/9,-,*1)+y(ys-y1)J 0

x — b, )l2 >l3: (25)

(Cs-Cs)cosrii h(C4-C„)sinrf-^[(as + as)+ *(A-Ä) + ^^(rs-y»)] 0
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x — b' ^r=^:' dx dx'

(C8-Cß)sin£* + (C4-C6)cos^
1 T (clY-2 1

x l; i/s 0: C5 cosc/+ C6 sinc/+ —1^3 4- ff3 + //)2 /s | 0

resp., introducing Eqs. (24):

1 m/4
(Cx - C6) cos az + (C2 - C4) sin m

£/* (clY
(Cl - Cs) sin ca — (C2 - C4) cos ca 0

(C8-C6)cos£* + (C4-C6)sin£* —¦
* ^ (25a)

(C3 - C5) sin rf — (C4 - C6) cos cb 0

C5 cosrf + C6• sinrf — — — —-\Mr + ^^//^J

For partial live load in conjunction with dead load, the first and the last
equation (25a) change into:

c*=-^fk[Ml+w{H-H:>\
i 1 r 8/ i (25b)

C5 cosr/+ C6-sinc/= - — —\{Mr+ ^L-(//_//•)]
The Solution of Eqs. (25a) yields:

C*=-^w[{Mr-MlC°Sd)^
+ j-^r sin cb - sin ca)

(cly yI

c«=-*^+^"'+wroH (26)

Q 4^K-^COS^SinT/ + ^^t4 + ^Ctgc/(COSC*-COSCfl) +

c^-7*-fk[Ml+WHp~W{coscb~cosca)\
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For live load and dead load in conjunction we have to Substitute in the
Solutions (2ö) the value (fi—ff°w) instead of fip.

For a loading condition as shown in Fig. 3 we may introduce a 0
and b L The deflection curve consists of only two segments, continuous
in x X. To evaluate the 4 constants we have the equations:

:i~ c* EJC[Ejd +(ciy ff„ + pp_-\
clYS(cl)

(Cj - C3) cos cl + (C2 - C4) sin cl —
1 pl4

EJC (elf
(Q - Cs) sin cl — (C2 - C4) cos cl 0
C3 cos cl + Q sin cl -^ 1Frc*eja +(ciy "P]

A-b Fig. 3.

(27)

iSff

4 S5L

T
«5//

3,0/7

/^
Fig. 4.

Q

Their Solution yields:
1 1 [.., 8/
7*WclM'+WfMp+(cir\

c*=-7>w^Mr-Mtcosä^i+w (28)

^-hfhi^w^-w^^
Ci=-7W^Mr-Mlcosd^i+W

The bending moments at the abutements may now be determined by Eqs. (12).
For partial load as shown in Fig. 2 these equations take the form:

C2=-^~ffP + ~(Al-M*+M>-)]
(29)

c2 EJC

C5 sin cl — CR- cos cl — 1JL/4/
c*- EJC

\~lMl,-lcl[{A~pl)l~Ml + Mr])



108 A. Freudenthal

With regard to Eq. (23) and (24) we obtain from (29):
Ml (cl cos cl - sin cl) + Mr (sin cl - cl)

^-r [cos e(l-b) - cos c(l-a)] - y /;/1 2 f 1 - j 1 - -' sin rf- -y fip(clsin cl+ 2 cos f/ - 2)

Af' (sin <:/ - r/) + Mr (cl cos rf - sin cl) (30)

— —r [cos ca ~ cos £#] - y /?/ M 2 + sjn ^—y //^ (d sin cl -f 2 cos c/ - 2)

With <2=0 and b l we obtain the respective equations for loading-con-
ditions as shown in Fig. 2:

Ml (cl cos cl - sin £/) + Mr (sin £/ - cl)

^y [cos c(/-/i) - cos c/J - ~pll 2 - y sin cl- -y Hp(cls\n cl+2 cos cl-2)

Af' (sin cl - rf) + Mr (cl cos c/ - sin r/)
pl2 1 4 /^-(1-cos^A)- — pl2s\ncl--jHp(cls\ncl\ 2 coscl-2)

In order to evaluate the horizontal thrust, we have to introduce the
relations

VP A for the segment 0 ^x<^a, VP— A—p-(x~a) for the segment a<^x<^b
and VP A — p • l for the segment b<^x<Zl

into Eq. (10). The basic equation for fi takes the form:

+ 4t rf* + 7-7ri Jf^ + iQ acsincx^to:)—,C2 ar-cosßcrf(cr)-7-4T **&
c2/J0 (c/)2J0 cl J0 c/ J0 v (rf) 2J0

/i rö r^ i'^ r c^ o /*^

--ttI x2 dx-Co s\ncxd(cx) + C4 cos ex d(ex) i-^ dx+y* xc[x
C2l3J0 Ja ' Ja C2l)a (Cl)2)a (32)

+ — C3 a: sin o: */(£*)- — C4 ex cos ex d(cx)-j~~ xdx--y~^ x^dx
Cl J a Cl J a \pl) Ja C" l J a

/•/ fl q fil ry /»/ r\ /•/

- C5 sin cxd(cx) + C6 cos cxd(cx) + ^- dx + ~~r xdx + —;C5 ex sin exd(cx)
Jb h c2ljb (cl)2 Jb cl h

7 Qs \ cx cos ex d(cx) - y-^f x ^x: - -^~ \ x2 dx 0
cl Jb ' (cl)2 Jb c2PJb

Bv performing the integrations the basic equation reduces finally to:

K¥iN'4)4>(<4l)M
-^miT)Vf)-(f),(^'r)1^^4M=°

For the combination of partial live load, dead load, shrinkage effect, temperature

change and displacement of supports the /7-equation may be written
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in the form

i"> ¥tK'4)4'(>4t)]|&

^4({)14-'4
For live load according to Fig. 3, this equation reduces, with a
b l to

(33a)

0 and

K«4")-4A4(t4t)1« 03b,

Omitting the influence of axial forces and substituting zero for the moments
at the supports, we obtain from (33) the familiär expression for the hori-

8M.

PL

0,20

0.18

0.16 6-'*<

O.V+

0,12 %?<¦*:¦*-
eor.*SfÄ2*5** V'eA0.10 <?sA'o/Aeor.

&*&/C
0,06 cor

0.06

0.04

0.02

tot0,2 Ob0.3 0.7 03

Fig. 5.

Moments Mm ä la clef düs ä la charge permanente et divers cas de charge roulante.
Momente Mm im Scheitel für ständige Last und für verschiedene Fälle der Verkehrslast.

Moments Mm at the crown for dead load and various amounts of live load.

zontal thrust of a two-hinged arch, computed by methods of customary statical
analysis.

Equations (30) and (33) are sufficient for the complete analysis of the
stress-distribution of an arch by the Deflection Theory. The Solution of
this three equations however can not be found directly and has to be per-
formed graphically, the moments at the abutments to be determined first
for series of values H and the diagrams Ml (fi) and M" (Ff) plotted, where-
upon functions cp (fi) and — \p (fi) may be computed in order to find their
point of intersection, as it was stated above.
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Resultant bending moments at any point of the span are given by the
relation

M EJ^ fi[cn coscx + Cn+1 .sincx + |p-g-) (34)

the index n being the number of the considered span-segment.

5. Practical Application to a Concrete Arch of Large Span.
In order to consider the practical applicability of the Deflection Theory

and to establish data for comparison, the formulas developed in this paper
have been applied to the analysis of a concrete arch of large span. Stresses
were first computed by the ordinary Elastic Theory. This preliminary analysis
yields the approximate loading conditions to be used as a guide for assuming
load length in the more exact analysis. The stresses were then evaluated by
the Deflection Theory, using the formulas and procedure developed in this
paper.

General Data. The following are the dimensional constants:
l2 16 / / \2*•

— soft q n tu — n 1 i
lKJ i f \

8/
Dimensions of crown-section see Fig. 4 (width of the considered section
B 6ft).

/r=rl00ft4, rc=22,5ft2, £-=5.108lb/ft2, E-Jc= 50-109 Ib.ft2, E>Ft 11,3-lOlb

v —ihr a9804-
1 + ^.ifL

4 Fe-f
The following are the loading constants (values per 6ft width):

Permanent load w 4950 lb/ft, Live load p 600 lb/ft.
w/2

HZ —^t — 2,506-106 lbs.

Design I (Elastic Theory). For the influence of a Single load, acting
at the distance x from the left support, computed by methods of customary
statical analysis, we obtain:

Preaction at the left support A -^(l— x)2 (l + 2x)

horizontal thrust fi — ^ ~ v(l—x)2x2 (35)
4 f L

moment at the left support Ml — — x(b — x)2il—^vx)
The horizontal thrust due to uniformly distributed dead load w is

1 wl2
Hw — ^^v — 2,456-106 lbs,

the corresponding moment at the support:

Mi= — ~wl2(l — v) — 1,63106 lb.ft,

the moment at the crown:
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+ *jwl2(\ — v) + 0,815.106lb.ft,

111

the horizontal thrust due to temperature Variation of + 40 ° F, considered to
act through the neutral point of the structure

Ht T yf^£tt»-v + 0,053-106 lbs,

the thermal coefficient of concrete et having generally been assumed as
6 • 10-6 per degree F. The effect of shrinkage may be considered as equi-

V»

Ä=0,sL

1,0

Ä.1

Ot5
»f '#

£^
m(H>

0,2

0,1

0

7

Zr
** V 2, sst

AX

•i

V»

*7 /
7

i
1

1-1iM /// f

/
S
*%

f(H)

o
'^26 >6 2,St 3

r •

2,65 2,kS2,55 2t<*5 2,65 2,55

Fig. 6 a. Fig. 6 b.
Solution graphique des equations 30a et 33b.

Graphische Auflösung der Gleichungen 30a und 33b.
Graphic Solution of Eq. 30a and 33 b.

valent to a drop in temperature of 18° F. The horizontal thrust due to
shrinkage yields:

rr ^_
45 EJC + 0,024-106 lbs.

Introducing P p - dx in Eq. (35) and performing the integration from
x 0 to x X, we obtain the values fi, A, Ml, for partial, uniformly
distributed load of the length l (see Fig. 3):

-4M4r4(in
»=-SH4)>-»(7M7)']
„=_£(i)-[1_^)+^)-_w(i)']

(36)
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For maximum negative moment at the left support a length of span extending
from the support to the right must be covered with live load. The partial
loading always stops at the zero-section of the influence line. This yields,
with regard to (34)

l ~ 0,45 /
Zv

Introducing this load-length into (36), we obtain the maximum negative

bending moment Ml — 0,01737 p • P — —— p • P — 2,11 .106 Ib. ft,
57,0 pl2

and the corresponding horizontal thrust frf — 0,398 '— — 0,30 • 106 lbs.

Maximum positive moment at the centre of the span is produced when
the central section of the span is symmetrically loaded with uniform live load
for a length )n. The value of this moment yields from M M0-\-H - f + Ml,

by introducing the equations (36) evaluated for the load p of a length -——
/ } 2

and the load — p of a length —77— :

*- \"pNt - (ff + °'738 (t)' -°-138 i'!)'] <37>

The corresponding horizontal thrust

The function (37) has a maximum for zl± 0,28 /. Substituting this value
in (37) we obtain the maximum positive moment at the centre of span

Mmav Ipl2. 0,05 0,00625 p • P -^- p • l* 0,76 106 lb.ft. The ratio

z ——^- as a function of l-y-) has been plotted in Fig. 5.

By combination of the most unfavourable loading-conditions we obtain
the maximum values of the bending moments at the supports and at the
crown and the corresponding values of the horizontal thrust and reactions
at the supports. Both, at the support and at the crown, maximum moments
are produced by permanent and live load at lowest temperature and with
consideration of shrinkage effect. We find:
at the support:
/WJ2/,zzz=-l,67.106-0,67^^

fi - 2,45-106 - 5,3.104 - 2,4.104 - 0,12-106 - 2,49-106 lbs.
A 4950.225 + 600-0,45.450.0,776=l,20.10G lbs.

at the crown:
Mmax^ 0,83-106 + 0,33-50-5,3-104 + 0,33-50-2,4-104 + 0,76- 10G 2,88- 106lbft.
H =- 2,45-106+5,3-104 +2,4-104-0,13-106 -2,50-106 lbs.

Design II. By referring to Eq. (21) we obtain the basic equation for
the horizontal thrust due to dead load and secondary effects. For different
values of Ff from — 2300 kips to —2800 kips quantities cl and their trigono-
metric functions have been evaluated and are tabulated below.
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//lbs (ciy cl sin cl cos cl
cl

Sln"2
cl

cos^
cl

*
cl

ctg^ //-//^Ibs

-2,80-106 11,34 3,37 -0,2264 ~ 0,9740 0,9930 -0,1140 - 8,72 -0,1147 -0,294 106

-2,75 11,14 3,34 -0,1971 - 0,9804 0,9951 - 0,0990 - 10,05 - 0,0995 - 0,244
-2,70 10,93 3,31 -0,1676 - 0,9858 0,9965 -0,0841 - 11,85 - 0,0844 -0,194
-2,65 10,74 3,28 -0,1380 - 0,9904 0,9976 - 0,0691 - 14,43 - 0,0693 -0,144
-2,60 10,53 3,25 -0,1082 - 0,9947 0,9985 - 0,0542 - 18,43 - 0,0543 - 0,094
-2,55 10,33 3,21 -0,0684 - 0,9977 0,9994 - 0,0342 - 29,22 - 0,0342 - 0,044
-2,50 10,13 3,18 - 0,0384 - 0,9993 0,9998 -0,0192 - 52,09 -0,0192 + 0,006
-2,45 9,93 3,15 - 0,0084 -1,0000 1,0000 - 0,0042 -238,10 -0,0042 + 0,056
-2,40 9,73 3,12 + 0,0218 - 0,9998 0,9999 + 0,0108 + 92,62 + 0,0108 + 0,106
-2,35 9,53 3,09 + 0,0519 - 0,9987 0,9997 + 0,0258 + 38,76 + 0,0258 + 0,156
-2,30 9,33 3,05 + 0,0917 - 0,9958 0,9990 + 0,0458 + 21,81 + 0,0458 + 0,206

The graphical Solution of the //-equation, performed by aid of the tabulated
values, yields:
for dead load: Hw - 2,465-106 lbs, Ml (by Eq.20a) - 1,67-106 lb.ft, and

AU(byEq.20b) +0,97-106 lb.ft.
for dead load, drop of temperature (40° F) and shrinkage effect (18° F):

Ff -2,402-106 lbs, Ml (byEq.20a) -4,2M06 lb.ft and
Mm(byEq.20b) + 2,39-106 lb.ft.

To obtain the maximum negative moment at the left support it is necessary
to load fully the span with dead load and a segment of it with live load at
lowest temperature. The load length for which the moment at the support
is maximum, must be determined by trial for certain length X of a continous
advancing live load. Moments Ml>r are calculated for different values of Ff

X

— by Eq. (30a). The graphical Solution of the //-equationand

[^-0,165 0,04 l^
7 1,5-4 +¦4)]-<S+°.<

<p (fi) - yj (fi) 1,21 • 104 [«, + er t° + y]

200//-//°
106

: + _L(Af/+yW,)]

performed by aid of the computed values Ml>r yields the real horizontal
thrust and therewith the real moments at the supports. The maximum
negative moment at the left support occurs when X 0,5 /. The horizontal
thrust produced by dead and live load is found to be fi — 2,623 • 106 lbs.,
the corresponding moment being Ml — 3,63 • 106 lb.ft., these values due
to dead and live load in conjunction with drop of temperature and shrinkage
effect are H — 2,554 • 106 lbs. and Ml — 6,43 • 106 lb.ft. The graphical

X
Solution of Eq. (30 a) and (33 b) for 0,5 has been plotted in Fig. 6 a.

— Comparison of maximum negative moments at the supports computed by
the Deflection Theory with the corresponding values obtained by the customary

methods does not show any essential difference, whereas these diffe-
rences increase towards the centre of the span to a considerable rate (see
Fig. 7).

Maximum positive moment at the crown is produced by symmetrically
loading the central section of the span with live load for a length Xx in con-

Abhandlungen III.
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Comparaison des moments calcules d'apres la theorie de l'elasticite et d'apres la theorie
de la deformation (Moments en 106 Ib. ft.).

Vergleich der Momente, berechnet nach der Elastizitäts- und nach der Verformungs¬
theorie (Momente in 106 Ib. ft.).

Comparison of moments by elastic and deflection theories (Moments in 106 Ib. ft.).
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Fig. 7 a und 7 b.

Charge permanente, charge roulante
X 0,5 I.

Ständige Last, Verkehrslast X 0,5 l.
Dead load, live load X 0,5 l.

Flg. 7 a. Sans effets secondaires.
Ohne Nebenwirkungen.

Without secondary effects.

Fig. 7 b. A basse temperature et avec retrait.
Für tiefste Temperatur und Schwinden.

At lowest temperature and with
shrinkage.

Fig. 8 a und 8 b.

Fig. 8 a. Sans effets secondaires.
Ohne Nebenwirkungen.

Without secondary effects.

Fig. 8 b. A basse temperature, avec retrait,
charge permanente et charge roulante

Xy 0,3 l.
Für tiefste Temperatur und Schwinden,

ständige Last, Verkehrslast Xt 0,31.
At lowest temperature and with shrinkage,

dead load, live load Xx 0,3 I.
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junction with dead load, drop of temperature and shrinkage effect. In order
to find the load length producing maximum positive moment it is necessary
to assume different trial values Xx and to calculate the corresponding values
Ml by use of the formulas (30):

kmI u / n pP[ c(l-X,) c(l+XM 1
,0Mlcl(coscl-\) '— cos v -cos-^y-^ - — pll1s\ncl

- 4^ (Ff- fil)(cl sin cl + 2 cos cl- 2),

(33 a):

i-

^ ^)V™^>mM'}=wH^'--<'+1l
(26) and (34). The function Mm l-±) has been calculated by the Deflection

SMTheory for a few trial load-length, plotting the ratio —-^ in Fig. 5. The
pp

maximum occurs for X± 0,3 /. The corresponding values H and Mm, produced
by dead load and live load are ://== — 2,626 • 106 lbs., Mm + 2,61 • 106 lb.ft.,
in conjunction with lowest temperature and shrinkage effect Ff — 2,563 • 106
and Mm + 4,68 • 106 lb.ft. Fig. 8 shows the moment-diagrams for these
two loading conditions, for comparison computed both by the customary
and by the Deflection Theory. Considerable differences between approximative

and exact values prove the vital importance of exact analysis and the
great influence of deflections on the value and distribution of bending
moments for flat arches. Differences in crown deflection reach 70 o/0, differences
in moments about 60 <y0.

For flat, large-span arches the customary stress analysis has proved to
be a not very close approximation and it is evident, that deductions relying
on this method are not to be treated as axiomatical. This is to be noticed for
the estimation of the different proceedings for „amelioration" of thrust-
lines and shape of arches, worked out especially in Qermany and France. For
arches of large span and a low rise ratio the character of the line of thrust
and its connection with rational arch design has to be explored anew with
regard to the results of the Deflection Theory.

Summary.
The method presented here for calculating the stresses and change of

shape in arch bridges is derived from the differential equation of the circular
bar. This, in conjunction with geometrical conditions concerning the ends
of the arch, yields the differential equation for the deflection curve of a
restrained arch. Its Solution and the conditions of equilibrum allow the
stresses to be determined. In applying the result to the analysis of a
concrete arch, the considerable influence of deflection on the stresses is shown.
The Deflection Theory is found to yield an average increase of 50 o/o and
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more in the bending moments near the crown, as previously found by the
customary method of statics.

Resume.
La methode ici presentee pour le calcul des efforts et des deformations

dans les ponts en are est deduite de Fequation differentielle de la barre
circulaire. La methode employee, coneurremment avec la consideration des
conditions geometriques relatives aux extremites de Farc, permet d'obtenir
Fequation differentielle de la courbe de deformation d'un are encastre. La
Solution et les conditions d'equilibre permettent de determiner les efforts.
En appliquant les resultats obtenus ä Fetude analytique d'un are en beton
arme, Pauteur met en evidence Finfluence considerable de la deformation
sur les efforts. II constate que la theorie de la deformation donne, par rapport
aux methodes ordinaires de la statique une augmentation moyenne de 50 o/0

et plus pour les moments flechissants aux environs de la clef.

Zusammenfassung.
Die vorliegende Methode zur Berechnung der Spannungen und der

Formänderung von Bogenbrücken ist von der Differentialgleichung des
kreisförmigen Stabes abgeleitet. Dies in Verbindung mit geometrischen
Bedingungen betreffend die Bogenenden, ergibt die Differentialgleichung für die
Verformungskurve eines eingespannten Bogens. Ihre Lösung und die
Gleichgewichtsbedingungen erlauben die Bestimmung der Spannungen. Die
Anwendung des Resultates auf die Berechnung eines Betonbogens zeigt den
bedeutenden Einfluß der Verformung auf die Spannungen. Auf Grund der
Verformungstheorie ergibt sich gegenüber den gewöhnlichen Methoden der
Statik eine durchschnittliche Vergrößerung der Biegungsmomente im Scheitel
von 50 o/o und mehr.
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