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TABELLEN ZUR BERECHNUNG VON BOGENTRÄGERN

TABLEAUX POUR LE CALCUL DES ARCS

TABLES FOR CALCULATION OF ARCHED STRUCTURES

Dr. ENYEDI, Budapest (Ungarn).

Die neueren weitgespannten Brücken und Dachkonstruktionen kommen
in der Baupraxis mehr und mehr zur Ausführung und werden als eingespannte
Bogen und Zweigelenkbogen ausgebildet.

Falls die Bogenachse eine Parabel ist, kann das Problem als genügend
gelöst betrachtet werden, weil die statischen Werte aus den bisher erschienenen

Tabellenwerken *) in einfacher Weise angeschrieben werden können.
Falls aber die Achse eine Stützlinie ist, was in der Praxis fast immer der Fall
ist, so mangelt es an Tabellen, welche die zur statischen Untersuchung nötigen
Werte enthalten, wie die Winkler'schen Tabellen die Werte des
durchlaufenden Trägers; es war daher immer unvermeidlich, die altbekannte, sehr
mühsame und umständliche statische Berechnung durchzuführen, und
gegebenenfalls auch mehrere Male zu wiederholen.

Die Tabellen der durchlaufenden Träger waren leichter zu berechnen,
weil durch die Verhältniszahlen der Stützweiten die Konstruktion des Trägers
mit unveränderlichen Querschnitten vollkommen bestimmt war. Demgegenüber

ist aber die Bogenkonstruktion durch die Verhältniszahl der Bogenhöhe
und Stützweite überhaupt nicht bestimmt, weil einerseits durch drei Punkte
(Kämpfer und Scheitel), die von der erwähnten Verhältniszahl festgesetzt
sind, unendlich viele Bogenachsen gezogen werden können, und weil andererseits

die Bogenquerschnitte als veränderlich betrachtet werden müssen.
Die Schwierigkeiten können nur dann behoben werden, wenn sowohl die

Bogenachse, als auch die Querschnittsänderungen von je einer Verhältniszahl,
und zwar einzig und allein von diesen Verhältniszahlen abhängig gemacht
werden können, weil in diesem Falle die Bogenkonstruktion mit diesen zwei
Zahlenwerten, — Achsenbeiwert und Querschnittsbeiwert genannt —,
eindeutig bestimmt ist. Falls der Bogen nur von zwei Beiwerten abhängig ist,
so bietet es keine Schwierigkeit mehr, die zur statischen Untersuchung nötigen
Werte für jene Beiwerte zu berechnen. Die Resultate werden dann in
entsprechender Weise tabellarisch zusammengestellt, woraus die statischen
Werte immer entnommen werden können.

Es erscheint also als notwendig, zuerst die Gleichung der Bogenachse
aufzustellen und die Gesetzmäßigkeit der Querschnittsänderung zu
bestimmen; das Bogenproblem selbst wird immer sehr leicht gelöst, wenn die
Bogenachse und die Querschnittsänderung nur von je einem Beiwert
abhängig gemacht worden sind.

Die Bogenachse muß natürlich mit dem Seilpolygon einer
bestimmten Belastung, und zwar im allgemeinen mit der ganzen ständigen und

x) M. Chalos, Paris: Tables pour le calcul des arcs hyperstatiques en beton arme
a fibre moyenne parabolique. Memoires II, Seite 49. Dr. Ing. B. Enyedi, Budapest:
Tabellen zur Lösung der Bogenkonstruktionen (Parabelbogen). Berlin, 1929.
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der halben rollenden Belastung, zusammenfallen (Fig. 1). Da aber das
Eigengewicht der Bogenkonstruktion im allgemeinen noch nicht mit dem
Seilpolygon übereinstimmt, muß auf Grund des erhaltenen Seilpolygons die
Belastungsfläche nochmals festgestellt und das Seilpolygon neuerdings
aufgezeichnet werden. Falls das zweite Seilpolygon das erste nicht deckt, — was
eigentlich zu erwarten ist —, dann muß das Verfahren wiederholt werden,
und zwar so oft, bis die Bogenachse mit dem Seilpolygon zusammenfällt.
Sobald dies zutrifft, so ist die richtige Bogenachse, die Stützlinie, gefunden.

M,

Fig. 1.

Um die Gleichung der Stützlinie aufstellen zu können, wird diese Zeichenarbeit

mathematisch vollführt2). Die Belastungsfläche wird zuerst mit einer
Parabel dritten Grades abgeschlossen, da diese mit der Stützlinie nahezu
übereinstimmt (Fig. 2, I. und IL):

yg 8s /3

wo g den größten Belastungsunterschied und / die Stützweite bedeutet. Wenn
/ die Bogenhöhe, g0 die Belastung am Scheitel sind, und

g 7 So

ferner x f /
dann wird nach vollführter Berechnung2) die Gleichung des ersten
Seilpolygons (Fig. 2, III.):

5 j_ 4 v£3
(1)10+ y

Es wird das zeichnerische Verfahren mathematisch fortgesetzt, d. h. die
Belastungsfläche wird unten mit dem Seilpolygon nach Ol. (1) begrenzt,
wodurch sich die folgende Gleichung (2) für die Stützlinie ergibt:

y 1/2Hl0i+y) + 4y(35 + 8yf»)f«.8 (2)
21(10+r) +r (35+r)

Da diese Gleichung eine Bogenachse darstellt, die mit der Begrenzungslinie
der Belastungsfläche praktisch genommen zusammenfällt, und außerdem mit
den in der Fachliteratur3) veröffentlichten Berechnungsresultaten keinen
nennenswerten Unterschied aufweist, wird sie als Gleichung der Bogenachse

2) Siehe: Le Constructeur de Ciment Arme, 1933, Seite 265.
3) Dr. Ing. F. Kögler: Gewölbetabellen. Berlin, 1928. A. Strassner: Neuere

Methoden zur Statik der Rahmentragwerke, II. Band. Berlin, 1921.
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er

(Stützlinie) betrachtet. Die Verhältniszahl y -= — ist der Achsenbeiwert,

der von dem Eigengewicht der Konstruktion in einfacher Weise bestimmt
wird.

Die Tabelle 1 enthält die Ordinaten der Stützlinien, — in den Zehntelpunkten

der Bogenhälfte (Fig. 2, III.) —, die auf Grund der Gleichung (2)
berechnet wurden, und die sich auf die Werte y 0, 1.2, 3.0, 5.0 und 8.0
beziehen. Die erste Stützlinie ist natürlich eine Parabel zweiten Grades.

Es ist selbstverständlich, daß die Gleichung der Bogenachse unabhängig
davon ist, ob es sich um einen eingespannten Bogen oder Zweigelenkbogen
handelt, daher ist die Gleichung (2) als Gleichung eines jeden Stützlinien-
bogens zu betrachten.

f 9w

9x *

i y§ 9io
J Y

y \a,^ %

*¦& fio7
t r s

JfO

10 X

Fig 2.

DieQuerschnittsänderung. Eine Gesetzmäßigkeit für die
Querschnittsänderung einer Bogenkonstruktion ist sehr schwer aufzustellen, da
eine tatsächliche Gesetzmäßigkeit eigentlich gar nicht besteht. Auf Grund
der ausgeführten Objekte kann man aber einen Zusammenhang suchen, der
den tatsächlichen Querschnittsänderungen sehr nahe liegt, und sich
mathematisch einfacher ausdrücken läßt. Mit Rücksicht darauf, daß sich die
Querschnittshöhe im allgemeinen vom Scheitel bis zu den Kämpfern ziemlich
gleichmäßig ändert, kann angenommen werden, daß die Änderung des
Trägheitsmomentes der dritten Potenz der Abszissen proportional ist. Wenn diese
Voraussetzung mathematisch ausgedrückt und wenn berücksichtigt wird, daß
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das Trägheitsmoment [Jx] auch von dem Neigungswinkel der Tangente
[cpx] abhängt (Fig. 2, III.), so gelangt man zur Gleichung

Jx coscfx= [l + 8(£-l)f3]/0 (3)

wo: k -=J}° cos Cfi0
Jo

(3a)

und J0 bez. J10 das Trägheitsmoment im Scheitel bez. an den Kämpfern und
cpl0 den Neigungswinkel der Tangente an den Kämpfern bedeuten.

Tabelle 1.

Ordinaten der Bogenachse.
Ordonnees de Paxe de Parc.

Ordinates of arch-axis.

5- o Ordinaten, wenn der Achsenbeiwert y
Ordonnees, si le coefficient y

Quersc

Secti<

So?
S 3 2

Ordinates if axial factor /
0,0 1,2 3,0 5,0 8,0

0 0,0000 0,0000 0,0000 0,0000 0,0000
1 o 0,0100 0,0085 0,0071 0,0062 0,0053
2 u 0,0400 0,0340 0,0287 0,0250 0,0216
3 i 0,0900 0,0772 0,0657 0,0578 0,0503
4

<v 0,1600 0,1389 0,1199 0,1066 0,0938
5 u 0,2500 0,2205 0,1935 0,1745 0,1558
6

1 0,3600 0,3236 0,2898 0,2656 0,2412
7

I

0,4900 0,4502 0,4127 0,3853 0,3570
8 "S 0,6400 0,6030 0,5675 0,5408 0.5125
9 "C 0,8100 0,7851 0,7605 0,7416 0,7209

10
CO

1,0000 1,0000 1,0000 1,0000 1,0000

0 <v 1,0000 1,0000 1,0000 1,0000 1,0000
1 0,9900 0,9915 0,9929 0,9938 0,9947
2 C/3 0,9600 0,9660 0,9713 0,9750 0,9784
3 "5 ° 0,9100 0,9228 0,9343 0,9422 0,9497
4 Z;§ 0,8400 0,8611 0,8801 0,8934 0,9062
5

1 ^ 0,7500 0,7795 0,8065 0 8255 0,8442
6

1 ,c 0,6400 0,6764 0,7102 0,7344 0,7588
7

«+* CO 0,5100 0,5498 0,5873 0,6147 0,6430
8

E
:a3

0,3600 0,3970 0,4325 0,4592 0,4875
9 0,1900 0,2149 0,2395 0,2584 0,2791

10 ^ 0,0000 0,0000 0,0000 0,0000 0,0000

Da zahlreiche Konstruktionen bezüglich Querschnittsänderungen untersucht

worden sind, die gleich den in der Fachliteratur veröffentlichten
Beispielen4) der Gleichung (3) entsprechen, wird zur weiteren Untersuchung
angenommen, daß die Querschnittsänderungen eines Bogens von der Formel 3

zum Ausdruck gebracht werden können. Die Verhältniszahl k ist der
Querschnittsbeiwert.

4) Kersten: Brücken in Eisenbeton, Band II, Seiten 59—60. Berlin, 1908. Dr. Ing.
Max Ritter: Beiträge zur Theorie und Berechnung der vollwandigen Bogenträger,
Seite 26. Berlin, 1909.
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Der Querschnittsbeiwert k wird für den eingespannten Bogen, dessen
Querschnitte vom Scheitel zu den Kämpfern hin wachsen, immer größer als
Eins, und für den Zweigelenkbogen, umgekehrt, immer kleiner als Eins. Den
zahlenmäßigen Wert desselben bestimmt man durch die Formel 3 a.

Eingespannter Bogen. Um die Grundgleichungen eines
eingespannten Bogens zu erhalten, muß der Bogen in der Entfernung vom Scheitel
x al mit einer Einzelkraft P belastet werden (Fig. 3, IL). An den
Einspannstellen A und B werden gleich große, und entgegengesetzt gerichtete
horizontale Kräfte H, vertikale Auflagerkräfte VA und VB und Einspannmomente

MA und MB auftreten. Das Momentenbild (Fig. 3, III.) wird in
vier Teile (Fig. 3, IV.—VII.) aufgelöst, deren Wirkungen auf die
Formänderungen einzeln berücksichtigt werden.

Wenn allgemein die Verdrehung und Verschiebung zwischen beliebigen
Querschnitten gesucht würde, wäre diese Auflösung der Momentenbilder
sehr schwer zu verwenden; da es sich aber zwecks Feststellung der statisch
unbestimmten Reaktionen nur um die Verdrehung und Verschiebung zwischen
den Einspannstellen handelt, können die vier Teilmomentenbilder in ihrer
ganzen Länge auf einmal in die statische Untersuchung einbezogen werden,
weshalb die vier Teilmomentenbilder sehr vorteilhaft verwendet werden
können.

Aus den Teilmomentenbildern werden die Formänderungsbilder derart
bestimmt, daß die einzelnen Momentenordinaten laut Formel 3 umgerechnet
werden; die Ordinaten der Formänderungsbilder sind nämlich die
Winkeländerungen MdsIEJ, deren allgemeiner Wert ist:

Mx ds Mx dx cos cpx Mx dx

~EJ7 - oos^ T[Y+Z{k-\)^lTo ~~ f/ÖFTW37^
bzw. mit EJq multipliziert:

M*& (4)
\ + 8(k — l)f» { >

Bei der Untersuchung des eingespannten Bogens müssen aus den vier
Teilmomentenbildern vier Formänderungsbilder gebildet werden.

Die Einspannstellen A und B können sich gegenseitig weder verdrehen,
noch verschieben. Da aber die Fläche der Formänderungsbilder mit dem
Verdrehungswinkel gleich ist, und zwischen A und B die vier ganzen
Teilmomentenbilder wirken, ist es sicher, daß die Flächen der aus den vier
Teilmomentenbildern gebildeten Formänderungsbilder zusammen den Wert Null
haben müssen.

In Anbetracht dessen, daß das Drehmoment der Formänderungsbilder
die Verschiebungen ergibt, und A und B gegeneinander weder in horizontaler
noch in vertikaler Richtung eine Verschiebung aufweisen, ist es auch sicher,
daß das Drehmoment der vier Formänderungsbilder, bezogen auf die
horizontale oder vertikale Achse durch A und B, das heißt die Summe des
Drehmomentes, ebenfalls den Wert Null haben muß.

Die vier Formänderungsbilder stellen daher ein Gleichgewichtssystem
dar, und es muß das Drehmoment für jede beliebige Achse verschwinden.

Zur weiteren Untersuchung müssen die Flächen und Schwerpunkte der
vier Formänderungsbilder bestimmt werden. Es ist selbstverständlich, daß
die einzelnen Elemente eines jeden Formänderungsbildes, d. h. die
Verdrehungswinkel, als eine im Bogenquerschnitt konzentrierte Belastung
gedacht werden müssen.
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Das erste Formänderungsbild ist aus dem Momentenbild Fig. 3, IV.
abzuleiten. Falls die Horizontalkraft tl 1 ist, dann ist das Größtmoment
fif f; es wird vorläufig vorausgesetzt, daß sowohl /, als auch / die
Einheitsgröße haben; wenn dann die Fläche den Wert Fh hat, dann ist die Fläche
des richtigen Formänderungsbildes:

FH=HflFh (5 a)
Der Schwerpunkt des Formänderungsbildes [SH] liegt in der Mittelachse
und wenn die Ordinate im Falle H 1, / 1 und / 1 den Wert yh hat,
dann ist die richtige Ordinate:

ytt fyh (5 b)

Die Werte Fh und yh hängen nur von den y- und ^-Werten ab, daher sind sie
konstante Werte eines eingespannten Bogens.

Das zweite Formänderungsbild ist ein Dreieck (Fig. 3, V.); voraus»
gesetzt, daß MB 1, / 1 und / 1 ist, sind der Flächeninhalt bez. die
Abszisse und Ordinate des Schwerpunktes [SB] vom Formänderungsbilde
Fnl bez. xm und ym\ die richtigen Werte sind dann:

F^ — lMBFm x£ lxm y* — fym (6)

Vom dritten Formänderungsbild (Fig. 3, VI.) folgt:
Fm lMA^m x^ lxm y* fym (7)

wo die konstanten Werte Fm, xm und ym ebenfalls nur von y- und ^-Werten
abhängen.

Das vierte Momentenbild ist ein Dreieck (Fig. 3, VII.), dessen größte
Ordinate unter der Einzelkraft P, die in der Entfernung x al von der
Mittelachse steht, den Wert hat:

p{l2+al){Y-a/

In dem Falle P 1, / 1 und / 1 sind die Fläche bez. die Abszisse und
Ordinate des Schwerpunktes [SP] vom Formänderungsbilde FP bez. xp und
yt), somit sind die richtigen Werte:

FP PPFP xP lxp yP — fyp (8)

wo die konstanten Werte Fp, xp und yp von den y- und ^-Werten, aber auch
von der Lage der Einzelkraft P, d. h. auch von a abhängig sind.

Da die vier Formänderungsbilder, die als in ihrem Schwerpunkte
wirkende Kräfte aufzufassen sind, ein Gleichgewichtssystem bilden, muß zuerst
die Summe der Flächen verschwinden:

HflFh + lMBFm + lMAFm -I- Pl2Fp 0

Ferner müssen die Drehmomente, bezogen auf die Horizontale SASB und
auf die Vertikale durch SB, ebenfalls verschwinden:

HflFh(yh—ym)f + PPFp(yp—ym)f 0

HflFhxml + lMAFm2lxm + Pl2Fp(xm — xp)l 0

Die Gleichgewichtsgleichungen sind nach der Vereinfachung:
HfFh 4- (MA + MB)Fm + PIFP 0 (9)

Hf{yh-ym)Fh + PlFp(yp—ym) 0 (10)
HfFhxm + 2MAFmxm + PlFp(xm — xp) 0 (11)
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In den Gleichungen (9)—(11) haben die Faktoren: Fh, yh, Fm, xm, ym, Fp,
xp und yp konstante Zahlenwerte; sie sind daher Festwerte des Bogens
und können für jeden Bogen und für die verschiedenen Lagen von P, das
heißt für jeden praktischen Wert von y, k und a, berechnet werden. Die
Gleichungen bestimmen die drei Unbekannten: H, MA und MB, und können
daher als die Grundgleichungen des eingespannten Bogens betrachtet
werden.

i

X-aCl
>L

X&

-^Sp

UXP

\r

Hf

I
// ]MmmmmllM, ^.. H

- '^mt III

1
IUI

HfiPIP^i
IV

Fig. 4.

Der Unterschied zwischen einem beiderseits eingespannten Bogen und
einem geraden Träger liegt natürlich nur in der Form der Bogenachse. Die
Auflösung des Momentenbildes führte beim Bogen zu vier Teilrnoinenten-
bildern, während die altbekannte Ritter'sche Theorie das Momentenbild eines
eingespannten geraden Trägers in drei Teile auflöst. Wenn man zu den drei
Teilmomentenbildern des eingespannten Trägers das vierte von der
Horizontalkraft hervorgerufene Momentenbild nach Fig. 3, IV. hinzufügt, erhält
man das Momentenbild des eingespannten Bogens. Es ist daher sicher, daß
die statische Untersuchung des eingespannten Bogens und Trägers sich
voneinander nur durch das, der gebogenen Achse entsprechende, vierte
Momentenbild unterscheiden; es ist daher auch sicher, daß die Lösung des ein-
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Tabelle 2.

Reaktionskräfte des eingespannten Bogens.
Reactions de l'arc encastre. — Reactions of the restrained arch.

Achsenbeiwert
Coefficient de Taxe
Axial factor

7-3,0
Querschnittsbeiwert
Coefficient de la section \ k 2
Cross-sectional factor

Querschnitt

Section

Cross-
section

Horizontale

Horizontal

Linksseitige
ä gauche

left

Rechtsseitige
ä droite

right

Linksseitiges
ä gauche

left

Rechtsseitig.
ä droite

right

vertikale — verticale
vertical Einspannmoment

Moment d'encastrement
Moment of restraintAuflagerkraft — Reaction

Abutment-reaction

l 2 3 4 5 6

9
8
7
6
5
4
3
2
1

0
1

2
3
4
5
6
7
8
9

0,007923
0,029466

1 0,060874
0,098067
0,137254

l 0,174699
0,207210
0,232208
0,247926
0,253301
0,247926
0,232208
0,207210
0,174699
0,137254
0,098067
0,060874
0,029466
0,007923

0,994561
0,977860
0,949719
0,910325
0,860281
0,800650
0,732905
0,658854
0,580505
0,500000
0,419495
0,341146
0,267095
0,199350
0,139719
0,089675
0,050281
0,022140
0,005439

0,005439
0,022140
0,050281
0,089675
0,139719
0,199350
0,267095
0,341146
0,419495
0,500000
0,580505
0,658854
0,732905
0,800650
0,860281
0,910325
0,949719
0,977860
0,994561

- 0,040465
-0,063187
-0,070690
- 0,065932
-0,051872
-0,031689
-0,008402
+ 0,015221
+ 0,036889
+ 0,054742
+ 0,067394
+ 0,074075
+ 0,074503
+ 0,068961
+ 0,058409
+ 0 044393
+ 0,029029
+ 0,014673
+ 0,004096

+ 0,004096
+ 0,014673
+ 0,029029
+ 0,044393
+ 0,058409
+ 0,068961
+ 0,074503
+ 0,074075
+ 0,067394
+ 0,054742
+ 0,036889
+ 0,015221
- 0,008402
-0,031689
-0,051872
- 0,065932
-0,070690
-0,063187
-0,040465

Multiplikator PI xP xPl

gespannten Bogens als eine Verallgemeinerung der altbewährten Ritter'schen
Theorie zu betrachten ist.

Zweigelenkbogen. Die Grundgleichung des Zweigelenkbogens
kann auf dieselbe Art abgeleitet werden wie die Formeln (9)—(11).

Das Momentenbild (Fig. 4, II.) wird in zwei Teile aufgelöst (Fig. 4,
III.—IV.). Wenn man das Gesetz verwenden will, daß die Endquerschnitte
des Bogens sich gegeneinander weder verdrehen noch verschieben können,
muß vorausgesetzt werden, daß die Verdrehungen der Stützgelenke A und
B auch zu den Formänderungsbildern zu rechnen sind; dann hat man aber
auch im Falle des Zweigelenkbogens vier Formänderungsbilder, und zwar
zwei nach den Formeln 5 und 8, und die beiden Verdrehungswinkel A bez. B
der Stützgelenke A bez. B; es ist ohne weiteres klar, daß die vier
Formänderungsbilder Verdrehungswinkel darstellen, die als Kräfte in den Punkten
SH, SP, A und B wirken.

Wenn die Verdrehung der Stützgelenke zu den Formänderungsbildern
gerechnet werden, gibt es überhaupt keinen wesentlichen Unterschied zwi-
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Tabelle 3.

Reaktionskräfte des Zweigelenkbogens.
Reactions de l'arc ä deux articulations. — Reactions of the two-hinged arch.

Querschnitt

Section
Cross-
section

1

Horizont. Reaktion, wenn der Achsenbeiwert y den Wert hat
Reaction horizontale, si le coefficient y a la valeur

Horizontal reaction, if the axial factor / has the value

Linksseitige
ä gauche

left

Rechtsseitige
ä droite
right

vertikale Reaktion
verticale Reaction
vertical Reaction0,0 1,2 3,0 5,0 8,0

2 3 4 5 6 7 8

|

9 1

8 |

6
5
4
3
2
1

0
1

2
3
4
5
6

8
9

0,031098
0,061313
0,089848
0,116000
0,139160
0,158813
0,174535
0,186000
0,192972
0,195312
0,192972
0,186000
0,174535
0,158813
0,139160
0,116000
0,089848
0,061313
0,031098

0,030648
0,060345
0,088279
0,113751
0,136206
0,155177
0,170297
0,181290
0,187963
0,190199
0,187963
0,181290
0,170297
0,155177
0,136206
0,113751
0,088279
0,060345
0,030648

0,030212
0,059411
0,086775
0,111612
0,133417
0,151766
0,166342
0,176911
0,183316
0,185461
0,183316
0,176911
0,166342
0,151766
0,133417
0,111612
0,086775
0,059411
0,030212

0,029893
0,058730
0,085678
0,110059
0,131400
0,149310
0,163504
0,173776
0,179996
0,182077
0,179996
0,173776
0,163504
0,149310
0,131400
0,110059
0,085678
0,058730
0,029893

0,029569
0,058034
0,084558
0,108476
0,129349
0,146819
0,160635
0,170613
0,176651
0,178669
0,176651
0,170613
0,160635
0,146819
0,129349
0,108476
0,084558
0,058034
0,029569

0,95
0,90
0,85
0,80
0,75
0,70
0,65
0,60
0,55
0,50
0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05

i

0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95

Multiplikator 4' x P

sehen einem eingespannten und einem Zweigelenkbogen; an Stelle der aus
den Einspannmomenten herrührenden Formänderungsbilder des
eingespannten Bogens müssen aber die Verdrehungswinkel der Stützgelenke des
Zweigelenkbogens treten.

Die drei Grundgleichungen können derart angeschrieben werden, wie
die Gleichungen (9) — (11); da aber die unbekannten Verdrehungswinkel A
und B nicht bestimmt werden müssen, braucht man nur die Monienten-
gleichung, bezogen auf die Horizontale AB, anzuschreiben:

HflFh(f-yhf) + PPFp{f-ypf) 0
daher: MfFh{\—yh) + PlFp(\—yp) i= 0 (12)
In dieser Grundgleichung haben die Faktoren Fh, yh, Fp und yp
konstante Zahlenwerte und sind als Festwerte des Zweigelenkbogens zu
betrachten und sie können für jeden praktischen Fall von y, k und a
berechnet werden. Die Grundgleichung (12) ergibt die einzige Unbekannte,
die Horizontalkraft Ff.

Es ist zu bemerken, daß der Querschnittsbeiwert k beim Zweigelenkbogen

immer zu Eins angenommen werden kann, weil die nicht zu große
Änderung des Querschnittes die statischen Werte beinahe nicht beeinflußt.

Einflußlinien der Reaktionen. Die Unbekannten des
eingespannten Bogens sind auf Grund der Gleichungen (9) — (11):
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H ^LZZl"L *JL Lp /J3)
ym— yh Fh f v '

MA - X^ZZllL + 3L _ i] fjL l p (14)
LJm— yh Xm \Fm 2 v '

^ \l»L^l>L _ j5l _ tl 3l L p (15)
Lym—yh xm \Fm 2

und die Horizontalkraft des Zweigelenkbogens aus der Gleichung (12):

H %^FJ! -Lp (16)
\—yh Fh f

Da die Zahlenwerte der Unbekannten mit der Spannweite und Bogenhöhe
in linearem Verhältnis stehen, kann man Tabellen aufstellen, die die

Reaktionen durch eine Multiplikation mit -— bez. / ergeben, und dabei die

Tabellenwerte nur von den Abmessungen des Bogens (y, k) abhängen.

•+ 3 >~* b *~* C *~* d >¦

-~~-+zVmü-~-m\\\\\\\\\\\\\}

VMMZZZ^JSämZ.

Fig. 5

Die Tabelle 2 enthält z. B. die Einflußzahlen der Reaktionen eines
eingespannten Bogens, wenn der Achsenbeiwert y 3,0, der Querschnittsbeiwert

k 2, und die Tabelle 3 ergibt die Reaktionen eines Zweigelenkbogens,
falls die Achsenbeiwerte 0, 1,2, 3,0, 5,0 und 8,0 sind. Ahnliche Tabellen für
andere Beiwerte y und k können ebenso einfach berechnet und aufgestellt
werden 5).

Einflußlinien für Momente. Da das von der Horizontalkraft
hervorgerufene Moment fif ebenfalls mit der Spannweite / zu vergrößern
ist, muß das von den vier (Fig. 3, III.) bez. zwei (Fig. 4, II.) Momentenbildern

zusammengesetzte Querschnittsmoment ebenfalls mit / multipliziert
wrerden. Daher kann man das Momentenbild in jeder Lage der Einzelkraft
berechnen, wodurch auch die Einflußlinien für Momente festgestellt sind.

Die Tabelle 4 enthält z. B. die Einflußlinien für Momente des
eingespannten Bogens, wenn y 3,0 und k 2, und die Tabelle 5 ergibt
dieselben des Zweigelenkbogens, wenn y 3,0 und k 1. Den übrigen Werten
von y und k entsprechend, sind die Tabellen auf dieselbe Art zu berechnen 5).

5) Tableaux pour la Solution des constructions en are ä deux articulations. Le
Constructeur de Ciment Arme, 1933 und 1934. Tableaux pour la Solution des constructions
en are encastre. Science et Industrie Travaux.
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Tabelle 6.

Orenzmomente des eingespannten Bogens.
Moments limites de l'arc encastre. — Limiting moments of the fixed arch.

[Querschnitt — Section — Cross-section: 6]

Achsenbeiwert

(y)

Coefficient

de

Taxe

(y)

Axial

factor

(y)

3?J
So J
-E-Ö.8

•§ — —1
.O <L> 2
-2o
Ulia u v

Länge der belasteten Strecken

Longueurs chargees
Grenzmoment

Moment
limite

Limiting
moment

(+ Mmax)

Linksseitig,
ä gauche

lelt
(MA)

Rechtsseitig.
ä drotte

nght
(Mb)

Linksseit.
ä gauche

"left
(VA)

Rechtsseit.
ä droite

right
(Vb)

Horizontale

horizontal
(H)

Vertikale
verticale
veitical

(V)

Loaded lengths Einspannmoment
Moment d'encastrement

restiaining moment

vei tik. Auflagerkraft
Reaction verticale
vertical abutment-

reaction

Komponente der
Querkraft

Composante de l'ef-
foit tranchant

Sheat-component

a b c d im Falle des Orenzmomentes \
pour le cas du moment limite [ f- Mmax)
for the limiting moment

1 2 3 4 5
1 6 7 8 9 10 | 11 12 13

©

1
— 0,35495

0,64505
—- + 0,00737

- 0,00736
-0,01672
+ 0,01672

+ 0,00920
- 0,00920

0,31788
0,18212

0,03707
0,46293

0,03047 10,11788
0,09453 | 0,18212

2 — 0,33690
0,66310

— + 0,00618
-0,00618

-0,01887
+ 0,01887

+ 0,00^22
- 0,00922

0,30827
0,19173

0,02863
0,47137

0,02588 I 0,10827
0,09912 1 0,19173

4

7

—
0,31430

0,68570
— + 0,00510

-0,00510
+ 0,00453
- 0,00453

-0,02051 i+0,00856
+ 0,02051 -0,00856

0,29397
0,20603

0,02033
0,47967

0,02059
0,10441

0,09397
0,20603

0,29501 — 10,26860
0,43639 —

-0,01513
+ 0,01513

-001151
+ 0,01151

0,29119
0,20881

0,27242
0,22758

0,02903
0,09597

0,09119
0,20881

CN^

1

2

— 0,34282
0,65718

__ + 0,00702
- 0,00868

-0,01519
+ 0,01997

+ 0,00990
-0,00513

0,30915
0,19085

0,03367
0,46633

0,02900
0,09879

0,10915
0,19085

z 0,32610
0,67390| —

+ 0 00594
- 0,00755

-0,01725
+ 0,02272

+ 0,00990
- 0,00444

0,30010
0,19990

0,02600
0,47400

0,02488
0,10386

0,10010
0,19990

4 — 0,30435
0,69565

+ 0,00496
- 0,00652

-0,01878
+ 0,02495

+ 0,00914
- 0,00296

0,28595 0,01840
0,21405 | 0,48160

0,01988
0,10983

0,08595
0,21405

7
—

0,28958
0,49S55

0,21187 + 0,00436
- 0,00588

-0,01597
+ 0,02268

- 0,00522
+ 0,01193

0,28085
0,21915

0,22060
0,27940

0,02342
0,10702

0,08085
0,21915

3,0

1
— 0,33321

0,66679
— + 0,00663
— -0,01003

-0,01395
+ 0,02301

+ 0,01047
-0,00140

0,30211
0,19789

0,03110
0,46890

0,02795 0,10211
0,10232

1

0,19789

2

4
~—

0,31635 — 1 — +0,00562
0,68365 t — -0,00902

-0,01586
+ 0,02636

+ 0,01040
+ 0,00011

0,29256
0,20744

0,02379
0,47621

0,02399 1 0,09256
0,10824 1 0,20744
0,01953 0,07970
0,11465|0,22030

0,29670
0,70330

— + 0,00472
— - 0,00807

-0,01734
+ 0,02929

+ 0,00967
+ 0,00228

0,27970
0,22030

0,01700
0,48300

7 — 0,28424
0,55771

0,15805 + 0,00414
- 0,00744

-0,01640
+ 0,02948

+ 0,00050
+ 0,01257

0,27324
0,22676

0,16905
0,33095

0,01984
0,11587

0,07324
0,22676

5,0

1

2

4

7

—

0,32659

0,30956
0,67341

— + 0,00635
-0,01110

-0,01307+0,01084
+ 0,02530|+0,00140

0,29718
0,20282

0,02941
0,47059
0,02231
0,47769

0,02725
0,10480

0,09718
0,20282

0,69044
+ 0,00539
-0,01012
+ 0,00455
- 0,00926
+ 0,00398
- 0,00868

-0,01487
+ 0,02913

+ 0,01074
+ 0,00352

0,28725
0,21275

0,02340
0,11139
0,01946
0.11805

0,08725
0,21275
0,07598
0,22402

—

0,29221
0,70779

— -0,01635
+ 0,03263

+ 0,01011
+ 0,00617

0,27598
0,22402

0,01623
0,48377

0,280321 — (0,07155
— '0,64813 —

-0,01703
+ 0,03491

+ 0,00740
+ 0,01048

0,26802 1 0,08385
0,23198 10,41615

0,01709 10,06802
0,12256 0,23198

1 1

2
o^af

4

7

—
0,32012 —

— '0,6798Si —
+ 0,00608
-0,01215

-0,01218
+ 0,02777

+ 0,01123
+ 0,00436

0,29229
0,20771

0,02783
0,47217

0,02663
0,10733

0,09229
0,20771

0,30286
0,69714 —

+ 000517
-0,01128
+ 0,00437
-0,01052
+ 0,00384
-0,01000

-0,01388
+ 0,03212

+ 0,01106
+ 0,00718

0,28194
0,21806
0,27221
0,22779
0,26446
0,23554

0,02092
0,47908
0,01546
0,48454
0,07506
0,42494

0,02286 0,08194
0,11467 0,21806

0,28767 — 1 —
— 0,71233 J —

0,27625! — 10,06327
| — [0,66048 —

-0,01531
+ 0,03625

-0,01605
+ 0,03906

1+0,01058
+ 0,01033
+ 0,00S32
+ 0,01470

0,01941
0,12167
0,01714
0,12674

0,07221
0,22779
0,06446
0,23554

Multiplikator
1
""

1

X / ^ pP x pl Pl2
'

X -7- 1 X pl |

1 / |
i

Abhandlungen III.
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Orenzmomente. Die Einflußlinien für Momente bestimmen die
Strecken, die zu belasten sind, um die Qrenzmomente des Bogens im Falle
einer gleichmäßig verteilten rollenden Belastung p zu erhalten (Fig. 5). Die
Qrenzmomente können, — ebenso wie die Einflußmomente — in Tabellen
zusammengestellt werden, deren Werte nur mit pl2 zu vergrößern sind.

Die Tabelle 6 enthält z. B. die Grenzmomente des Querschnittes 6,
(a 0,30) eines eingespannten Bogens, dessen Achsenbeiwerte y 0, 1,2,
3,0, 5,0 und 8,0 und Querschnittsbeiwerte k 1, 2, 4 und 7 sind. Die
Tabelle ergibt auch die gleichzeitig auftretenden Reaktionen und Querkräfte,
so z. B. wenn y 3 und k 2 sind, wird das positive Grenzmoment:

+ Mmax 0,00562 pl*
und die gleichzeitig auftretenden horizontalen und vertikalen Querkräfte sind:

H 0,02399 pßjf
V 0,09256 pl

Ähnliche Tabellen lassen sich für jeden Querschnitt aufstellen5).
Die Tabelle 7 ergibt die Grenzmomente und die gleichzeitig auftretenden

Reaktionen und Querkräfte eines Zweigelenkbogens, für y 3 und k 1,
so ist z. B. für den Querschnitt 6 das positive Grenzmoment:

+ Mmax 0,014643 pP
und die gleichzeitig auftretenden horizontalen und vertikalen Querkräfte sind:

H 0,038580 pP\f
V 0,110210/7/

Ähnliche Tabellen sind auch für die übrigen Werte von y und k zu
berechnen 5).

Es ist ersichtlich, daß diese Tabellen tatsächlich so verwendet werden
können, wie die Winkler'schen Tabellen für durchlaufende Träger.

Selbstredend können auch für andere Belastungen (gleichmäßige
Vollbelastung, gleichmäßige Belastung einer Bogenhälfte, parabelförmige
Vollbelastung, Dreieckbelastungen, etc.) ebenfalls Tabellen aufgestellt werden,
die auch die mit der Belastung gleichmäßig auftretenden Reaktionen ergeben.

Schlußbemerkungen. Die Tabellen, die auf der angegebenen
Weise berechnet sind, ergeben sämtliche Zahlenwerte, die zur statischen
Untersuchung eines eingespannten oder Zweigelenkbogens nötig sind; es
ist bei diesen Konstruktionen derart vorzugehen, wie bei einem
durchlaufenden Träger. Zuerst muß das Eigengewicht angenommen, und auf
Grund dessen und der rollenden Belastung die Grenzmomente und
Querkräfte aus den Tabellen entnommen werden; die mehrfache und zeitraubende
Wiederholung der Berechnung fällt daher gänzlich fort. Die Tabellen sind
für alle Spannweiten, Bogenhöhen und Stichverhältnisse verwendbar, da die
Zahlenwerte von ihnen vollkommen unabhängig sind.

Die Tabellen müssen natürlich in jedem praktischen Fall verwendbar
bleiben, daher wurden sie für den eingespannten Bogen auf Grund der

y-Werte von: 0,0 1,2 3,0 5,0 8,0
£-Werte von: 1 2 4 7

«-Werte von: 0 0,05 0,10 0,15 0,40 0,45 0,50

berechnet. Für den Zweigelenkbogen sind dieselben y- und a-Werte bei-
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Tabelle 7.

Grenzmomente des Zweigelenkbogens.
Moment limite de Parc ä deux articulations.

Limiting moments of the two-hinged arch.

(Achsenbeiwert — Coefficient de Taxe — Axial factor: / 3,0.)

Querschnitt

Section

Cross-
section

Länge der belasteten Strecken

Longueurs chargees

Grenzmoment

Moment
limite

Limiting
moment

Linksseitige
ä gauche

left
(VA)

Rechtsseit.
ä droite

right
(Vb)

Horizontale
horizontal

(H)

Vertikale
verticale
vertical

(V)

Loaded lengths vertikale Auflagerkraft
Reaction verticale
vertical abutment-

Komponente d. Querkraft
Composante de l'effort

tranchant
Shear-component

a b c (± Mmax) im Falle des Grenzmomentes »

pour le cas de moment limite > (+ Mmax)
for the limiting moment J

1 2 3 4 II 5 6 7 8 9

9

8

7

6

5

4

3

2

1

0

0,2073

0,3085

0,2902

0,3193

0,3494

0,3839

0,4207

0,4608

0,5056

0,5571

0,4108

0,3830

0,7098

0,6807

0,6506

0,6161

0,5793

0,5392

0,4944

0,4429

0,3819

0,3085

+ 0,005551
-0,010362

+ 0,009788
-0,016363

+ 0,012788
-0,019073

+ 0,014643
-0,019334

+ 0,015437
-0,017862

+ 0,015283
-0,015234

+ 0,014298
-0,011962

+ 0,012639
- 0,008465

+ 0,011023
-0,005676

+ 0,010497
-0,004746

0,248092
0,251908

0,268324
0,231676

0,288360
0,211640

0,310210
0,189790

0,332206
0,167794

0,354632
0,145368

0,377784
0,122216

0,401920
0,098080

0,241263
0,258737

0,191500
0,308500

0,042108
0,457892

0,050976
0,449024

0,061040
0,438960

0,073690
0,426310

0,088494
0,411506

0,106168
0,393832

0,127816
0,372184

0,155180
0,344820

0,169537
0,330463

0,191500
0,308500

0,023396
0,095856

0,027850
0,091402

0,032720
0,086532

0,038580
0,080672

0,045091
0,074161

0,052389
0,066863

0,060664
0,058588

0,070144
0,049108

0,068581
0,050671

0,066917
0,052335

0,198092
0,251908

0,168324
0,231676

0,138360
0,211640

0,110210
0,189790

0,082206
0,167794

0,054632
0,145368

0,027784
0,122216

0,001920
0,098080

-0,001437
0,051437

0,000000
0,000000

Multiplikator xl xpP xpl pP* f xpl

behalten worden, nur k war immer Eins, weil die Querschnittsänderung, —
wie schon erwähnt —, die statischen Werte fast nicht beeinflußt. In einem
Zwischenfalle von y, k und a sind natürlich die entsprechenden Tabellenwerte

zu interpolieren.
Die Einflüsse der Normalkräfte und der Temperaturänderung, womit

die vorher erhaltenen Resultate zu ergänzen sind, werden in ähnlicher Art
berechnet, wie die Wirkung der vertikalen Belastungen.
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Zusammenfassung.

Die statischen Werte eines Trägers auf zwei Stützen, eines
durchlaufenden Trägers, sogar auch eines Rahmens mit einer oder mehreren
Offnungen können dem betreffenden Tabellenwerk oder der Formelsammlung
immer entnommen werden, oder man kann sie durch eine Berechnung
einfachster Art erhalten. Die Parabelbögen können gewissermaßen auch als
gelöst betrachtet werden, womit aber das Bogenproblem noch nicht erledigt ist,
weil die Achse der Bogenkonstruktionen fast ausnahmslos nach der Stützlinie
einer bestimmten Belastung geformt wird.

Es wurde daher versucht, Tabellen zur genauen und raschen Berechnung
des eingespannten und Zweigelenkbogens aufzustellen; die Gleichung der
Bogenachse, d.h. die Stützlinie ist:

V-Af 21(10 + y) + 4y(35 + 8yg»)^
y r 21(10+y)+ 7(35+ 7)

wo:
£o

und g bez. g0 den größten Belastungsunterschied bez. die Belastung am
Scheitel, und / die Bogenhöhe bedeuten. Diese Gleichung, die für die
eingespannten und Gelenkkonstruktionen gleichfalls gültig ist, weist gegenüber
den in der Fachliteratur veröffentlichten Resultaten keinen bemerkenswerten
Unterschied auf.

Die Gesetzmäßigkeit der Querschnittsänderungen des eingespannten
Bogens wurde auf Grund ausgeführter Konstruktionen aufgestellt:

Jxcoscpx [1 + 8(A —l)f8]/0

wo: /iok =J-yL COS Cf10
Jo

und 70, Jx bez. /10 das Trägheitsmoment am Scheitel, in der Entfernung
x |/ vom Scheitel, bez. an den Kämpfern, und cpx bez. cpi0 den Neigungswinkel

der Tangenten in der Entfernung x, bez. an den Kämpfern bedeuten.
Die Zweigelenkbogen wurden mit konstantem Querschnitt berechnet, da die
Wirkung der Querschnittsänderungen unbedeutend bleibt.

Die Grundgleichungen der Bogenkonstruktionen wurden durch die
Aufteilung der Momentenbilder aufgestellt, in gleicher Weise, wie die
altbewährte Ritter'sche Theorie mit den durchlaufenden Trägern vorgeht. Die
Momentenbilder des eingespannten Bogens wurden in 4, jene des
Zweigelenkbogens in 2 Teile aufgelöst, wodurch es möglich war, sämtliche
statischen Werte zu berechnen und in Tabellen zusammenzustellen.

Die Verwendung der Tabellen ist sehr einfach, wie es die Zahlenbeispiele

bewiesen haben; man muß zuerst immer die Beiwerte der fraglichen
Bogenkonstruktionen bestimmen (y, k), und danach die Reaktionen, Einflußzahlen,

Grenzmomente, etc. den betreffenden Tabellen entnehmen, die
nötigenfalls auch mit den Werten infolge der Normalkräfte und Temperaturänderungen

leicht ergänzt werden können.
Die Tabellen sind so zu verwenden, wie die Winkler'schen Tabellen für

die durchlaufenden Träger.
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Resume.

Les caracteristiques statiques d'une poutre reposant sur deux appuis, d'une
poutre continue et meme d'un cadre comportant une ou plusieurs ouvertures
peuvent toujours etre deduites des tableaux ou formules correlatives ou de-
terminees ä partir d'un calcul tres simple. Dans une certaine mesure, les arcs
paraboliques peuvent egalement etre consideres comme constituant un
probleme resolu; le probleme de l'arc lui-meme ne l'est toutefois pas encore,
parce que, presque sans exception, les axes des ouvrages en are epousent
la forme de la ligne des pressions pour une charge determinee.

L'auteur a donc cherche ä etablir des tables permettant le calcul rapide
et precis de l'arc encastre et de l'arc ä deux articulations; Pequation de l'axe
de l'arc, c'est-ä-dire de la ligne des pressions, est la suivante:

21(10+y) + 4y (35+ 8yg»)g»
y~*J 21(10 + y) + y(35 + y) *

avec: _ g__
7 ~ To

g et g0 representant les plus grands ecarts de charge et la charge ä la clef et
/ la hauteur de l'arc. Cette equation, qui est egalement valable pour les
ouvrages encastres et ä articulations, ne presente aucune difference notable
par rapport aux resultats qui ont ete dejä publies dans la litterature technique.

La loi de deformation des sections de l'arc encastre a ete determinee
d'apres des constructions effectives:

jxcoscpx= [l + S(k-\)^]Jo
avec: J10k =*/7-cos9910

Jo

J0, Jx et 710 representant les moments d'inertie ä la clef, ä la distance
x |/ de la clef et aux naissances, cpx et cp10 representant les pentes des
tangentes ä la distance x et aux naissances. Les arcs ä deux articulations
ont ete calcules avec section constante, car Pinfluence des variations de section
est negligeable.

Les equations de base des ouvrages en are ont ete etablies d'apres le
meme principe de repartition des moments que celui que fait intervenir la
theorie bien connue de Ritter dans le cas des poutres continues. Le diagramme
des moments de l'arc encastre a ete resolu en 4 parties, celui de l'arc ä deux
articulations en 2 parties, ce qui a permis de determiner toutes les
caracteristiques statiques et d'etablir des tableaux.

L'emploi de ces tableaux est tres simple, ainsi que le montrent les
exemples numeriques; il faut tout d'abord determiner les coefficients des
ouvrages ä etudier (y, k) puis les reactions, les influences, les moments
limites, etc., ä partir des tableaux, qui peuvent en cas de besoin etre completes
tres facilement avec les valeurs resultant des efforts normaux et des variations
de la temperature.

Les tableaux doivent etre utilises dans les memes conditions que ceux de
Winkler pour les poutres continues.
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Summary.
The static characteristics of a girder resting on two supports, of a

continuous girder and even of a frame with one or more openings, can always
be deduced from the corresponding tables or formulae, or determined from
a very simple calculation. To a certain extent the parabolic arches may also
be regarded as solved; but the problem of the arch itself is not yet settled,
since the axes of arched structures take almost without exception the form
of the line of pressure for any definite load.

The author has therefore endeavoured to prepare tables which will allow
of rapid and exact calculation of fixed and two-hinged arches; the equation
of the axis of the arch, i. e. of the line of pressure is as follows:

21 (10 + y) + 4y(35 f- 8y g»)g»
y * 21(10 + y)+y(35 + y)

*

where: g
7 —

go

g and g0 being the greatest difference of load and the load at the crown,
and / the rise of the arch. This equation, which holds good for fixed and
articulated structures, displays no great difference as compared with the
results already published in technical literature.

The law of deformation of the cross-sections of the fixed arch has been
determined from actual structures:

Jxcos<px= [\ + 8(k-\)^]J0
where: J10

k=J-f- cos cp10
Jo

and J0, Jx and J10 signify the moments of inertia at the crown, at the distance
x f / from the crown and at the Springers; whilst cpx and cp1Q are the slopes
of the tangents at the distance x and at the Springers. The two-hinged arches
have been calculated with constant cross-section, since the effect of Variation
in cross-section is negligible.

The basic equations for arched structures have been established according
to the same principle of distribution of the moments as adopted in the well-
known theory of Ritter for continuous girders. The diagram of the moments
of the fixed arch has been resolved into 4 parts, and the diagram of the
moments of the two-hinged arch into 2 parts, thus permitting all the static
characteristics to be determined and the tables to be prepared.

These tables are very easy to use, as is shown by numerical examples.
First of all it is necessary to determine the coefficients of the structures to
be studied (y, k), and then the reactions, influence figures, limiting moments,
etc., from the tables, which may if necessary be supplemented very easily with
the values resulting from normal forces and variations in temperature.

The tables are to be used in the same way as the Winkler tables for
continuous girders.
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