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TABELLEN ZUR BERECHNUNG VON BOGENTRAGERN
TABLEAUX POUR LE CALCUL DES ARCS
TABLES FOR CALCULATION OF ARCHED STRUCTURES

Dr. ENYEDI, Budapest (Ungarn).

Die neueren weitgespannten Briicken und Dachkonstruktionen kommen
in der Baupraxis mehr und mchr zur Ausfithrung und werden als eingespannte
Bogen und Zweigelenkbogen ausgebildet.

Falls die Bogenachse eine Parabel ist, kann das Problem als geniigend
gelost betrachtet werden, weil die statischen Werte aus den bisher erschie-
nenen Tabellenwerken') in einfacher Weise angeschrieben werden konnen.
Falls aber die Achse eine Stiitzlinie ist, was in der Praxis fast immer der Fall
ist, so mangelt es an Tabellen, welche die zur statischen Untersuchung nétigen
Werte enthalten, wie die Winkler’schen Tabellen die Werte des durch-
laufenden Trigers; es war daher immer unvermeidlich, die altbekannte, schr
mithsame und umstindliche statische Berechnung durchzufiihren, und ge-
gebenenfalls auch mehrere Male zu wiederholen.

Die Tabellen der durchlaufenden Triager waren leichter zu berechnen,
weil durch die Verhiltniszahlen der Stiitzweiten die Konstruktion des Tragers
mit unverdnderlichen Querschnitten vollkommen bestimmt war. Demgegen-
iiber ist aber die Bogenkonstruktion durch die Verhéltniszahl der Bogenhéhe
und Stiitzweite iiberhaupt nicht bestimmt, weil einerseits durch drei Punkte
(Kampfer und Scheitel), die von der erwidhnten Verhaltniszahl festgesetzt
sind, unendlich viele Bogenachsen gezogen werden kénnen, und weil anderer-
seits die Bogenquerschnitte als veridnderlich betrachtet werden miissen.

Die Schwierigkeiten kénnen nur dann behoben werden, wenn sowohl die
Bogenachse, als auch die Querschnittsinderungen von je einer Verhiltniszahl,
und zwar einzig und allein von diesen Verhidltniszahlen abhingig gemacht
werden konnen, weil in diesem Falle die Bogenkonstruktion mit diesen zwei
Zahlenwerten, — Achsenbeiwert und Querschnittsbeiwert genannt —, ein-
deutig bestimmt ist. Falls der Bogen nur von zwei Beiwerten abhingig ist,
so bietet es keine Schwierigkeit mehr, die zur statischen Untersuchung nétigen
Werte fiir jene Beiwerte zu berechnen. Die Resultate werden dann in ent-
sprechender Weise tabellarisch zusammengestellt, woraus die statischen
Werte immer entnommen werden kénnen.

Es erscheint also als notwendig, zuerst die Gleichung der Bogenachse
aufzustellen und die GesetzmidBigkeit der Querschnittsinderung zu be-
stimmen; das Bogenproblem selbst wird immer sehr leicht geldst, wenn die
Bogenachse und die Querschnittsinderung nur von je einem Beiwert ab-
hingig gemacht worden sind.

Die Bogenachse muB natiirlich mit dem Seilpolygon einer be-
stimmten Belastung, und zwar im allgemeinen mit der ganzen stindigen und

1) M. Cnatos, Paris: Tables pour le calcul des arcs hyperstatiques en béton armé
a fibre moyenne parabolique. Mémoires II, Seite 49. Dr. Ing. B. Exvepi, Budapest:
Tabellen zur Losung der Bogenkonstruktionen (Parabelbogen). Berlin, 1929.
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der halben rollenden Belastung, zusammenfallen (Fig. 1). Da aber das Eigen-
gewicht der Bogenkonstruktion im allgemeinen noch nicht mit dem Seil-
polygon iibereinstimmt, muB auf Grund des erhaltenen Seilpolygons die Be-
lastungsfliche nochmals festgestellt und das Seilpolygon neuerdings aufge-
zeichnet werden. Falls das zweite Seilpolygon das erste nicht deckt, — was
eigentlich zu erwarten ist —, dann mufl das Verfahren wiederholt werden,
und zwar so oft, bis die Bogenachse mit dem Seilpolygon zusammenfillt. So-
bald dies zutrifft, so ist die richtige Bogenachse, die Stiitzlinie, gefunden.

Um die Gleichung der Stiitzlinie aufstellen zu kénnen, wird diese Zeichen-
arbeit mathematisch vollfithrt2). Die Belastungsfliche wird zuerst mit einer
Parabel dritten Grades abgeschlossen, da diese mit der Stiitzlinie nahezu iiber-
einstimmt (Fig. 2, I. und IL.):

wo g den groBten Belastungsunterschied und / die Stiitzweite bedeutet. Wenn
/ die Bogenhohe, g, die Belastung am Scheitel sind, und
‘ g =78
ferner x = &l
dann wird nach vollfithrter Berechnung?) die Gleichung des ersten Seil-
polygons (Fig. 2, IIl.):
_ g2 +478,

J = SfW}-TE (1)
Es wird das zeichnerische Verfahren mathematisch fortgesetzt, d. h. die Be-
lastungsfliche wird unten mit dem Seilpolygon nach Gl. (1) begrenzt, wo-
durch sich die folgende Gleichung (2) fiir die Stiitzlinie ergibt:

B 4/321(101‘—7) + 4y(354 8y &%) &2
= 20(10+ 7) + 735+ 7)

Da diese Gleichung eine Bogenachse darstellt, die mit der Begrenzungslinie
der Belastungsflache praktisch genommen zusammenfillt, und auBerdem mit
den in der Fachliteratur3) verdffentlichten Berechnungsresultaten keinen
nennenswerten Unterschied aufweist, wird sie als Gleichung der Bogenachse

&2 (2)

2) Siehe: Le Constructeur de Ciment Armé, 1933, Seite 265.
3) Dr. Ing. F. KooLer: Gewolbetabellen. Berlin, 1928. A. STrRassNER: Neuere Me-
thoden zur Statik der Rahmentragwerke, II. Band. Berlin, 1921.
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(Stiitzlinie) betrachtet. Die Verhidltniszahl y = £ st der Achsenbeiwert,
0

der von dem FEigengewicht der Konstruktion in einfacher Weise bestimmt

wird.

Die Tabelle 1 enthilt die Ordinaten der Stiitzlinien, — in den Zehntel-
punkten der Bogenhilfte (Fig. 2, I1I.) —, die auf Grund der Gleichung (2)
berechnet wurden, und die sich auf die Werte y = 0, 1.2, 3.0, 5.0 und 8.0
beziehen. Die erste Stiitzlinie ist natiirlich eine Parabel zweiten Grades.

Es ist selbstverstindlich, daB die Gleichung der Bogenachse unabhingig
davon ist, ob es sich um einen eingespannten Bogen oder Zweigelenkbogen
handelt, daher ist die Gleichung (2) als Gleichung eines jeden Stiitzlinien-
bogens zu betrachten.

DieQuerschnittsdinderung. Eine GesetzmaBigkeit fiir die Quer-
schnittsinderung einer Bogenkonstruktion ist sehr schwer aufzustellen, da
eine tatsichliche GesetzmaBigkeit eigentlich gar nicht besteht. Auf Grund
der ausgefithrten Objekte kann man aber einen Zusammenhang suchen, der
den tatsichlichen Querschnittsinderungen sehr nahe liegt, und sich mathe-
matisch einfacher ausdriicken 148t. Mit Riicksicht darauf, daB sich die Quer-
schnittshohe im allgemeinen vom Scheitel bis zu den Kiampfern ziemlich
gleichmiBig andert, kann angenommen werden, daB die Anderung des Trig-
heitsmomentes der dritten Potenz der Abszissen proportional ist. Wenn diese
Voraussetzung mathematisch ausgedriickt und wenn beriicksichtigt wird, daB
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das Trégheitsmoment [/:] auch von dem Neigungswinkel der Tangente
[¢.] abhdngt (Fig. 2, I11.), so gelangt man zur Gleichung

Jecosqy = [1+8(k—1)&]/, 3
o Juo

wo: == == COS @rq (3a)
0

und J, bez. J,, das Trdgheitsmoment im Scheitel bez. an den Kimpfern und
@, den Neigungswinkel der Tangente an den Kampfern bedeuten.

Tabelle 1.
Ordinaten der Bogenachse.

Ordonnées de ’axe de l'arc.
Ordinates of arch-axis.

p=t jgﬁ ] Ordinaten, wenn der Achsenbeiwert y =

EE (238 Ordonnées, si le coefficient y =

T 885 Ordinates, it axial factor y =

v U V=0 - —_————— e ——

&7 EE% o0 12 30 5,0 8,0
0 £ | 00000 | 00000 | 00000 | 00000 | 0,0000
1 © |l 00100 | 00085 | 00071 | 00062 | 0,0053
2 | O | 00400 | 0,030 & 00287 | 00250 | 0,0216
3 [ 0,0900 | 0,0772 | 0,0657 | 0,578 | 0,0503
4 | = | 01600 | 01389 | 0,199 | 0,1066 | 0,0938
5 | 5 || 02500 | 02205 | 0,1935 | 0,1745 | 0,1558
6 | 0,3600 | 03236 | 02808 | 0,2656 | 0,2412
7 | . | 04900 | 04502 | 04127 | 03853 | 0,3570
8 | & || 06400 | 06030 | 05675 | 05408 | 05125
9 | & || 08100 ( 0,7851 | 0,7605 | 0,7416 | 0,7209
10 | 2 | 1,0000 | 1,0000 | 1,0000 | 1,0000 | 1,0000

| i

0 | o 1,0000 | 1,0000 | 1,0000 | 1,0000 | 1,0000
1 | g 09900 | 09915 | 09929 = 09938 | 0,9947
2 |8 || 09600 | 09660 '@ 09713 = 09750 | 0,9784
3 ‘2ol 09100 | 09228 | 09343 | 09422 | 0,9407
4 | z:= | 08400 ‘ 08611 | 08801 | 08934 | 0,9062
5 | | &) 07500 | 07795 | 08005 | 08255 | 08442
6 S0 06400 | 06764 | 07102 | 07344 | 0,7588
7 g(%; 0,5100 | 0,5498 0,5873 i 0,6147 0,6430
8 [ &7 03600 | 03970 | 04325 | 04592 | 04875
9 |.E | 01900 | 02149 | 02395 | 072584 | 0,2791
10 !x ’ 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000

Da zahlreiche Konstruktionen beziiglich Querschnittsinderungen unter-
sucht worden sind, die gleich den in der Fachliteratur veréffentlichten Bei-
spielen+) der Gleichung (3) entsprechen, wird zur weiteren Untersuchung
angenommen, dafBl die Querschnittsinderungen eines Bogens von der Formel 3
zum Ausdruck gebracht werden kénnen. Die Verhiltniszahl £ ist der Quer-
schnittsbeiwert. ’

¢) KEersTEN: Briicken in Eisenbeton, Band II, Seiten 59—60. Berlin, 1908. Dr. Ing.
Max RitTer: Beitrige zur Theorie und Berechnung der vollwandigen Bogentriager,
Seite 20. Berlin, 1909.
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Der Querschnittsbeiwert 2 wird fiir den eingespannten Bogen, dessen
Querschnitte vom Scheitel zu den Kadmpfern hin wachsen, immer groBer als
Eins, und fiir den Zweigelenkbogen, umgekehrt, immer kleiner als Eins. Den
zahlenmiBigen Wert desselben bestimmt man durch die Formel 3a.

Fingespannter Bogen. Um die Grundgleichungen eines einge-
spannten Bogens zu erhalten, muBl der Bogen in der Entfernung vom Scheitel
x = a/ mit einer Einzelkraft P belastet werden (Fig. 3, 1.). An den Ein-
spannstellen 4 und B werden gleich groBe, und entgegengesetzt gerichtete
horizontale Krafte H, vertikale Auflagerkrifte V4 und Vp und Einspann-
momente M, und My auftreten. Das Momentenbild (Fig. 3, IIl.) wird in
vier Teile (Fig. 3, IV.—VIIL.) aufgelost, deren Wirkungen auf die Form-
anderungen einzeln beriicksichtigt werden.

Wenn allgemein die Verdrehung und Verschiebung zwischen beliebigen
Querschnitten gesucht wiirde, wire diese Auflosung der Momentenbilder
sehr schwer zu verwenden; da es sich aber zwecks Feststellung der statisch
unbestimmten Reaktionen nur um die Verdrehung und Verschiebung zwischen
den Einspannstellen handelt, konnen die vier Teilmomentenbilder in ihrer
ganzen Linge auf einmal in die statische Untersuchung einbezogen werden,
weshalb die vier Teilmomentenbilder sehr vorteilhaft verwendet werden
konnen. ‘

Aus den Teilmomentenbildern werden die Forminderungsbilder derart
bestimmt, dafl die einzelnen Momentenordinaten laut Formel 3 umgerechnet
werden; die Ordinaten der Formanderungsbilder sind nimlich die Winkel-
anderungen M ds/EJ, deren allgemeiner Wert ist:

Myds M f"f, _ COS @y . M, dx B
Efe ~ cosge E[1+8(k—1)E],  EJo[1+8(;k—1)&]
bzw. mit EJ, multipliziert:

M, dx
14 8(k—1)&° “)
Bei der Untersuchung des eingespannten Bogens miissen aus den vier Teil-
momentenbildern vier Formédnderungsbilder gebildet werden.

Die Einspannstellen A und B kénnen sich gegenseitig weder verdrehen,
noch verschieben. Da aber die Fliche der Forminderungsbilder mit dem
Verdrehungswinkel gleich ist, und zwischen A und B die vier ganzen Teil-
momentenbilder wirken, ist es sicher, dafl die Flichen der aus den vier Teil-
momentenbildern gebildeten Forminderungsbilder zusammen den Wert Null
haben miissen.

In Anbetracht dessen, daB das Drehmoment der Formidnderungsbilder
die Verschiebungen ergibt, und 4 und B gegeneinander weder in horizontaler
noch in vertikaler Richtung eine Verschiebung aufweisen, ist es auch sicher,
daB das Drehmoment der vier Formidnderungsbilder, bezogen auf die hori-
zontale oder vertikale Achse durch A und B, das heiB8t die Summe des Dreh-
momentes, ebenfalls den Wert Null haben muB.

Die vier Forminderungsbilder stellen daher ein Gleichgewichtssystem
dar, und es muB3 das Drehmoment fiir jede beliebige Achse verschwinden.

Zur weiteren Untersuchung miissen die Flichen und Schwerpunkte der
vier Forminderungsbilder bestimmt werden. Es ist selbstverstindlich, daB
die einzelnen Elemente eines jeden Forméinderungsbildes, d. h. die Ver-
drehungswinkel, als eine im Bogenquerschnitt konzentrierte Belastung ge-
dacht werden miissen.
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Das erste Formanderungsbild ist aus dem Momentenbild Fig. 3, IV. ab-
zuleiten. Falls die Horizontalkraft /7 = 1 ist, dann ist das GroBtmoment
H } = J; es wird vorlaufig vorausgesetzt, daBl sowohl /, als auch f die Ein-
heitsgroBe haben; wenn dann die Fliche den Wert F, hat, dann ist die Fliche
des richtigen Formédnderungsbildes:

Fu = HflF, (5a)
Der Schwerpunkt des Forminderungsbildes [S;] liegt in der Mittelachse
und wenn die Ordinate im Falle H =1, [/ = 1 und f = 1 den Wert y, hat,
dann ist die richtige Ordinate:

v = fyn (5b)

Die Werte F, und y, hingen nur von den y- und .£-Werten ab, daher sind sie
konstante Werte eines eingespannten Bogens.

Das zweite Formidnderungsbild ist ein Dreieck (Fig. 3, V.); voraus-
gesetzt, da Mz = 1, [ = 1 und f = 1 ist, sind der Fliacheninhalt bez. die
Abszisse und Ordinate des Schwerpunktes [Sz] vom Forminderungsbilde
F, bez. x, und y,; die richtigen Werte sind dann:

Ff; = IMpF, x‘fj = IXm yﬁ = fVm (6)
Vom dritten Forminderungsbild (Fig. 3, VI.) folgt:
A =
FM: IMyFy xﬂ;l: [ X, y;,;:fym (7)
wo die konstanten Werte F,, x, und y,, ebenfalls nur von y- und %.-Werten

abhingen.

Das vierte Momentenbild ist ein Dreieck (Fig. 3, VII.), dessen griBte
Ordinate unter der Einzelkraft P, die in der Entfernung x = a/ von der
Mittelachse steht, den Wert hat:

P(Z + al (!——al)
M = ,V,gw_,ﬁ_ _ 2 B Pl( 1_ 2)
- ! Y
In dem Falle P =1,/ = 1 und f = 1 sind die Fliache bez. die Abszisse und
Ordinate des Schwerpunktes [Sp] vom Formidnderungsbilde Fp bez. x, und
¥,, somit sind die richtigen Werte:
Fp= PIF, xp = 1%, yp = fyp (8)

wo die konstanten Werte F,, x, und y, von den y- und 2-Werten, aber auch
von der Lage der Einzelkraft P, d.h. auch von a abhingig sind.

Da die vier Formidnderungsbilder, die als in ihrem Schwerpunkte wir-
kende Krifte aufzufassen sind, ein Gleichgewichtssystem bilden, muf} zuerst
die Summe der Fliachen verschwinden:

HflFy + IMgFy + IMgFy, + PI*F, = 0
Ferner miissen die Drehmomente, bezogen auf die Horizontale S,Sz und
auf die Vertikale durch Sg, ebenfalls verschwinden:
HflE (yn —ym)f + PP Ey(yp —ym)f = 0
HflFyxpl + IMgFp2lxm + PP F, (X —x,){ =0
Die Gleichgewichtsgleichungen sind nach der Vereinfachung:
HfF, + (Ma+ Mp)Fp, + PLF, = 0 9)
H(yn—ym) Fr + PLFy(yp — ym) = 0 (10)
HfFyXm + 2MaFuXpy + PLF, (X — xp) = 0 (11)
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In den Gleichungen (9)—(11) haben die Faktoren: F, yi, Fuy Xmy Yius Fopy
x, und y, konstante Zahlenwerte; sie sind daher Festwerte des Bogens
und konnen fiir jeden Bogen und fiir die verschiedenen Lagen von P, das
heiBt fiir jeden praktischen Wert von y, £ und a, berechnet werden. Die
Gleichungen bestimmen die drei Unbekannten: H, M, und Mgz, und kénnen
daher als die Grundgleichungen des eingespannten Bogens betrachtet

werden.

TTTTTTTT T

Fig. 4.

Der Unterschied zwischen einem beiderseits eingespannten Bogen und
einem geraden Trager liegt natiirlich nur in der Form der Bogenachse. Die
Auflosung des Momentenbildes fiihrte beim Bogen zu vier Teilmomenten-
bildern, wahrend die altbekannte Ritter’sche Theorie das Momentenbild eines
eingespannten geraden Tragers in drei Teile auflost. Wenn man zu den drei
Teilmomentenbildern des eingespannten Trigers das vierte von der Hori-
zontalkraft hervorgerufene Momentenbild nach Fig. 3, IV. hinzufiigt, erhilt
man das Momentenbild des eingespannten Bogens. Es ist daher sicher, daB3
die statische Untersuchung des eingespannten Bogens und Trigers sich von-
einander nur durch das, der gebogenen Achse entsprechende, vierte Mo-
mentenbild unterscheiden; es ist daher auch sicher, daf die Losung des ein-
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Tabelle 2.
Reaktionskrifte des eingespannten Bogens.
Réactions de P'arc encastré. — Reactions of the restrained arch.

e

Querschnittsbeiwert
Coefficient de la section
Cross-sectional factor

Achsenbeiwert
Coefficient de 'axe
Axial factor

y =30

Linksseitige | Rechtsseitige| Linksseitiges I Rechtsseitig.
Quer- . a gauche a droite a gauche a droite
schnitt | Fiorizontale left | right left | right
. Horizontal : .
Section vertlka‘llzrt—icgllertlcale Finspannmoment
Crct>_ss- — -l Moment d’encastrement
section Auflagerkrait — Reaction Moment of restraint
L Abutment-reaction
1 2 | 3 | 4 [ 5 | 6
|
9 \2 0,007923 1 0,994561 0,005439 - 0,040465 +0,004096
8 5 | 0,029466 l 0,977860 0,022140 —-0,063187 +0,014673
7 \u’ 0,060874 0,949719 0,050281 -0,070690 +0,029029
6 . 0,008067 | 0910325 0,089675 -0,065932 +0,044393
5 | 0,137254 | 0,860281 0,139719 -0,051872 + 0,058409
4 }‘ 0,174699 | 0,800650 0,199350 -0,031689 +0,068961
3 i 0,207210 ; 0,732905 0,267005 -0,008402 +0,074503
2 I 0,232208 0,658854 0,341146 +0,015221 +0,074075
1 | 0,247926 | 0,580505 0,419495 +0,036889 +0,067394
0 ' 0,253301 | 0,500000 0,500000 | +0,054742 +0,054742
1 | 0,247926 | 0,419495 0,580505 +0,067394 +0,036889
2 i 0,232208 0,341146 0,658854 +0,074075 +0,015221
3 . 0,207210 0,267095 0,732905 + 0,074503 -0,008402
4 1 0,174699 0,199350 0,800650 +0,068961 —-0,031689
5 ¢ 0,137254 0,139719 0,860281 +0,058409 - 0,051872
6 0,098067 0,089675 0,910325 +0.044393 -0,065932
7 - 0,060874 0,050281 0,949719 +0,029029 -0,070690
8 i 0,029466 0,022140 0,977860 +0,014673 -0,063187
9 | 0007923 0,005439 0,994561 +0,004096 — 0,040465
Muling } < f;{ >< P =< Pl

gespannten Bogens als eine Verallgemeinerung der altbewéhrten Ritter’schen
Theorie zu betrachten ist.

Zweigelenkbogen. Die Grundgleichung des Zweigelenkbogens
kann auf dieselbe Art abgeleitet werden wie die Formeln (9)—(11).

Das Momentenbild (Fig. 4, 1I.) wird in zwei Teile aufgelost (Fig. 4,
III.—IV.). Wenn man das Gesetz verwenden will, daB die Endquerschnitte
des Bogens sich gegeneinander weder verdrehen noch verschieben kénnen,
muB vorausgesetzt werden, daB die Verdrehungen der Stiitzgelenke A und
B auch zu den Forminderungsbildern zu rechnen sind; dann hat man aber
auch im Falle des Zweigelenkbogens vier Formanderungsbilder, und zwar
zwei nach den Formeln 5 und 8, und die beiden Verdrehungswinkel 4 bez. B
der Stiitzgelenke A bez. B; es ist ohne weiteres klar, daB die vier Form-
dnderungsbilder Verdrehungswinkel darstellen, die als Krafte in den Punkten
Sy, Sp, A und B wirken.

Wenn die Verdrehung der Stiitzgelenke zu den Forménderungsbildern
gerechnet werden, gibt es iiberhaupt keinen wesentlichen Unterschied zwi-
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Tabelle 3.
Reaktionskrifte des Zweigelenkbogens.
Réactions de ’arc a deux articulations. — Reactions of the two-hinged arch.
Quer- || Horizont. Reaktion, wenn der Achsenbeiwert y den Wert hat || Linksseitige | Rechtsseitige
schnitt Réaction horizontale, si le coefficient y a la valeur 4 gaiche | @ drolte
s : " . 1 g
Section| Horizontal reaction, if the axial factor y has the value |——————
Cross- Vertti'ka]le %Zaléggg
1
section | 0 12| 30 50 | 80 Vol Rencion
R 2 | 3 | 4 | 5 | 6 7| 8
T H
9 | 0031008 | 0,030648 | 0,030212 | 0,029893 | 0020569 | 0,95 0,05
8 \k 0,061313 | 0,060345 | 0,059411 0,058730 | 0,058034 I 0 90 0,10
7 | 0080848 | 0088279 | 0,086775 | 0,085678 | 0,084558 “ 0.85 0,15
6 | 0,116000 | 0,113751 | 0,111612 | 0,110059 | 0,108476 0, ,30 0,20
5 | 0139160 | 0136206 | 0.133417 | 0,131400 | 0120340 & 075 | 0,25
4 ) 0,158813 0,155177 | 0,151766 | 0,149310 | 0,146819 | 0,70 0,30
3 | 0174535 | 0,170207 1 0,166342 | 0,163504 | 0,160635 1‘ 0,65 0,35
2 “ 0,186000 | 0,181290 | 0,176911 0,173776 | 0,170613 | 0,60 | 0,40
1 0,192972 | 0,187963 | 0,183316 | 0,179996 | 0,176651 | 0,55 0,45
0 | 0,105312 0,190199 | 0,185461 0,182077 | 0,178669 | 0,50 0,50
1 i 0,192972 | 0,187963 | 0,183316 | 0,179996 | 0,176651 }f 0,45 0,55
2 1 0,186000 | 0,181290 | 0,176911 0,173776 | 0,170613 | 0,40 0,60
3 | 0,174535 0,170297 | 0,166342 | 0,163504 | 0,160635 | 0,35 0,65
4 | 0,158813 0,155177 | 0,151766 | 0,149310 | 0,146819 ;, 0,30 0,70
5 | 0,139160 | 0,136206 | 0,133417 | 0,131400 | 0,129349 | 0,25 0,75
6 ” 0,116000 | 0,113751 | 0,111612 | 0,110059 | 0,108476 | 0,20 j 0,80
7 i 0,080848 0,088279 | 0,086775 | 0,085678 | 0,084558 i 0,15 0,85
8 0,061313 | 0,060345 | 0,059411 | 0,058730 | 0,058034 “ 0,10 0,90
9 ! 0,031098 | 0,030648 | 0,030212 | 0,029893 | 0,029569 | O, 05 0,95
I B _ _ R i
| <l L
|

schen einem eingespannten und einem Zweigelenkbogen; an Stelle der aus
den Einspannmomenten herrithrenden Forménderungsbilder des einge-
spannten Bogens miissen aber die Verdrehungswinkel der Stiitzgelenke des
Zweigelenkbogens treten.

Die drei Grundgleichungen kénnen derart angeschrieben werden, wie
die Gleichungen (9)—(11); da aber die unbekannten Verdrehungswinkel A4
und B nicht bestimmt werden miissen, braucht man nur die Momenten-
gleichung, bezogen auf die Horizontale AB, anzuschreiben:

HFLE(f—yn]) + PEF,(f —ypf) =0
daher: HfF,(1—yy) + PILF,(1—yp,) =0 (12)

In dieser Grundgleichung haben die Faktoren F,, y,, F, und y, kon-
stante Zahlenwerte und sind als Festwerte des Zweigelenkbogens zu
betrachten und sie konnen fiir jeden praktischen Fall von y, £ und a be-
rechnet werden. Die Grundgleichung (12) ergibt die einzige Unbekannte,
die Horizontalkraft /.

Es ist zu bemerken, daB der Querschnittsbeiwert 2 beim Zweigelenk-
bogen immer zu Eins angenommen werden kann, weil die nicht zu grofBe
Anderung des Querschnittes die statischen Werte beinahe nicht beeinfluft.

EinfluBlirieu der Reaktionen. Die Unbekannten des einge-
spannten Bogens sind auf Grund der Gleichungen (9)—(11):
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Yp —Vm F}] [

g I By L 13
Im—n Fn | 3

Ym — yp Xp F/’ l
PN T 4
4 Y — Yn +Xm Fm 2 ( )

Ym — Vp Xp ] F, I

Mn — P ~p
. [ym | [ (15)

und die Horizontalkraft des Zweigelenkbogens aus der Gleichung (12):

Jp — 1 f}, !
—P 16
1’—ylz Fh f ( )
Da die Zahlenwerte der Unbekannten mit der Spannweite und Bogenhdhe
in linearem Verhiltnis stehen, kann man Tabellen aufstellen, die die Re-

H =

aktionen durch eine Multiplikation mit ~L bez. / ergeben, und dabei die Ta-

bellenwerte nur von den Abmessungen des Bogens (y, £) abhangen.

Die Tabelle 2 enthilt z. B. die EinfluBzahlen der Reaktionen eines ein-
gespannten Bogens, wenn der Achsenbeiwert y —= 3,0, der Querschnittsbei-
wert £ = 2, und die Tabelle 3 ergibt die Reaktionen eines Zweigelenkbogens,
falls die Achsenbeiwerte 0, 1,2, 3,0, 5,0 und 8,0 sind. Ahnliche Tabellen fiir
andere Beiwerte y und %2 konnen ebenso einfach berechnet und aufgestellt
werden 5).

EinfluBlinien fiir Momente. Da das von der Horizontalkraft
hervorgerufene Moment Hj ebenfalls mit der Spannweite / zu vergroBern
ist, muB das von den vier (Fig. 3, IIl.) bez. zwei (Fig. 4, Il.) Momenten-
blldern zusammengesetzte Querschmttsmoment ebenfalls m1t [ multipliziert
werden. Daher kann man das Momentenbild in jeder Lage der Einzelkraft
berechnen, wodurch auch die EinfluBlinien fiir Momente festgestellt sind.

Die Tabelle 4 enthilt z. B. die EinfluBlinien fiir Momente des einge-
spannten Bogens, wenn y = 3,0 und 2 = 2, und die Tabelle 5 ergibt die-
selben des Zweigelenkbogens, wenn y = 3,0 und 2 = 1. Den {ibrigen Werten
von y und £ entsprechend, sind die Tabellen auf dieselbe Art zu berechnen ).

5) Tableaux pour la solution des constructions en arc a deux articulations. Le
Constructeur de Ciment Armé, 1933 und 1934. Tableaux pour la solution des constructions
en arc encastré. Science et Industrie Travaux.
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Tabelle 6.
Grenzmomente des eingespannten Bogens.
Moments limites de l'arc encastré. — Limiting moments of the fixed arch.
[Querschnift — Section — Cross-section: 6 ]
[ Linksseitig. |Rechtsseitig.| Linksseit. lRechtsselt‘ Horizon- | Vertikale
3.’&\{ . a gauche i droite || a gauche | 2 droite } tale verticale
= ‘@S:’{ Linge der belasteten Strecken n?re"f]‘t lelt right left right | horizontal| vertical
o~ ‘*C?)%‘ Longueurs chargées ome (M4) (M) (Va) (V) (H) V)
SE_feg Moment . _— || Komponente der
—mES Loaded lengths limite Einspannmoment vertik. Auflagerkraft kraft
;g‘:)}.g u g}‘ = Moment d’encastrement || Réaction verticale |} Quertrad Vet
é.gg ‘ég ‘vg i‘ “ moment restraining moment reaction ' Shear-component
E%E‘g% %1“ a b ¢ (i Mmax) im Falle des Grenzmomepte_s "
282885 | | Rorine g momen e | (M)
1 2 3] 4 | 5 | T 8 | 9 | Jv__“___”_,LLJ,,,,,Al% .
= ‘ 7 = | ’ |
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Grenzmomente. Die EinfluBlinien fiir Momente bestimmen die
Strecken, die zu belasten sind, um die Grenzmomente des Bogens im Falle
einer gleichméBig verteilten rollenden Belastung p zu erhalten (Fig. 5). Die
Grenzmomente kénnen, — ebenso wie die EinfluBmomente — in Tabellen
zusammengestellt werden, deren Werte nur mit p/2 zu vergroBern sind.

Die Tabelle 6 enthilt z. B. die Grenzmomente des Querschnittes 6,
(a = 0,30) eines eingespannten Bogens, dessen Achsenbeiwerte y = 0, 1,2,
3,0, 5,0 und 8,0 und Querschnittsbeiwerte £ = 1, 2, 4 und 7 sind. Die Ta-
belle ergibt auch die gleichzeitig auftretenden Reaktionen und Querkrifte,
so z. B. wenn y = 3 und £ = 2 sind, wird das positive Grenzmoment:

+ Mpae = 0,00562 p 2
und die gleichzeitig auftretenden horizontalen und vertikalen Querkrafte sind:
H = 0,02399 p 2|}
V = 0,09256 p!

Ahnliche Tabellen lassen sich fiir jeden Querschnitt aufstellen 5).

Die Tabelle 7 ergibt die Grenzmomente und die gleichzeitig auftretenden
Reaktionen und Querkrifte eines Zweigelenkbogens, fiir y = 3 und % = 1,
so ist z. B. fiir den Querschnitt 6 das positive Grenzmoment:

+ Mpar = 0,014643 p 2
und die gleichzeitig auftretenden horizontalen und vertikalen Querkrafte sind:
H = 0,038580 p?|f
V = 0,110210 p!

Ahnliche Tabellen sind auch fiir die iibrigen Werte von y und % zu be-
rechnen °). '

Es ist ersichtlich, daB diese Tabellen tatsachlich so verwendet werden
konnen, wie die Winkler’schen Tabellen fiir durchlaufende Trager.

Selbstredend koénnen auch fiir andere Belastungen (gleichméBige Voll-
belastung, gleichmiBige Belastung einer Bogenhilfte, parabelférmige Voll-
belastung, Dreieckbelastungen, etc.) ebenfalls Tabellen aufgestellt werden,
die auch die mit der Belastung gleichmiBig auftretenden Reaktionen ergeben.

SchluBbemerkungen. Die Tabellen, die auf der angegebenen
Weise berechnet sind, ergeben sidmtliche Zahlenwerte, die zur statischen
Untersuchung eines eingespannten oder Zweigelenkbogens nétig sind; es
ist bei diesen Konstruktionen derart vorzugehen, wie bei einem durch-
laufenden Triager. Zuerst muB das Eigengewicht angenommen, und auf
Grund dessen und der rollenden Belastung die Grenzmomente und Quer-
krafte aus den Tabellen entnommen werden; die mehrfache und zeitraubende
Wiederholung der Berechnung féllt daher ginzlich fort. Die Tabellen sind
fiir alle Spannweiten, Bogenhohen und Stichverhiltnisse verwendbar, da die
Zahlenwerte von ihnen vollkommen unabhingig sind.

Die Tabellen miissen natiirlich in jedem praktischen Fall verwendbar
bleiben, daher wurden sie fiir den eingespannten Bogen auf Grund der

y-Werte von: 0,0 1,2 3,0 50 8,0
k-Werte von: 1 2 4 7
a-Werte von: 0 0,05 0,10 0,15 .... 040 045 0,50

berechnet. Fiir den Zweigelenkbogen sind dieselben y- und a-Werte bei-
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Tabelle 7.
Grenzmomente des Zweigelenkbogens.
Moment limite de l’arc a deux articulations.
Limiting moments of the two-hinged arch.
(Achsenbeiwert — Coefficient de I'axe — Axial factor: y = 3,0.)
» Linksseitige| Rechtsseit. || Horizontale| Vertikale
Quer- | Linge der belasteten Strecken Grenzmoment a gl:;}ltche ardi;(l):tte horizontal ‘i,%r:tlﬁzﬂf:
schnitt Longueurs chargées Mloment 1 (Va) (V) (H) (v)
. imite | vertikale Auflagerkraf d.Querkraf
Sieeon Loaded lengths Limiting | verl'\t’léaacgonuv:r%iecralga t Ig)or&ppoonsea?ltti d(eglll’eerfﬂr)a;tt
moment I vertical abutment- tranchant
Cross- | reaction Shear-component
section (t Mmax) im Falle des Grenzmomerntes
pour le cas de moment limite } (+ Mmax)
for the limiting moment
1 5 L6 7 8 9
e
9 i +0,005551 | 0,248092 | 0,042108 || 0,023396 | 0,198092
-0,010362 | 0,251908 | 0,457892 | 0,095856 | 0,251908
8 +0,000788 | 0,268324 | 0,050976 | 0,027850 | 0,168324
-0,016363 | 0,231676 | 0,449024 || 0,091402 | 0,231676
7 +0,012788 |1 0,288360 | 0,061040 || 0,032720 | 0,138360
—-0,019073 | 0,211640 | 0,438060 || 0,086532 | 0,211640
6 +0,014643 |/ 0,310210 | 0,073690 | 0,038580 | 0,110210
' -0,019334 | 0,189790 | 0,426310 | 0,080672 | 0,189790
5 +0,015437 | 0,332206 | 0,088494 || 0,045091 | 0,082206
-0,017862 | 0,167794 | 0,411506 || 0,074161 | 0,167794
4 +0,015283 || 0,354632 | 0,106168 || 0,052389 | 0,054632
|- 0,015234 || 0,145368 | 0,393832 || 0,066863 | 0,145368
3 (I 0,014208 ! 0,377784 | 0,127816 | 0,060664 | 0,027784
-0,011962 | 0,122216 | 0,372184 | 0,058588 | 0,122216
2 +0,012639 : 0,401920 | 0,155180 || 0,070144 | 0,001920
—-0,008465 | 0,098080 | 0,344820 || 0,049108 | 0,098080
1 +0,011023 | 0,241263 | 0,169537 || 0,068581 |-0,001437
-0,005676 || 0,258737 | 0,330463 || 0,050671 | 0,051437
0 +0,010497 | 0,191500 | 0,191500 || 0,066917 | 0,000000
-0,004746 | 0,308500 | 0,308500 || 0,052335 | 0,000000
_ 7 T 2
“ater > pl? > pl <Ee | <p

behalten worden, nur £ war immer Eins, weil die Querschnittsinderung, —
wie schon erwiahnt —, die statischen Werte fast nicht beeinfluBt. In einem
Zwischenfalle von p, £ und « sind natiirlich die entsprechenden Tabellen-

werte zu interpolieren.

Die Einfliisse der Normalkrifte und der Temperaturinderung, womit
die vorher erhaltenen Resultate zu ergidnzen sind, werden in dhnlicher Art
berechnet, wie die Wirkung der vertikalen Belastungen.
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Zusammenfassung.

Die statischen Werte eines Triagers auf zwei Stiitzen, eines durch-
laufenden Triagers, sogar auch eines Rahmens mit einer oder mehreren Off-
nungen konnen dem betreffenden Tabellenwerk oder der Formelsammlung
immer entnommen werden, oder man kann sie durch eine Berechnung ein-
fachster Art erhalten. Die Parabelbégen kénnen gewissermafBlen auch als ge-
lost betrachtet werden, womit aber das Bogenproblem noch nicht erledigt ist,
weil die Achse der Bogenkonstruktionen fast ausnahmslos nach der Stiitzlinie
einer bestimmten Belastung geformt wird.

Es wurde daher versucht, Tabellen zur genauen und raschen Berechnung

des eingespannten und Zweigelenkbogens aufzustellen; die Gleichung der
Bogenachse, d. h. die Stiitzlinie ist:

21(104+y) + 47(35 + 8 y£3) &2
y:4f( ) +4735+8y8%)8

wo: g
y = °
&y

und g bez. g, den groften Belastungsunterschied bez. die Belastung am
Scheitel, und / die Bogenhohe bedeuten. Diese Gleichung, die fiir die ein-
gespannten und Gelenkkonstruktionen gleichfalls giiltig ist, weist gegeniiber
den in der Fachliteratur veréffentlichten Resultaten keinen bemerkenswerten
Unterschied auf.

Die GesetzmaBigkeit der Querschnittsinderungen des 'eingesparmten
Bogens wurde auf Grund ausgefiithrter Konstruktionen aufgestellt:

Jecos g = [1 + 8(k—1)&%] ],

WO: k___/1_o

—Jo

und /,, J, bez. /,, das Trigheitsmoment am Scheitel, in der Entfernung
x = &l vom Scheitel, bez. an den Kdmpfern, und ¢, bez. ¢,, den Neigungs-
winkel der Tangenten in der Entfernung x, bez. an den Kampfern bedeuten.
Die Zweigelenkbogen wurden mit konstantem Querschnitt berechnet, da die
Wirkung der Querschnittsinderungen unbedeutend bleibt.

Die Grundgleichungen der Bogenkonstruktionen wurden durch die Auf-
teilung der Momentenbilder apfgestellt, in gleicher Weise, wie die alt-
bewihrte Ritter’sche Theorie mit den durchlaufenden Tragern vorgeht. Die
Momentenbilder des eingespannten Bogens wurden in 4, jene des Zwei-
gelenkbogens in 2 Teile aufgelost, wodurch es moglich war, sdmtliche sta-
tischen Werte zu berechnen und in Tabellen zusammenzustellen.

Die Verwendung der Tabellen ist sehir einfach, wie es die Zahlenbei-
spiele bewiesen haben; man muf§ zuerst immer die Beiwerte der fraglichen
Bogenkonstruktionen bestimmen (y, £), und danach die Reaktionen, Einfluf3-
zahlen, Grenzmomente, etc. den betreffenden Tabellen entnehmen, die
notigenfalls auch mit den Werten infolge der Normalkrifte und Temperatur-
inderungen leicht erginzt werden koénnen.

Die Tabellen sind so zu verwenden, wie die Winkler’schen Tabellen fiir
die durchlaufenden Triger.

CoS g1
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Résumé.

Les caractéristiques statiques d’une poutre reposant sur deux appuis, d’une
poutre continue et méme d’un cadre comportant une ou plusieurs ouvertures
peuvent toujours étre déduites des tableaux ou formules corrélatives ou dé-
terminées a partir d’un calcul trés simple. Dans une certaine mesure, les arcs
paraboliques peuvent également étre considérés comme constituant un pro-
bleme résolu; le probleme de V’arc lui-méme ne ’est toutefois pas encore,
parce que, presque sans exception, les axes des ouvrages en arc épousent
la forme de la ligne des pressions pour une charge déterminée.

L’auteur a donc cherché a établir des tables permettant le calcul rapide
et précis de ’arc encastré et de 'arc & deux articulations; I’équation de I’axe
de P'arc, c’est-a-dire de la ligne des pressions, est la suivante:

21(10+4 y) + 4y (35 + 8 &%) &
21(10 + ») + (35 4+ »)

avec: _ g
r= Lo

y=4f &*

g et g, réprésentant les plus grands écarts de charge et la charge ala clef et
/ la hauteur de Varc. Cette équation, qui est également valable pour les
ouvrages encastrés et a articulations, ne présente aucune différence notable
par rapport aux résultats qui ont été déja publiés dans la littérature technique.

La loi de déformation des sections de ’arc encastré a été déterminée
d’apres des constructions effectives:

Jecos g, = [1+ 8(k—1)5%

avec:
k — lLlﬂ COS (}910

0

Jo, /. et J,, représentant les moments d’inertie a la clef, a la distance
x = £1[ de la clef et aux naissances, ¢, et ¢,, représentant les pentes des
tangentes a la distance x et aux naissances. Les arcs a deux articulations
ont été calculés avec section constante, car I’influence des variations de section
est négligeable.

Les équations de base des ouvrages en arc ont été établies d’apreés le
méme principe de répartition des moments que celui que fait intervenir la
théorie bien connue de Ritter dans le cas des poutres continues. Le diagramme
des moments de Parc encastré a été résolu en 4 parties, celui de Parc a deux
articulations en 2 parties, ce qui a permis de déterminer toutes les caracté-
ristiques statiques et d’établir des tableaux.

L’emploi de ces tableaux est tres simple, ainsi que le montrent les
exemples numériques; il faut tout d’abord déterminer les coefficients des
ouvrages a étudier (y, £) puis les réactions, les influences, les moments
limites, etc., a partir des tableaux, qui peuvent en cas de besoin étre complétés
tres facilement avec les valeurs résultant des efforts normaux et des variations
de la température.

Les tableaux doivent étre utilisés dans les mémes conditions que ceux de
Winkler pour les poutres continues.
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Summary.

The static characteristics of a girder resting on two supports, of a con-
tinuous girder and even of a frame with one or more openings, can always
be deduced from the corresponding tables or formulae, or determined from
a very simple calculation. To a certain extent the parabolic arches may also
be regarded as solved; but the problem of the arch itself is not yet settled,
since the axes of arched structures take almost without exception the form
of the line of pressure for any definite load.

The author has therefore endeavoured to prepare tables which will allow
of rapid and exact calculation of fixed and two-hinged arches; the equation
of the axis of the arch, i. e. of the line of pressure is as follows:

21(10+5) + 47(35 +- 8759 &2

— 4 2

YEA TN W0+ ) £ 25+
where: _ g
r= Lo

g and g, being the greatest difference of load and the load at the crown,
and f the rise of the arch. This equation, which holds good for fixed and
articulated structures, displays no great difference as compared with the
results already published in technical literature.

The law of deformation of the cross-sections of the fixed arch has been
determined from actual structures:

Jrcos o = [1 4 8(£—1)&%] J,

where: b Jio C0S @16
0

and J,, /, and J,, signify the moments of inertia at the crown, at the distance

x = &/ from the crown and at the springers; whilst ¢, and ¢,, are the slopes

of the tangents at the distance x and at the springers. The two-hinged arches

have been calculated with constant cross-section, since the effect of variation

in cross-section is negligible.

The basic equations for arched structures have been established according
to the same principle of distribution of the moments as adopted in the well-
known theory of Ritter for continuous girders. The diagram of the moments
of the fixed arch has been resolved into 4 parts, and the diagram of the
moments of the two-hinged arch into 2 parts, thus permitting all the static
characteristics to be determined and the tables to be prepared.

These tables are very easy to use, as is shown by numerical examples.
First of all it is necessary to determine the coefficients of the structures to
be studied (y, £), and then the reactions, influence figures, limiting moments,
etc., from the tables, which may if necessary be supplemented very easily with
the values resulting from normal forces and variations in temperature.

The tables are to be used in the same way as the Winkler tables for
continuous girders.
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