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SHEARING STRESSES IN STEEL COLUMNS.

LE CISAILLEMENT DANS LES POTEAUX METALLIQUES.

SCHUBBEANSPRUCHUNG IN STAHLSAULEN.

D. H. YOUNG,
Instructor in Engineering Mechanics, University of Michigan, Ann Arbor.

1. Introduction.

Steel columns used in structural engineering are frequently made of two
or more channels laced together by diagonal bars or battens to form a com-
posite member. Two common types of built up columns are shown in Fig. 1a
and b.
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When the column deflects laterally under load, cross sections are no
longer perpendicular to the line of force, and transverse shearing forces are
introduced at each cross section. The diagonal bars or battens must be strong
enough to resist these shearing forces and thus insure that the composite
column will always act as a unit.

It is present day practice to design the lacing of such compression
members by empirical rule. For example, the American Railway Engineering
Association specifications require that the lacing or batten bars shall be
designed to resist shearing forces not less than .025 times the total com-
pressive force on the column, and further, that the spacing shall be such that
the slenderness-ratio of the unsupported length of channel shall not be greater
than 40. Such specifications are backed by a great deal of experience, and
for usual proportions furnish a satisfactory basis for design.

[t seems desirable, however, to have some theoretical basis for the
design of these lacing bars which will take account of the dominant factors
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and be applicable over a large rangé of proportions and loading conditions.

This paper is an attempt to evaluate theoretically the possible hsearing forces
which may arise in compression members under various loading conditions.

2. Notations Used.

oy, = Yyield point stress of the steel
E = modulus of -elasticity of the steel
A = cross-sectional area of the column
k = core radius of the cross section
r = radius of gyration of the cross section
I = moment of inertia of the cross section
[ = length of the column ‘
d = center displacement of an initially curved column
e, = larger of two end eccentricities -
e, — smaller of two end eccentricities
llr = slenderness-ratio of column
eolk = eccentricity ratio
P = compressive load on the column
2

P, = lﬁbl = Euler load for the column
P/A = average compressive stress
V= transverse shearing force
V/A = average transverse shearing stress
x,y = coordinates '
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y = Vea—2acosp+1
g = 1—acosq.

3. Stresses due to Bending and Thrust.

Since the shearing force which may arise at any cross section of a loaded
column depends upon the deflected form of the column axis and the load on
the column, it is necessary to consider briefly the general behavior of columns
under load before attempting to evaluate the transverse shearing forces.

The chief factors which affect the behavior of columns under load are:
imperfect elasticity of the material, initial crookedness of the axis, and non-
central application of the load.

It has been shown that the effect of both initial crookedness and non-
central application of the load on the behavior of a column can be well re-
presented, either by some definite form of initial curvature or by some de-
finite eccentricity of applied load!). When a column is taken with an initial
curvature of the axis in the form of a half sine wave having at the center an
initial displacement 6 as shown im Fig. 2, there will always be a definite

1) See E. H. Salmon, “Columns”, p. 26—32, Oxford Tech. Pub.
31
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relation between the load and the maximum fiber stress due to combined
bending and thrust which can be obtained from equation (6).

Defining the ultimate load for the column as that which first produces
yielding in the most stressed fibers, the maximum fiber stress may now be
set equal to the yield point stress, giving for the ultimate load on the column
(to first produce yielding) the equatlon

P Oy
k [ P
P,

It is probable that the extent of initial crookedness in a column will

increase with the length of the column. Hence 4 in equation (1) should be

[ .. .
100’ it is posmb}e
to plot from equation (1) a curve showing values of q against 7 to always
produce failure (by yielding). For a steel having o,, — 40000 lbs. per sq. in.
such a curve is shown in Fig. 8a. Thus if general imperfections are re-
presented by an initial curvature the problem of determining the load to
forst produce failure (by yielding) is completely solved by a curve like
Fig. 8a.

A large percentage of columns as used in structural engineering are
found in rigid frame construction where definite secondary end moments
arise due to the rigidity of the joints. Such members are loaded as shown
in Fig. 3a. For ordinary proportions both the axial load P and the end
moments M, and M, are proportional to the external loads on the structure.
This means that such loading as shown in Fig. 3a can be considered equi-
valent to applying the loads P with eccentricities e, and e,, as shown in
Fig. 3b, such that P X e, = M, and P X e; = M,. An analysis of the case
represented in Fig. 3b, to determine the load first producing failure (by
yielding) can now be made in the same manner as was just done for the
initially curved column ?). The shape of the elastic line of the bent column
is given by equation (13). The numerically larger eccentricity is taken as e,
and when the eccentricities are on opposite sides of the axis, ¢, must be
considered as negative. Writing, as before, the relation between load and
maximum fiber stress in the most stressed flber and setting this maximum
stress equal to the yield point, gives for the ultlmate load,

taken as some function of /. Taking, for example, § =

2 o

Z: }"/Je (2a)
1+ '
or

P o

T=" 2 (2b)
1+—k°—(1,ucsc¢)

in which ¢ = l——i zand ) = Va2 —2acose -+ 1, where a = a
‘ Y=9q _r AFE Y =Jya - , @ ) - €

: 2) See writer’s paper ‘‘Stresses in Eccentrically Loaded Steel Columns’’, Publications
%f thﬁ Integrélaﬁonal Association of Bridge and Structural Engineering, Vol. 1, p. 507,
iirich, 19
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Equations (2a) holds as long as @ <cos—'a, while for values of @ =l cos—1a
¢quation (2b) applies 3). ’

. . . €y ., . .
For a given value of a and various values of the ratio — it is possible

k
to plot from equations 2 (a) and (b) a family of curves showmgr— as a

function of ~l— to produce failure (by yielding). For a steel havmg Oyp ==
0

40000 1bs. per sq. in. and —° ranging from 0 to 1.0 (which mcludes the usual

range of secondary stresses) these curves are shown in Fig. 8b, ¢, d, e and f
for a = 1.0, 0.5, 0.0, — 0.5 and — 1.0 respectively. Thus the problem of
determining the load to_ first produce failure (by yielding) due to any com-
bination of end eccentricities of load, is completely solved by such curves as
shown in these figures.

4. General Method of Procedure.

It will be logical to base the design of details, such as diagonal bars or
battens, to resist the maximum shearing force which may arise at any cross

{
_______ Ymax.
(3] (6)
Fig. 4. " Fig. 5.

section, when the load is such as to first cause yielding in the most stressed
fibers due to combined bending and thrust. In this way the strength of the
column in shear will be consistent with its strength in bending and thrust.

Since in the development of equations (1) and (2) no account was taken
of the additional lateral deflection due to shearing distortion of the cross
section, the curves in Figs. 8 will not be rigorously applicable to columns
of the bullt-up type. In general the effect of this additional flexibility (due
to shearing distortion) will be, 1) to decrease the ultimate load for the
column (below that given by the curves in Figs. 8), and 2) to increase-the
maximum angle of inclination of cross sections to the line of action of the
force. These two factors will tend to cancel one another in evaluating the
shearing force, and it seems justifiable to neglect such additional defor-
mations when evaluating the shearing force on any cross section. Further,

from a practical stand-point, most columns will be relatively shou‘t‘(é < 80)

and for such proportions the effect of deformation of the axis on the shearing
force will be small. Consequently it will be on the safe side to evaluate the
shearing force on the basis of the ultlmate load as taken from the curves in
Figs. 8.

In all cases a profile section of the type shown in Fig. 4a, havmg ex-
treme proportions such that the core radius £ will be equal to the radius of
gyration r, will be used. Such a type of cross section will closely approxi-

3) The //r range of application of equations (2a) and (b) is fully discussed in the
writer’s paper, Loc. cit.
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mate to the cross section of the usual type of built-up member as shown in
Fig. 4b. .

The general procedure to be followed throughout the paper may now
be briefly stated: The shearing forces which may arise in columns under the
loading conditions represented in Figs. 2 and 3 are to be evaluated. In all
cases the problem will be treated for a column of such cross section as re-
presented in Fig. 4 in which £ = r may be taken. In each case the maximum
shearing force will be evaluated for the loading which first produces failure
(by yielding) according to the curves in Fig. 8. Thus the lacing bars or battens
will be designed to come to yielding due to shearing forces at the same time
that the most stressed fibers come to yielding due to combined bending and
thrust.

5. The Axially Loaded Pin-Ended Column with Initial Curvature.

Consider the pin-ended column shown in Fig. 5. The initial shape of
the axis (without load) is represented by the equation, .

yo = dsin 2= | (3)

Writing the relation between curvature and bending moment at any cross
section gives,

dzy a?
1 (G — ) = — @
2
Obtaining the value of ‘fix";‘) from equation (3) and letting the quantity
= ¢? equation (4) becomes,
dy 0 n? . . X
gz TV =g osin— (5)

This represents the differential equation of the elastic line of the bent bar
and its solution for the end conditions of Fig. 5 is

. dn? sin ¥ 6)
J = n2—c]2 /2 / (
The slope of the elastic line at any point will be,
dy  dn? 7 X v
o T R—gE T @
The slope will be greatest at the end or when x = 0, and for this value of x
equation (7) becomes, :
dy) Oz 1 ‘
(& L |, P ®)
— 5
) w2 ET . .
where P, = ~—E = the Euler load for the column. The maximum shearing
force is*)
_ dy) |
v=r <E x=0 (9)
dy

4) For small angles sin & = tan & = e may be taken.
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Substituting the value of (Z;) from equation (8) and dividing both sides
x=0
of equation (9) by A4 gives,
|74 P on 1
A=A (P (10)
=7

Equation (10) gives the value of the shearing force for any value of

q and 4. Since, however, il is to be taken from the curve in Fig. 8 a, there

is always a definite relation between g and ¢ as given by equation (1). This

equation for a fixed value of 71 may be considered as representing this re-

lation between Lis and 6. Solving equation (1) for § and substituting the

A
value obtained into equation (10) gives,
V 7T P
AT 7|9y (11)
-

Equation (11) now gives the maximum value of the shearing force which
can arise for the assumed curvature when ; is taken from the curve in

Fig. 8a. Remembering that for the cross section of a built-up column 2 may

Pes-¢)

Fig. 6.
be taken equal to #, it is possible to plot a curve from equatin (11) showing

the average shearing stress Z as a function of the slenderness-ratio 71 Such

a curve is shown in Fig. Oa. ;

From an examination of this curve it is seen that the maximum shear
occurs for columns having a slenderness-ratio of about 120, which is greater
than the usual allowance for slenderness made by specifications. For columns
of usual proportions the maximum average shearing stress varies from about
300 lbs. per sq. in. to 600 lbs. per sq. in. It will appear later that for short
columns some accidental eccentricity of load at the ends may give rise to
much larger shearing stresses, and that the details for short columns should
be designed on a basis of such loading rather than initial curvature of the
axis to represent the effect of imperfections.
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6. The Eccentrically Loaded Pin-Ended Column.

C6n51der the general case of the eccentrically loaded column as shown
in Fig. 6a and b. Writing the relationship between curvature and bending
moment at any cross section gives,

/

EILV—:-——Py Peo—}-P(—O—ei)x (12)
_ dx* l
The solution of this equation for the end conditions of Fig. 6 will be
Yy =1¢€C08qgx + ¢ Sgx _ Sin g x e0+ﬁx———-ﬁx (13)

sinql “ fangl

in Wthh qg = l/« as before. The slope of the elastic line at any point is

glven by, _
dy cos gx COoS g x e,

E—_qeosqu'f‘QIqul q°tanq1+""—7 (14)

So long as e, and e, are on the same side of the axis (a = e— > 0) as

represented in Fig. 6a the maximum shearing force will occur at the end of
the column where x = [ and will be,

_ P(eo— el) /dJ’> '
Substituting x = [/ into equation (14) gives for the absolute value of the
slope,
ﬂ) . [ql(l——acosql) . ]
(dx et 4L sin g/ 1_ (16)
Placing this value of (3—‘;’) into equation (15) gives,
x=1
__ Pe [ . ]
y=-2 7 |singt (1 — acos gl) (17
1/ P s
Letting the quantity (1 —acosqg /) = f and ¢/ = — AF = =@, and dividing
both sides of equation (17) by A gives, E
V P e
Z_Z-—[[@ﬁcsc@] }(18)

This equation is valid for all values of a from -+ 1.0 to 0. O J
When ¢, and e, are on opposite sides of the axis (a = —- < 0), as shown

in Fig. 6b, the maximum shearing force will occur at the inflection pomt
along the column and will be,

P(e,—e) (a’y) A
V= ; +P ) - (19)

To find the maximum value of L4 , equation (14) may be differentiated with
respect to x giving, - ax ‘ | -
o dyy g2e, singx - sin g x

, — 2 —
axt oS gx e, singl 0 tan g/

(20)
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Setting equation (20) equal to zero and solving for x gives,
sin g/

cosqgl—ua (21)

tangx =
This equatlon locates the inflection point where the slope is a maximum and
is seen to give x = [/ when a is taken equal to zero.
Substituting the value of x from equation (21) into equation (14) and
simplifying gives for the absolute value of the maximum slope,

dy) __ & [ gl . ]
(dx = 7 Lsingi Ve 2acosgl+1 +a—1 (22)
Letting the quantity Va2—2acosqgl + 1 =y and g/ = @ and substituting
equation (22) into equatlon (19) and dividing both sides by A as before
gives, .

V. P e
This equation is valid for all values of a from 0 to —1.0.
Having a glven equation (18) or (23) will now give the maximum value

of the average shearmg stress for any given values of ]{i and eo Slnce,
however, ,1?: is always to be taken from the curves in Figs. 8, a defmlte re-
lationship exists between j]; and ¢, as given by equatlons (2). These equations

for a fixed value of é may be considered as representing this relation
betweeng and e,. Solving equation (2a) for ¢, and substituting the value

obtained into equations (18) and (23) gives,

= rlm—glosece
ATT Oy — | @ B csc @ B (18a)
k
for positive values of a and,
=1l
el @y csc O (23a)
k

for negatlve values of a. Solving equation (2 b) for ¢, and substituting the
value obtained into equations (18) and (23) gives, \

vV _ 17 _] 28
= 7 [pr’fA' P (18b)
k ’ '
for positive values of a and, '
V 1 P
A= Tlwale - (b

1
k
for negative values of a.

These last four equations now give the maximum value of the average

shearing stress when 5 in these equations is taken from the curves in Figs. 8.
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It must be remembered that equations (a) hold only for values of % such
that @ <<cos—a as stated previously, while for greater values of -

equations (b) must be used. Again taking £ = r it is possible from the four
equations (18a) and (b) and (23a) and (b) to plot curves showing the

average shearing stress I—Z— as a function of f’{v for various values of a and 729.
Such curves are shown-in Figs. 9b, ¢, d, e and f for the same values of a and

Eko— already considered.

These curves may now be considered as completely solving the problem
of shearing forces in eccentrically loaded columns for given eccentricities of
load. Comparison of the curves for various values of a shows that the most
serious loading condition for short columns is equal eccentricities of load
on opposite sides of the axis (a = — 1.0) as given in Fig. Of.

To represent the possible extent of general imperfections, the column
was previously taken with an initial curvature of the axis in the form of a
half sine wave having a center displacement = Z%f) It will now be seen
that for the most serious condition of shear in short columns the column
should be taken with some equal eccentricities of load on.opposite sides of
the axis, to represent general imperfections. Taking, for example, such eccen-

tricities as represented by 7 = 0.4 this curve in Fig. 9f may be used to

represent the effect of imperfection. The § = ﬁ curve in Fig. 9 a together

with the % = 0.4 curve in Fig. 9f may now be considered as completely

solving the problem of shearing stresses in pin-ended columns due to general
imperfections.

7. Critical Combination of Load and Eccentricity for Maximum
Shear.

From equations (18) and (23) it is evident that there is some value of
A for each value of é at which the average shearing stress —1[41 will be a
maximum. That is, for each value of é there is some combination of load

and eccentricity to produce failure (by yielding) which will cause a maximum
shearing stress. Since the eccentricity has already been expressed in terms of
the load in equations (18 a) and (b) and (23 a) and (b) these equations may

now be differentiated to determine for what value of L they will be a

A
a(¥)

a(5)

. P .
to zero in each case it will be possible to determine S asa function of — to

maximum. Making this differentiation and settmg the value of equal

|4
always give the maximum possible average shearing stress . When this is
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done the equations for g are as follows:

For equation (18a),

o 3 P '
yr — 2 q i
= ofwte— 2222 (242)
Tr— 4
For equation (18Db),
P
Oyp— 4 -
For equation (23 a),
o 3 P
WA @ sin G]
— _@[cot@— S (25 a)
O — 1
For equation (23Db),
L)
1= 3 (25b)
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With the exception of (25b) these equations, representing the criteria
for maximum shear, must be solved graphically. Take as an example the
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solution of equation (24b) for a = + 0.5. For this value of a the equation
can be reduced to,

3—p B , _ , ) -

AT 0 o] ]
P 2 1—icos@ 1,25 —cos@

‘O‘.Vl' - A
Setting the left side of this equation equal to f it is possible to plot a curve

showing values of f against values of ~§ In the same m.armer, setting the
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right side of the equation equal to f it is possible to plot a curve showing
values of f against values of &. These two curves are shown in Fig. 7. Now

by choosing some value of Lid the corresponding value of f can be read from

A
the first curve and the value of @ from the secomnd?®). Since & =é ;E’

knowing 2{3 and 9, 71 can now be computed. In this way a series of values

of é for various values of g can be determined, and a curve plotted showing

o P . . .
critical values of S asa function of 71 for maximum shearing stress. The

curve for this particular case is shown in Fig. 8c.
In this manner all of the criterion equations (24) and (25) were solved

for critical values of —A]i as a function of 71 For each value of a the curve of

critical g is shown in Fig. 8. A study of these curves shows: 1) that as a
decreases from + 1.0 to — 1.0 there is a continually larger range of 7{ in

which the critical value of —1142 is zero. This, of course, means a zero load at

an infinite eccentricity, or causing failure by bending alone without direct
thrust. That is, the shearing force always increases with eccentricity and
there is practically no question of maximum shear. 2) That at a certain value

of TZ (depending upon a) the critical value of g begins to increase rapidly

—G}i, after which it changes very slowly (for ne-

3
gative values of a, not at all). 3) For the steel chosen (o,, = 40000 lbs.

until it becomes equal to

per sq. in.) at Tl' = 149 the curve of critical g intersects the Euler curve,

which means that for values of 71 above 149 the column should be axially

loaded to produce maximum shear.
Returning to equations (18a) and (b) and (23 a) and (b) and now using
values of j{; in each case from the curves of criticalmg—, the maximum possible

shearing stress % can be plotted as a function of é, for each value of a.

This curve, for each value of a, may be considered as an envelope to the
curves which might be obtained by using all possible combinations of load
and eccentricity to produce failure (by yielding). The curves of critical
average shearing stress are shown for each value of « in Fig. 0. '

o 8. Practical Conclusions.
From a general study of the curves showing the average shearing stress

—lli as a function of 71, it is evident that an axial load on an initially curved

column gives rise to the greatest shearing stress for slender columns, while

5) In this particular case there happen tou be two values of © and hence two values
of //r for each value of P/A (see Fig. 8c).
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for small values of 1{’ equal eccentricities of load on opposite sides of the

axis (¢ = — 1.0) is the most serious loading condition.

To design the details of built-up steel columns to resist a shearing stress
of 650 lbs. per sq. in. would cover almost every possible case except ex-
tremely short columns with rather large end moments which tend to produce
contraflexure of the axis. For these cases more careful investigation of the
- shearing stress on the basis of the curves presented should be made. It is of
interest to note that an old form of the American Railway Engineering Asso-
ciation specifications for shear in columns, now abandoned, called for the
lacing bars or battens of built-up steel columns to be designed to resist an

average shearing stress of 600 lbs. per sq. in. for all values of ~£~ .

9. Summary.

A theoretical investigation of possible shearing forces in built-up steel
columns is made for an axially loaded pin-ended column, in which the effect
of imperfections is represented by an initial curvature of the axis in the

form of a sine wave having an initial center displacement § = 4—(% The

shearing stress is evaluated for the loading which first produces failure by

yielding in the most stressed fibers. The curve showing shearing stress A~V

as a function of 71 is shown in Fig. 9 a.

A similar investigation is made for the column in rigid frame construction
in which various combinations of end moments are considered in addition to
the axial load. The effect of these end moments is studied by taking the
compressive forces at corresponding eccentricities. Here, as before, the
shearing stress is evaluated for the loading which first produces yielding

due to combined bending and thrust. The shearing stress % as a function of
'ri’ for various amounts and combinations of end eccentricities, is shown in

Figs. 9b, ¢, d, e and f.
Criteria are developed for the critical combination of compressive force
and eccentricity to produce a maximum shearing stress for a given column.

From these criteria, curves showing the critical value of :{; as a function of

r—l to produce maximum possible shearing stress are shown in Figs. 8. The

critical shears as a function of é, based upon these criteria are shown in
Figs. O.

From an examination of the curves in Figs. 9 it is concluded that for
almost any possible case of loading the lacing bars or battens of built-up
steel columns may be safely designed to resist an average shearing stress

Z == 050 lbs. per sq. in. Extremely short columns with large secondary end

moments tending to produce contraflexure, may obtain greater shearing
stresses than 650 lbs. per sq. in. and should be more carefully investigated
on the basis of the curves presented.
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Résumé.

L’auteur etudle d’une maniere théorique les possibilités. de mise en
oeuvre d’efforts 'de cisaillement dans les poteaux métalliques composés, dans
le cas particulier d’'un poteau se terminant en pointe et soumis a une charge
axiale; les imperfections dans la constitution de ce poteau étant matérialisées
et representees par une courbure initiale de son axe sous forme d’une sinus-
oide accusant une déformation initiale au centre 6—-1/400 L’effort de .
cisaillement est 'déterminé pour la charge qui correspond a I’amorce de la
fracture par écoulement dans les fibres les plus chargées. La courbe qui

traduit les variations de effort de cisaillement % en fonction d’e—f;est

representee sur la figure 9a. '

La méme ‘investigation est effectuée pour le poteau qui fait partie d’un
ensemble constitué par une charpente rigide dans laquelle on fait intervenir,
outre la charge axiale, les moments d’extrémité, sous forme de combinaisons
diverses. L’auteur étudie I'influence de ces moments d’extrémité en faisant
intervenir les efforts de compression qui se manifestent pour des excen-
tricités correspondantes. Ici, comme précédemment, il évalue D’effort de
cisaillement correspondant a la charge pour laquelle se manifeste -le début
de I’écoulement sous l’influence de la flexion et de la poussée combinées.
Les figures O,baf, représentent les variations de l’effort de cisaillement

jvén fonction deipour différentes valeurs et différentes di.spositions des

excentricités d’ extremlte

I1 établit des termes de comparaison pour la combinaison des efforts
de compression et des excentricités susceptible de produire un effort de
cisaillement maximum pour un poteau déterminé. A partir de ces criteres,
sont établies les courbes de la figure 8, qui traduisent la valeur critique de

—gen fonction de —l;~qui correspond aux efforts maxima possibles de cisaille-

ment. La figure 9 exprime les valeurs critiques du cisaillement en fonc-
/
tion de " déterminées d’apres les criteres ci-dessus.

L’examen des courbes de la figure 9 permet d’arriver a cette conclusmn
que pour presque tous les cas de charge possibles, les éléments d’entre-
toisement et d’assemblage des poteaux métalliques composés peuvent étre
calculés, avec toute sécurité, pour résister a un effort de cisaillement moyen:

|4

_ A

Lorsqu’il s’agit de poteaux extrémement courts accusant des moments
d’extrémité secondaires importants tendant 4 produire des inflexions dans
la courbure, on peut rencontrer des efforts de cisaillement supérieurs a

4,5 kg. /mm2, il importe de pousser alors I’étude plus loin, sur la base des
courbes indiquées.

= 4,5 kg/mm?.

Zusammenfassung.

Der Verfasser untersucht in theoretischer Weise die Mdoglichkeiten, wie
die Querkrifte auf zusammengesetzte Stahlstiitzen wirkend, eingefithrt wer-
den konnen und dies fiir den Sonderfall einer auf Spitzen gelagerten Stiitze,
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die durch eine Axialkraft beansprucht ist. Die Ungenauigkeiten des Auf-
baues der Stiitze, dargestellt durch eine urspriingliche Kriimmung ihrer Axe
in Form einer Sinusoide erzeugen eine urspriingliche Deformation in der

Mitte von é = _éﬁ Die Querkraft ist bestimmt fiir die Last, die dem B;eginn

des Bruches durch Erreichen der FlieBgrenze in den stirkst beanspruchten
- Fasern entspricht. Die Kurve, die die Anderung der Q’uerkra,ftzv in Funk-
tion von—'lj darstellt, ist in Fig. 9a gezeichnet.

Dic gleiche Untersuchung ist fiir eine Stiitze durchgefiihrt, die Bestand-
teil einer steifen Konstruktion ist, in der neben der Axialkraft die Einspann-
momente in verschiedenen Kombinationen beriicksichtigt werden. Der Autor
untersucht den EinfluB dieser Endmomente, indem er die Druckkrifte hinzu-
treten 14Bt, die sich fiir die entsprechenden Exzentrizititen ergeben. Hier
wie zuvor wertet er die der Last bei FlieBbeginn unter dem EinfluB von
Druck und Biegung entsprechende Querkraft aus. Die Figuren 9 b bis f stellen

die Anderungen der QuerkraftZVin Funktion vonédar fiir verschiedene

Werte und Anordnungen der Endexzentrizitaten.

Er fithrt Vergleichsglieder ein fiir die Kombination der Druckkrifte und
der Exzentrizititen, die geeignet sind, fiir eine bestimmte Stiitze eine ma-
ximale Querkraft zu erzeugen. Von d‘i‘e.sen Kriterien ausgehend, sind die
Kurven der Fig. 8 aufgestellt, die die funktionale Abhingigkeit des kritischen

Wertes % von é zeigen, der den maximal moglichen Querkriften entspricht.

Fig. 9 driickt die kritischen Werte der Querkrifte in Abhingigkeit von i,
bestimmt auf Grund obiger Kriterien, aus. d

Die Priifung der Kurven der F1g 9 gestattet die Folgerung, daB fiir
beinahe alle moglichen Belastungsfille die Verriegelungen und Verbindungs-
glieder fiir zusammengesetzte Stahlstiitzen mit aller Sicherheit fiir die Wir-

kung einer mittleren Querkraft von E = 4,5 kg/mm? berechnet werden kénnen.

- Falls es sich um auBerordentlich kurze Stiitzen handelt, die bedeutende
sekundire Endmomente angeben, welche zu einer Bildung von Wendungen
in der Kriimmung neigen, so kann man Werten der Querkraft von mehr
als 4,5 kg/mm? begegnen; man treibt alsdann das Studium an Hand der be-
schriebenen Kurven weiter.



Addenda.

Panneaux a
} 128 Fig. 2. 3 { Feldweiten zu } 25" = 75°.
Panels a

VLT TP

} 272 et 273 Planche 8 et 0.

Dosage pour le béton armé courant:

350 kg de ciment a durcissement rapide
0,800 m3 de gravillon a ’anneau de 15 mm
0,400 m? de sable.

Eprouvettes prismatiques de 7,1 > 7,1 >< 28,4 d’abord éprouvées 4 la traction sous
moment constant. Les morceaux ainsi obtenus sont ensuite essayés a la compression
suivant une surface de 7,1 >< 7,1.

Nota: Tous les résultats, sans aucune élimination, sont classés par valeur décroissante.
Les courbes tracées en pointillé représentent des ensembles de résultats qui suivraient la
loi de dispersion des erreurs accidentelles.

P. Fissure.
S. } 339 Fig. 30. { AnriB.
P. Crack.

In den Abhandlungen Steinman und Timoshenko wurde das englische ,,truss* viel-
fach mit ,,Versteifungsfachwerk* oder kurz ,,Fachwerk® iibersetzt, wodurch der allgemeine
Sinn eines ,,Versteifungstragers* schon fiir groBe Austiihrungen modifiziert erscheint.

Le mot anglais ,truss” dans les Mémoires de Steinman et Timoshenko fiit quelque-
fois traduit par ,poutre en treillis®, ,,poutre en treillis de raidissement*, , élément raidisseur
continu en treillis*, ou ,,élément de renforcement continu en treillis* ce qui modifie le sens
général de ,,poutré raidisseuse pour le cas spécial de ponts a grandes portées.

Errata.

} 283 Planche 5. Lisez m = 10.

oo

Diagonale AB: —8 kg/cm?
Montant BC: -9 ”
Diagonale CD: —84 ,, )
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