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SHEARING STRESSES IN STEEL COLUMNS.

LE CISAILLEMENT DANS LES POTEAUX METALLIQUES.

SCHUBBEANSPRUCHUNG IN STAHLSÄULEN.

D. H. YOUNG,
Instructor in Engineering Mechanics, University of Michigan, Ann Arbor.

1. Introduction.
Steel columns used in structural engineering are frequently made of two

or more Channels laced together by diagonal bars or battens to form a com-
posite member. Two common types of built up columns are shown in Fig. 1 a
and b.
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Fig. 3

When the column deflects laterally under load, cross sections are no
longer perpendicular to the line of force, and transverse shearing forces are
introduced at each cross section. The diagonal bars or battens must be strong
enough to resist these shearing forces and thus insure that the composite
column will always act as a unit.

It is present day practice to design the lacing of such compression
members by empirical rule. For example, the American Railway Engineering
Association specifications require that the lacing or hatten bars shall be
designed to resist shearing forces not less than .025 times the total com-
pressive force on the column, and further, that the spacing shall be such that
the slenderness-ratio of the unsupported length of Channel shall not be greater
than 40. Such specificatioms are backed by a great deal of experience, and
for usual proportions furnish a satisfactory basis for design.

It seems desirable, however, to have some theoretical basis for the
design of these lacing bars which will take account of the dominant factors
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and be applicable over a large ränge of proportions and loading conditions.
This paper is an attempt to evaluate theoretically the possible hsearing foraes
which may arise in compression members under various loading conditions.

2. Notations Used.
°yp yle'd point stress of the steel
E modulus of elasticity of the steel
A cross-sectional area of the column
k core radius of the cross section
r radius of gyration of the cross section
/ moment of inertia of the cross section
/ length of the column
6 center displacement of an initially curved column
e0 — larger of two end eccentricities
ex smaller of two end eccentricities
l\r slenderness-ratio of column
e0jfc eccentricity ratio
P compressive load on the column

n2 EI
Pe —^— Euler load for the columnf*
PIA average compressive stress
V — transverse shearing force
VjA average transverse shearing stress
x,y coordinates

a ¦—

cp

P_
ET

r f AE
yj y«2 — 2 «COS 99+I
ß 1 — « COS cp.

3. Stresses due to Bending and Thrust.
Since the shearing force which may arise at any cross section of a loaded

column depends upon the deflected form of the column axis and the load on
the column, it is necessary to consider briefly the general behavior of columns
under load before attempting to evaluate the transverse shearing forces.

The chief factors which äffect the behavior of columns under load are:
imperfect elasticity of the material, initial crookedness of the axis, and
noncentral application of the load.

It has been shown that the effect of both initial crookedness and
noncentral application of the load on the behavior of a column can be well re-
presented, either by some definite form of initial curvature or by some de-
finite eccentricity of applied load1). When a column is taken with an initial
curvature of the axis in the form of a half sine wave having at the center an
initial displacement ö as shown irr Fig. 2, there will always be a definite

A) See E. H. Salmon, "Columns", p. 26—32, Oxford Tech. Pub.

31



482 D. E- Young

relation between the load and the maximum fiber stress due to combined
bending and thrust which can be obtained from equation (6).

Defining the ultimate load for the column as that which first produces
yielding in the most stressed fibers, the maximum fiber stress may now be
set equal to the yield point stress, giving for the ultimate load on the column
(to first produce yielding) the equation,

— ^ - (1)
1 +

It is probable that the extent of initial crookedness in a column will
increase with the length of the column. Hence S in equation (1) should be

taken as some function of /. Taking, for example, d -r^-r, it is possible
P lto plot from equation (1) a curve showing values of -j- against — to always
f\ r

produce failure (by yielding). For a steel having oyp 40000 lbs. per sq. in.
such a curve is shown in Fig. 8 a. Thus if general jmperfections are re-
presented by an initial curvature the problem of determining the load to
forst produce failure (by yielding) is completely solved by a curve like
Fig. 8 a.

A large percentage of columns as used in structural engineering are
found in rigid frame construction where definite secondary end moments
arise due to the rigidity of the joints. Such members are loaded as shown
in Fig. 3 a. For ordinary proportions both the axial load P and the end
moments M0 and Mx are proportional to the external loads on the structure.
This means that such loading as shown in Fig. 3 a can be considered
equivalent to applying the loads P with eccentricities e0 and eu as shown in
Fig. 3 b, such that P X e0 M0 and P X et M±. An analysis of the case
represented in Fig. 3 b, to determine the load first producing failure (by
yielding) can now be made in the same manner as was just done for the
initially curved column2). The shape of the elastic line of the bent column
is given by equation (13). The numerically larger eccentricity is taken as e0,
and when the eccentricities are on opposite sides of the axi% e1 must be
considered as negative. Writing, as before, the relation between load and
maximum fiber stress in the most stressed fiber, and setting this maximum
stress equal to the yield point, gives for the ultimate load,

or

in which cp -,/-4y/-

P _ Gyp

where a

(2 a)

P
__ üyp

A e
1 + ~- (w esc cp)

i p
e0

-^-=r and yj y a2 — 2 a cos cp -f- 1,

2) See writer's paper "Stresses in Eccentrically Loaded Steel Columns", Publications
of the International Association of Bridge and Structural Engineering, Vol. 1, p. 507,
Zürich, 1932.
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Equationc (2 a) holds ,as long as 0<cos_1a, while for values of 0^cos—1a
equation (2 b) applies3).

p
For a given value of a and various values of the ratio -~ it is possiblek pto plot from equations 2 (a) and (b) a family of curves showing -r-as a

/function of — to produce failure (by yielding). For a steel having oyp=^
e

40000 lbs. per sq. in. and -~ ranging from 0 to 1.0 (which includes the usual

ränge of secondary stresses) these curves are shown in Fig. 8 b, c, d, e and f
for a 1.0, 0.5, 0.0, —0.5 and —1.0 respectively. Thus the problem of
determining the load to first produce failure (by yielding) due to any
combination of end eccentricities of load, is completely solved by such curves as
shown in these figures.

4. General Method of Procedure.
It will be logical to base the design of details, such as diagonal bars or

battens, to resist the maximum shearing force which may arise at any cross

^j P-^r-'ryb

(a) (b)
Fig. 4.

/max.

Fig. 5.

section, when the load is such as to first cause yielding in the most stressed
fibers due to combined bending and thrust. In this way the strength of the
column in shear will be consistent with its strength in bending and thrust.

Since in the development of equations (1) and (2) no account was taken
of the additional lateral deflection due to shearing distortion of the cross
section, the curves in Figs. 8 will not be rigorously applicable to columns
of the built-up type. In general the effect of this additional flexibility (due
to shearing distortion) will be, 1) to decrease the ultimate load for the
column (below that given by the curves in Figs. 8), and 2) to increase the
maximum angle of inclination of cross sections to the line of action of the
force. These two factors will tend to cancel one another in evaluating the
shearing force, and it seems justifiable to neglect such additional
deformations when evaluating the shearing force on any cross section. Further,

from a practical stand-point, most columns will be relatively shoirt (— < 801

and for such proportions the effect of deformation of the axis on the shearing
force will be small. Consequently it will be on the safe side to evaluate the
shearing force on the basis of the ultimate load as taken from the curves in
Figs. 8.

In all cases a profile section of the type shown in Fig. 4 a3 having
extreme proportions such that the core radius k will be equal to the radius of
gyration r, will be used. Such a type of cross section will closely approxi-

3)! The l/r ränge of application of equations (2 a) and (b) is fully discussed in the
writer's paper, Loc. cit.
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mate to the cross section of the usual type of built-up member as shown in
Fig. 4 b.

The general procedure to be followed throughout the paper may now
be briefly stated: The shearing forces which may arise in columns under the
loading conditions represented in Figs. 2 and 3 are to be evaluated. In all
cases the problem will be treated for a column of such cross section as
represented in Fig. 4 in which k r may be taken. In each case the maximum
shearing force will be evaluated for the loading which first produces failure
(by yielding) according to the curves in Fig. 8. Thus the lacing bars or battens
will be designed to come to yielding due to shearing forces at the same time
that the most stressed fibers come to yielding due to combined bending and
thrust.

5. The Axially Loaded Pin-Ended Column with Initial Curvature.
Consider the pin-ended column shown in Fig. 5. The initial shape of

the axis (without load) is represented by the equation,
7t X

y0 d sin — (3)

Writing the relation between curvature and bending moment at any cross
section gives,

*'(£-^)=-" «>

d2 v
Obtaining the value of —^ from equation (3) and letting the quantity

— q2 equation (4) becomes,

d2y jz2 jzx

This represents the differential equation of the elastic line of the bent bar
and its Solution for the end conditions of Fig. 5 is

dn2 tiX x

y 1?=^- sin — (6)

The slope of the elastic line at any point will be,
dy dn2 n nx
-dx ~^-vT2"" T cos ~T (7)

The slope will be greatest at the end or when x 0, and for this value of x
equation (7) becomes,

zv2 EIwhere Pe ——— the Euler load for the column. The maximum shearing
force is4)

4) For small angles sin <$ tan & -~ may be taken.
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dx\
Substituting the value of (—) from equation (8) and dividing both sides

\dy/x=o
of equation (9) by A gives,

V P dn '

A A l '-£
(10)

Equation (10) gives the value of the shearing force for any value of
P P
— and d. Since, however, -- is to be taken from the curve in Fig. 8 a, there

is always a definite relation between — and d as given by equation (1). This
/

equation for a fixed value of — may be considered as representing this re-
P r

lation between — and d. Solving equation (1) for d and substituting the
f\

value obtained into equation (10) gives,
V

~Ä
_k

Equation (11) now gives the maximum value of the shearing force which
P

can arise for the assumed curvature when — is taken from the curve in
A

Fig. 8 a. Remembering that for the cross section of a built-up column k may

7-k-xl (11)

ffhiM. (al

I-« 7
P(e0-et)

1 l

P(e0-et) fb)
l

Fig. 6.

H l

e*P

be taken equal to r, it is possible to plot a curve from equatin (11) showing
V lthe average shearing stress — as a function of the slenderness-ratio —. Such
f\ r

a curve is shown in Fig. 9 a.
From an examination of this curve it is seen that the maximum shear

occurs for columns having a slenderness-ratio of about 120, which is greater
than the usual allowance for slenderness made by specifications. For columns
of usual proportions the maximum average shearing stress varies from about
300 lbs. per sq. in. to 600 lbs. per sq. in. It will appear later that for short
columns some accidental eccentricity of load at the ends may give rise to
much larger shearing stresses, and that the details for short columns should
be designed on a basis of s,uch loading rather than initial curvature of the
axis to represent the effect of imperfections.
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6. The Eccentrically Loaded Pin-Ended Column.
Consider the general case of the eccentrically loaded column as shown

in Fig. 6 a and b. Writing the relationship between curvature and bending
moment at any cross section gives,

BI% -PJ-P« + p(*^)> 02)

The Solution of this equation for the end conditions of Fig. 6 will be
sin<7jc smqxp _
sin gl ° tan ql

as hpfni
EI

smqx smqx e0 ^, x

y e0cosqx + ei^JI-e0~--e0 + Tx-1 x (13)

in which q 1/-—- as before. The slope of the elastic line at any point is
given by,

dy cos^x cos<7£ e0 exJL -ge0*nqx + 9el-^-qe01^+ir-T (14)

So long as e0 and e1 are on the same side of the axis (a — > 0) as

represented in Fig. 6 a the maximum shearing force will occur at the end of
the column where x l and will be,

Substituting x / into equation (14) gives for the absolute value of the
slope,

'#) =^r^L=^8^+a_,i (16)dxlx i l L sin ql J v 7

Placing this value of l-^-l into equation (15) gives,
\ax / x i

11 / p
Letting the quantity (1 —acos# /) ß and ql ~\/~rE===®> an(J dividing
both sides of equation (17) by A gives, r ' ^

^ ^y[0/5csc0] (18)

This equation is valid for all values of a from + 1.0 to 0.0.

When e0 and e± are on opposite sides of the axis (a — < 0), as shown
e°

in Fig. 6 b, the maximum shearing force will occur at the inflection point
along the column and will be,

„=*&=«>+„(*) (IB

To find the maximum value of -~, equation (14) may be differentiated with
respect to x giving, dx

d*y 9 q2ex smqx 9 sinqx
-TT —q2e0cosqx—"—l- v + q2e0 -t—~ (20)dx2 v o v sm ql v tan ql x f
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Setting equation (20) equal to zero and solving for x gives,

sm ql xi&nqx— f (21)
cos ql — « '

This equation locates the inflection point where the slope is a maximum and
is seen to give x l when a is taken equal to zero.

Substituting the value of x from equation (21) into equation (14) and
simplifying gives for the absolute value of the maximum slope,

IL=f[-si^7V«--2«cos?7TT + «-,] (22)

Letting the quantity y a2 — 2 a cos q l -\- 1 yj and q l 0 and substituting
equation (22) into equation (19) and dividing both sides by A as before
gives,

^ ^-y[0^csc0] (23)

This equation is valid for all values of a from 0 to —1.0.
Having a given, equation (18) or (23) will now give the maximum value

Pof the average shearing stress for any given values of -j- and e0. Since,
P

however, — is always to be taken from the curves in Figs. 8, a definite re-
P

lationship exists between — and e0 as given by equations (2). These equations
/for a fixed value of — may be considered as representing this relation

P r
between— and e0. Solving equation (2a) for e0 and substituting the value

fl
obtained into equations (18) and (23) gives,

A
k

for positive values of a and,
V_

Ä _k
for negative values of a. Solving equation (2 b) for e0 and substituting the
value obtained into equations (18) and (23) gives,

V 1 r PI 0ßt tK-i1t (18b)

-j-[<>>/» — ~J0(?csc0 (18a)

y[^- ^-J0ycsc0 (23a)

t[^-^\0 <23b>

for positive values of a and,
V_

~A

k

for negative values of a.
These last four equations now give the maximum value of the average

P
shearing stress when — in these equations is taken from the curves in Figs. 8.
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It must be remembered that equations (a) hold only for values of — such
r ithat 0 <cos~1a as stated previooisly, while for greater values of —

equations (b) must be used. Again taking k r it is possible from the four
equations (18 a) and (b) and (23 a) and (b) to plot curves showing theVI e
average shearing stress — as a function of — for various values ofa and -~.
Such curves are shown in Figs. 9 b, c, d, e and f for the same values of a and

-- already considered.

These curves may now be considered as completely solving the problem
of shearing forces in eccentrically loaded columns for given eccentricities of
load. Comparison of the curves for various values of a shows that the most
serious loading condition for short columns is equal eccentricities of load
on opposite sides of the axis (a — 1.0) as given in Fig. 9 f.

To represent the possible extent of general imperfections, the column
was previously taken with an initial curvature of the axis in the form of a

half sine wave having a center displacement d ——. It will now be seen

that for the most serious condition of shear in short columns the column
should be taken with some equal eccentricities of load on opposite sides of
the axis, to represent general imperfections. Taking, for example, such eccen-

p
tricities as represented by -~ 0.4 this curve in Fig. 9 f may be used to

represent the effect of imperfection. The <5

-j^-r curve in Fig. 9 a together

with the -~ 0.4 curve in Fig. 9f may now be considered as completely

solving the problem of shearing stresses in pin-ended columns due to general
imperfections.

7. Critical Combination of Load and Eccentricity for Maximum
Shear.

From equations (18) and (23) it is evident that there is some value ofPI V
—r for each value of — at which the average shearing stress — will be a
A r j A
maximum. That is, for each value of — there is some combination of load

r
and eccentricity to produce failure (by yielding) which will cause a maximum
shearing stress. Since the eccentricity has already been expressed in terms of
the load in equations (18 a) and (b) and (23 a) and (b) these equations may

P
now be differentiated to determine for what value of —r they will be a

'®
maximum. Making this differentiation and setting the value of ——^ equal

d
]

P kA/ l
to zero in each case it will be possible to determine — as a function of — to

A V r.

always give the maximum possible average shearing stress —r-, When this is
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done the equations for — are as follows:

For equation (18 a),

°yp— A

T «sin0l
0^cot0-—j—|

For equation (18 b),

-p-=a0sin0[ß ^Iß w2\
UJ" A

For equation (23 a),
~P

°yp- A

For equation (23 b),

=0 rCOt0

vyp

« sin 01

\p2 1

(24 a)

(24 b)

(25 a)

(25 b)

Valeurs de P/A en WOOl/iznes pan pouce canne.

Werte P/A in 1000Pfundje Quadnatzo/t Values of P/A in WOOfös. /so. in.
130 134 13.6 14.2 14.6 15.0

\o.20
<0
QJ

£0.16

S

«S 0.6

0

ft
fKJ

i

/$
$y r>

1.0 1.4 f.8 2.2 2.6 j.ot
Valeurs de q> en Longueup d'Anc —Werte V/n Bogenmass — Values of<pin nad/ans.

Fig. 7.
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Valeurs de wA en 1000 livres panpouce carre
Werte PZA in 1000 Pfundpro QuadnaZ2oZZ

Values o/ZfA in 1000 Ibs.pen so. in.

Valeuns of^/Aen JOOOlivnes panpouce canne
Wen/e Z*ZA in 1000Pfund pno QuadnaZzo/i
Values of pfA in 1000 Ibs.pen sq. in.

^ E»

SPS

§*Si
3>-S S

Sgl
§sS?Q

nodiji jrt

Valeups de PZA en 1000livnes panpouce canne
Wen/e pZA in /OOOPfundpno Quadna/zo//
Va/ue$ ofP/A in 1000 /bs.pen sy Zn.

1

~——-i<4i - ~~'

// i ///\//f/y &
rO'aq

I ii

Ci

i /ZJ_

Valeuns de plAen lOOOlivnes panpouce canne
Werte PZA in 1000 Pfundpno Quadna/zo//
Values of P/A in 1000Ibs.pen sc/.In.

Ä.-^

>l*rs
i s

jfio3

IZa/euns de ~ZAen 1000/ivnespappouce canne
Wente PZA in 1000 Pfundpro Quadna/zo//
Values of/'ZAin 1000 /As. pen so in.

**

/t*
CS

CS
0.6

CS
0.2

/ W v>
Jo-&

-J.
7

R

i

I\

Valeuns de ptA en 1000ZZvnes panpouce canne'
WenZe P/Am 1000 Pfundpno Quadna/zo//
Values of PZA in 1000 Zbs pen s<j. in.

o § CS CJ CS

i 3

XV*
CS

1

0.8 ys
0»

l—o,.

0.2

^- -¦ .-—

__>fk <$^1^
/ \J^

1

h
Fig. 8.
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With the exception of (25 b) these equations, representing the criteria
for maximum shear, must be solved graphically. Take as an example the

1200
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1

1

\

i
'

II
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1

1

0 im?£-
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o

7 20 *o e ¦> eO fC 0 1*0 ISO 180 2C
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'0
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et -tfO
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<Trpm40000,/aHl

Valeuns de lln Wente 'In Values of 'A
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•>§>
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Fig. 9.

0 40 SO 80 100 120 140

Valeuns de l/n — Wente l/n — Values of l/n

180 ZOO

Solution of equation (24 b) for a -j- 0.5. For this value of a the equation
can be reduced to,

p- ys,n0 ir^ 1

^cos0 1,25 — cos0

Setting the left side of this equation equal to / it is possible to plot a curve
P

showing values of / against values of - In the same manner, setting the
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right side of the equation equal to / it is possible to plot a curve showing
values of / against values of 0. These two curves are shown in Fig. 7. Now

p
by choosing some value of — the corresponding value of / can be read from

/ A rp~
the first curve and the value of 0 from the second5). Since 0= — 1/——,PI r fAE
knowing — and 0, — can now be computed. In this way a series of values

/ r Pof — for various values of — can be determined, and a curve plotted showing
r P A lcritical values of — as a function of — for maximum shearing stress. TheArcurve for this particular case is shown in Fig. 8 c.

In this manner all of the criterion equations (24) and (25) were solved
P lfor critical values of — as a function of—. For each value of a the curve of

p A r
critical — is shown in Fig. 8. A study of these curves shows: 1) that as a

7
decreases from +1.0 to — 1.0 there is a continually larger ränge of — in

P r
which the critical value of -—- is zero. This, of course, means a zero load at

A
an infinite eccentricity, or causing failure by bending alone without direct
thrust. That is, the shearing force always increases with eccentricity and
there is practically no question of maximum shear. 2) That at a certain value

/ Pof — (depending upon a) the critical value of — begins to increase rapidlyr G
until it becomes equal to —^-, after which it »changes very slowly (for
negative values of a, not at all). 3) For the steel chosen (oyp 40000 lbs.

/ P
per sq. in.) at — 149 the curve of critical — intersects the Euler curve,r f A
which means that for values of — above 149 the column should be axially

r
loaded to produce maximum shear.

Returning to equations (18 a) and (b) and (23 a) and (b) and now using
P P

values of — in each case from the curves of critical—,-, the maximum possibleA V A lshearing stress — can be plotted as a function of —, for each value of a.

This curve, for each value of a, may be considered as an envelope to the
curves which might be obtained by using all possible combinations of load
and eccentricity to produce failure (by yielding). The curves of critical
average shearing stress are shown for each value of a in Fig. 9.

• 8. Practical Conclusions.
From a general study of the curves showing the average shearing stress

Tasa function of —, it is evident that an axial load on an initially ourvedAr'column gives rise to the greatest shearing stress for slender columns, while

5) In this particular case there happen tou be two values of 0 and hence two values
of Ijr for each value of P/A (see Fig. 8 c).
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for small values of—, equal eccentricities of load on opposite sides of the

axis (a — 1.0) is the most serious loading condition.
To design the details of built-up steel columns to resist a shearing stress

of 650 lbs. per sq. in. would cover almost every possible case except ex-
tremely short columns with rather large end moments which tend to produce
contraflexure of the axis. For these cases more careful investigation of the
shearing stress on the basis of the curves presented should be made. It is of
interest to note that an old form of the American Railway Engineering
Association specifications for shear in columns, now abandoned, called for the
lacing bars or battens of built-up steel columns to be designed to resist an

average shearing stress of 600 lbs. per sq. in. for all values of —

9. Summary.
A theoretical investigation of possible shearing forces in built-up steel

columns is made for an axially loaded pin-ended column, in which the effect
of imperfections is represented by an initial curvature of the axis in the

form of a sine wave having an initial center displacement d j?^- The

shearing stress is evaluated for the loading which first produces failure by
V

yielding in the most stressed fibers. The curve showing shearing stress —
/

as a function of — is shown in Fig. 9 a.
r

A similar investigation is made for the column in rigid frame construction
in which various combinations of end moments are considered in addition to
the axial load. The effect of these end moments is studied by taking the
compressive forces at corresponding eccentricities. Here, as before, the
shearing stress is evaluated for the loading which first produces yielding

V
due to combined bending and thrust. The shearing stress — asa function of
/

—, for various amounts and combinations of end eccentricities, is shown in

Figs. 9 b, c, d, e and f.
Criteria are developed for the critical combination of compressive force

and eccentricity to produce a maximum shearing stress for a given column.
PFrom these criteria, curves showing the critical value of — as a function of

/
— to produce maximum possible shearing stress are shown in Figs. 8. The
r lcritical shears as a function of —, based upon these criteria are shown in
Figs. 9. r

From an examination of the curves in Figs. 9 it is concluded that for
almost any possible case of loading the lacing bars or battens of built-up
steel columns may be safely designed to resist an average shearing stress
V
~j 650 lbs. per sq. in. Extremely short columns with large secondary end

moments tending to produce contraflexure, may obtain greater shearing
stresses than 650 lbs. per sq. in. and should be more carefully investigated
on the basis of the curves presented.
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Resume.
L'auteur etudie d'une maniere theorique les possibilites de mise ien

oeuvre d'efforts de cisaillement dans les poteaux metalliques composes, dans
le cas particulier d'un poteau se terminant en pointe et soumis ä une charge
axiale; les imperfections dans la Constitution de ce poteau etant materialisees
et representees par uine courbure initiale de son axe sous formte d'une sinus-
oi'de accusant une deformation initiale au centre 3 1/400. L'effort de
cisaillement est 'determine pour la charge qui correspond ä l'amorce de la
fracture par ecoulement dans les fibres les plus chargees. La courbe qui

V ltraduit les variations de l'effort de cisaillement —r en fonetion de — esf
A r

representee sur la figure 9 a.
La meme investigation est effectuee pour le poteau qui fait partie d'un

ensemble constitue par une charpente rigide dans laquelle on fait intervenir,
outre la charge axiale, les moments d'extremite, sous forme de combinaisons
diverses. L'auteur etudie Finfluence de ces moments d'extremite en faisant
intervenir les efforts de compression qui se manifestent pour des
excentricites correspondantes. Ici, comme precedemment, il evalue l'effort de
cisaillement correspondant ä la charge pour laquelle se manifeste le debut
de l'ecoulement sous Finfluence de la flexion et de la poussee combinees.
Les figures 9, bäf, representent les variations de l'effort de cisaillement

-j-en fonetion de — pour differentes valeurs et differentes dispositions des

excentricites d'extremite.
II etablit des termes de comparaison pour la combinaison des efforts

de compression et .des excentricites susceptible de produire un effort de
cisaillement maximum pour un poteau determine. A partir de ces criteres,
sont etablies les courbes de la figure 8, qui traduisent la valeur critique de
P l
— en fonetion de—qui correspond aux efforts maxima possibles de cisaillement.

La figure 9 exprime les valeurs critiques du cisaillement en fonetion

de — determinees d'apres les criteres ci-dessus.

L'examen des courbes de la figure 9 permet d'arriver ä cette conclusion
que pour presque tous les cas de charge possibles, les elements d'entre-
toisement et d'assemblage des poteaux metalliques composes peuvent etre
calcules, avec toute securite, pour resister ä un effort de cisaillement moyen:

—_== 4,5 kg/mm2.
fx

Lorsqu'il s'agit de poteaux extremement courts accusant des moments
d'extremite secondaires importants tendant ä produire des inflexions dans
la courbure, on peut rencontrer des efforts de cisaillement superieurs ä
4,5 kg./mm2; il importe de pousser alors l'etude plus loin, sur la base des
courbes indiquees.

Zusammenfassung.
Der Verfasser untersucht in theoretischer Weise die Möglichkeiten, wie

die Querkräfte auf zusammengesetzte Stahlstützen wirkend, eingeführt werden

können und dies für den Sonderfall einer auf Spitzen gelagerten Stütze,
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die durch eine Axialkraft beansprucht ist. Die Ungenauigkeiten des
Aufbaues der Stütze, dargestellt durch eine ursprüngliche Krümmung ihrer Axe
in Form einer Sinusoide erzeugen eine ursprüngliche Deformation in der

Mitte von d= jz-z- Die Querkraft ist bestimmt für die Last, die dem Beginn

des Bruches durch Erreichen der Fließgrenze in den stärkst beanspruchten

Fasern entspricht. Die Kurve, die die Änderung der Querkraft — in Funk-
/ A

tion von —- darstellt, ist in Fig. 9 a gezeichnet.

Die gleiche Untersuchung ist für eine Stütze durchgeführt, die Bestandteil
einer steifen Konstruktion ist, in der aeben der Axialkraft die Einspann-

momente in verschiedenen Kombinationen berücksichtigt werden. Der Autor
untersucht den Einfluß dieser Endmomente, indem er die Druckkräfte hinzutreten

läßt, die sich für die entsprechendem Exzentrizitäten ergeben. Hier
wie zuvor wertet er die der Last bei Fließbeginn unter dem Einfluß von
Druck und Biegung entsprechende Querkraft aus. Die Figuren 9 b bis f stellen

die Änderungen der Querkraft —- in Funktion von — dar für verschiedene
A r

Werte und Anordnungen der Endexzentrizitäten.
Er führt Vergleichsglieder ein für die Kombination der Druckkräfte und

der Exzentrizitäten, die geeignet sind, für eine bestimmte Stütze eine
maximale Querkraft zu erzeugen. Von diesen Kriterien ausgehend, sind die
Kurven der Fig. 8 aufgestellt, die die funktionale Abhängigkeit des kritischen

P lWertes — von — zeigen, der den maximal möglichen Querkräften entspricht.Ar iFig. 9 drückt die kritischen Werte der Querkräfte in Abhängigkeit von —,
bestimmt auf Grund obiger Kriterien, aus. r

Die Prüfung der Kurven der Fig. 9 gestattet die Folgerung, daß für
beinahe alle möglichen Belastungsfälle die Verriegelungen und Verbindungsglieder

für zusammengesetzte Stahlstützen mit aller Sicherheit für die

Wirkung einer mittleren Querkraft von —-= 4,5 kg/mm2 berechnet werden können.
f\

Falls es sich um außerordentlich kurze Stützen handelt, die bedeutende
sekundäre Endmomente angeben, welche zu einer Bildung von Wendungen
in der Krümmung neigen, so kann man Werten der Querkraft von mehr
als 4,5 kg/mm2 begegnen; man treibt alsdann das Studium an Hand der
beschriebenen Kurven weiter.



Addenda.

P. \ Panneaux ä \
S. 1 128 Fig. 2. 3 | Feldweiten zu

1 25' 75'.
P. J l Panels ä J

S. | 272 et 273 Planche 8 et 9.

P. J

Dosage pour le beton arme courant:
350 kg de eiment ä durcissement rapide

0,800 m3 de gravillon ä l'anneau de 15 mm
0,400 m3 de sable.

Eprouvettes prismatiques de 7,1 x 7,1 x 28,4 d'abord eprouvees ä la traction sous
moment constant. Les morceaux ainsi obtenus sont ensuite essayes ä la compression
suivant une surface de 7,1 x 7,1.

Nota: Tous les resultats, sans aucune elimination, sont classes par valeur decroissante.
Les courbes tracees en pointille representent des ensembles de resultats qui suivraient la
loi de dispersion des erreurs accidentelles.

P. \ Fissure.
S. [ 339 Fig. 30. | Anriß.
P. J l Crack.

In den Abhandlungen Steinman und Timoshenko wurde das englische „truss" vielfach

mit „Versteifungsfachwerk4' oder kurz „Fachwerk" übersetzt, wodurch der allgemeine
Sinn eines „Versteifungsträgers" schon für große Ausführungen modifiziert erscheint.

Le mot anglais „truss" dans les Memoires de Steinman et Timoshenko füt quelque-
fois traduit par „poutre en treillis", „poutre en treillis de raidissement", „element raidisseur
continu en treillis", ou „element de renforcement continu en treillis" ce qui modifie le sens
general de „poutre raidisseuse" pour le cas special de ponts ä grandes portees.

Errata.
R
s.

'

c 283 Planche 5. Lisez m 10.

p. J

Diagonale AB: — 8 kg/cm2
Montant BC: + 9 „
Diagonale CD: -8,4 „
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