
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 2 (1933-1934)

Artikel: Suspension bridges with a continuous sgifening truss

Autor: Timoshenko, S. / Way, S.

DOI: https://doi.org/10.5169/seals-3413

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-3413
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SUSPENSION BRIDGES WITH A CONTINUOUS
STIFFENING TRUSS.

PONTS SUSPENDUS AVEC POUTRE EN TREILLIS DE RAIDISSEMENT
CONTINUE.

HÄNGEBRÜCKEN MIT DURCHLAUFENDEM VERSTEIFUNGS¬
FACHWERK.

S. TIMOSHENKO and S. WAY.

1. Introduction.
The theory of Suspension bridges which takes into consideration the

deflection of the stiffening truss has been applied hitherto only in the case
of stiffening trusses with hinges at the supports1). In the present paper
a method of analysis for stresses and deflections in Suspension bridges with
a continuous stiffening truss is given. General equations are applied to a
numerical example and it is shown how the conditions of continuity of the
stiffening truss at the supports affects the cable tension. Comparison of
cable tension for continuous and for hinged stiffening trusses for various
kinds of loading is also given in the paper.

2. Nomenclature.
We assume we are dealing with a three span symmetrical Suspension

bridge as shown in Fig. 1:

E ;e t'Mt
Fig. 1.

The two outer spans are of the same length. The distances xu x and x2
are in each case measured from the left end of the span. We let:
E,I Young's modulus and the moment of inertia for the stiffening truss

section.
p The live load intensity at any point.
w, wx Dead load intensity at any point in main or side spans respectively.
Hw Horizontal component of cable tension due to the dead load.

x) Dr. D. B. Steinman in the paper "General Deflection Theory for Suspension
Bridges" presented before the Chicago Meeting of A. S. C. E., June, 1933, discussed
the case of a continuous stiffenimg truss. In that paper, however, the conditions of
continuity at the (Supports of the stiffening truss were overlooked, thus the theory presented

at that time cannot be considered as saüsfactory.
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We shall assume the cable slides over the tops of the towers, so that
Hw is the same i,n all spans.

When the live load p is applied, the cable and truss will deflect equal
amounts, if we neglect stretching ot the hangars. Also we will have ;an
additional cable tension, //, the same in all spans. We let r\u rj, tj2 Live
load deflections of cable and stiffening truss.

nw

3. Basic Equations.
The equations of the deflection of the cable with zero live load are:

By integration we find

4fx(l-x)t __ 4flx1(ll — xl)m _ 4f2x2(l, — x2)
y p > y\ — ji * J2 — j2 u;

where, /, f± and /2 are deflections at the middle points:

Considering for the time being the center span and assuming some live
load p acting, the equation (1) for the cable becomes:

(Hw + H)^(y 4- i,) - (w+q) (3)

where q is the additional hangar pull transmitted to the cable due to the
live load. From (1) and (2) we find:

q^,!w-Hw(\+ß)^Ll (4)

The load transmitted to the stiffening truss will be

p-q=p-ftw + Hw(\+ß)^
The equation of vertical equilibrium for any element of the truss then gives:

The load p—ßw may be regarded as the negative second derivative of the
bending moment M0 due to this load and the moments at the supports.
Then (5) becomes:

and by integration we obtain

EfL^ -M0 + Hw(l+ß)v (6)
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Similarly, for spans 1 and 2 we obtain:

dxxEI^T=-Mo+ ffw(l + ß) >/i (7)

d2 o

EI~d^ ~Mo+ Mw{l + ß) ''2 (8)

The equations (6), (7) and (8) hold for the stiffening truss of a
continuous Suspension bridge as well as for the truss of a, bridge with hinged
spans. '

In addition to equations (6), (7) and (8) we have a fundamental equar
tion2) for the determination of //. If we assume the harigar pull is uniformly
distributed along the spans for purposes of finding H, we have:

HLS

where

4- (otLt TT '/i dxi + 77 U dx -f TT r/2 dx2 (9)

(10)

and s, 5X are the are lengths along the cable, t is the temperature rise, co the
coefficient of thermal expansion and A the cross sectional area of the cable.

The problem of a Suspension bridge presents two tasks, first to find
the deflection rj, r)u rj2 in terms of H, and second to find H by a cut and
try method using equation (9).

4. Relation of the Suspension Bridge Problem to the Problem
of a Continuous Beam with Axial Load.

Equation (5) will be recognized at once as the differential equation
for a beam with lateral load (p—ßw) and axial load Hw(\ +/?), as shown in
Fig. 2:

-ßwfit» -ß»ZESBEESa^M^^
z£ 3£A/<wfc ^ r=h-„(uß)

Fig. 2.

H^^^ *
•*-x

e; fy

Fig. 3 a. Fig. 3 b.

The method of Solution of such problems as that shown in Fig. 2 is
well known. For the Solution of a problem of this type it is convenient to
have at hand certain formulae for the simpler structures shown in figures
3 a and 3 b.

2) See Johnson, Bryan and Turnfaure, Modern Framed Structures, p. 283, Vol. II.
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For the bar shown in Fig. 3 a we have the following equations for the
angles &u 6>2 and deflection rj.

1
© =**L{ i L_V @ =^f_J1 El \KL tanh KL K*LV' 2 Ef\K2L2 KL sinh KL

:)]

in which K y Et

Et
M sinh Kx Mx
K2 sinhKL

~^~
K*L

OD

For the bar in Fig. 3 b we have

Q smhK(L-c) Q(L-c).
1 P sinh/CL "*" PL '

Deflections at points on the left of Q are:
Q sinh Kc

Q9=-Q sinhKc +.gf (12)U* P sinh KL ^PL U '

' PK sinh KL
and on the right of Q:

Q sinh /C(L — c)

sinh /Cx -f-
Qcx
~PL

s\n\\K(L — x) + Q(L-c)(L-x)

(13 a)

(13b)' PKsinhKL ~—^v- ~> • pl
The deflection due to a distributed load of intensity q may be found

by using superpositon, i. e. substituting qdc for Q in the above formulae
and integrating with respect to c in the proper limits.

5. Application to the Case of Partial Loading in the Main Span.
We shall assume'the live load extends from x 0to x min the main

span as shown in Fig. 4.

VZZZZZ/Zl

¦*-/57-J

Fig. 4.

—f̂ ^777mm
U-m —

^kw//;/////////am»A
hw+tf

Fig. 5.

tf2 ß*-ßWi
P

*2 (ÖJw

Ml* -ft,

(o)

Fig. 6

The stiffening truss may be regarded as a beam with axial and lateral
loads as shown in Fig. 5.

The free body diagrams for the three spans are shown in Fig. 6.
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For the bar in Fig. 6 (a), by using equations (11), (12), (13 a) and (13 b),
we obtain:

Mihi 1 L1 + [ll\-(-ßwi)*mhKc (-ßwjcl _Wl Ef IKli tanh Kk K2lA J0L P sinh ATA Plx J

MJA l l 1 ßw,(cosh Kk-\) ßwxk
Ef IKli tanh KK K2lA PKsinh Kh 2P {l4>

For the bar in Fig. 6 (b):

==M%llX 1 1 1 ßw^cosh Kk — \) ßwik v

^2 Ef [Kh tanh KK K^A PK sinh /CA 2P U;
\-M2 sinh K(k-x,) MM-x,)] ¦ (-/g^i)^/2 Ell K2 sinhAT/i

~t~
/C24 J "^ /'A'2

rd-cosh/CA) „ „ 1 /JwirA*« JC22 11 /i,v* L Sinh/C4
Smh KXi + C°Sh H " -P-h T - ^J (17)

For the bar in Fig. 6 (c) the contributions of the load p will be:

[l(-psmhKc pc\ p \-(cosh Kl-coshKn) l2-n2T,-{^ )XP~1MÜ<1 + Pl)dc=p[ KshrhKT + ^H <18)

f (-p sinn Kjl-c) P(l-c)\ p \(\ - cosh Km) m*\
-^2)^)r~P^n~Kl-^ PI )dc=p[-ksinhKl + 2l\ (19)

In the regions m and n the deflections due to the p load are:
l-x i

t f[-/7sinh/C^ • u „ /^*1,, f [-p sinh K(l-c) ^<''->' J Ugsinh*/Smh^ + -Pi\d° + j } PKsinhKT *
><sinhK(l-x) + ,JLMz-l]dc

p Y-(cosh K(l-x)-cosh Kn) [(l-x)2-n2]x]
P L /C2sinh/C/

S ** + 21 J +
/> f(l — coshKx) „,, v x2 (/-*)]+ P [ K2 sinh Kl

SU K{l~x) + ^2T~\ m
[A-P sinh K(l-c) „„ v P(l-c)(l-xj\,M> U PKsinhKTs,nh*.<'-*> + Pi—\dc

_ p \(\ - cosh Km) /rc2(/-x) ,91 v- P L-^ sinh /C/
S,nh K{l~x) + ~^T~ (21)

If, to these angles and deflections, we add the angles and deflections
produced t>y the uniform load ~ßw we obtain angles and deflections for the
bar in Fig. 6 (c) in the following form:
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p ["- (cosh Kl - cosh Kn) l2-n2~\ M,

+
K sinh Kl

M,l\ 1

wr
7 L/

![£7 LA:/ tanh Kl K2/2j

21 \
x EI lK2l2

ßw(cosh Kl-\)~ PKsinh Kl

Kl sinh Kl-
ßwl

]+

-^/7 |"(l - cosh Km) m2
Wi ~ *>' Ksinh A7 27

iW./l i
£7 LATZ tanh Kl K

p [-(cosh K(l-x}- cosh Kn)
K2 sinh Kl

2P

] + ALlU 1 +J ^ £7 L/C2 /2 A7 sinh /C/J ~
1_] /?u>(cosh A7-1) ßW

K2 A

sinh ATjc +

PK sinh Kl 2P

W-xY + n2}x\
21 J "r

nh/Cx

(22)

(23)

p [(l-coshATx) x2(l-x)~\ .MA-\ si
+ pLA:2sinh^rS,nh^(/_-,:) + -^T~\ + EtYK2~K2 sinh AT/

+ K2J

+ 7W,r-lsinhA:(/-x) (/-I£7 LA:2 sinh Kl K'
x)] ßwll\ PK2V

ßw [(1 - cosh Kl) sinh Kx
sinh A7 +

u ^ 1 /M'* *2 1 1+ cosh/CxJ--^[----^-2J

_ /» [(l -coshA» KU v
zw2 (/-*)] Af, T- l sinh /C*

v" ~ P Yk2 sinh /er Sinh /C(/"x) + ~2T~1 + f7 L

(24)

+ ¦

+ Ell
1 sinh *(/-*) (l-x)

EI L/C2 sinh /C/ + K2
2

x)l ftw Li

i\ pkL

K2 sinh Kl '

/C

i?w L(l - cosh Kl) sinh A>

k\ +

sinh /C/ +

+«-h-£[*-s-£] (25)

The equations for finding Mx and M2 come from equating the values
of xpt given in (14) and (22) and the values of ip2 given i(n (16) and (23).
Before we do this we make the substitutions:

Pl,
Hw P=Hw(\ + ß); w *m,. w.

8/i H„

We then have from (14) and (22):

\ + ß

+

(cosh Kl - cosh —- Kl)
Kl sinh Kl

Mi l\ L 1

ziIYEIIYKl tanh Kl K

+ MjJ
Ef

i+ß

Kl tanh (L\ Kl

+ ^(1 (/) j + \ei)[k212 KlsinhKli

118/3 //\(cosh/C/-l) 4ß lf\
2/2J + l+|5Wi /C/sinh Kl l+ß\ll^~

l/J/C2- 1+'W'$*/sinh(4)«/

(26)
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and from (16) and (23):

Yl-coshyA7)

S. Timoshenko

\+ß

+

+

Kl sinh Kl
M2l\[ 1

+

9[Ef I LKl tanh Kl K

(Mtl
\EI Kl tanh jKl

umv jmu 1 +2\l) \ \Ef!\K2l2 Kls\nhKl\
1 ] 8ß (f\(coshKl~\) 4ß (f\
*la\~t~ l+(t\l) Kl sinh Kl 1+/SW/"1"

sß(fi\ Hy^H
l + d{lJ(±)Kl*nh(l;)Kl

l 1

/, /C212

^(4) ° (27)

/ /.For any particular hridge q will be known and y and ~- will be known.

A7 is related to ß by

l/T2^Kl Ef (l+ß)

and the quantity
l2Hw

EI will be known.- Equations (26) and (27) will therefore

give the quantities (-^-1 and (-^-1 m terms of ß, — and y. For any

given load, therefore, the moments will b© given as functions of ß.
The cable tension will be found by placing expressions (15), (17), (24)

and (25) in equation (9), which may be written in the following form:
K2 IHLS l2 Hw(otLtl2 H m tLt l2

S/A 8/ 8/
(Hw + H) f i2 r r ti i r

7V7J '/irf*i+J 1idx + ljj) ^dX2 (28)

By referring to (15), (17), (24) and (25) we see that the coefficient of ß
in the right hand member of (28) is

cosh Kli

l~2 T

sinh Kk
J"
K2

sinh Kxi + cosh Kx¦] iVi X
11 ^ [l\ w \(\-cosh Kl) sinh Kx

x „ 1

J}^ - Jofe L—shw/h— + cosh Kx\+

~M}dXIx x2

2 2
The terms in the right hand member which do dot involve ß explicitly are:

(ap\ AzJL sinhA:^ M\*\

+
0 L sinh Kk
M2

+ ¦ vh-mm1>[-M2 sinh Kdi-x*)

w*+j>t
sinh /C/x

~*~

sinh /C/+ sinh /Ge cosh Kn + sinh K(l-x)

"""
2 2 2/J si

AT2 sinh A7
yVf2 sinh Ajc M2X Mx sinh K(l-x) ^ Mx(l

+

sinh Kl + sinh Kl -+
(l-x)\ dx +
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+ J>[(1 -coshKm) sinh K(l-x) m2(l-x)
K2 sinh Kl + 21

M2 sinh Kx M2X
sinh Kl l

Mt sinh K(l-x) +
Mi (/-*)} öfjC

sinh /C/
If we perform the integrations, equation (28) can finally be presented in
the form

ß ¥r <29)

in whichs)

U I _ (M*J\ (cosnKl-
L \El) KlsinhKTl

+

+

>W2 A (cosh Kk
Ef Kl sinh Kk

P

+ h

i 1 /IM! + £Ü [_ «f i \
2 l\EI )\^~ Ell l\K2 IV

Tll 8£//

11 4. i f'M _ /IM (cos"
/ ^ 2\EI) \Ef I Kl si

1)

A7-1) + i'sinh Kl ' 2\E1f)\ +
//A/^2A /^/UcoshAT/t-l)
\l)\El) \EI I Kl sinh A7i
(1 - cosh Km) (cosh A7- cosh Kn)
Ksls sinh Kl Ks l3 sinh Kl +

4T2 6~>
L
l

V (K2l2)ILstHwl2\ (Hwl2\wtl (LÄ \of(Hwl2\ (cosh
8//1/2 V £7 / V Et 8/ U/+ / \EIIK31S

Kl-\)
sinh A7 +

+ ~ +1 / (ILJA _ ?/_L_ f7^
3 l\ EI 1 l (K2l2)\ EI I ' a:8/3 /,

16/lg ///„/»\
/2) V £/ /

32_ ^A /_ ///»,/2\ (cosh^-l)
£7 / sinh A7i +

fJlC(HwP\
"*" " l2 \ EI

4 /,
3 k(K2i2y

This equation, along with (26) and (27), form the basis for numerical
calculations. We shall 'now consider a numerical example to illustrate the
method.

Let

6. Numerical Example.4)
HWP
Ef 41.29

/ 800 ft.

/j 400 ft.

1 0.105

; Hw 3.667 • 10« lbs.

EI 56.84 • 109 lbs. ft.2

k2f ~ w w

; 1 0.0525;
n *-»

q
EL 0.28361

3) With yjfx /W2 0, this formula checks with that of Johnson, Bryan and Tur-
neaure, Modern Framed Structures, p. 288.

4) The numerical data in thiis example are the same as in the paper presented by
Dr. D. B. Steinman at the Joint meeting of A. S. M. E. and A. S. C. E. at Chicago in
June, 1933.
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Lt

co

2.4975 ;

65- 10"7;

2.59375;

t 60° F ;

/ -r-jf 0.34880 • 10-*

A 87.8 in.2

/ 1960 in.2 ft.2

The equations (26) and (27) become:

0.28361
1 +ß

X

cosh Kl — cosh — Kl il + (M2t\
Kl sinh Kl ' 2 {' \l) j\ ' \EI)

[_J 1 + Ä^r \ _-U + ^La:2/2 Kl sinh Kl\\ FI lYKl tanh Kl K212\ 1

x
8400 ß

+ ß

x (cosh Kl— 1) 0.6300/* 0.8400

x
Kl sinh Kl

1

1 + + ¦

.(cosh^-i
1 +ß Kl sinh a:/ +&

/C/tanh
/<7 /C212

0

x

x

0.28361
1 + /i

1 cosh --A7

~Kl sinh /C/ +*(-)' +(»* i
A7 sinh /C/J +

+(M l
A:/tanhA7 AT

L.1
2/2l +

0.8400 /? (cos-h Kl — t) 0.6300 g
1 + ß Kl sinh /C/ 1 + /* +

+
0.8400 ß \COSh 2 V /AM\

1 + /» ^,.=^^ \f//AT/sinh^
2

1

/C/tanh Kl K2l2

A numerical calculation must now be made to determine for the above
Mxl M2l

equations the values of and

Values of EI
EI EI

are found to be:

Table I.

for various values of n and ß.

0.1

n /
n 0.9 /
/* 0.8 /
n 0.7l
/z 0.6 /
n 0.5 /
/* 0.4 /
/i 0.3 /
/i 0.2 /
/* 0.1 /
/* 0

ß

— 0.1489
— 0.1740
— 0.2290
-02936
— 0.3574
— 0.4139
— 0.4606
— 0.4959
— 0.5197
— 0.5322

Values of

3 0

0
- 0.0249
- 0.0784
- 0.1410
- 0.2031
- 0.2561
- 0 3006
- 0.3342
- 0.3566
- 0.3686
- 0.3721

Mxl
EI
ß 0.1

+ 0.1401

+ 0.1155
+ 0.0629
+ 0.0025
— 0.0561
— 6.1081
— 0.1508
— 0.1829
— 0.2043
— 0.2160
— 0.2190

£ 0.2

+ 0.2723
+ 0.2479
+ 0.1969
+ 0.1379
+ 0.0812
+ 0.0316
— 0.0092
— 0.0402
— 0.0607
— 0.0718
— 0.0750

ß 0.3

+ 0.3979
+ 0.3739
+ 0.3238
+ 0.2666
+ 0.2118
+ 0.1638
+ 0.1243
+ 0.0947
+ 0.0749
+ 0.0644
+ 0.0615
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Values of M2l
EI are found to be:

Tablei II.

Values of ^fr. I
ß — 0.1 ß 0 ß 0.1 /2 0.2 ß 03

n l —0.1489 0 + 0.1401 + 0.2723 + 0.3979
72 0.9/ —0.1524 — 0.0033 + 0.1368 + 0.2692 + 0.3950
,2 0.8/ —0.1651 — 0.0154 + 0.1253 + 0.2582 + 0.3844
,2 0.7/ —0.1887 — 0.0379 + 0.1039 + 0.2375 + 0.3646
n 0 6 / — 0.2231 — 0.0714 + 0.0717 + 0.2068 + 0.3350
n 0.5 Z — 0.2707 — 0.1160 + 0.0291 + 0.1660 + 0.2957
/2 0.4 / — 0.3274 — 0.1689 — 0.0228 + 0.1161 + 0.2476
n 03l — 0.3909 — 0.2313 — 0.0816 + 0.0594 + 0.1927
,2 0.2 / — 0.4556 — 0.2937 — 0.1421 + 0.0006 + 0.1355
,2 0.1/ —0.5106 — 0.3473 — 0,1946 — 0.0506 + 0.0853
/* 0 — 0.3721 - 0.2190 — 0.0750 + 0.0615

When we Substitute the given numerical values, equation (29) becomes:

"™[-"ih- (1-cosh/O) (cosh Kl- cosh AT/z) m2 m3~\

4/2 ~6/3JK3 l3 sinh Kl K313 sinh Kl

- 0.047878 + (Ai21

•
Ell

(cosh Kl -1)
sinh Kl

~~

(cosh^-i 1

Kl +%Kl
sinh — J

1

Kl

44.468-10-4A:2/2 +3.
6<

6607 u J.367 69.367 r(cosh/C/-l) ^ (cosh Kk - ])1

For various assumed values of ß substituted in the right side of the
above equation, we find values of ß as follows:

Table III.
/? —0.1 ß 0 ß =QA /? 0.2 ß 0.3

n l — 0.06316 — 0.01646 0.02745 0.06887 0.10818
n 0.9l — 0,06070 — 0.01400 0.02992 0.07137 0.11071
n 0.Sl — 0.05147 — 0 00459 0.03944 0.08107 0.12049
n 0.7l — 0.03499 0.01211 0.05639 0.09813 0.13776
n 0.6l — 0.01273 0.03426 0.07906 0.12104 0.16084
n 0.5l 0.01219 0.05998 0.10477 0.14704 0.18700
n 0Al 0.03730 0.08572 0.13047 0.17301 0.21310
n 03l 0.05941 0.10781 0.15311 0.19585 0.23615
n 0.2/ 0.07586 0.12456 0.17006 0.21359 0.25344
n 0.1 / 0.08511 0.13393 0.17954 0.22263 0.26319
n 0 0.13641 0.18208 0.22509 0.26579

By plotting ß — calculated against ß — assumed for each value of n, we
obtain a set of curves of the type shown in Fig. 7. The points where these
curves cross the 45° line determine the values of ß for each load.

The moments as given in Table I have been plotted against ß for
various values of m, in Fig. 8. Using the values of ß found in-Fig. 7, the

quantity —~~ can be found for each load from Fig. 8. ——
Ml MI EI

for each load from Fig. 9. Values of —AI and 2

EI EI
values of n are given in Table IV.

and

can be found

ß for various
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233
^<*

ejcec/e
coppecr ß
genaues

45° ß-adm/s
—ß -angenommen
ß -assumed

Fig. 7.

m'°Am.0.tl
&

m=o.2i+0Z3

m=OJl

+0.2 m=o.4l

m=O.Sl

m*0.6l
m*0.7lt0.3
m 0.8l
m-O.Sl
m*l

0.7 Ol 0.3 0.4 ß

Momenta lap/le degauchepoup d/ffenenfs
taux de dränge sur Za Ina veepn/nc/pale
etpoun d/vens -ß. —ffomentübenStutze
t/nksfu'p verschied. Belasfungsvenhältn/sse
den ItauptÖ/fhungu.fup renscn/edene ß.

ffi=P
Momentat/eftfon/enfon ^ I-/-J
var/ous degnees of Zoad/ng In ma/'nspan
andfon van/ous ß.

Fig. 8.
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Table IV.

n 0 0.1/ 0.2/ 0.3/
ß 0.2430 0.2386 0.2230 0.1930

~fT -0.016 — 0.0188 — 0.0290 - 0.0500

10"3- Mx — 1140 — 1335 — 2060 — 3550
10-3 H 891 875 818 708

M2l
Ff — 0.016 + 0.003 0.032 0.050

10"3 ¦ M2 — 1140

0.4/
0.1535

- 0.0742

-5270
563

0.052

0.5/
0.1082

0.096

-6820
397

0.041

m7n TZJTUU

m*03l
m-.04l

«V* ^* K.
03

m*05l
m=06l

az
m*lm*07l

m*OQt

0.1

VT^03

Momen/a lapi/e de dpoi/epoup d/ffept
taux de chapge sup/a tnavee pp/nc/paZe
eZpoup d/t/eps -ß
Moment üben Stutze pecbtsfun ven -
sch/edene BeZastungsvenbaltnisse
den Hauptoffnung u fun i/enscb/ed ß

03

*jm V*

OS

Momentatn/gbt towenfop yap/ous
degnees ofload/ng /n main span and
fon vapious values ofß. I

diffepenfs

Fig. 9.

Ef
lO-3-^
IQ"3-//

Et
10-3 • M2

0.6/ 0.7/ 0.8/ 0.9/ 1.0/
0.0625 0.0222 — 0.0085 - 0.0258 - 0.0305

— 0.110 - 0.1085 — 0.0908 — 0.0628 — 0.0445

— 7810 — 7710 — 6450 — 4460 — 3160

229 81.4 — 31.1 — 94.6 — 111.9

0.018 — 0.007 — 0.028 — 0.041 — 0.0445

— 3160
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Curves for Mxl
~ET

M2l
EI

and ß have been plotted in Fig. 10, using the

loaded portion of the main span as abscissa. We see that the moment at
the left tower is greatest when the load extends over 35 °/o of the main span.

ii

.24

Moments auxptles ef fens/'on du
cable due a la change mobilepoun
d/fferentes valeurs de Za change dans
Za fravee pp/'nc/paZer"Stülzenmomente
u. Kabelspannung Infolge bewegliches
Lastfünvenschledene HZerfe den las/
in den Hauptöffnung^Momenfs af
towers and live Zoad cabZe tension for
vanious amounfs of load in the mainspan

*TC2Ü

K[<
'ZZZZZL

0.06.12
ß- Pontees apf/eulees
ß - Hingedspans ~^~

ß- fragen m/fGelenken üben den Stützen.
08 0.04

ß-Pontees confinues
ß - durchlaufende Träger
ß- Conf/nuous spans 0.0204

7.00.2 0.4 0.6 0.8

Partie cbargee de la fraveepr/ncipale
-£Z. deZastefer feil der ttaupföffnung

C Pnnf-/nn nCmstn crtaZrt /nar/*>rVPonf/on ofma/n spam loaded
04

Momenta lapile de gauche
Moment üben Stüfze rechts "21
Moment afp/gbf tower EJ

Moment a lapile de dro/fe
Moment über Stütze links
Moment atleft tower

Mt l
~£J-

'0.02

-0.04

006

-0.06

-0.70

-0.72

Fig. 10.

It is interesting to show the effect of continuity at the supports on the
cable tension. In the case of hinges at the supports, the moments at the

supports are zero; the terms having * and —Jj- as coefficients in equation

(29) will drop out. From this special case of equation (29) we can
calculate values of ß for various assumed values of ß with the following
results:
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Table V.
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/9= — 0.1 ß 0 ß 0.1 /? 0.2 ß 0.3

tl l — 0.01697 — 0 01646 — 0 01604
n 0.9 / — 0 01008 — 0 00962 — 0.00924
n 0.8 / 0 00964 0.00995 0.01021
n 0.7 / 0.03Q80 0 03985 0.03987
,2 0.6 / 0.07731 0.07683 0 07664
n 0.5 / 0.11836 0.11767 0.11703 0.11636 0.11567
/z 0.4 / 0 15952 0.15742 0.15641 0.15538
n 03/ 0.19695 0.19419 0.19287 0.19154
n 0.21 0.22712 0.22387 0.22233 0.22079
n 0.1 / 0.24683 0 24329 0.24163 0.23995
/* 0 0.25371 0 25010 0.24839 0.24668

By making curves similar to those in Fig. 7, we find the values of ß for
various amounts of loading in the main span to be:

10-3-//

10-3-//

Table VI.
0 0.1/ 0.2/ 0.3/ 0.4/ 0.5/

0.2475 0.2408 0.2219 0.1930 0.1568 0.1170
90S 884 814 708 575 429

0.6/ 0.7/ 0.8/ 0.9/ /
0.0767 0.0399 0.0100 — 0 0097 — 0.0165

281 146 36.6 — 35.4 — 60.6

The values of ß at various loads for the case of a hinged span have been
plotted in Fig. 10. At small loads we see H is negative. This is due to the
fact that the temperature rise of 60°, which we have assumed, expands the
cable, allowing part of the dead load to be taken by the stiffening truss.

Moments and cable tension due to live load are given in dimensionless
form in fig. 10 in order that the results may be applied no matter what
system of units is used.

Summary.
The method presented here for calculaiting the stresses and change of

shape in Suspension bridges with continuous stiffening girders is derived
from the differential equation of the sag of the cable, the change in which
caused by the live load must be equal to the deflection of the stiffening
girder, assuming that the length of the Suspension rods remains unchanged.
This, in conjunction with the conditions for vertical equilibrium, gives the
differential equation of the curve of deflection of the stiffening girder, which
may be considered as differential equation of a continuous beam with at
the same time axial tension. The Solution of this is known; it allows the
change in sag of the cable to be determined, after which the tension in the
cable is given by a known basic equation. In applying the result to a numerical

example, the influence of continuity on the tension of the cable is
shown. The numerical tables that are provided should facilitate the practical

adoption of the method of research here given.

Resume.
La methode proposee pour le calcul des contraintes et des deformations

dans les ponts suspendus equipes avec poutres raidisseuses continues est

30
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deduite de Fequation differentielle du cable suspendu, dont la deformation
sous Finfluence de la charge roulante, en supposant constante la longueur des
tringles de Suspension, doit etre äquivalente au propre flechissement de
l'element raidisseur. On deduit de lä, en faisant intervenir la condition
d'equilibre vertical, Fequation differentielle de la courbe de flexion de
Felement raidisseur, qui peut etre consideree comme representant Fequation
differentielle d'une poutre continue soumise simultanement ä une traction axiale.
La Solution de ce probleme est connue; eile permet la determination des
deformations du cable, dont on deduit, au moyen d'une equation fundamentale
connue, la traction sur ce cable.

L'auteur met en evidence Finfluence de la continuite sur la traction sur
le cable, au moyen d'une application pratique. Les tableaux de calculs joints
montrent les possibilites pratiques d'emploi de cette methode d'investigation.

Zusammenfassung.
Die vorgelegte Methode zur (Berechnung der Spannungen und

Formänderungen in Hängebrücken mit durchlaufendem Versteifungsträger geht
aus von der Differentialgleichung des Kabeldurchhangs, dessen Veränderung
infolge Verkehrslast bei unveränderlich angenommener Länge der
Hängestangen gleich der Durchbiegung des Versteifungsträgers sein muß. Daraus
ergibt sich in Verbindung mit der vertikalen Gleichgewichtsbedingung die
Differentialgleichung der Biegungslinie des Versteifungsträgers, die als
Differentialgleichung eines durchlaufenden Balkens mit gleichzeitigem Axialzug

aufgefaßt werden kann. Die Lösung dieser Aufgabe ist bekannt; sie
erlaubt die Bestimmung der Durchhangsveränderungen des Kabels, worauf
sich der Kabelzug aus einer bekannten Grundgleichung ergibt. Bei der
Anwendung auf ein Zahlenbeispiel wird der Einfluß der Kontinuität auf den
Kabelzug gezeigt. Die mitgeteilten Zahlentafeln sollen die praktische
Anwendung der gegebenen Untersuchungsmethode erleichtern.
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