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SUSPENSION BRIDGES WITH A CONTINUOUS
STIFFENING TRUSS.

PONTS SUSPENDUS AVEC POUTRE EN TREILLIS DE RAIDISSEMENT
CONTINUE.

HANGEBRUCKEN MIT DURCHLAUFENDEM VERSTEIFUNGS-
FACHWERK.

S. TIMOSHENKO and S. WAY.

1. Introduction.

The theory of suspension bridges which takes into consideration the
deflection of the stiffening truss has been applied hitherto only in the case
of stiffening trusses with hinges at the supports®). In the present paper
a method of analysis for stresses and deflections in suspension bridges with
a continuous stiffening truss is given. General equations are applied to a
numerical example and it is shown how the conditions of continuity of the
stiffening truss at the supports affects the cable tension. Comparison of
cable tension for continuous and for hinged stiffening trusses for various
kinds of loading is also given in the paper.

2. Nomenclature.

We assume we are dealing with a three span symmetrical suspension
bridge as shown in Fig. 1:

XIl, ?,—"\’ 4 _‘—)"zlz l

Fig. 1.

The two outer spans are of the same length. The distances x,, x and x,
are in each case measured from the left end of the span. We let:

E,I =Younag’s modulus and the moment of inertia for the stiffening truss
section.

jZ = The live load intensity at any point.

w, w; = Dead load intensity at any point in main or side spans respectively.

H, = Horizontal component of cable tension due to the dead load.

1) Dr. D. B. STeINMAN in the paper ‘“General Deflection Theory for Suspension
Bridges” presented before the Chicago Meeting of A.S.C.E., June, 1933, discussed
the case of a continuous stiffening truss. In that paper, however, the conditions of con-
tinuity at the supports of the stiffening truss were overlooked, thus the theory presen-
ted at that time cannot be considered as satisfactory.
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We shall assume the cable slides over the tops of the towers, so that
H,, is the same in all spans.

When the live load p is applied, the cable and truss will deflect equal
amounts, if we neglect stretching ot the hangars. Also we will have an
additional cable tension, H, the same in all spans. We let n,, 5, 5, = Live
load deflections of cable and stiffening truss.

H
3= 1
f H,

3. Basic Equations.
The equations of the deflection of the cable with zero live load are:

a?y . a? Jr . ys _
vge =—w  Hege wis o g = W (1)
By integration we find

— 4fx(l——x)_. ¥ _iﬂxl(ll;ﬁ), Jy = 4f2x2([17—-x2) @

2 T 1 — 112 ’ 2 — 112
where, f, f, and f, are deflections at the middle points:
wl? e wil?
f 8Hw ,fl _f2 — SHW (23)

‘Considering for the time being the center span and assuming some live
load p acting, the equation (1) for the cable becomes:

(HW+H)d~g(y+n)=—(w+q) Q)

where ¢ is the additional hangar pull transmitted to the cable due to the
live load. From (1) and (2) we find:

The load transmitted to the stiffening truss will be
g
p—gqg=p—Bw+H,(1+5) dx;
The equation of vertical equilibrium for any element of the truss then gives:
diy dzy
El—ﬁ—pw{)’w—l—ﬂ(l—l—ﬂ) — (5)

The load p—pw may be regarded as the negatlve second derivative of the
bending moment M, due to this load and the moments at the supports
Then (5) becomes: :

dtyv _  d*M, | d?y
El At T de? + Hw(1 4 8) dx®
and by integration we obtain
a2y ‘
El—' = — My + H,(1+ 8) 7 | (6)

dx?
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Slmllarly, ‘for spans 1 and 2 we obtain:

.. d? , '
El dx:/; = — M, + Hw(l + 8) 1 (7)
a4z iz __ : : |
El iy = — M, + Hw(l + B) 7 (8)

The equations’ (6), (7) and (8) hold for the stiffening truss of a con-
tinuous suspension bridge as well as for the truss of a bridge with hinged
spans. ' !

In addition to equations (6), (7) and (8) we have a fundamental equa-
tion 2) for the determination of /. If we assume the hangar pull is uniformly
dlstrlbuted along the spans for purposes of finding H, we have:

HLS
—{—utLt —léj;,ld —}—lzijdx.f fljmdxg 9)

Ls=zfj<;’*>d1+f (%) s

=z @)+ [ (5)

and s, s, are the arc lengths along the cable, ¢ is the temperature rise, w the
coefficient of thermal expansion and A the cross sectional area of the cable.

The problem of a suspension bridge presents two tasks, first to find
the deflection #, #,, %, in terms of H, and second to find H by a cut and
try method using equation (9).

where

(10)

4. Relation of the Suspensxon Bridge Problem to the Problem
of a Continuous Beam with Axial Load.

Equatlon (5) will be recognized at once as the dlfferentlal equatlon
for a beam with lateral load (p—pBw) and axial load H,(1- B), as shown in
Fig. 2:

P

L V.7 -Aw -
(s 99, LA Z ﬂ”/a

-f 7.9
P://‘y/ﬂ”:fz ‘ A, 7?7; ?7 FSﬂW/Ifﬂ/

Fig. 2.

Fig. 3a. Fig. 3b.

The method of solution of such problems as that shown in Fig. 2 is
well known. For the solution of a problem of this type it is convenient to
have at hand certain formulae for the sxmpler structures shown in flgures
3a and 3b ‘

2) See JOHNSON BRYAN anvd TURNEAURE Modern Framed Structures, p. 283, Vol. II.
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For the bar shown in Fig. 3a we have the following equatlons for the
angles ©,, 6, and deflection .

@_ML( 1 1 ) i __ML( 1 1 )
'7 EI\KLtanhKL  K3:L?)’ K*L*  KLsinh KL (1)
_L(_ﬂ sinh Kx Mx> '
T EI\T KisnhKL TK°L
: : /P
in which K= ' Yo
For the bar in Fig.3b we have
_ QsinhK(L —o) Q(L——c). . Q sinh K¢ Qc
©=—p = sinhKL pr 0 ®=—"pgmkr Tpr (12
Deflections at points on the left of Q are:
- @sinh Kc ch '
== prsnh KL sinh Kx + <= (13a)
and on the right of Q:
. QsinhK(L—¢) . QL — o) (L —x)
= = piesinh KL sinh K(L —x) + Pl (13b)

The deflection due to a distributed load of i‘ntens'ity g may be found
by using superpositon, i.e. substituting gdc for Q in the above formulae
and integrating with respect to ¢ in the proper limits.

5. Application to the Case of Partial Loading in the Main Span.

We shall assume the live load extends from x =0 to x = m in the main
span as shown in Fig. 4.

-Bw2

A 7 |
}" P=HwrH

ol —

(e)
Fig. 6.

The stiffening truss may be regarded as a beam w1th axial and lateral
loads as shown in Fig. 5.

The free body diagrams for the three spans are shown in Fig. 6.
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For the bar in Fig. 6 (a), by using equations (11) (12), (13 a) and (13b),
we obtain:

_Mﬁ[ 1 B 14_] J-l[”(_p’wl)sinhKc (—ﬁ’wl)c] .
1= g7 | ki tanh ks, KeiEd TV, U Psinhks, T p; 1%

Mlll[ 1 e 1 ]+ﬁW1(COShK11—1)_ ,BWI ll
Kl tanh KI;, K212 PKsinh K/, 2P

, __1_ - M, sinthl» M1x1] ("5W1)[(1~COShKlL) .
=zl sinh ks, T Keg) T PR L sinhkg, SR

2
-+ costhl]——ﬂ‘wl[é—x—‘—x*‘—l] ~ (15)
For the bar in Fig. 6 (b):

lel[ 1 1 ]+[)’w1(cosh Ki—1) pwil
KI tanh K7, ~ K22 PK sinh K, 2P

(14)

Yo = (16) v

s 1 |[=Me sinh K(4h —x5) | Mo (4 — x3) (—:8“’1)
’2_151[1<2 sinh K/, + K2l ]+ PK?

1-cosh K1) . / 52
[( sinh K1, ! sinh Kxs + cosh K)Cg] - [lﬁx?i -5 = #] (17)

For the bar in Fig. 6 (c) the contributions of the load p will be:

! .
_ _ [ (=psinhKe  pec\ E[—(cosh Kl — cosh Kn) 12—;22]
1)y = L(P sinh K7 Pl) w=p Ksmhki T 271 (18)

R o AL P
In 'the regions m and n the deflectiqns due to the p load are:
< sinh K(I-x) + AU 1?1(1 x)]d —
= B[ G s+ K0 4
— ”[(‘;2 cosh 11<<1m) sinh K(/—x) + ’—”i%lx—) (21)

If, to these angles and deflections, we add the angles and deflections pro-
duced by the uniform load —pw we obtain angles and deflections for the
bar in Fig. 6 (c) in the following form:
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B ]ED [ (Coszgih C1?zSh %) 272] + 5 Z[Klﬂ T Kl siLh Kz] +
+ Ml’ Z[Kz fanh Ki— K‘ll 12] +£ Wéﬁ?:&fﬁ{z” — eral (22)
~¥ = 1/)3[(11—(2?:1?1?7) + 2%2] 5 Z[K: 2 Kl silnh Kz] +
+ 5 Z[Kz ta:m Ki R“:ﬁ] + %}%]) ’;731 (23)
o A s ]|
(e i + 2 LR ]+

1sinhK(/-x) , ({-x) Bw [(1-cosh K/)sinh Kx
+E1 [Kz sinhKI K2l]—PK2[ sinh K/ +

Pwllx  x2 1
+eoshice] = |5 =5 — 5 - 8
__ p[(1-coshKm) m?2(l-x)| . My[—1sinh Kx X
[K2s1'nh1<z sinh K(/=x) + =7 ]+51[K2s1nh1<z+1<71] T
+M1[ 1 sinh K(/-x) (l—x)]__ Bw [(1—coshKl)smth
EILK? sinh K/ K21 PK? sinh K/ +

-HWW4—ﬁb“§—ﬁ] (25)

The equations for finding M; and M, come from equating the values
of v, given in (14) and (22) and the values of vy, given in (16) and (23).
Before we -do this we make the substitutions:
8fH, __8AH,
2’ Wy == 2

-+

_ Pl _ : _
Q_HW) P_'Hw(l+t8)’ W=

We then have from (14) and (22):

0 ~(cosh K/~ cosh " K1) +a(i- <£)2 +(M21>[ 1 1*_]4-
1+8 KlsinhK! 2 l K22 Klsinh K/

+ (/Z“'lll) ‘[Kzta:lh Ki K: 12] T +{>’( )(3(()15 ::ﬁlz(}) 14+i' (§> +
(cosh 4 Klwl
et ]+ S50

‘i) Ki

>Klsmh( )Kl

_f# (111) =0 (26)
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and from (16) and (23):

1-cosh — Kl
1ip’[( KlsmhKl ) 2( )]_‘_(% [ 22 Klsi'Lh?l]'_i_

+<M21)" ] (i)(cosh]{l 1) 48 (£)+
E/ KltanhKl K22 /) KilsinhKI. 1+8
i hh k1)
N (Mz z) 1 L1, (4) (COS Ki-1
2 72 i _
E\ kitanh B B IR | 1Rk ( )Kz (l[‘)Kz )
3 ,
_ =0
1+ﬁ(ll.) | ' 27)
For any partlcular ’brldge o will be known and j; and J;’ will be known.
1
K! is related to ﬂ by
, l2HW
Kl=V|—>=1+p8)
and the quan’utyl =
fo ive the uanﬁtll (M 1) and (M l in terms of 3, * and For an
g quantities{ g7 El ) % 7 y

given load, therefore, the moments will be given as functions of fS.
The cable tension will be found by placing expressions (15), (17), (24)
and '(25) in equation '(9), which may be written in the following form:

KETHLE | HyotLd® | HotL?
8 fA 87 ~8f
lf1 2 A Ll |
(Hw + H)l. 7J ’)}1 dxl + J l/ dx + lgf '/2 dxz (28)
0

By referring to (15), (17), (24) and (25) we see that the coeff1c1ent of
in the right hand member of (28) is

12\ i B
2<f )( {_K_;[Msinh Kx, + cosh le] Wy <

L*f)), sinh K,
' hx % 1] _(l<l'[(i—coshKl)sinh'Kx : '
X[z 2~ KZ}dx‘ Ikl smhki +C°Sth]+

oy =5 el
The ter;lns in'th-.e right hand member which dolldot invc?lv§ B expli;gi,tly are:
o) mier™ + 2o+ () [ S +
4 M, (l;l—xg)] dx, + J';”{ [ sinh K+ smhlléxsfr(l)ls]hKlfn+ sinh K (/- x)
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+j { [(1—cosh1<m) sinh K (/- x)_|_ m2([—x)]_M2 sinth_*_»MZx
" K? sinh K! 21 sinh K! l
M, sinh K(I- x) Ml(l—x)}
o sinhKi T | dx
If we perform the mtegratlons equation (28) can finally be presented in
the form

s o (29)
in which 3 ‘,
v=|—(F) Kramrr + 250 — () Cramzr + 2 (F7)] +
=) HUE) s+ 2 () e = () s +
_%_71( )] pl?’[_lz(Kl')__(lwcosth) (cosh Ki~cosh Kn)
L

2f) T KipsnhKI T KPP sinh K1
+ ] H,Bwt . L; '
42 681 8EIf I |
(K212)ILs (Hwﬁ) N (le2) wtl ({,_t) N 1_6l(le2) (cosh Ki-1)

V="8rae \Ei 87 ; K57 sinh K
P2 S(PP) 871 (M) | 92 ch I (Her) (cosh KL
E7 (K212) K3 L L\ EI sinhKll +
+£f1 lic (le2) 161, c (H 12)
T VEr) T hwee)

This equatxon along with (26) and (27), form the basis for numerical cal-
culations. We shall now consider a numerical example to illustrate the

method. - '

6. Numerical Example.?)

H, 2 -
Let = 41.20 ; H, = 3.667 - 10¢ |bs.
El |
! = 800 ft.; EI = 56.84 -10° 1bs. ft.2
) S P

11=400ft., lllzf:l ’ W= w,
7 _ 0105 ; | zl=o.0525; Ly
l ) : ‘ ll : 11

_ P! _ gos361
0= o = 0.28361

3) With M, = M, = 0, this formula checks with that of Jonnson, Brvan and TUR-

NEAURE, Modern Framed Structures, p. 288.
4) The numerical data in this example are the same as in the paper presented by

Dr. D. B. STEINMAN at the joint meetmg of A.S.M.E. and A.S.C.E. at Chicago in
June, 1033,
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Le _ . L : !
T—24075 5 T=2503T5;

w=05.10"7; t=60°F ; = 87.8 in.2
I = 1960 in.*? {t.?

= 0.34880 . 10+

The equations (26) and (27) become:

cosh KI — cosh n K

0.28361 “‘( l l)+%(1_(n)2) +(M21)><

1+8 "K/sinh KI [ El
1 1 1, (M 1)[ 1 1 ] 0.8400 3
> [K212 ~ Klsinh Kz] + ( Erllcitanhk: —k2el T 145 <
Kl )
(coshKI—1) 063008 | 0.8400 8 (COSh 2 ! n (/le_z)
Kisinh KI 1+ 3 153 Klsinhgz El
1 2
< — —0
[Kltanh Ki K5 12}
2 «
: m
028361 |1 — Cosh K

Gy | E——
1+p | Kismhkz T2\1 EI/|K?F ~ Kisinh K1
0.8400 8 (cosh K/ —1)  0.6300 4

(M, l) [ 1 1 ]
+ ( Er)lkitanhk: — k22l T T+ g  KlsinhKI ~— 14 T
K! )
h= __
| 084005 (cos 5 — 1 . (M2 z) 1 2 0
— 22l T
I+ 8 Klsinhﬁ ET Kltanhﬂ K2
2 2
A numerical calculation must now be made to determine for the above
equations the values of /‘2111 and jgzll for various values of # and B.
_ 1 ‘ . '
Values of EJ are found to be:
Table I.
M,
| Values ofv EJ
B =—01 =0 ,6’-——-0.1 B8 =0.2 B8 =0.3
n=1 — 0.1489 0 -+ 0.1401 4+ 0.2723 -+ 0.3979
n=109/ — 0.1740 -— 0.0249 + 0.1155 -+ 0.2479 <+ 0.3739
n=08! — 0.2290 — 0.0784 -+ 0.0620 <+ 0.1969 -+ 0.3238
n=071 — 0.2936 —0.1410 -+ 0.0025 -+ 0.1379 - 0.2666
n=06[7 — 0.3574 — 0.2031 — 0.0561 -+ 0.0812 4+ 0.2118
n=2051! — 0.4139 — 0.2561 — 6.1081 -4 0.0316 + 0.1638
n=041[ — 0.4606 — 03006 — 0.1508 — 0.0092 4+ 0.1243
n=03/ — 0.4959 — 0.3342 — 0.1829 — 0.0402 + 0.0047 .
n=202/[ — 0.5197 — 0.3566 — 0.2043 — 0.0607 + 0.0749
n=20.1/[ — (05322 — 0.3686 — 0.2160 —0.0718 -+ 0.0644
n=20 — 0.3721 — 0.2190 — 0.0750 -+ 0.0615
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‘ [
Values of =2~ are found to be:
: E7
Table II.
. M, [
Values of -2
| o El .
g =—0.1 8=0 = 0.1 B8 =02 8 =03
n=1 — (0.1489 0 -+ 0.1401 -+ 0.2723 -+ 0.3979
n=09/. — 0.1524 — 0.0033 + 0.1368 -+ 0.2692 -+ 0.3950
n=0.8/ —0.1651 — 0.0154 + 0.1253 -+ 0.2582 -+ 0.3844
n=07I[ — 0.1887 — 0.0379 -+ 0.1039 -+ 0.2375 -+ 0.3646
=067 — 0.2231 — 0.0714 -+ 0.0717 -+ 0.2068 -+ 0.3350
n=051 — 0.2707 — 0.1160 -+ 0.0291 -+ 0.1660 -+ 0.2957
n=041[ —0.3274 — 0.1689 — 0.0228 -+ 0.1161 -+ 0.2476
n=—03/ — 0.3909 — 0.2313 — 0.0816 -+ 0.0594 -+ 0.1927
n=02/[ — 0.4556 — 0.2937 — 0.1421 -+ 0.0006 -+ 0.1355
n=01/[ —0.5106 — 0.3473 — 0,1946 — 0.0506 -+ 0.0853
n=20 — 0.3721 — 0.2190 — 0.0750 -+ 0.0615

When we subst'itute the given numerical values, equation (29) becomes:
[__ m 1 (1-cosh Km) | (cosh KI-cosh Kn) n m2 m3]
[ K*? K?Psinh Kl K? 13 sinh K/ 427681

(cosh—lg—l—l)

) K!
sinh -

1
+ 8K |

Myl M, z) _ (coshKi-1)

— 0047878 5- ( EI ET sinh K/

g =

44,468 104 K212 + 3.6607 09.367 | 69.367 [(cosh Kl—l)+2 (cosh Kll~1)]

K22 * K33 sinh K/ . sinh K/,

For various assumed values of g substituted in the right side of the
above equation, we find values of 8 as follows:

Table III.

= —0.1 B8=0 B8 =0.1 8 =02 8 =03
n=1 — 0.06316 — 0.01646 - 0.02745 0.06887 0.10818
n=09/ — 0.06070 — 0.01400 0.02992 - 0.07137 0.11071
n=20381 — 0.05147 — 000459 0.03944 0.08107 0.12049
n=071 — 0.03499 0.01211 0.05639 0.00813 0.13776
n=206/[ — 0.01273 0.03426 0.07906 0.12104 0.16084
n=051 0.01219 0.05998 0.10477 0.14704 0.18700
n=041, 0.03730 0.08572 0.13047 0.17301 0.21310
n=03/ 0.05941 0.10781 0.15311 0.19585 0.23615
n=021/ 0.07586 0.12456 0.17006 0.21359 0.25344
n=0.1/ 0.08511 0.13393 0.17954 0.22263 0.26319
n=20 0.13641 0.18208 0.22509 0.26579

By plotting # — calculated against § — assumed for each value of 7, we
obtain a set of curves of the type shown in Fig.7. The points where these
curves cross the 45° line determine the values of g for each load.

The moments as given in Table I have been plotted against 8 for va-
rious values of m, in Fig. 8. Using the values of g found in Fig. 7, the

quantity Elll can be found for each load from Fig. 8. /Zf[l can be found
for each load from Fig. 9. Values of —/Z_lll and %}l and g for wvarious

values of n are given in Table IV,
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n 0

B 0.2430
Ml '
EJ — 0.016
10-3. M, — 1140
10-3. H . 801
Myl

El —0.016

10-3. M, — 1140

Suspension bridges with a continuous stiffening truss

0.1/
0.2386

—0.0188

— 1335
875

1 0.003

Table IV.

02/
0.2230

— 0.0290

— 2060
818

0.032

03/
0.1930

— 0.0500

— 3550
708

0.050

04/
0.1535

— 0.0742

— 5270
563

0.052

Morment a /o pile - dle droite pour differents
loux de charge sunla Iravee principale
e/ pour divers - .
Momen/! uber Slulze rechls fur ver - l
schredene Belastungsverhallmsse

der Hayploffnung . fur verschred. £

e

/7

Moment at right fower for various
degrees of loading i man span and|.
\for various Va/(/es] o A.

n 0.6/
] ~0.0625

Ml

El —0.110

10-3. M, — 17810

10-3. H 229

Myl :

Er 0.018

10-3. M,

0.7/
0.0222

— 0.1085

— 7710
814

— 0.007

Fig. 9.

087
— 0.0085

— 0.0908

— 6450
— 311

—0.028

09!
— 0.0258

— 0.0628

— 4460
046

— 0.041

1.0¢
— 0.0305

— 0.0445

— 3160
—111.9

— 0.0445

+ — 3160

463

05/
0.1082

— 0.096

— 6820
397

0.041
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Myl Myl
El’ EI :
loaded portion of the main span as abscissa. We see that the moment at
the left tower is greatest when the load extends over 35 oo of the main span.

Curves for and g have been plotted in Fig. 10, using the

BN § Moment's aux prles ef fension olv
0 cdble ole 3 /s charge mobile pour
Q alfferentes valeurs de /o charge obns
24 . [z /ravee prinepale — S/t zenmomenta
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Fig. 10.

It is interesting to show the effect of continuity at the supports on the
cable tension. In the case of hinges at the supports, the moments at the
Myl and Myl
El El
tion (29) will drop out. From this special case of equation (29) we can
calculate values of g for various assumed values of f with the following
results: ' i

as coefficients in equa-

supports are zero; the terms having
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Table V.

8= —0.1 8=0 B =0.1 8 =02 8 =03
n =1 —0.01697 — 0.01646 — 0.01604
n =09/ — 001008 — 0.00962 — 0.00924
n=08{( 0 00964 0.00995 0.01021
n=07I[ 0.03980 0.03985 0.03987
n=—=20.6/[ 0.07731 0.07683 0.07664
n—05/ 0.11836 0.11767 0.11703 0.11636 0.11567
n—=—04/[ 0.15952 0.15742 0.15641 0.15538
n=03/ 0.19695 0.10419 0.19287 0.19154
n=02/, 0.22712 0.22387 0.22233 0.22079
n=0.1/ 0.24683 0.24329 0.24163 0.23995
n=20 0.25371 0.25010 0.24839 0.24668

By making curves similar to those in Fig. 7, we find the values of g for
various amounts of loading in the main span to be:

Table VI.
n 0 0.1/ 02/ 03/ 0.4!7 051
0.2475 0.2408 0.2219 0.1930 0.1568 0.1170
10-3. H 908 884 814 708 575 429
n 0.6/ 0.71 08! 09/ l
0.0767 0.0399 0.0100 — 0.0097 — 0.0165
10-3. H 281 146 36.6 — 354 — 60.6

The values of f at various loads for the case of a hinged span have been
plotted in Fig. 10. At small loads we see // is negative. This is due to the
fact that the temperature rise of 60° which we have assumed, expands the
cable, allowing part of the dead load to be taken by the stiffening truss.

Moments and cable tension due to live load are given in dimensionless
form in fig. 10 in order that the results may be applied no matter what
system of units is used.

Summary.

The method presented here for calculating the stresses and change of
shape in suspension bridges with continuous stiffening girders is derived
from the differential ‘equation of the sag of the cable, the change in which
caused by the live load must be equal to the deflection of the stiffening
girder, assuming that the length of the suspension rods remains unchanged.
This, in conjunction with the conditions for vertical equilibrium, gives the
differential equation of the curve of deflection of the stiffening girder, which
may be considered as differential equation of a continuous beam with at
the same 'time axial tension. The solution of this is known; it allows the
change in sag of the cable to be determined, after which the tension in the
cable is given by a known basic equation. In applying the result to a nume-
rical example, the influence of continuity on the tension of the cable is
shown. The numerical ‘tables that are provided should facilitate the prac-
tical adoption of the method of research here given.

Résumé.
La méthode proposée pour le calcul des contraintes et des déformations
dans les ponts suspendus équipés avec poutres raidisseuses continues est
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déduite de I’équation différentielle du cable suspendu, dont la déformation
sous I’influence de la charge roulante, en supposant constante la longueur des
tringles de suspension, doit étre équivalente au propre fléchissement de
I’élément raidisseur. On déduit de 1a, en faisant intervenir la condition
d’équilibre vertical, ’équation différentielle de la courbe de flexion de 1’é1é-
ment raidisseur, qui peut étre considérée comme représentant I’équation dif-
férentielle d’une poutre continue soumise simultanément a une traction axiale.
La solution de ce probléme est connue; elle permet la détermination des dé-
formations du cible, dont on déduit, au moyen d’une équation fondamentale
connue, la traction sur ce cable.

L’auteur met en évidence 'influence de la continuité sur la traction sur
le cable, au moyen d’une application pratique. Les tableaux de calculs joints
montrent les possibilités pratiques d’emploi de cette méthode d’investigation.

Zusammenfassung.

Die vorgelegte Methode zur Berechnung der Spannungen und Form-
dnderungen in Hingebriicken mit durchlaufendem Versteifungstriger geht
aus von der Differentialgleichung des Kabeldurchhangs, dessen Verianderung
infolge Verkehrslast bei unverinderlich angenommener Linge der Hinge-
stangen gleich der Durchbiegung des Versteifungstrigers sein mufl. Daraus
ergibt sich in Verbindung mit der vertikalen Gleichgewichtsbedingung die
Differentialgleichung der Biegungslinie des Versteifungstrigers, die als
Differentialgleichung eines durchlaufenden Balkens mit gleichzeitigem Axial-
zug aufgefaBt werden kann. Die Losung dieser Aufgabe ist bekannt; sie er-
laubt die Bestimmung der Durchhangsverinderungen des Kabels, worauf
sich der Kabelzug aus einer bekannten Grundgleichung ergibt. Bei der An-
wendung auf ein Zahlenbeispiel wird der EinfluB der Kontinuitit auf den
Kabelzug gezeigt. Die mitgeteilten Zahlentafeln sollen die praktische An-
wendung der gegebenen Untersuchungsmethode erleichtern.
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