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DEFLECTION THEORY FOR CONTINUOUS
SUSPENSION BRIDGES.

THEORIE DES DEFORMATIONS POUR LES PONTS SUSPENDUS
CONTINUS.

VERFORMUNGSTHEORIE FUR DURCHLAUFENDE HANGEBRUCKEN.

D. B. STEINMAN, M. Am. Soc. C. E.

Synopsis.

The more general adoption of the continuous type of suspension bridge,
offering advantages of economy and rigidity, has been retarded by the lack of
an accurate theory for its analysis. The Deflection Theory for simple-span
suspension bridges has been available to the profession for over 40 years;
but the corresponding theory for the suspension bridge with continuous stif-
fening truss has thus far been lacking.

In order to supply this deficiency, the writer has undertaken to develop
the Deflection Theory for continuous suspension bridges, with working for-
mulas for practical application.

The resulting analysis, presented in this paper, is a generalized Deflec-
tion Theory for suspension bridges, applicable to both continuous and non-
continuous types. By simply dropping the recognizable terms due to con-
tinuity, the formulas are reduced to those for the two-hinged suspension
bridge. Moreover, the general formulas are also found to be applicable to
multiple-span suspension bridges, with or without continuity.

In the development of the analysis herein presented, maximum simpli-
city of formulas and ease of practical application have been governing con-
siderations. Incidentally, new simplifications are here developed and intro-
duced in the working formulas hitherto published for the two-hinged type.

Interdependent functions necessarily introduced in the earlier portions
of the theoretical analysis are resolved and eliminated in deducing the final
working formulas.

Simplified approximate formulas are also given as alternatives, with
their departure from exact values indicated, to facilitate preliminary or appro-
ximate evaluation. These approximate formulas also facilitate the interpreta-
tion of the expressions or relations represented.

To show the practical workability of the Generalized Theory here deve-
loped, this paper includes a numerical example of the application of the
formulas to the analysis of the stresses and deflections in a continuous sus-
pension bridge of 800-ft. main span. For the continuous stiffening truss,
the Deflection Theory is found to yield an average reduction of 45 percent
in the bending moments as previously found by the common Elastic Theory.
In comparison with the two-hinged type, the continuous design is found to
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be approximately 5 percent more rigid for the same economy, or 5 percent
more economical for the same rigidity. For shorter spans, these percentages
of superior efficiency would be increased.

1. Introduction.

The common or approximate theory for the stress analysis of stiffened
suspension bridges is known as the Elastic Theory. The values of the
bending moments and shears yielded by this method are too high, satisfying
safety -but not economy. The error increases with the flexibility of the struc-
ture, the span-length, and the ratio of dead load to live load.

A more exact method of analysis, which takes into account the deformed
configuration of the structure, is known as the Deflection Theory.
It yields lower stresses and a consequent saving (ranging normally from
20 per cent to 65 per cent) of the metal in the stiffening truss.

The Deflection Theory or ‘“More Exact Theory”, as applied to non-
continuous suspension bridges, was originated by J. MeLaN and was
first published by him in 1888 in the second edition of his classic work
“Theorie der eisernen Bogenbriicken und der Hingebriicken”. (It was re-
published in 1906 in his third edition, which was translated in 1909 by D. B.
STEINMAN in “Theory of Arches and Suspension Bridges”, published in 1913.
In Professor MeLAN’s fourth edition, 1925, the Deflection Theory appears
again, in amplified form.) The working formulas were amplified by L. S.
Moisselrf (and independently by the writer) in 1909 to cover the case of
suspended side spans, and the theory has since been published in its ex-
tended form by F. E. TURNEAURE in ‘“Modern Framed Structures” (1911 and
subsequent -editions) and by D. B. SteinmaN in ‘“A Practical Treatise on
Suspension Bridges”, second edition, 1929, )

The Deflection Theory, as hitherto developed, is not directly applicable
to suspension bridges with continuous stiffening trusses. A number of
such structures have been built, including the Rondout Bridge, at Kingston,
N.Y., with 705-ft. main span (in 1922), and the General U. S. Grant Bridge
over the Ohio River at Portsmouth, Ohio, with 700-ft. main span (in 1927);
but the designers have been handicapped by the lack of an accurate method
of analysis. Without close proportioning, the full economy of this type of
suspension bridge could not be secured.

Continuous stiffening trusses offer greater efficiency than the conven-
tional two-hinged type. This increased efficiency may be in the form of
superior economy, or superior rigidity, or both, depending upon the pro-
portions adopted. Comparative designs show that the continuous type is more
rigid for the same total quantity of steel, and somewhat more economical
for the same specified degree of rigidity. The hingeless type offers inciden-
tal advantages in greater efficiency of the continuous lateral truss, in im-
proved and simplified supporting details at the towers, and in reduced varia-
tion between minimum and maximum sections. The sole disadvantage arises
from the necessity of providing for the necessary expansion movement of the
stiffening truss near the anchorages, where the suspenders are short; but
this becomes a problem only in the longer structures. For suspension bridges
under 1000-ft. main span, the continuous stiffening truss may well be con-
sidered the superior type.

Comparative designs by the Elastic Theory have indicated an economic
advantage of 5 to 15 per cent in favor of the continuous type, depending

26



402 D. B. Steinman

upon the span-length. Comparative designs by the Deflection Theory are
needed, however, to make a more conclusive determination.

In past designs of continuous suspension bridges, the deflection correc-
tions have been either meglected or conservatively approximated. With the
Deflection Theory for such structures available, more scientifically propor-
tioned designs can be made, and the economic utxhzatlon of this bridge type
will be facilitated.

AN

2. Fundamental Assumptions.

The Deflection Theory for the analysis of continuous suspension
bridges is based on the same assumptions as the corresponding theory for
two-hinged suspension bridges, namely:

1. The initial curve of the cable is a parabola. (In practice, the greatest
ordinate deviation from a true parabola is seldom as large as 1> per cent.) .

2. The initial dead load (W) is carried by the cable (producing the
initial horizontal tension H,) without causing stress in the stiffening truss.

Unlike the Elastic Theory, the Deflection Theory does not assume that
the ordinates y of the cable curve remain unaltered upon application of the
loading. In other words, the alteration of the lever arms of the cable forces
is taken into account. This change in cable ordinates or lever arms makes
the initial cable tension H, significant.

The theory that follows is applicable to either continwous or two-hinged
suspension bridges, with or without suspenders in the side spans. The equa-
tions are written in their more general form, so as to be directly applicable
to continuous suspension bridges; but, upon dropping the terms dependent
upon continuity (M, M,, T, T,, ¢, and u), all equations reduce to the simpler
formulas for two-hinged suspension bridges.

A symmetrical three-span suspension bridge is assumed. With minor
modifications, obvious to the bridge analyst, the formulas can easily be ex-
tended to other cases.

The initial loading (W), for which the stiffening truss is unstressed
and undeflected, will be called the ‘“dead load”. The subsequently applied
loading (p), producing stress and deflection, will be called the “live load”.

The general notation to be used is shown in Fig. 1. The subscripts (as
in Iy, 1y, fi, x1, 71, ) are added to distinguish corresponding side-span
magnitudes. The abscissa x is always measured from the left end of the
main span, and x, is always measured from the free end of either side span.

3. Fundamental Equations.

With no suspender forces acting, let M, denote the simple-beam bending
moment (due to live load) at any section x of the stiffening truss, and let
M, and M, denote the continuous-beam bending moments (due to the live
load) at the left and right towers, respectively. Then M’, the continuous-beam
bending moment (at the section x) due to live load with no suspender forces
acting, is given (Fig.1b) by the familiar expressions:

(Main Span:) M = M, —|— * M, + 7 * M, (1a)

( Side Spans:) M = M, + /I/I1 " (1b)
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[f the deflections of the cables are neglected, the relieving moment due to
live-load cable tension /7 acting through the suspender forces is given by H y
for a simple span; but, for continuous spans (Fig. 1 c), the expression for this
relieving moment must be modified to H (y—u), where u denotes the bending
moment, due to continuity, produced by the suspender forces per unit /.
Deducting this relieving moment from M’, we obtain the resultant bending
moment M at any section of a continuous stiffening truss, with deflec-
tions neglected: "

M =M —H(y—u) (2)

This is thebasic equation of the Elastic Theory for con-
tinuous suspension bridges.
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Fig. 1.

In consequence of the deflections # (see Figs. 1a and 1c), the cable or-
dinate y increases to (y +#), and u increases to (u -+ 4 u). Accordingly the
bending moment M at any section, as given by Eq. (2), is relieved by the
additional amount:

(Hy -+ H) (s — A )
and the complete expression for M becomes:
M= M _ H(y—u) — (Hy+H) (s — Au) (3)
This is the basic equation of the Deflection Thery forcon-
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tinuous suspension bridges. Another demonstration of this fun-
damental equation is indicated in Fig.1b, and c.

The value of u is independent of the loading, and may be expressed
in terms of the dimensional constants of the structure. Let:

! _h _ /i
= r= 7, = I; 4)
Then, by the theory of continuous beams, for uniform suspender forces acting

on a symmetrical three-span structure, the value of w at each tower will
be &f, where

2-+2irv

T 34 2ir )

and
_2f42irf;

)= "3 2 (©)
Accordingly, the value of u at any section is given by the expressions:
(Main Span:) wu=cef (7a)
(Side Spans:) U= —fi cef (7b)

1

With the deflection of the spans, let 4 u, and 4 u, denote the increases
in the value of u=¢f at the left and right towers, respectively. Then, at any
section of the spans, the value of 4 u, denoting the increase in the continuity
moment of the suspender forces per unit /, is given by the expressions:

(Main Span:) Au = Z;J—C - Auy 4 % e Ay (8a
(Side Span:) Adu = ;—11 - Ay, (8b)

(See Fig. 1¢). The quantities 4 u;, and 4 u, will be evaluated in Art. 7, and
will be eliminated in Art. 8.

Neglecting the elongation of the suspenders, the truss at any point will
have the same deflection # as the cable at that point.

By the common theory of flexure applied to the truss,

@y M
_ dx® —  EI
substituting Eq. (3), and introducing the symbol
. . 2 - HW + H
Main Span:) = (9a)
(Side Spans:) c%::~hg%%lfz (9b)
1
we obtain:
¢y _ 2 (4 — A © (M —_Hy+H
dx? = — iu) (HW+H)( y+ tu)

2

pe (4 u) =0, yields

the general formula for deflections or equatlon of the deflec-
tion curve:

The solution of this differential equation, noting that
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’

(HW:[_H)[CIer—l-C e—fx—l—(%-—y—}-;) (;_1-2 (%___S;f)]_l_d‘u (10)

where p, is the live load per unit length at the section x. (The terms in
the last parentheses are the second derivatives of the terms in the preceding
parentheses.)

Substituting Eq. (10) in Eq. (3), and introducing the parameter abbre-
viation,

2 5
we obtain the general formula for M or equation of the M-curve:
" e 1 (P« 1
m=—nlce s oL — 0] (12)

~

From Eq. (12) we observe that the bending moment M is not simply
proportional to the load p that produces it. Eq. (3) also shows that the value
of M is affected by the dead load stress /7,, in the cable before the applica-
tion of the live load. In the Deflection Theory, influencelines
cannot be used. Stresses producible by combinations of loadings cannot
be found by adding algebraically the respective stresses producible by the -
component loadings.

The general formula for shears V, or equation of the V-
curve, is obtained by differentiating Eq. (12), which gives:

am
V= e = = — Hc|[Cie* — Cye] (13)

Differentiating Eq. (13), we obtain an expression for the live load per

unit length actually carried by the stiffening truss at any point x:

a:m av
px—-(sl—SO):—-—tii‘x—é-_——a‘.——Hc2[C ecx+C2 cx] (14)

where s, and s, are the initial and final values, respectively, of the suspen-
der loading (per unit length of span) at the point x, so that (s;—s,) is the
live load per unit length actually carried by the suspenders. Eq. (14) shows
that the suspender loading (s,—s,) is no longer constant, as in the Elastic
Theory, but becomes a variable in the Deflection Theory.

Egs. (12), (13) and (14) are identical with the corresponding equatlons
for the case of two-hinged suspension bridges.

The constants of integration C, and C, appearing in the foregoing equa-
tions for 5, M, V, and s, will occur again in the general equation (Eq. 21)
for H. They are determined for a given structure from the conditions of
loading, as illustrated in Art.5. Values of C, and C, for different cases of
loading are tabulated in Art. 11.

The foregoing equations for #, M, V, and s, (Eqgs. 3, 10, 12, 13, 14) are
applicable to points in the side spans as well as to those in the main span;
all that is necessary is to write the subscript symbols x,, y,, 4, fi, 01,
1., ¢y, n,, instead of the corresponding main span quantities.

An important function, occurring repeatedly in the subsequent equations
of the Deflection Theory for continuous suspension bridges, is the total
resultant bending moment at either tower, corrected for
deflections. This total tower moment will be denoted by 7, for the left
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tower and T, for the right tower. (See Fig. 4c.) Substituting y=0, =0,
and M’ = M, or M, in Eq. (3), and utilizing the expressions given by Eqgs.
(7) and (9), we obtain:
T, =M, +H(ef) + Elc* (4 ) (15a)
Ty = My — H(sf) + EIc* () ~(15b)
These functions 7, and 7, are evaluated in Art. 8 and are tabulated, for dif-

ferent loading cases, in Art. 11.
With these new functions, the fundamental equation of the Deflection

Theory (Eq.3) may be written in the form:
(Main Span:) M = (My,—Hy) — (Elc%y) —{—( T1 + TZ) (3a)

(Side Spans:) M = (My—Hy,) — (Elc®%,,,) + (f—: . 71,2) (3b)

The first term (M,—Hy) is the elementary expression for bending moment;
the second term (Elc?-u) is the deflection correction, without contmmty,
and the last term (containing 7,,) is the contribution of continuity.

4. Derivation of the Basic Equation for H.

The horizontal cable tension H, due to any live load p (including any
supplemental dead load) and temperature change ¢, all following the con-
dition represented by the initial tension H,, may be evaluated as follows:

The total virtual work (W,) done in the vertical displacements % of the
suspender loads s, and the cable weight g must equal the total virtual work
(W,) done by the cable tension (H, + H) in stretching the cable. These
work quantities, W, and W, are expressed as the integrated products of
the forces and their respective displacements, as follows, using the symbol
2 to denote the summation of similar expressions for all the spans:

l ; {
W, = Zj (51 +8)n-de=2] %—;(Hw—}—ﬁ)j 7 - dx, (approximately)
0

. H (4, ds® j’Ao dsz]
—Z(H"’-}_H)[ECAOJ,T T A dx

H
=(HW+H)[EZ—O-LS—{—_wt-Lt]
where ‘a, ds
“ LszZLX‘:-R (16)
and LA ds2
L=2 % (17)

In these expressions, ‘A, denotes the cable section at any point and A4, denotes
the cable section at mid-span.

For a parabolic wire cable, having uniform A, we may write with suf-
ficient accuracy: \

= D l(sec®a+8n? - seca), L;= Zl(secza«k?/ﬂ) (18)

where n=§, and «a is the inclination of the closing chord in any span.
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Similarly, for a parabolic ey ebar cable, assuming A, varying with the

slope secant we may write with sufficient accuracy:

@

dx’
2

LS:ZZ(SeCQa—_I—?nZ), Lf:Zl(seca—l—%' ! ) (19)

Se€Ca

Equating the expressions given above for W, and W,, we obtain the
work equation:

8 f j H |
2 | nde= EA, Lot L (20)
(This is identical with the work equation for two-hinged suspension bridges.)

Substitiiting the expression for % from Eq. (10), the work equation (20)
may be written:

ZKL[ efx+cze—fx—f—("f—y+u)—i(—”—"—%)+flc2Au]cix

C2

E Elwt )
— 2 .
Q(Eg 0 s+

Solving for H, we obtain the basic H-equatlon:

!
' ZKJ' ( ’ p")afx—gczl:*lmz‘Lt—l-Elc2 Aug- ' (KD)

H= ) E IL 1)
ZK[ J(Cle‘x+C2e"fx)dx+ fl——cg]—f-gc E s— ef - 2'(K)
where E is the modulus of elasticity of the truss mater:al and E. that of
the cable; w is the coefficient of temperature expansion; and ¢ is the para-

meter of the cable parabola, defined by Eq. (11).

The summations 2 in Eq. (21) embrace the corresponding expressions
for all the spans; the symbol 2 likewise denotes a summation of correspon-
ding expressions for all the spans, except that the side-span contrlbutlons

are to be multiplied by 1> before adding them.

The coefficient K occurring in the summations denotes the ratlo of L.

12
for any span to Ié of the main span. Hence K =1 for the main span; also
K, =1 for the side spans if they have the same zj; as the main span. (Ge-

nerally the ratio K; for suspended side spans is between 1.00 and 1.05, re-
presenting the ratio of side-span weight to main-span weight per unit length.)
For “unloaded” or ‘‘straight’’ backstays, K,=0, and all side-span terms
vanish from the summations in Eq. (21). In any case:

Al e
K:], and K, = — = — 22
1_ Sl o1 (22)
The symbol A4 y;, introduced ‘in Eq. (21), denotes the value of 4u at
the middle of the main span, or the mean of the respective values of 4 u
at the two towers:

Apr =54y + Au,) (23)

It should be noted that two approximations are involved in the foregoing
derivation of the H-equation (Eq. 21). In writing the transformed expres-
sion for Wy, it is assumed that the suspender and cable loading (s, g) is
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uniformly distributed over the span; this is not the actual condition, as de-
monstrated in Eq. (14). (In the Deflection Theory formulas presented by
TIMOSHENKO, this assumption is avoided; the effect on the resulting stresses
is, however, found to be practically neghglble) The second approximation
consists in writing the original cable sag f instead of the augmented cable
sag (f -+ 4f) in the expression for W,. This affects only the terms containing
Ls; and L, in the H-formula (Eq. 21), and the effect of this approximation
on the value of H does not, in extreme cases, exceed one per cent.

In the H-equation (Eq. 21), the only terms representing the effect of
continuity are one in the numerator containing 4 u; and one in the denomi-
nator containing ¢f. Both of these terms contain the factor 2"(K/). With
these two terms omitted, Eq. (21) becomes identical with the corresponding
H-equation for two-hinged suspension bridges. It may be noted that A u;
is the augmentation of ¢f due to the deflections of the spans, or

Aur = A (ef) (24)

5. Evaluation of the Integration Constants.

The constants of integration C, and C,, appearing in the basic Equa-
tions (10), (12), (13), (14), and (21), must be determined for each different
condition of loading. For each span-segment having a constant value of p
and of /, there is a pair of values for C; and C,.

In the treatment that follows it will be assumed, as is usually done for
the sake of simplicity, that the moment of inertia / (or /,) is constant
throughout the length of any span under consideration, although it may have
different respective values for the three different spans. The error of ignoring
the variation of / within a span is found to be practically negligible and
on the side of safety. (For greater accuracy, instead of the average value
of I for any span, the value of the equivalent uniform / should be used in
the computations; this equwalent uniform / may be determined by figuring
equal deflections under governing loadings.)

In this article, the integration constants are evaluated for three general
cases, covering the division of a span into one, two, and three differently
loaded segments, respectively. From the general formulas thus derived, spe-
cial formulas may be written for a large variety of loading conditions, in-
cluding all of the loading cases that arise in the usual design computations
(Cases I to X, Art. 11). !

One Loadlng Segment. — For the case of the main span fully
loaded with a uniform applied load p, and assuming constant moment of
inertia /, the quantities C,; and C, are obtained from the two known conditions
that, for x— 0 and x=1 n=0in Eq. (10) or M=T, and T, respectively
in Eq (12). Substituting these values and solving the resulting two indepen-
dent equations, we find:

1 P 1 1 (. — Ty)

“ =@ HE T @) (ﬁ * ?7> (¢ —e?)y H (2
1 p 1 L 1 (I —Ty)
=T D HE T @@ ) <e T H ) CEr R
1 T
(Ci 4+ Cy) _ﬁ’c‘z—(gc-z +ﬁ> , (259

These are the values recorded for Case II, Art. 11.
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It may be noted that the expression for C, may be written from the
accompanying expression for C, by simply changing the sign of ¢ wherever
it occurs in an exponent. This rule holds true for all loading cases; it is a
neccessary consequence of the symmetrical occurence of C, and C, as the
coefficients of esr and e—<*, respectively, in Eqgs. (10), (12), and (13). It
will therefore suffice to give the expressions for C, for the loading cases
that follow, without writing out the parallel expressions for C,.

For either side span fully loaded, the following corresponding expres-
sions are similarly obtained, provided x, is always measured from the free
end of the span:

1 P 1 1 1 k 11,5

OF @D HE T @) a5 @0
- 2 1
CokCo= pr— s | (26b)

These are the values recorded for Case VIII, Art. 11.

It may be noted that the formulas for C; and C, in a side span may
always be written from the corresponding formulas for C, and C, in the
main span, by simply writing ¢,, /;, and o, instead of ¢, /; and ¢ and sub-
stituting zero for 7, (bending moment at origin of x) and 7, or 7, for 7,
(bending moment at other end of span).

The first term in each of the formulas for C, and C, is an expression
containing p and varies for different loading conditions; the remaining terms
are repeated unchanged in the respective C, and C, formulas for all loading
conditions.

For any span fully unloaded, substitute p =0 in the formulas for C,
and C, for that span. This yields the expressions recorded for Cases I
and VIIL

Two Loading Segments. — For the case of a partial loading of
the main span (Case III, Art.11), with a uniform load p per unit length
extending a distance k2 from the left end of the span, the constants C; and
C, for the loaded segment (£) and the constants C; and C, for the unloaded
segment (m =/—Fk) are obtained from the four known conditions that the
moment and shear at the right end B of the loaded segment must be equal
respectively to those at the left end B of the unloaded segment, and that
n==0 (or M=T,,,) at each end of the span. Substituting these relations
in Eqgs. (10), (12) and (13), and solving the resulting four independent equa-
tions, we find:

C = g (ecm(:fl— = i3)6_ﬂ - (ed]+ 1) <9_1F + 12) + (ed_l ) (Tli; %) (a7a)
S S o
om B e (LT e g BT e
Co= —Co— b ettt -2) — (Qlc‘z + %) -~ (28b)

The foregoing values of C, and C, are recorded for Case III in Art. 11.
To calculate the deflection, moment, or shear at any point in the loaded
segment of the span, the foregoing values of C, and C, must be substituted
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in Eq. (10), (12), or (13), respectively. To calculate the corresponding values
in the unloaded segment, the values of C; and C, replace the general con-
stants in the same basic equations; and since the segment is unloaded, the
value of p, is taken as zero in Eq. (10) or (12), though p retains its value in
Egs. (28).

As a check upon the foregoing formulas Eq. (27) for the loaded segment
may be reduced, by substituting m = 0, to Eqs (25) for the span fully loaded.
Similarly by substltutlng k=0 or p=0 in Eqgs. (28), the integration con-
stants may be obtained for the span fully unloaded (Case I).

For the case of partial loading of a side-span, corresponding formulas
for the integration constants are similarly obtained, or they may easily be
written from Eqs. (27) and (28). See Cases IX and X, Art. 11.

Three Loading Segments. — For other loading conditions, the
integration constants are determined by a procedure similar to that followed
in the cases represented by Eqgs. (25) to (28). If the main span is divided
into three segments (k- m - z=1[) having different uniform loads py, p.
and p,, respectively, the three corresponding pairs of integration constants
are obtained from the six known conditions that M and V at the right end
of the first segment must be equal to M and V at the left end of the second
segment, that the same two equalities hold at the junction of the second
and third segments, and that =0 (or M =T,,,) at each end of the span.
Upon substituting these relations in Eqs. (10), (12), and (13), the solution
of the resulting six independent equations yields the following values of the
three pairs of integration constants:

C. — 1 (pk——pm) [e"(l_k) + g"f(l”k)] + (pm “pz) (ecz +e—cz) —2pr el 4+ 20,
' 2Hc? (e~ &)
1 ( > 1 (T, -T)
(e‘l + 1) (:2 + (ecl _ e"”’) H (29 a)
Per
G = —Ct e —(qa + ) (20b)
c. — 1 [e=pn)(e*+e®) e+ (pn=ps) (e +e7) - 2pre '+ 2p,
S T 2H2 (ecl _ e—cl) »
___I__(L Z;) 1 (I1-T))
(ecl + ]> 0 c2 + H —I— (ecl_ e-cl) H (30 a)
1 ck | o—ck 1 Tl
C4 = ——Cg—‘m[(pk_pm)(e +e )——Zpk]— ch +ﬁ (30b)
Cs = l (Pr=pm) (e*+e*) e+ (pn—pa) [P + e H] e — 2ppe + 2, }
2 H c? (e — e )
__J_“(l_ ﬁ) 1 (TL-T)
(ecl_l_ 1) 96'2 + H + (ecl___ e—cl) H (31 a)

Co = - Cs— 5711;5 {(pk—pm) (e*+e %) + (pm—pz) [ D +eo0F] — Z/Jk}

— (—91? + %) (31b)
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‘The three-segment loading condition represented by Eqgs. (29) to (31)
may be regarded as a general case from which the more usual loading
conditions may be evaluated by simple substitution. Thus, upon substituting
appropriate values 0, £, m, or [ for the lengths k, m, or z, and 0 or p for
the loads pr, pm, P2 Eqs (29) to (31) reduce to the 51mp1er cases recorded
in Egs. (25), (27) and (28), and in Cases I to VI, Art. 11.

The expressions for the constants C for side-span conditions are si-
milarly obtained, or are written from the main span constants by substitu-
tion of the side-span magnitudes, and are recorded in Cases VII to X, Art. 11.

It should be noted that unsymmetrically loaded spans are not reversible
left to right without altering the values of the integration constants (unless
the origin of x is also reversed). That is because the integration constants
occur in Egs. (10), (12), and (13), in which x is assumed measured from
the left end of the span (main span or left side span) and which represent
the unsymmetrical graphs of #, M, and V respectively. It is for this reason,
for instance, that the values of IC given by Eqs. (28) for a right-hand un-
loaded segment cannot be applied to Case IV (Art. 11) representing a left-
hand unloaded segment. Eqs. (28) and the corresponding side-span formulas
would properly be applicable to the unloaded segments of Cases III and IX;
they would also be applicable to Case IV and the unloaded segment of
Case X if x were measured from the other end of the span.

It should also be noted that the expressions for the integration
constants C, for any loading condition in a span, are unaffected by the loading
conditions in the other spans.

Upon substituting zero for 7, and 7, (representing continuity), the
formulas for C, and C, will reduce to the correspondmg formulas for two-
hinged suspension bridges.

6. Derivation of Working Formulas for H.

The basic equation for H, Eq. (21), may be simplified, for any parti-
cular loading condition, by substltutmg detailed expressions for the terms
that depend upon the loadmg, transferring some of the terms containing
H, and re-solving for H.

For the case of partial loadmg, with a uniform load p covering the left
segment k£ (= /—m) of the main span (Case III, Art. 1), and with no applied
load in the side spans, the simplification of the general equation for H is
as follows:

For this loading condition, the principal summation term ‘in the nume-
rator of Eq. (21) takes the following form upon substituting the respective
expressions for M’ (as defined by Egs. 1) and integrating for the two seg-
ments of the main span and for the two side spans:

ZKJ:( ' ”*)dx—pk[—(sz 2k)—4]+(M1;M2) 2(KH  (32)

The integration summation term in the denominator of Eq. (21) may be
written in the form:

[ k
— ZKJ (Cie*+Coe ) dx = — j (Cie*+ Cye ) dx —
0 0

! A
= j (C3 ex + C4 e_cx) dx — 21{1 [ (Cl/eclxl + C,_; e_Clxl) dxl
k Jo
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Substituting for the main-span constants C,, C,, C;, C, the values given by
Egs. (27) and (28), and for the side span constants C’, and C’; values similar
to those given by Eqgs. (26) except that p is zero for the unloaded side spans,
the foregoing summation reduces, upon integration, to the form:

cx —CX . P (eck_l)(ecm+1) (ed 1) 2
_ZKJO(CIe ol )dx—_—Hc' (e*+1) +2[K(ed+1) gc3]+
’ (ed 1) (T1 + T3)

Substituting the expressions given by Egs. (32) and (33) for the respec-
tive summations in Eq. (21), utilizing Egs. (15), introducing the abbre-
viation

_2E=) _2
Lc - Z c (ecl+ 1) - (approx')l c (34)
and solving for H, we finally obtain:
F(p) —{»—(leﬂ c 2(KLy) F oc?ElwtL;
H= . (35)

D
where D, the denominator of the H-formula, is given by:

KLC) E 1 v
—_— 2 - 2 . .
D = % S(Kfl) — ( 4 oc E A Ls (36)
and F(p), for this loading condition (Case III), is given by: |
k 4 (e* 1) (e™+1) |
F(p) = k[— —2k) — ] Y

Eq. (36) for the denominator D is found to remain unchanged for all
other loading conditions; it contains no terms involving the load intensity p,
the load length £, nor the temperature change ¢. Eq. (36) is therefore the
expression for the denominator of the H-formula for any
condition of loading. It should be noted, however, that D is not a
constant; although the expression for D remains unchanged, it contains
the variable ¢ which depends upon /, and therefore the value of D varies
with the loadmg ‘The calculations for a glven structure are facilitated by
computing in advance the values of D for varying values of H, and tabula-
ting or plotting the results for reference in the subsequent computatlons
(For an illustration, see Fig. 4.) It may also be noted that Eq. (36) for D
contains no terms representmg continuity, and is therefore applicable to two-
hinged as well as to continuous suspension bridges.

In the numerator of the H-formula (Eq. 35), F(p) represents the
terms containing p and is the only part of the formula that has different
expressions for different loading conditions.

. The second term in the numerator of Eq. (35) contains (7,-T3), re-
presenting the effect of continuity. By simply omitting this term, Eq. (35)
reduces to the H-formula for two-hinged suspension bridges.

The last term in Eq. (35), representing temperature effect, has the
minus sign for a rise in temperature above normal, and the plus sign for a
drop in temperature below normal. In other words H is diminished by, a
rise in temperature and augmented by a drop in te\mperature.
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From the expression for F(p) given by Eq. (37) for Case IIl, the F(p)
expressions for any other loading conditions are easily written. Thus, inter-
changing £ and m yields Case IV.

For full loading of the main span, substitute / for 2 and zerro for m in
Eq. (37). This yields

13
Flp) =22 —L L | (38)
for the main span fully loaded (Case II). Write p =0 to obtain Case I.

Subtracting from F (p) for the main span fully loaded (Case II) the F (p)
expressions for partial loading from each end (Cases III and IV), we obtain
F(p) for the case of partial loading near the middle of the span (Case V).
Subtract Case V from Case Il to obtain F(p) for Case VI.

By substituting the side-span torms K, /, ¢, and L, in the F(p) ex-
pressions for main-span loadings, we obtain the corresponding F(p) expres-
sions for side-span loadings (Cases VI to X).

The ten loading cases in Art. 11 are tabulated in complementary pairs.
The F(p) expression for each case may be obtained by subtracting the com-
plementary case from F(p) for the full span loaded (Case II or VIII).

By doubling F(p) for Case VIII and adding to F(p) for Case II, we
obtain the following expression for the condition of full loading of all three
spans:

3
Fp) = 3|k 20| — 2|k 2 (39)

The methods used above for deducing all other F(p) expressions, for
use in the A/-formula, from the expression given by Eq. (37) for one loading
condition have consisted of the simple processes of substitution, addition
and subtraction. We have made use of the fact that the expression for F(p)
(though not its value) is algebraically additive for combinations of loadings.

It is also of interest to note that unsymmetrically loaded spans are re-
versible (left to right) without affecting the value of F(p) or the expres-
sion for H (whereas the integration constants C are altered by such re-
versal). That is because the directional variable x does not occur in the for-
mulas for F(p). Furthermore, an unsymmetrically loaded main span is re-
versible (left to right) and unequally loaded side spans are interchangeable
without affecting the value of H, since the shifting of any load to a sym-
metrical position about the center line of the entire structure does not alter
the value of (7,4 7,); but an unsymmetrically loaded side span cannot be
reversed about its own center line without altering the value of (7, -+ T,)
and therefore of H. (This last distinction does not apply to non-continuous
suspension bridges.) .

The abbreviation L., introduced in this Article, will be found convenient
in condensing the formulas and applications of the Deflection Theory. The

approximate value Lf:lm% is almost exact, ranging from about 0.9985
to 0.9996 of the exact value. For the side span terms, the approximation
L.,= ll~% is less permissible, ranging from about .80 to .90 of the exact

1
value. If both approximations are used in the combination 3’(kL.), the re-
sulting summation will range from about .96 to .98 of the exact value for
this term; in the combination X(£L.), the resulting summation will range
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from about .93 to .97 of the exact value. The fmal error in the value of H
will, however, be negligible.

7. Evaluation of the Deflection Functions 4u.

The functions 74, 7,, and (7, -+ T,), occurring in the working formulas
for H, C, and C,, involve in turn (by Egs. (15) and (23)) the functions 4 u,,
A s, and A uy, respectively. It is therefore necessary to evaluate these func-
tions, representing the values of 4 u at the two towers and at mid-span,
respectlvely

The values of u expressed by Eqs. (6) and (7) are for geometrically
symmetrical side spans, as initially assumed, and therefore represent equal
values of u, and u, at the two towers. If, however, the two side spans have
unequal sags /, and f,, the Theorem of Three Moments yields differing values
of u, and w,, as follows:

27+ 2ir(fi+ L0 27+ 2ir(f+ 250 )
_ X ~+2ir = 1+4+2ir (40)
= 3 2ir r = 3+ 2ir
Differentiating these expressions we obtain:
Au, = [Af -t- ll’(Af -+ Af— Afz)] (41a)
13 + 2ir ! 14-2ir
—_ 2 ; ( L Ak — Aﬁ)]
A =315, l"’””’ A+ T2 (41b)
Taking one-half the sum of these two expressions, we obtain:
_ Auy +Auy, _24f+ir(Afi+Af) \
A‘Llf——'——a_——d(z‘lf)—— 3—{—2” (42)
Taking the difference of the two expressions in Eqs. (41), we obtain:
er

Eq. (42) may also be written by dlffereentiating the dependent va-
riables in Eq. (6), using the mean of the two side-span sag-changes, A4f,
and A4f, /(since 4 y; is a symmetrical function, equally affected by a change
in either side span).

Eqgs. (41), (42) and (43) will yield the desired 4 x functions when the
sag-changes Af, Af, and Af, are known.

To obtain an expression for 4f, for any main-span loading condition,
substitute the appropriate expressions for C, and C, in the basic deflection

formula (Eq. 10), also substitute xzil , v=[f, n=Af and dp= Auj.

A uy
p (44)
where
cl
e = (6;1 +1) = (approximately) 1 (45)
7 — 1)’

and A is an expression that does mot contain any deflection terms and de-
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pends only upon the loading condition. The expression for A is not
affected by loading conditions in the side spans. For the generalized case
of the main span divided into any number of segments %, each having a
different uniform load p, (which may be zero for any segments) the expression
for A is found to be:

_H [ L Sttt 1y 1 MMy
- cl 2 2
Elc*|2Hc? (62+e - Hc*  oc 2H
where p; denotes the uniform load (if any) at mid-span, and M; denotes the
simple-span bending moment (M,) at mid-span. Upon substituting appro-
priate values for £ and p, for each loading segment, also for p;, Eq. (46)
reduces to the respective formulas for A tabulated for the six main-span
loading cases in Art. 11.

To obtain an expression for 4 f,, for any loading condition in the left
side span, substitute the appropriate expressions for C, and C, in the basic
deflection formula (Eq. 10) modified for side-span application by using #;,

€c

vef) g 1|4

¢1, Xy, V1, and gy, also substitute x, = ;‘, yw=Ff,npn=4Ff, and du= 34 u,.
This will yield:

A

Afy = Bi+ 5 - (47)

where (similar to Eq. 45) . (erh4-1) (48)
o — -

L'll1
(e 2 — 1)

and B, is an expression (similar to A) that does not contain any deflection
terms and depends only upon the loading condition in the left side span.
Similarly, for any loading condition in the right side span, a corresponding
expression for 4 f, is obtained:
A ug

AfZ - B2 2651 (49)
where B, is an expression parallel to B, but depending only upon the load-
ing condition in the right side span. The expression for B, or B, is not
affected by loading conditions in the other spans. For the generalized case
of a side span divided into any number of segments £, each having a dif-
ferent uniform load p, (which may be zero for any segments) the expression
for B, or B, is found to be: f

7 [ 1 2(ph,—pr)(eF+e o —2)+l(— Phay 1 M 8])+Mf1,2
2 2 cly aly 2 2
Elc 2H(,'1 e2 46 2 € HC] 01Cy 2H 2 H
where pj, or p;, denotes the uniform load (if any) at the middle of the res-
pective side span, and M;, or M;, denotes the simple-span bending moment
(M,) at the same point. Upon substituting appropriate values for 2 and p,
for each loading segment, also for p;,,, Eq. (50) reduces to the respective
formulas for B,,, tabulated for the four side-span loading cases in Art. 11.
Substituting the expressions for A4f, Af, and 4/, from Eqs. (44), (47)
and (49), in Eq. (42) for Au;, we obtain:

244 i B
App = Fdp, + Apy) = — i ”(B‘;' 21')r
3+ 2ir)-(zc- + ;;)

A } (50)

(51)



416 D. B. Steinman

Substituting the same expressions for 4/, and 4f, in Eq. (43), we obtain:
ir(By — By)

(14+2in — (‘e’)

Add the values given by Eqs. (51) and (52) to obtain 4du,, and take their
difference to obtain Au,. This yields:
2A 4 ir(By+ By) N ir(B, — B,)
(3+21'r’)—(-2—+‘—”> (1 +2ir)— (ﬂ’)
& e e

[ q [

F Ay — Apy) = (52)

(53)

Apy,s =

Eq. (53) is an exact formula giving Au, and Au, in terms of 4, B, and B,,
representing the loadings in the three respective spans. Denoting the de-
nominator in the first term by (1-ir). and that in the second term by
(1+4-ir)., Eq. (53) may be written in the abbreviated form:
2A-4-ir(B; +Bg) |, ir(B; — B,)
+ .

(1 +ir) (14 ir)g

As indicated in Eq. (45), e, is approximately equal to unity. (Values of
e. have been found to range between 1.03 and 1.08 for 1200-ft. main spans
and beetwen 1.05 and 1.09 for 800-ft. spans. For shorter spans, the error
increases.) A similar approximation for e, is not permissible. (Values of e,
have been found to range between 1.50 and 1.84 for 400-ft. and 500-ft. side

spans.)
Substituting Eq. (51) in Eq. (44), we obtain:

(3+2ir—2’)A+‘e”(Bl+32)
A — (4 ; c 4
/ (1 . o4
Similarly, from Eqgs. (47), (49), and (53), we obtain:

_2A+4ir(B, + By) ir(B, — B,)
A= 2¢, (1 +ir), + 2¢,(1++ir), 1B (55)

The values of the mid-span deflections 4 f, 4, and 4 f, are thus determined
by Egs. (54) and (55) when A, B, and B, are known.

- The functions A4, B, and B,, tabulated for the ten loading cases in Art. 11,
will not be needed for the computation of stresses in a suspension bridge,
since these functions are eliminated by the further simplification in Art. 8.
They are useful, however, for calculating the Au and 4 f functions by Egs. (51)
to (55), when the values of these deflection functions are separately desired.

(53a)

Auyy =

8. Evaluation of 7} and 7%.

The formulas ‘developed in the preceding articles are sufficient for
the complete analysis of a continuous suspension bridge by the Deflection
Theory. The entire operation can be made more direct, however, by elimi-
nating a number of inter-related functions. Working formulas for 7, and
T, defined in Egs. (15), will now be developed so as to eliminate the ne-
cessity of calculatlng M, M, A, By, Bs, Auy, Aus, Au;, and ef in practical
application.

The formulas for A and B (Eqgs. 46, 50, and Art. 11) may be written in
generalized form as follows:
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M +M
.FA(e)—}-g[ f§+Q'Z2+ ‘er 2+H-£f]+Mf—Hf(ﬁla)

Elc?A =P
2c*

P P, H M, H-¢ ]
Elc? = . . —
B 2ci Fa (@) +e1[ & + Q,cl+ 2 + 2 + Mp— Hi (élb)
where F4(e) and Fp(e) are temporary abbreviations for the terms (if any)
containing the exponential functions.
From the seven equations (15, 53, and 61), the five deflection functions
(4, By, By, Au, and Au,) are to be eliminated so as to leave two formulas
(for 7, and 7,) that do mnot involve these deflection functions. For clarity
of presentation, the contributions of certain groups of terms will be eva-
luated separately.

The terms containing ¢f and f in Eqgs. (61), when substituted in Eq. (53)
for Ayl,g, yield the followmg contribution to E/c?- Au,,,:

—(Sf) — 2f+ (é"f) —2irf; :
HZ + H ”(O) =
. ir ir
oran- (2 a0
which exactly cancels the term /-¢f in Eqgs. (15) for 7 and 7,.

The terms containing M,, M,, M;, and My, in Eqs. (61), when substi-
tuted in Eq. (55) for Au,,, and then combined with the term My, in Egs.
(15), yield the following contribution to the terms M,,, + E Ic? - Au,,, in the
formula for 7,,:

Contribution of M and M; terms to 7T,,

H-¢f (62)

M M. _
2 eL' 65'1 286] -
e + = + M s (63)
(3+2ir)—(—+~) (”2”)‘(_)
€c. € e

1

Inspection of the formulas for M,,, (tabulated in Art.11) shows that,
for any condition of loading, the value of M,,, may be written in the form:

M, — FOD o
_(3—{—211‘) (1-+2ir)
so that _
M +M, _  F(M) M,—M, _ F (M)

2 — G20y 2 (1429

Substituting these three expressions in Eq. (63), a sunphfymg cancellation
results, and Eq. (63) reduces to:
Contribution of M and M; terms to T,,,
_ FM) +2Me A ir(Mp+Mp) | F (M)~ ir(My — M)
- (1+4ir) B 1+ ir).
This expression may be segregated into separate contributions from
the load in the three respective spans, as follows:

Main Span contribution to T\, = (1—{1—Vir) + T —i—N(ir)
c cl

(64a)

27
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Left Side Span contribution to 73, = A4 Ta+in (64b)
Right Sid o e _irNg - trN2

g ide Span contnbutlon to 7y, = m_ i) ( T ”) (64c¢)

where | N = FM)+2M; (65a)

N = F (M) (65b)

Nl,2 = Fl:? (M) + anz (65C)

In writing Eqgs. (64b) and (64c), use was made of the fact that, for
load in either side span, Fy, (M) = Fy,/(M).

Upon substituting the respective values of M,,, M; and My, the N-
functions defined by Eqs. (65) reduce to the following expresswns for the
ten loading conditions of Art. 11: v

Case I: N+N =0
Case II: NEN =0

2
(k>m): N+ N = ’;’;’2 (k> — m® F k?)
Case III: 2
(k<<m): N+ N = ’é; (k2 —m? F m?)
v ‘ 9
Ne>m: N+ N = ’;’72 (m2— k® + k?)
Case IV: 3
(k<<m): N+ N = %(mz—k?im?)
Case V: N+N _—W[k4+z4 kR2([—k)2—22(1-2)% £ k2({-k)® F 22({-2)?]
,Cdse Vi: N+N = 812 [kt + 24— R2({— k)2 — 22(I—2)% + k2(I- k)2 F 2%({-2)?]

Case VII: N1,g =0
Case V[II.’ Nl,2 f— 0

(k=>m): Ny, = %/;z;
Case IX: pklg
(k<m): N, .= ~8—17(2m2 k?)
. 1
(k>m) Ny = —/)8—’;2;
Case X: : k12
(k<m) NL? — —-g—l%—(zmz—k‘?)

Where double signs occur in the foregoing expressions, use the upper
sign in the value for 7, and the lower sign in the value for 7,.

It is interesting to note that, for any span fully loaded, the contribu-
tion of M; exactly cancels the contribution of the M; and M, terms in the
foregoing N-functions. Hence these functions reduce to zero for any span
fully loaded or unloaded (Cases I, II, VII, VIII). These N-functions are al-
gebraically additive for combinations of loading conditions, and are alge-
braically complementary for complementary loading conditions.
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To take account of the difference of denominators in Eqgs. (64), the
terms following the double signs in the foregoing expressions denote N’ and
should be written over the denominator (1 --ir).; and the foregoing expres-
sions for N, need to be multiplied by the factor

ir + ir
(1+ine = (1+4in,’
with this double sign inverted for the right side-span contribution, as shown
by Egs. (64b) and (64c).
The contributions of the terms containing f and the moment terms in

Egs. (61) to the values of 7,,, have now been evaluated. The contributions
of the remaining terms of Eqs. (61) are easily written and are as follows:

Main Span contribution to 7,
p 2 ( pr . H
Ll 1 £
c‘ZFA(e) "oes c + 0 02)

T+ i (662)
Left Side Span contribution to 7,
ir[—”—2FB (e)+1(-—’if1+l1—2)] ir[LFB (€) — —”f']
_ 2c¢i € i oic + 2¢1 7 e ci (66b)
(14 ir). - (1+ir),
Right Side Span contribution to 7',,,
g+ (=% gall il -2
— 1 ar 1 T 1 ' a1 (66¢)

(1+lr)t' ) (1+lr)51

‘Combining the foregoing expressions for the contributions of the f-
terms (Eq. 62), the moment terms (Eqs. 64), and the remaining terms (Egs.
60); substituting the values of N, N’, and N,,, (tabulated above); and re-
storing the original expressions for FA(e), Fpi,0(e) taken from the respec-
tive formulas for A4 and B for the various conditions of loading, — there
are obtained the working formulas for the individual span contributions to
T1 and 7,. These working formulas are tabulated for the ten loading cases
in Art. 11. In that tabulation, groups of terms containing p, occurring in the
T-formulas, are denoted by G(p) and are separately recorded. These load
functions G(p) are separately useful in the computation of H, as will be
developed in the next Article.

The 7-Formulas tabulated in Art. 11 give the individual span contribu-
tions. For any loading condition on the structure, the respective contri-
butions from all three spans must be added together to give the total value
of T, or T,. ‘

The expressions for 7,,, hereinabove derived give exact values for
the tower moments 7, and 7,. Closely approximate values of these
expressions for 7, are obtained by calling e, =1 to make (1-+ir),=
(1 Af—u)c1 and these approximate expressions for T,,, as well as the exact
expressions, are recorded for the ten loading cases in Art. 11. This appro-
ximation eliminates the small contribution of the far side-span loading to
T1,,, so that it may then be considered that the contributions to 7, or 7,
come only from the two contiguous spans in either case. In the tabulation
in Art.11, the approximate expressions for the contributions to 7,,,
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from side-span loadings are written on this basis. (For an 800-ft. main span,
this approximation will introduce errors in the values of 7, or 7T,, ranging
from 5 percent for large tower moments to 20 percent in small values of the
tower moments. For shorter spans, the errors will be greater.)

The physical 51gmf1cance of 7, and T,, as defined by Eqgs. (15) should
be recalled. Since M; is the bendmg moment, at the left tower; in
the unsuspended continuous truss; # - ¢f is the bendmg moment, at the towe.r,
due to the suspender forces, with deflection neglected; and E/c?- Au, =
(H, + H) -Au, is the deflection correction in the bending moment at the
tower; therefore, 7, is the total resultant bending moment in
the stiffening truss at the left tower. Similarly, 7, is the
total resultant bending moment in the stiffening truss
at the right tower. Obviously these functions vanish in the two-hinged
suspension bridge.

With the values of 7, and 7, evaluated, the followmg direct expressions
for the Ay functions, Wrntten from Egs. (15), may now be used, superseding
the formulas of Art.7:

5162 2 AH1’2 == T1,2—M1 2——H €f (67)
Elc - Ay :.TIJZFT2 Ml—;Ml—H ef (68)

9. Reduction of Working Formula for H,
The working formula for H established in Art. 6 (Eq. 35) contains, in
the numerator, the continuity term:

fﬁ%’lﬁ . (KLY

Physically interpreted, 14(7, + 7,) is the mid-span height of the ‘closing
line” that represents the total continuity correction for bending moments.

The values of 7, and 7, contributed by individual span loading cases,
as deduced in the preceding Article, are tabulated in Art. 11. The expressions

for 7', and T, do [Zz ; all of the
1+

other terms are load-terms, containing p. Hence, Tor any conibination of

span-loadings, the expression for (7, + 7T) will contain a group of load

terms, which may be represented by the symbol G(p); and, in addition, a

function of {L and Hz. This non-load function takes the form:

c? 01 €1
1.1 L.j_c)
2H (G ot o o _16H X (nfe)
(1 ir) ot (14-in.

Accordingly, for any condition of loading, we may write:

I+ T, 16H 2 (n]e)
( 2_—) =G+ 2l (14 in. (69)

Substituting this value for 14(7, -+ 75,) in Eq. (35), and transferring the
non-load term to the denominator (so as to eliminate H), we obtain the
following reduced working formula for H:
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where !
p=p— 10 =0 v

2l (1 + in.
KL; ,E 1 16 = (nle)

- %Zv(Kfl)_Z<z)cz) + oc E'A;'Ls—cnzl"('m 2’(KLc) (71)

The values of G(p) are easily written from the complete expressions
for 7, and 7, deduced as outlined in the preceding Article. For the main-

span contribution, G(p) is the same as 7,,,, with the Qi—cl) term and the + load

terms omitted. For each side-span contribution, G(p) is that portion of the

expression for 7,,, (with the ch term omitted) whose denominator is

1 21
(1-}-ir)c. These values of G(p) are recorded for the ten loading cases in
Art.11. They are algebraically additive for any combinations of loading.
The values from all three spans must be combined to give the total value
of G(p) to be used in the numerator of Eq. (70).

For practical application, Eq. (70) is preferable to Eq. (35) as a work-
ing formula for H, in that terms containing / have been eliminated, and
the computation of G(p) is somewhat more direct than the computation
of Yo(T,+T5).

In the new working formula for // (Eq. 70), the first term F(p) in the
numerator is the load term with continuity disregarded; it is identical with
the load-term in the H-formula for the two-hinged suspension bridge. The
second term in the numerator, containing G(p), is the load term due to
continuity. The remaining term in the numerator, containing ¢, represents
the effect of temperature change.

In the denominator D’ (Eq. 71), the first three terms (as in Eq. 36) are
identical with the denominator D of the H-formula for two-hinged suspen-
sion bridges. The fourth term in the denominator is new, and represents
the contribution of the geometrical constants of the structure to the cor-
rection for continuity.

In all H-formulas (Egs. 21, 35, 70 and 71), the terms due to continuity
are identified by their containing the modified summation 2’. For applica-
tion to two-hinged suspension bridges, all terms containing 2’ vanish.

10. Loading Conditions for Maximum Moments and Sheazrs.

In the continuous suspension bridge, loading conditions for maximum
stress are not as uniform and definite as in the non-continuous structure,
nor are they as easily predictable from a study of the basic equations.

A study of the loading conditions which produced maximum moment and
shear for continuous suspension bridges that have been designed yields the
guiding indications for loading placement tabulated in Fig. 2 for maximum
moments and in Fig. 3 for maximum shears.

For maximum positive moment at any point, it is apparent from the
basic formula Eq. (2) or Eq. (3) that the loading must be such as to make
M’ as large as possible while keeping // small. Hence a length of span em-
bracing the given point must generally be covered with live load, and the
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other spans must generally be unloaded (since their loading would contribute
additional /). For points near the towers, however, these rules are changed,
since adjacent loading contributes negative M’ and since (y—u) is negative
near the towers.

For maximum negative moment at any point, the reverse conditions must
be satisfied. The loading diagrams for maximum -+-M and —M are comple-
mentary, and are shown in pairs in Fig. 2.

Charges pour morments /maximng .
Belastungen Fur maxnmale Momernte .
£03011795 fOI 1713 X/ITINT]_(TI0/77677/S .

Section Loadling for postlive moments| Loading for negafive moments
= Ty z
| caséﬂ caszeI casé'ﬁ
a1y 7] LIS,
0.21; {-7)
032, (~-7)
a5y 7 ez
0.6, -7
p. Vé l] / -7 }
case. caselll |caseHll
061} (7]
caseIX caselll casell|
(+7)
0.9y 0
case caselll case ¥l
o7 [+T)
v casell casel case¥ll
~7
77
E caseVll | casell lease V| | |case P2 caselV case.
27 A (+7) (-7) prrrzrzzzzzz]
037 (+7) (-T) v
- (+7/ (-7 o
) caselll| case ¥ caseVll | ||\case Vi) caseX] case V|
051 7z mzal-T] ¢

Cas — fal/—Case
Charge paur moments positifs | Charge pour morments negalifs
Befastung Firposifive Momente | Belastung fornegalive Momente
Loadling For positive moments Loading for negative moments

Fig. 2.

For maximum positive (or negative) shear at any point, a length of
span extending to the right (or left) from the given point must be covered
with live load; the partial loading always stops at the section where the ma-
ximum shear is sought; in addition some loading generally has to be placed
in one or both of the other spans. The complementary loading diagrams
for maximum -V and —V at the various points of the structure are shown
in pairs in Fig.3. (A cyclical sequence of loaded and unloaded segments
may be observed in these diagrams.)

The load-lengths for maximum positive and negative moments and for
shears generally have to be found by trial in the Deflection Theory. The
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load-lengths determined by the Elastic Theory may be used as a guide for
the trial values to be substituted in the more exact theory. Generally, three
trial values of the load-length suffice to determine the maximum value of
the function sought. .

In Figs. 2 and 3, roman numerals are marked over the loading diagnams
in the individual spans. These refer to the numbered designations of the
respective basic loading cases tabulated in Art. 11. Thus, for instance, the

Charges pour efFrorsts /ranchants. maxima.
Belastungen fur maximale Querkrafre.
Loadings for max/mum sHears .

Uect.| Loading For positive shears | Loading for negalive shears

z, Z 1]
___caselZ ]
a £35¢ f f §'71 PESGW V/III/I/I//////}I///////'/III///////
case X case] case I casel 7/
071|HE (+T] ] 7777 77
" 4
+7,
021|1~ f27)
031 || -PR—(*7)
T case X case IV case¥ll
0421 pa (-1 7,
051, vzzal- 7] vz
LT
061, 52l 77 7
-7,
071, ,{_}_M
-7 4
081, 7 A o
(-7)
29, caselll caselV  |caseVl
101 /-7
"\ case Yl case Il |caseTl
0 2 (*T)
case Vil | case Yr caseVll
011 rzza (7
021|F w7
031 7]
case. caselV caseHl
041 \(+7)
051 +7) vy

cas — F3//—case
Charge pour efforts Franchan/s pos.| Charge pour efforts lranchants neg.
Be/a‘s'!f/wé_)g ﬁ/ﬁgo‘sif/ye Querkrsfte ﬁe/a.gu/{; fur negafive (.71/esv’,('/'évf/e‘y
Loading for positive shears Loading For negative shears

Fig. 3.

load condition shown in Fig. 2 for maximum positive moment at the 0.1
point of the main span is rescived into the elementary loading Cases VII,
11, and VIII, the formulas for which are listed in the next Article.

The symbols (+7) and (—7) marked on the loading diagrams indicate
whether a rise or fall in temperature should be assumed in conjunction with
the indicated loading to yield the greatest resultant value of the stress sought.

The loading diagrams given in Fig.2 for maximum moments at any
points will also generally represent, with little or no modification, the loading
placements for maximum deflections at the same points. An exception to
this statement occurs for the mid-point of the main span whose maximum
deflection is generally produced by a fully loaded main span.
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In the case of structures of unusual geometrical proportions, the loading
diagrams given in Figs.2 and 3 may be subject to some modification. A
preliminary analysis by the Elastic Theory will generally indicate the proper
loading placements, as well as the trial values for the load-lengths. The
ten component loading cases given in Art. 11 are fundamental, and are ex-
pected to cover all conditions arising in practical application.

11. Working Formulas for Primary Loading Cases.

By considering each span separately, the various loading conditions that
areuseful in design (asillustrated in Art. 10) may be resolved into ten primary
loading cases: six for main-span conditions, and four for side-span con-
ditions. These ten cases, in combination, cover all loading conditions of
practical importance; and they arc presented below in complementary pairs.

For each primary loading case, the pertinent working formulas are given
in the accompanying charts for the following functions:

F (p): aload term in the numerator of the A/-formula, Eq. (35) or Eq. (70).
The derivation of the formulas for F(p) is explained and illustrated
in Art. 6. (See Eqgs. 37, 38, 39). The values of F(p) contributed
by the three spans are to be combined for substitution in either
H-formula, Eq. (35) or (70). (The expressions for F(p) are inde-
pendent of continuity, and are the same as for two-hinged suspen-
sion bridges.)

G(p): another load term in the numerator of the H-formula, Eq. (70); also
required in the evaluation of 7,,,. The values of G(p) contributed
by the three spans are to be combined for substitution in the H-
formula, Eq. (70). (The function G(p) is introduced and explained
in Art. 9; it is the load term due to continuity.)

C,,C,: the constants of integration, for substitution in the basic formulas
(10), (12) and (13), for », M and V at any point in the given loading
segment. (The derivation of these formulas, and others, for C,; and
C, has been given in Art. 5.)

T,,T,: total bending moments at the towers, defined by Eqgs. (15), and
explained and evaluated in Art. 8. Both exact and approximate formu-
las for 7T',,, are listed. If the exact formulas are used, the contributions
of all three spans are to be combined to give each total value of 7,,,:
If the approximate formulas are used, the contributions of only the
two contiguous spans are to be combined to give each total value of 7'
main span and left side span to give 7y, main span and right side span
to give 7T,. The resulting total values of 7, and 7, either exact or
approximate, are for substitution in the formulas for C, and C,, also
for substitution in Eq. (35) for H. (7, and 7, vanish in the non-
continuous structure.)

M, M,: continuous-beam bending moments at the towers, contributed by the
indicated applied loading, with no suspender forces acting. (See
Fig.1 and Eqgs.1.) The formulas given here for M, and M, are de-
rived from the Theorem of Three Moments. The contributions from
the three spans are to be combined to obtain the total values of
M, and M, (These formulas for M, and M, are given here for refe-
rence in the development of the theory, but are not required in the
practical application unless it is desired to use the 4 and B
functions.)
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A, B,,,: constants defined in Eqgs. (44), (47) and (49), for substitution in
the formulas for the deflection functions Aw;, Au,, dw., Af, Af,,
and 4f, (Egs. 51 to 55). The value of A for the main-span loading case
is to be used in conjunction with the values of B, and B, for the
respective side-span loading cases when substituting in the formulas
for the deflection functions. (The constants A and B,,; are introduced
in Art.7, and generalized formulas for them are given in Eqgs. 46
and 50. The formulas for A and B,,, are given here only for reference
in the development of the theory or for the direct computation of the
deflection functions; they are not required in the practical stress
analysis, since they have been eliminated in the evaluation of 7,,.)

12. Effect of Temperature Variation with No Load on Spans.

This condition of the structure is covered by Cases I and VII, Art. 11.
Since there is no load on the spans.

p=0 M =M,=0, F(p) =0, G(p) =0, T,=T,
Accordingly, Eq. (70) reduces to:

2ElwtL
He = F £ (72)
and Eq. (69) yields: ‘
1.1 .1, L)
7 =7, = 2Ht(€£‘ 962 + et‘, QIC;Z - lﬁHt . Z’(’Z/gt) (73)
reir (1+ir. oot (Fine
Eqs. (25) for the integration constants in the main span reduce to:
1 1 Tl)
C, = — — — (41
1 (€£l+])(\QCZ+Ht
C2 = Cl ed
With these values, the general formula for moments (Eq. 12) reduces to:
My = — H; (C1 e 4 Cy e + #) (74)

This give the moment curve (for temperature effect) in the main span. At

mid-span (x:«é) it yields:
cl

Max. M; = — H; (2 Cre? 4! ) (75)

oc?

Since H, is negative for a rise in temperature, M, is positive at mid-span
(Eq. 75) and negative at the towers (Eq. 73). By Eq. (74), the temperature
moment changes sign (M;=0) at an intermediate point x given by the
equation:

€ +1) _ Thye 2 <1 1 v)

[ + ] = pH 9° +1= O +ine \e + P +1 (76)

For maximum M at any point between this section x and the symme-

trical section (/—x), highest temperature should be used. (Approximately
x=0.137).



426 ' D. B. Steinman

~ For any point in the side spans, Eqs. (20) yield:

C, = —- o o T T
YT (vt 1) eel (e —eah)  Hy
1
‘ : ! 01 ¢
~and Eq. (12) gives:
1
My = — H: (Cl s+ Cyean |- o (,’2) (77)
?

Eq. (77) gives the moment graph (for temperature effect) in the side span.
At the free end (x, = 0), it yields M,= 0. At the tower end (x* l;), it yields

M;=T,=T,. At the mid-point of the side-span \xl . %) Eq. (77) yields:

ah _ah 1
/Wt = — Ht(Cle - -+ CQE 2 + ‘—?)
9161
This value is positive for a rise in temperature. In the side span, as in the
main span, M; is positive at mid-span and negative at the tower. By Eq.
(/I), the temperature moment changes sign (M, = 0) at an mtermedlate point
x, given by:

enh 4 1 _ Ti,s . 01 ¢l B
en41 He (1—eah)
(Approximately x, = 0.72 /).

Eq. (76) determines two division points in the main span, and Eq. (78)
determines a division point in each side span. For sections near the towers,
between the adjacent division points, use lowest temperature for maximum

-+M; for all other sections of the main and side spans, use highest tempera-
ture for maximum -+M. The exact locations of these division points will
be modified somewhat when temperature effect is considered in conjunction
with the live load, and the use of }¢ or —¢ for maximum -}-M in the critical
range near a division point will have to be determined by trial.

The signs of ¢ to be used for maximum --M and —AM, respectively, at
different sections of the spans, are indicated in Fig. 2.

A convenient rule, in practical application, is always to use highest
temperature (in conjunction with the appropriate live load placement) to
obtain the absolute maximum M (disregarding sign) at any point of any
span, and lowest temperature (with the complementary live load placement)
to obtain the maximum of opposite sign.

Following a procedure similar to that represented by Eqs. (74) to (78), -
temperature criteria for maximum 4V and —V may be derived from the
general formula for shears (Eq. 13). The temperature criteria for shears
are indicated in Fig. 3.

The deflection constants A and B,,, (Cases I and VII) reduce to

A= (Lt o) ]

ottt
Bi=8: = g e, g1c1 2) —/

The temperature deflection at the mid-point of the main span is then ob-

+1 (78)
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tained by substituting these constants in Eq. (54) for 4f, which, upon re-
duction, yields:

H: {1 /1 1i,:
Max e = (4f) = EI; [Ec (962 -+ 1_11’:) —-—f] (79)

The temperature deflection at the mid-point of the side span is given by
substituting A and B,,, in Eq. (55) for 4f,,,, which, upon reduction, yields:

, _ H: [1( 1 Ty,e ]
A= il et ats) = (80)

13. Simplified Formulas for Spans Fully Loaded or Unloaded.

Let p, p, and p, be the intensities of loading covering the main span,
the left side span and the right side span, respectively. Then, by simply
writing zero for one or more of these loading intensities, the fully unloaded
condition of the corresponding span or spans is represented. The simple-
beam moments at mid-span will be:

/2 1} pa L3

=", =", w.= 2y
Introduce the following abbreviations for the three respective spans:
R = My — H-f, R, = My, —H-f, Ry = My, — H-f; (81)

so that R, R, and R, denote the bending moments at mid-spans, without
continuity and deflection corrections; also:

SZQ#E%L&:@_H)I&:@_E)QM

¢t ect) e a ecd e ad  acd e
These respective functions are inter-related:
8 1 8 1 8 1
S = - —R S, = +—+R S = 55 R
2z e’ YT HR g, 2Tl e, 7

The continuous-beam moments, M, and M,, for this condition of loading,
are given by the relations:

/_VI;:!“M‘: _ 2My+ ir(My, + My)

2 — 3+2ir (83a)
My —M, ir _ ir - .

2 I 1+2i;(Mﬁ~M)‘,) — 1—}—2ir(R1 R2) (83b)
M; + M, _ 2R+4ir(R +R»)

2 +H'8f—— 3__}__21’. (83C)

The formulas for the total values of 7, and 7, (Cases Il and VIII, Art.
11) become:

T, , = ___2S+i"($1 + S2) T i’([fl — P2)
’ (1-4ir). (1+irg e, ct
L +T, - 2S+ir(S:+S,)
2 (14ir).
For the symmetrical case, with both side spans equally loaded or unloaded

and the main span either fully loaded or unloaded, p, = p, and Eq. (84 a)
reduces to:

(84a)

(84Db)



428 ‘ D. B. Steinman

—_ _ zs_l"ir(51+52) ,

7-‘1""7—2’—_’— (1+ll’)c (84)

With the foregoing abbreviations, the formulas for A and B, for the
same Cases reduce to:

Elc- A :R_s_;_(i"’_li“_/‘fg_l_ﬁsf).elc

2
M \ o1
Elc?B,,s = R1»2——Sl"2+< 21’2+H8?f)

‘Substituting these values of A4 and Bj,, with the values of M, and M, from
Egs. (83) in the equations (44 and 51) for 4f, also in the equations (47,
49, and 53) for Af,,, and reducing, we obtain the following simplified for-
mulas for mid-span deflections:

(23

T; 7,

EICQ-Af——“R—S—t—el(*l——;—L) (85a)

) 1 Ti,.
_ EIC“'A_fl,2:R1,2"“Sl,2+Z'—2— (85]3)

Egs. (67) and (68), with reference to Eqgs. (83), yield:

2 _ 2R+ir(Ri+Rs) ir(R, -—f&z)
EIC 'AAUI—“’T1+ 3+2l/’ + ]—-}—Zil‘ (863.)
_ I+ T, 2R+ir(R1+R2)

Elc? Aur = 5 -+ 3T 2ir (86b)

With the aid of Eq. (85a), Eq. (3 a) reduces to the following expression
for total resultant moment M at the mid-point <x= é) of the main span:

M é = S (1 —elc) (_7'1_;51;@ = (approx.) S (87a)

(The approximate value is only about 3 or 4 percent too small.) Hence S
represents, very closely, the totalbending momentatthemiddle
of the main span. Similarly, Eqs. (3b) and (85b) yield the following

expression for the resultant moment M at the mid-point (x, =§1) of the side

span:

T

ML =S, + <1 ""l) — = (approx.) S, (87b)
2 €, 2

indicating that S, represents, approximately, the total bending moment at the

middle of the side span. (This approximate value may be about 10 percent

too large.)
Accordingly, the functions R, S, and 7, running through the formulas
of this Article, represent moments at mid-spans and at towers, as above

defined. (See Fig. 4.)

Egs. (87) are also obtained by substituting Eqs. (86) in the fundamen-
tal Equation (3). |

For any condition of loading, the general equation for moments (Eq.
12) may be written in the form:

M=¢e-S— H(C,e*+ Cye ) (88
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For the main span fully loalzd or unloaded (Case I or II), the constants
of integration become:

_ 1 (&-S-Th) 1 (I -T3) _ 1 (e-S-T)
C = (€+1) H + (-  H — (approx.) (e +1) H
C, = —C, + %_'SI;—_Tl

and those for the side span fully loaded or unloaded (Case VII or VIII)
become:

_ 1 (ecl . 81) 1 T 1 (ecl - S — Tl)

C] — (6"1 I + 1) H (e“'l 4L _ = ll) H (apprOX ) (el'l + 1) H

e. S
Cy = — a1

2 Cl + H
f; — = S = /‘/ — cd S == \f
{al. | (Charge accrdenlelle yniformement regartve)
A IG/e/c%mass/g vertelfe Verkelhrslast)

/ Uniform //Ve load) Pz
l 7 hd l 2

S /ap,aﬁox,/

8y /ép,oﬁoz. iy} /a,a,oJrox. )

/b).
: ol sux farces ok
.ws,oeo.svaﬂ
mfolge der Hangekr.
due Suspender Forces \
7 72

M| e ) /5 chanrge aecraenk M2
mnfolge Verkefirs/ast
qye. //Ve losad

Y, =6 (epprox.)

~

M /2= & /ap,o/’r.t. / /1_? =82 (approx.)

Mﬂm\
TR

Moments des fravees chargees fotslement
montrant les variafions de Set 7.

Momente in den rollbelasleten Feldern ,
aden Verlauf von Sund 7 aarslellenad.

Morments 7 §pans fully loaae/ s/wwmg
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Fig. 4.

(The approximate expression for C, in the main span is exact for symmetri-
cal loading and correct within a fraction of 1 percent for unsymmetrical
loading. The approximate expression for C, in the side span yields a value

that may be about 3 percent too small.)

Substitution of the foregoing integration constants in the general formula
for moments, Eq. (88), applied to the mid-span points x = é and x, =g
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yields expressions identical with Eqs. (87). (This is another check on the
mutual consistency of all the formulas involved.)

With the integration constants given above, the general formula for
shears (Eq. 13) yields the following values:

l
At = —,
X 5 c | |
Vi = ————F- (1, —T>) (89a)
; 2 (ez ¢ 7)
At xl = "21,
Vﬁ = 4 < aly Tl (891))
2 €2 —e 2

At the ends of the main span (x=0 or x=1),
et cl
o= e ED s - Tt T) D (T=T) g
which yields, approximately,
Vo= +clec- S — Th,9)
(This approximate value is correct within a fraction of 1 percent).
At the ends of the side span (x, =0 or x;, =1/,),

P Gl —1)( T, 2) (e +1) The
VO L — (ecl 1) Sl 2 + 1(3"111-—-])' D) (Sgd)
which yields, approximately,
Ve Eic 1; —_1——3 (e, - Si.3), at the free end,
and
el —1
Vi = [Ei‘llx -+ l; o Sis— Tl’2-| ’

at the tower end of the side span. (The approximate value of V, is exact
for symmetrical loading and may be 4 percent too large for unequally loaded
side spans. The approximate value of V,, may be 1 percent too large.)

The total truss reaction at the tower is obtained by combining Egs.
(89c) and (89d), which yields, approximately,

(es —1)
(et 1)

(The approximate value given by Eq. 90 may be 2 percent too large in the
case of unequally loaded side spans, but it is practically exact in the case
of symmetrical loading.)

Though the m a ximum value of the truss reaction at the tower is not
given by Eq. (90) which is written for fully loaded or unloaded spans, that
equation indicates that for a maximum truss reaction a combination of the
greatest values of S (obtained when / is small) and of the greatest negative
value of 7 is required. The loading condition which will generally answer
these requirements and produce the maximum truss reaction is the same as
that which produces maximum negative tower moment. This loading con-
‘dition is shown in Fig. 2; it consists of the adjacent side span fully loaded
and the main span partially loaded near the tower at highest temperature.

Truss Reaction = [c-ef S+o¢- - S, 2] (c+ 1) 1o, (90)
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Since the truss reaction at the tower is obtained by combining Eqs.
(89c) and (89d), it follows that the maximum value of the shear at the
tower, in the main span and in the side span, is also obtained under the
same loading condition which produces maximum negative tower moment.

For substitution in the HA-formula (Eq. 35), the value of F(p), for the

spans fully loaded or unloaded, is given by Eq. (39) ; and the value of L—;T‘z

is given by Eq. (84Db).

It may be preferred to use the reduced working formula for H# (Eq. 70).
The total value of G(p) to be substituted in Eq. (70) is given by Cases II
and VIII, Art. 11, as:

1 ir(p +p2)]
o |2
(p) = —UFinle + o
The contribution due to temperature varlatlon may be included without
any change in the formulas of this Article. All that is necessary is to in-
clude the temperature term in evaluating // (Eq. 35 or Eq. 70), which enters
the formulas of this article in Eqgs. (81) and (82).

14. Application to Multiple-Span Suspension Bridges.

The Generalized Deflection Theory developed in Articles 2 to 0, in-
clusive, is directly applicable to multiple-span suspension bridges, either con-
tinuous or hinged at the towers.

Deflections, moments, and shears in multiple-span suspension bridges
are accurately expressed by the general formulas in Art. 3 (Fundamental
Equations). ‘All of the general equations in that Article (Eqgs. 1—4, 7—15,
3a and 3 b) remain valid without modification. It is only the special expres-
sion for the coefficient of continuity ¢ (given by Eqs. 5 and 6 for the special
case of symmetrical three-span bridges) that needs to be re-written for cases
of more than three spans. The values of ¢ for any case may be written
with the aid of the Theorem of Three Moments.

For the case of a symmetrical four-span continuous suspension bridge
(two equal main spans and two equal end- spans), the expressions for e

will be:
(At the two side towers:) & = %j—jx—v) (912a)
(At the middle tower:) 8y = 2(1 —;—iiz;irv) (91b)
and the corresponding expressions for ¢f will be:
g = & f= z(gii%”:ﬁ—) (92a)
w = o7 = 2T 2HTZI) (02b)

For the case of a symmetrlcal five-span continuous suspension bridge
(spans, Ly, 4, I, I, [;), the expressions for ¢f will be:

(At the two outside towers:)

u, = &, f = 2[.]01(34' i1r1)+f2(252f2—f—3i3r3)—f]
=S T TSR i) £ 220+ 3is 1)

(93a)
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(At the two inside towers:)

2[/iliiri+26n)+ 20 +Fisrs) — /o (£ 72)]

lo — & f — - - - 03
He 4 3@+irn)+2(2ir+3i5rs) (93b)
where

i 7 ~*~]~ é

171 — [1 l

. I I

lg/’z — 72' ——lg

PR (O Y

7y = Iy [ o iy ry

For other numbers and proportions of spans, the appropriate expressions
for ¢ and x may be similarly written.

If the multiple-span suspension bridge is non-continuous at the towers,
the values of ¢ and u are, of course, zero; and the terms containing these
functions and their derivatives vanish from all formulas.

In Art. 4 (Derivation of the Basic Equation for /), all of the formulas
(Egs. 16—24) remain valid without change, except for a slight modification
in writing the two continuity terms in Eq. (21) for /H. The continuity term
in the numerator, E/lc2-Apu;- 2" (K1), takes the more generalized form:
Elc-2(K!l-A4u;), where 4y; is the mean of the values of 4 u at the two
ends of any span; and the continuity term in the denominator, ¢f - 3" (K /),
takes the more generalized form: 2 (K /- u;), where u; is the mean of the
values of u = ¢f at the two ends of any span. (At the free ends of the con-
tinuous structure, ¢ and 4 u are zero.) With only the two continuity terms
thus modified for greater generality, Eq. (21) takes the following generalized
form:

ZKj (M'—px)dx—g(:zEthLt—l—E[cz - 2(KL- Auy)

l
2
0 c

(94)

- 14
/ E 7
ZK[—JO(CIEM-I' Cz e“x)dx—}—%fl— W]—‘l— QCQE' /‘TO . LS_Z(Kl'yf)

Eq. (94) is the generalized form of the basic /H-equation, applicable
to multiple spans as well as to the common three-span type. If the spans
are non-continuous, the terms containing u; and 4 u; vanish.

The expressions for L; and L, given by Eqs. (18) and (19) are un-
changed for the generalized case of any number of spans. -

All of Art. 5 (Evaluation of the Integration Constants) remains valid
for the generalized case, without any modification. Egs. (25) to (31), in-
clusive, and all of the formulas for C, and C, tabulated in Art. 11, are appli-
cable, without any change, to suspension bridges having any number and
proportions of spans. (Formulas established for the ‘‘side spans” of the
three-span bridge remain valid for the ‘““end spans” of the multiple-span
structure.)

In Art. 6 (Derivation of Working Formulas for /), covering Egs.
(32) to (39), only the continuity terms {identified by 3’) occurring in
Egs. (32), (33), and (35) need to be rewritten for complete generality.
In Eq. (32), the continuity term (—M‘;:—AL“’) . 2'(K/) takes the generalized

form X (Kl LS g&)

, where M, and M, are the continuous beam bending
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moments at the two ends of any span. In Eq. (33), the continuity term

o 2 ("—1) (TL+Ts)
‘Z[K'E'(evq-l)' 2H ]

takes the generalized form

s[k. 2. €= (B 1)
c (e?41) 2H

where 7', and 7, are the total resultant bending moments at the 'two ends

of any span. (For any number of spans M,,, and T,,, are zero at the free

ends of the structure.) In the H-formula (Eq. 35), the continuity term

(—735—7—‘2—) - 3'(KL,) correspondingly takes the generalized form Z(KLC e ;JE)
and the working formula for H becomes:
F(p) + Z(KLC - ﬁ_zi_£> FoctElwtl;
H+ 5 - (95)

Eq. (36) for D remains unchanged; and all of the expressions for F(p)
(including Eqgs. 37 to 39 and all of the formulas for F(p) tabulated in Art. 11)
remain valid for the generalized case, without modification.

Articles 7 to 13 are not directly applicable to the general case of mul-
tiple-span suspension bridges, since the formulas there developed are based
on the special values of ¢ and u, given by Eqgs. (5) and (6) for the symme-
trical three-span suspension bridge. For symmetrical continuous bridges of
four or five spans, working formulas paralleling those of Articles 7 to 13
may be developed from the respective expressions for ¢ and u given in Eqs.
(91) and (92), or (93). A generalized expression for ¢ or « would be re-
quired for developing the corresponding working formulas for the general
case of any number of spans. However, the formulas in Articles 2 to 6, in-
clusive, with the slight generalizing modifications noted in this Article, suf-
fice for the complete analysis of multiple-span suspension bridges. The for-
mulas in the subsequent Articles are a convenience for continuous spans,
but not a necessity. Without them, the interdependent functions are deter-
mined by successive substitution. These interdependent functions vanish when
the spans are non-continuous, and Articles 7 to 13 then lose their significance.

For non-continuous multiple-span suspension bridges, the formu-
las of Articles 2 to 6 are completely sufficient, without a ny modification.

15. Practical Application to Continuous Spans.

In order to test the practical applicability of the Generalized Deflection
Theory and, at the same time, to establish data for comparisons of types of
structure and theories of analysis, the theory and formulas developed in this
paper have been applied to the analysis of a three-span continuous suspension
bridge.

Design I. The structure selected for the numerical application of the
theory has an 800-ft. main span and two 400-ft. side spans, and had been
previously designed as a two-hinged suspension bridge. The trusses have
a constant depth of 12 ft. throughout and are spaced 45 ft. center to center.
For the first comparative design, herein referred to as Design I, the same
moments of inertia (/ = 1960 in.2ft.2, /, = 2420 in.2 ft.2) were assumed as in

28
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the two-hinged design, in order to ascertain comparative rigidity under con-
ditions of equal economy.

Comparison with Elastic Theory. The stresses in the con-
tinuous spans were first computed by the Elastic Theory. This preliminary
analysis incidentally yielded the approximate loading conditions to be used
as a guide for assuming trial load-lengths in the more exact analysis. The
stresses were then computed more accurately by the Generalized Deflec-
tion Theory, using the formulas and procedure developed in this paper. The
maximum bending moments yielded for Design I by the two respective theo-
ries are plotted in Fig.5. The percentage reductions obtained by the appli-
cation of the Deflection Theory are also plotted. These reductions in ma-
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Fig. 5.

S

ximum bending moments range from 10 percent at the tower to 60 percent
in the center span. Except for a comparatively short stretch close to the
tower (including about /5 of the side span and 1/,, of the main span) where
the average reduction effected by the Deflection Theory is only about 12
percent, the reductions are approximately 50 percent in the main span and
45 percent in the side span. A comparison of the total areas under the bending
moment graphs for the two respective theories, as plotted in Fig. 5, shows
that the reduction or saving yielded by application of the Deflection Theory
to a continuous stiffening truss is 45.5 percent as an average for the entire
length of the structure.

The percentages of reduction from the Elastic Theory in the case of
continuous spans are closely comparable to the reduction percentages pre-
viously established for two-hinged suspension bridges. The direct applica-
tion of any approximate factor of reduction, however, is modified in the
continuous structure by the variation of reduction ratio near the towers.
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Comparison of Deflections. The maximum deflections in the
two-hinged design, computed by the Deflection Theory (using Eqs. 85 with
7y=T,=0) were 5.10 ft. in the main span and 3.30 ft. in the side spans. In
the continuous structure of Design I (having the same assumed moments
of inertia to represent equal economy), the maximum deflections were also
computed by Eqs. (85a) and (85b), and were found to be 5.24 ft. in the
main span and only 2.92 ft. in the side spans. The comparison of maximum
deflections shows a reduction of 11.5 percent in the side spans of the con-
tinuous design and an increase of 1.5 percent in the center span, or an
average reduction of 5 percent for the entire structure. Hence, for designs
of equal economy, the continuous structure of 800-ft. main span is, on the
whole, about 5 percent more rigid than the two-hinged type.

Design II. In order to ascertain comparative economy for equal ri-
gidity, the assumed moments of inertia for the continuous structure were
1200
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Fig. 6.

modified for a second analysis. Foliowing the indications of the foregoing
comparison of deflections yielded by Design I, the new assumptions for
Design Il were /=1/1,= 1960 in., ft., (as compared with the values of /=
1960 and /, = 2420 in the two-hinged design). Typical computations for
Design II, illustrating the application of the Generalized Deflection Theory
to a three-span continuous suspension bridge, are herewith presented.

GenerelData-Calculation of Constants. The following are
the dimensional constants:

Main Span: [/ — 64 panels — 800 ft, f — 84 ft, » = 0.105
Side Spans: /4 = 32 panels = 400 ft., f, = 21 ft, », = 0.0525
sec e, — 1.03484 0 = 0, = 952.381 K, = 1.00

A = 87.8 in.? r=205 v = 0.25

The following are the loading constants (all values per cable):
Dead Load: w= 3850 1b./ft. Live Load: p= 1300 1b./ft.
wi? ;
H, = '87 = 3667 klpS.
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Temperature: ¢ = 4 60° F., £ = 29,000,000, o = .0000065,
Ewt = 11,310 Ib. per sq. in.
By Formulas (18): L, = 2075, L, = 1998, (E, = 25,000,000).
The truss constants are as follows:
Main Span: J = 1960 in.? ft.2; E/ = 56,840,000 ft. kips
Side Span: [, = 1960 in.2 ft.2; E/J; = 56,840,000 ft.2 kips
i = 1.000

Calculation of Values of D'. Preparatory to obtaining values of
H for various conditions of loading, the values of D', the denominator of the

b
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formula for H, were calculated by Eqs. (71) for different values of H from
—100 kips to +1200 kips. These computations are made by a systematic
tabular method which embraces the step-by-step numerical operations. The
principal constants and the values of D’ for the different values of /7 are ta-
bulated below:

H (kips) ¢ a & eah D’

- 100 0.007921 | 0.007921 566 23.77 28742
0 0.008032 | 0.008032 617 24.85 20223

100 0.008141 | 0.008141 673 25.95 29683
200 0.008248 | 0.008248 734 27.09 30150
300 0.008354 | 0.008354 799 28.26 30602
400 0.008458 | 0.008458 869 29.47 31048
600 0.008664 | 0.008664 1024 32.00 31908
800 0.008865 | 0.008865 1202 34.67 32742
1000 0.009061 | 0.009061 1407 37.50 33544
1200 0.009253 | 0.009253 1640 40.50 34321
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For convenience of reference and interpolation, the values of D’ are
plotted against // in Fig. 6.

Values of H/ for Advancing Uniform Load. The values of
H and T, for certain lengths of a continuous advancing uniform live load
(p = 1300 1b. per ft.) in the main span, at highest temperature and with no
load in the side spans, are necessary in the computation of the maximum
positive moments at several points in the main span. By use of the formulas
of Cases IIl and VII the values of /' and 7, are calculated for the above-
‘described loading for successive load-lengths varying by 0.1 of the span.
A trial value of H is usually first assumed for which D’ and the other quan-
tities have already been found in the preparation of the D’ curve, and H is
then computed, using these quantities. From the value thus obtained, a second
trial H is selected from which a corrected value of H is calculated, em-
ploying a value of D’ taken from the graph of Fig. 6. The value of /H thus
obtained in the second trial is generally in close agreement with that
assumed. The operations and results are indicated in condensed form in
the following tabulation, and the values of / and 7', thus obtained are plotted
in Fig. 7.

Load Trial ’ Calculated .

0 -100 28742 -02.1 - 2015
0.2 - 30 20078 -30.1 - 7315
0.4 220 30241 217 -10267
0.6 594 31908 595 - 4997
0.8 824 32822 836 - 1229
1.0 801 33108 801 - 2475

Maximum Positive Moments in Main Span
Maximum moments are positive for Points§: 0.2 to 0.5 and negative

for Points = — 0 and 0.1.
l X

Maximum positive moments for Points o= 0.2, 0.3, and 0.4 are calcu-

lated by Eq. (12) for the load condition of Case III (as indicated in Fig. 2).
For each section x, M is calculated for three or four different trial load-
lengths %, until the maximum value of M for the section is determined. The
values of / and 7', for each load-length are taken from the /# and T, graphs,

Fig.7. The tabulation of governing quantities

, in abbreviated form, is as

follows:

Section: x// 0.2 0.3 0.4
Load: %/! (assumed) 0.41 0.41 0.53
H (from Fig. 7) 238.6 238.6 467.0
¢ (by Eq.9a) 0.00829 0.00829 0.00853
7, (from Fig. 7) -10,046 -10,046 - 7180
T, -7, (by Formula, Case III) | ~13,310 -13,310 -14270
C, H (by Formula, Casa I1I) 617.26 617.26 225.4
C: H (by Formula, Case III) 24959 249590 18095
ecx 3.768 3.768 15.35
Max. M (by Eq 12) + 6590 +7610 + 6501
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Maximum Positive Moment at Mid-Span.

Maximum positive moment at the center of the main span, as indicated
in Fig. 2, is produced when the central portion of the span is symmetrically
loaded w1th a uniform load for a length m, at highest temperature and with
no load on the side spans. In order to find the value of m for which 'the
moment at this point is a maximum, it is necessary to assume different trial
values of m and calculate the corresponding values of M by use of the for-
mulas of Case V. Before thus computing each M, however, it is also ne-
cessary to obtain, by trial, the value of H corresponding to the assumed
value of m. The final quantities in condensed form, are:

m(l (assumed) 0.330
k=1z 0.335
H  (assumed ftrial value) . 488.6 kips
¢ (by Eq.9a) 0.00855
e 934.6
eck 9.9
e 0.6
D" (by Fig. 6) 31425
H  (by Eq. 70) 187.6 kips
T, (by formulas, Cases V and VII) 5130 ft.-kips
C, H (by formula, Case V) 82.13
C, H (by formula, Case V) 76688,

ol
e~ = e2 30.57
Max. M (by Eq. 12) 5762 ft.-kips

Maximum negative Moment in Main Span Near Tower.

The maximum negative moment at the point %: 0.1 occurs when the
adjacent side span is fully loaded at highest temperature and the other two
spans unloaded. For this condition of loading, / is determined by trial,
using the formula of Case VIII. The value of M is then calculated by the
formulas of Cases I, VII, and VIII, and Eq. (12). A summary of the prin-
cipal resulting values is as follows:

H  (final value by Eq. 70) - 60.5 kips
¢ (by Eq. 9a) 0.007965
P 585.31
e 1.89

7, (by formulas Cases I and VIII) - 8356
7.—T (by formulas Cases VII and VIII) - 7030

C,H (by formula Case I) 3.94
C,H (by formula Casa I) 0353
Max. M (by Eq. 12) — 3057 ft.-kips

Maximum Negative Moment at Tower.

To obtain the maximum negative moment at the tower, it is necessary
to load fully the adjacent side span and a portion of the main span next
to the tower at highest temperature as shown in Fig. 2. The main span load-
length for which the tower moment is a maximum must be determined, by
the formulas of Cases Il and VIII, as previously outlined for the computatlon
of maximum moment at mid-span. This computatlon is briefly summarized
in the following tabulation:
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H (trial value) 200 kips

¢ 0.008248
e’ 733.84

eah 27.09

k 0.365
ek 11.12

D" (from Fig. 6) 30150

H (by Eq. 70) 197.8 kips

7, (by formulas, Cases Il and VIII) ~-16,387 ft.-kips

Maximum Moments in Side Span.
X1

Maximum moments are positive for sections 7= 0.1 to 0.7 and negative
1
for sections 7> — 0.8 to 1.0.
1

The loading condition producing maximum positive moments at sections

*1 _ 0.1 to 0.7 is shown in Fig. 2 to be the same as that for negative mo-

4 ., X
ment at pomt7 =
temperature with no load on the other two spans. The computation of H
and 7, for this loading with that of the moment at mid-span (x; = 0.5/)
are indicated below; the constants of integration are calculated by the for-
mulas of Case VIII:

0.1 in the main span, the side span fully loaded at highest

H  (trial value) : —-60.5 kips
c=-c 0.007965
eah 24.193

D" (from Fig. 6) 28032

H (by Eq. 70) —60.5 kips
7. (by formulas, Cases I and VIII) — 8356

C, H (by formula, Case VIII) 1190.1

C, H (by formula, Case VIII) 20293

M (by Eq. 12) +11468.5 ft.-kips

Maximum Negative Moment in Side Span Near Tower.
f;— = 0.9 occurs under a partial
1
loading of the side span and main span, at highest temperature, as shown
in Fig. 2. In obtaining the maximum value of this moment, it must be com-
puted by use of the formulas of Cases III, VII, and IX for several trial load-

lengths in both spans. The computation of the maximum value of this mo-

The maximum negative moment at point

ment with the corresponding values of £// and % is given below:
1

k[l  (assumed) 0.39 0.365
my|l, (assumed) 0.65 0.65
H  (trial value) 240 kips 200 kips
=6 0.00829 0.00825
et 759.0 733.8
ecrh 27.55 27.00
ek 133 11.12
eam 8.01 8.52

D" (from Fig. 6) 30332 30150
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H (by Eq. 70) 240.7 kips 108.5 kips
7. (by formulas, Cases Il and IX) -13448 -13593
C,H (by formula, Case IX) 4400 479.0
C, H (by formula, Case IX) -67720 - 66940
ea% 10.8 19.5
Max. M (by Eq. 12) —-8070 ft-kips -8980 ft.-kips
The loading condition for maximum negative moment at point )% = (.8
1

in the side span is shown in Fig. 2 to be the same as for positive moments
in the main span. This moment is computed in the same manner as for

maximum positive moments at sections §:0.2, 0.3, and 0.4 in the main

span, except for the use in this computation of the integration constants
of Case VIIL.

Minimum Moments. — The loading conditions under which mini-
mum moments are produced in the trusses are shown in Fig. 2. The values
of these moments are obtained in the same general manner as outlined for
the calculations of maximum moments, and usually occur at lowest tempera-
ture in combination with the above live loadings.

Maximum Shears. — The maximum positive and negative shears
are calculated for the loading conditions indicated in Fig. 3. The method of
procedure is the same as that for the calculation of maximum moments, in-
volving the assumption of successive trial values of / and trial load-lengths
to obtain the values for which the shears are a maximum or minimum. The
shear is computed from the values of H, C,, and C, by Eq. 13.

Maximum Deflection in Main Span. — Maximum deflection
in the main span is produced by fully loading the main span at highest
temperature. / is obtained by trial from the formulas of Case II, the result
having been plotted in the H-curve for advancing load in the main span
(Fig.7). The calculation of the deflection at the center of the span is in-
dicated below in condensed form:

H (trial value) 801 kips

c 0.008955

et 1291.9

D' (from Fig. 6) 33108

H (by Eg. 70) 891.3 kips

7. = T, (by formulas, Cases Il and VII -2475

C,H (by formula, Case II) 3.704

C,H (by formula, Case II) 4785

” (by Eq. 85a) 5.308 ft.
Maximum Deflection in Side Span. — Maximum downward

side span deflection occurs when the one side span is fully loaded at highest
temperature. The computation of the necessary constants for this loading
condition have already been indicated in the calculation of positive moments
in the side span. The downward deflection at the center of the side span
is computed by Eq. (85b) and is found to be 3.223 ft.

It will be noted that the side span deflection is 2.5 percent less than
in the two-hinged design, while the main span deflection is 4.5 percent
greater. The average rigidity over the entire length differs from that of the
two-hinged design by approximately 1 percent. '
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Comparison of Maximum Moments for Continuous
and Two-Hinged Designs. — The maximum bending moments pro-
duced by live load and temperature in the continuous spans of Design II,
computed as hereinabove outlined, are plotted in Fig.8. On the same chart
are plotted, for comparison, the maximum bending moments produced by
live load and temperature in the corresponding two-hinged design. The saving
in chord material by the adoption of the continuous type, as indicated by
the percentage of difference between the moment areas under these two
respective graphs, is 8 percent, and this figure is substantiated by the actual

design of the truss members.
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The two-hinged design, represented by the maximum moments plotted
in Fig. 8, is a ““balanced” design, i.e. the chord sections have been adjusted
until the final values of / agree with those assumed. The hingeless design,
on the other hand, is not quite ‘‘balanced”, the calculated bending moments
requlrmg values of [ somewhat higher than those assumed. The necessary
revision of the continuous design to make it balanced would reduce the in-
dicated saving over the two-hinged design from 8 percent to approximately

5 percent.

Advantages of the Continuous Type. — The foregoing
comparative design studies indicate that, for a suspension bridge of 800-ft.
main span, the continuous type is approx1mate1y 5 percent more rigid than
a two-hinged design of the same economy, and about 5 percent more econo-
mical than a two-hinged design of the same rigidity. These percentage dif-
ferences in favor of the continuous type will be greater in shorter spans or
with deeper trusses.

As the length of span or its flexibility is increased, the effect of con-
tinuity at the towers is lost out on the spans at points proportionately nearer
and nearer the towers. It is for this reason that the advantage of the con-
tinuous type is greater with shorter spans and deeper stiffening trusses.
As the ratio of dead load to live load is increased, the necessity for a stif-
fening truss is minimized or obviated; accordingly the advantage of the con-
tinuous truss will also diminish with increase of dead load. In general,

e
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the advantage of the continuous type over the two-hinged design will be
governed by the stiffness factor

1 {/EI _ 1 /8FEI

I VH, w

which also governs the percentage correction between the results of the
Elastic and Deflection Theories.

The continuous type has an advantage in respect to behavior under late-
ral forces. The lateral rigidity is greater than in the two-hinged design, and
there is a better distribution and absorption of stresses from lateral loading.
In fact, for spans of 800 ft. or less, for which the ratio of width to span
is greater than 1: 20, the chord sections in a continuous design are not affec-
ted by wind stresses, since the better distribution of these stresses brings
them under the 25 percent increase in allowable stress permitted under this
loading by the usual design specifications.

As a general conclusion, we may state that the continuous type of sus-
pension bridge offers advantages over the two-hinged type for spans under
1000 ft. designed for highway loading, and for longer spans when designed
for railroad loading.
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Summary.

This paper presents an extension of the Deflection Theory to cover
suspension bridges with continuous stiffening trusses.

The more general adoption of the continuous type of suspension bridge,
offering advantages of economy and rigidity, has been retarded by the lack
of an accurate theory for its analysis. The Deflection Theory for simple-
span suspension bridges has been available to the profession for over 40
years; but the corresponding theory for the suspension bridge with con-
tinuous stiffening truss has thus far been lacking.

In order to supply this deficiency, the writer has undertaken to develop
the Deflection Theory for continuous suspension bridges, with working for-
mulas for practical application.
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The resulting analysis, presented in this paper, is a generalized Deflec-
tion Theory for suspension bridges, applicable to both continuous and non-
continuous types. By simply dropping the recognizable terms due to con-
tinuity, the formulas are reduced to those for the two-hinged suspension
bridge. Moreover, the general formulas are also found to be applicable
to multiple-span suspension bridges, with or without continuity.

In the development of the analysis herein presented, maximum sim-
plicity of formulas and ease of practical application have been governing
considerations. Incidentally, new simplifications are here developed and
introduced in the working formulas hitherto published for the two-hinged
type.

Interdependent functions necessarily introduced in the earlier portions
of the theoretical analysis are resolved and eliminated in deducing the final
working formulas.

Simplified approximate formulas are also given as alternatives, with
their departure from exact values indicated, to facilitate preliminary or ap-
proximate evalution. These approximate formulas also facilitate the inter-
pretation of the expressions or relations represented.

To show the practical workability of the Generalized Theory here deve-
loped, this paper includes a numerical example of the application of the
formulas to the analysis of the stresses and deflections in a continuous sus-
pension bridge of 800-ft. main span. For the continuous stiffening truss,
the Deflection Theory is found to yield an average reduction of 45 percent
in the-bending moments as previously found by the common Elastic Theory.
In comparison with the two-hinged type, the continuous design is found to
be approximately 5 percent more rigid for the same economy, or 5 percent
more economical for the same rigidity. For shorter spans, these perce)ntages
of superior efficiency would be increased.

Résumé.

Le présent mémoire a pour but d’exposer une extension de la théorie
des déformations que subissent les ponts suspendus comportant des elements
raidisseurs continus en treillis.

Les ponts suspendus du type continu présentent des avantages des
points de vue de I’économie et de la rigidité. Toutefois, I’absence d’une
théorie suffisamment précise concernant 1’étude de cette dispo;siti.oxn n’a pas
été sans en entraver la généralisation. La théorie des ponts suspendus com-
portant une seule ouverture est connue des milieux techniques depuis plus
de 40 ans; par contre, cette théorie ne s’étend pas encore aux ponts compor-
tant des éléments de renforcement continus en treillis.

Afir de combler cette lacune, 'auteur a entrepris de mettre la question
au point du point de vue theorlque et de fournir des formules susceptibles
d’étre employées dans les calculs pratiques.

Les résultats ainsi obtenus, et qui font I’objet du présent mémoire,
constituent d’ailleurs une théorie généralisée des ponts suspendus, théorie
que l’on peut appliquer aussi bien aux ponts du type continu que du type
non continu. Il suffit de laisser de c6té, dans les formules, les expressions
qui traduisent la continuité; les formules simplifiées ainsi obtenues sont en-
suite valables dans le cas des ponts suspendus comportant des articulations
auXx appuis (cas des ponts suspendus a deux articulations sur trois appuis). En

outre, les formules générales elles-mémes peuvent s’appliquer aux ponts

29
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suspendus a travées multiples avec ou sans articulations aux appuis. L’auteur
s’est d’ailleurs preoccupe tout particulierement, au cours des études qui sont
expos€es dans ce mémoire, des possibilités pratiques d’application, en ce
qui concerne la simplicité et 1a facilité. Il a en outre apporté quelques sim-
plifications nouvelles aux formules qui ont été pubhees jusqu’a maintenant
pour le type a deux articulations. Les fonctions réciproques introduites par
nécessité au début de I’étude théorique ont été resolues, puis éliminées dans
l’établissement des formules définitives.
- Afin de rendre plus facile un calcul préliminaire ou approximatif, des
formules trés simplifiées et approchées ont été également mises au point;
_toutes indications sont d’ailleurs données en ce qui concerne les écarts aux-
quels il faut s’attendre par rapport aux valeurs exactes. Ces formules faci-
litent également la compréhension des expressions et notations employees
Afin de montrer les .possibilités de mise en oeuvre de la théorie gene-
ralisée, dans la pratique, le mémoire contient en outre un exemple numé-
rique d’emplm de ces formules pour I’étude des contraintes et des défor-
mations dans un pont suspendu continu ayant une ouverture principale d’en-
viron 250 m. Pour les éléments de renforcement continus en treillis, la théorie
des déformations donne pour les moments fléchissants une reductlon moyenne
de 45 9% par rapport a la théorie courante de 1’e1ast1c1te Par comparaison
avec le type a deux articulations, on a constaté qu’a égalité de prix, le type
continu est de 59 plus rigide et qu’a égalité de rigidité, il est de 5 o
plus économique. Ce pourcentage est d’ailleurs encore plus élevé pour les
faibles portées.

Zusammeniassung

Dle vorliegende Abhandlwng stellt eine Erwelteru,ng der Verformungs- -
theorie betreffend Hangebrucken mit durchlaufenden Versteifungsfachwer-
ken dar.

Die allgemeinere Anwendurng des durchlaufenden Typus der Hange-
“briicken, der beziiglich Wirtschaftlichkeit und Steifigkeit Vorteile bietet,
wurde durch den Mangel an einer genauen Theorie fiir dessen Unte'rsuchung
hintangehalten. Die Verformungstheorie fiir Hiangebriicken iiber eine Off-
nung ist im Ingenieurfach schon seit iiber 40 Jahren bekannt; die entsprer
chende Theorie fiir die Hingebriicken mit durchlaufendem Verste:lfungsfach-
werk hingegen war noch mangelhaft.

'Um. diesem Mangel abzuhelfen, hat es der Verfasser unternommen, die
Verformungstheorie fiir durchlaufende Hangebriicken sowie Formeln fur 1hre
praktische Anwendung, zu entwickeli.

Die resultierende Untersuchung, die in dieser Abhandlung vorgelelgt
wird, ist eine verallgemeinerte Verformungstheorie fiir Hingebriicken, an-
wendbar sowohl fiir Briicken vom durchlaufenden als auch vom nicht durch-
laufenden Typus. Wenn man in den Formeln die erkennbaren Glieder der
Kontinuitit einfach fallen 14Bt, so vereinfachen sich die Formeln und gelten
fiir den Fall der Hangebrucke)n? mit Gelenken iiber den Stiitzen (fiir sog.
Zwelgelenkhangebrucken iiber drei Offnungen). AuBerdem eignen sich die
allgemeinen Formeln zur Anwendung auf Hingebriicken mit vielen Offnun-
gen mit oder ohne Gelenken iiber den Stiitzen. In der Entwicklung der Un-

- tersuchung, die hier gezelgt wird, wurde hauptsichlich auf duBerste Einfach-

heit und Leichtigkeit in der- praktlschen Anwendung getrachtet. Daneben
wurden neue Vereinfachungen entwickelt und in die bis jetzt veréffentlichten

~
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Formeln fiir den Zweigelenktyp eingesetzt. Die am Anfang der theoretischen
Untersuchungen notwendigerweise eingefithrten gegenseitigen abhingigen
Funktionen werden gelost und beim Ableiten der Endformeln eliminiert.

Um eine vorlaufige bezw. approximative Kalkulation zu erleichtern,
werder auch vereinfachte Naherumgsformeln als alternative angegeben; es
wird gezeigt, inwieweit sie von genauen Werten variieren konnen. Sie
erleichtern ebenfalls die Erklirung der dargestellten Ausdriicke und Be-
ziehungen.

Um die praktische Ausfithrbarkeit der verallgemeinerten Theorie, die
hier entwickelt wurde, zu zeigen, enthilt diese Abhandlung ein numerisches
Beispiel der Anwendung der Formeln fiir die Untersuchung der Spannun-
gen und Verformungen in einer durchlaufenden Hingebtiicke mit einer Haupt-
offnung von 800 FuB. Fiir die durchlaufenden Versteifungsfachwerke ergibt
die Verformungstheorie eine durchschnittliche Reduktion der Biegungs-
momente von 45 9% gegeniiber der gewohnlichen Elastizitatstheorie. Im Ver-
gleich mit dem Zweigelenktypus fand man, daB das durchlaufende System
ungefihr 5 oo starrer ist bei gleicher Wirtschaftlichkeit, oder um 5 o wirt-
schaftlicher bei gleicher Steifigkeit. Bei klemeren Spannwelhem wiirden diese
Prozentsitze noch hoher sein.
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