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DEFLECTION THEORY FOR CONTINUOUS
SUSPENSION BRIDGES.

THEORIE DES DEFORMATIONS POUR LES PONTS SUSPENDUS
CONTINUS.

VERFORMUNGSTHEORIE FÜR DURCHLAUFENDE HÄNGEBRÜCKEN.

D. B. STEINMAN, M. Am. Soc. C. E.

Synopsis.
The more general adoption of the continuous type of Suspension bridge,

offering advantages of economy and rigidity, has been retarded by the lack of
an accurate theory for its analysis. The Deflection Theory for simple-span
Suspension bridges has been available to the profession for over 40 years;
but the corresponding theory for the Suspension bridge with continuous stif-
fening truss has thus far been lacking.

In order to supply this deficiency, the writer has undertaken to develop
the Deflection Theory for continuous Suspension bridges, with working for-
mulas for practical application.

The resulting analysis, presented in this paper, is a generalized Deflection

Theory for Suspension bridges, applicable to both continuous and non-
continuous types. By simply Hropping the recognizable terms due to
continuity, the formulas are reduced to those for the two-hinged Suspension
bridge. Moreover, the general formulas are also found to be applicable to
multiple-span Suspension bridges, with or without continuity.

In the development of the analysis herein presented, maximum simpli-
city of formulas and ease of practical application have been governing con-
siderations. Incidentally, new simplifications are here developed and intro-
duced in the working formulas hitherto published for the two-hinged type.

Interdependent functions necessarily introduced in the earlier portions
of the theoretical analysis are resolved and eliminated in deducing the final
working formulas.

Simplified approximate formulas are also given as alternatives, with
their departure from exact values indicated, to facilitate preliminary or
approximate evaluation. These approximate formulas also facilitate the Interpretation

of the expressions or relations represented.
To show the practical workability of the Generalized Theory here

developed, this paper includes a numerical example of the application of the
formulas to the analysis of the stresses and deflections in a continuous
Suspension bridge of 800-ft. main span. For the continuous stiffening truss,
the Deflection Theory is found to yield an average reduction of 45 percent
in the bending moments as previously found by the common Elastic Theory.
In comparison with the two-hinged type, the continuous design is found to
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be approximately 5 percent more rigid for the same economy, or 5 percent
more economical for the same rigidity. For shorter spans, these percentages
of superior efficiency would be increased.

1. Inlroduciion.
The common or approximate theory for the stress analysis of stiffened

Suspension bridges is known as the Elastic Theory. The values of the
bending moments and shears yielded by this method are too high, satisfying
safety but not economy. The error increases with the flexibility of the structure,

the span-length, and the ratio of dead load to live load.
A more exact method of analysis, which takes into account the deformed

configuration of the structure, is known as the Deflection Theory.
It yields lower stresses and a consequent saving (ranging normally from
20 per cent to 65 per cent) of the metal in the stiffening truss.

The Deflection Theory or "More Exact Theory", as applied to non-
continuous Suspension bridges, was originated by J. Melan and was
first published by him in 1888 in the second edition of his classic work
"Theorie der eisernen Bogenbrücken und der Hängebrücken". (It was re-
published in 1906 in his third edition, which was translated in 1909 by D. B.
Steinman in "Theory of Arches and Suspension Bridges", published in 1913.
In Professor Melan's fourth edition, 1925, the Deflection Theory appears
again, in amplified form.) The working formulas were amplified by L. S.
Moisseiff (and independently by the writer) in 1909 to cover the case of
suspended side spans, and the theory has since been published in its ex-
tended form by F. E. Turneaure in "Modern Framed Structures" (1911 and
subsequent editions) and by D. B. Steinman in "A Practical Treatise on
Suspension Bridges", second edition, 1929.

The Deflection Theory, as hitherto developed, is not directly applicable
to Suspension bridges with continuous stiffening trusses. A number of
such structures have been built, including the Rondout Bridge, at Kingston,
N. Y., with 705-ft. main span (in 1922), and the General U. S. Grant Bridge
over the Ohio River at Portsmouth, Ohio, with 700-ft. main span (in 1927);
but the designers have been handicapped by the lack of an accurate method
of analysis. Without close proportioning, the füll economy of this type of
Suspension bridge could not be secured.

Continuous stiffening trusses offer greater efficiency than the conven-
tional two-hinged type. This increased efficiency may be in the form of
superior economy, or superior rigidity, or both, depending upon the pro-
portions adopted. Comparative designs show that the continuous type is more
rigid for the same total quantity of steel, and somewhat more economical
for the same specified degree of rigidity. The hingeless type offers inciden-
tal advantages in greater efficiency of the continuous lateral truss, in im-
proved and simplified supporting details at the towers, and in reduced Variation

between minimum and maximum sections. The sole disadvantage arises
from the necessity of providing for the necessary expansion movement of the
stiffening truss near the anchorages, where the suspenders are short; but
this becomes a problem only in the longer structures. For Suspension bridges
under 1000-ft. main span, the continuous stiffening truss may well be con-
sidered the superior type.

Comparative designs by the Elastic Theory have indicated an economic
advantage of 5 to 15 per cent in favor of the continuous type, depending

26
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upon the span-length. Comparative designs by the Deflection Theory are
needed, however, to make a more conclusive determination.

In past designs of continuous Suspension bridges, the deflection correc-
tions have been either meglected or conservatively approximated. With the
Deflection Theory for such structures available, more scientifically propor-
tioned designs can be made, and the economic utilization of this bridge type
will be facilitated. ;

2. Fundamental Assumptions.
The Deflection Theory for the analysis of continuous Suspension

bridges is based on the same assumptions as the corresponding theory for
two-hinged Suspension bridges, namely:

1. The initial curve of the cable is a parabola. (In practice, the greatest
ordinate deviation from a true parabola is seldom as large as 1/2 per cent.)

2. The initial dead load (W) is carried by the cable (producing the
initial horizontal tension Hw) without causing stress in the stiffening truss.

Unlike the Elastic Theory, the Deflection Theory does not assume that
the ordinates y of the cable curve remain unaltered upon application of the
loading. In other words, the alteration of the lever arms of the cable forces
is taken into account. This change in cable ordinates or lever arms makes
the initial cable tension Hw significant.

The theory that follows is applicable to either continuous or two-hinged
Suspension bridges, with or without suspenders in the side spans. The equations

are written in their more general form, so as to be directly applicable
to continuous Suspension bridges; but, upon dropping the terms dependent
upon continuity (Mu M2, 7\, 7\>, e, and jul), all equations reduce to the simpler
formulas for two-hinged Suspension bridges.

A symmetrical three-span Suspension bridge is assumed. With minor
modifications, obvious to the bridge analyst, the formulas can easily be ex-
tended to other cases.

The initial loading (W), for which the stiffening truss is unstressed
and undeflected, will be called the "dead load". The subsequently applied
loading (p), producing stress and deflection, will be called the "live load".

The general notation to be used is shown in Fig. 1. The subscripts (as
in Iu lu /1? xu yu rj^ are added to distinguish corresponding side-span
magnitudes. The abscissa x is always measured from the left end of the
main span, and x± is always measured from the free end of either side span.

3. Fundamental Equations.
With no suspender forces acting, let M0 denote the simple-beam bending

moment (due to live load) at any section x of the stiffening truss, and let
Mx and M» denote the continuous-beam bending moments (due to the live
load) at the left and right towers, respectively. Then M', the continuous-beam
bending moment (at the section x) due to live load with no suspender forces
acting, is given (Fig. 1 b) by the familiär expressions:

(Main Span:) M' M0 + J—-^-
Mx + j M2 (la)

(Side Spans:) M' M0 + ^ Mu 2 (1 b)
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If the deflections of the cables are neglected, the relieving moment due to
live-load cable tension// aoting through the suspender forces is given byHy
for a simple span; but, for continuous spans (Fig. 1 c), the expression for this
relieving moment must be modified to H (y—//), where jjl denotes the bending
moment, due to continuity, produced by the suspender forces per unit //.
Deducting this relieving moment from M', we obtain the resultant bending
moment M at any section of a continuous stiffening truss, with deflections

neglected:
M Af' — M(y— li) (2)

This is the b a s ic equation of the Elastic Theory for
continuous Suspension bridges.

AFy^tfi /rr-^itrrpfunifli'refoair 2

le

(b)

/-jf. Cable en/igne continue =positionpourJa changepen/nan.
Ausgezogene läge des Kabels =lage fürständige lasf
CabZe Zn füfl line dead loadposifton
Cabie en ligne po/nf/lfee =posifion deformee
i°urk/ierfe läge des KabeZs s Msr/ör/nfe läge
Cable in dasb f/ne - Def/ecfedposif/on

-4fl^^fffc--^W_
Momenf de Zapoutre enfrei//is due äla cbarge accidenfeZ/e

fachwerkmomentinfoZge yerkehrslast.
Moment /n truss due toliva Zoad.

pour Za traveeprincipaZe
für d/'e liauptoffnung

in ma/n span
pour /a fravee laterale
für die Se/tenöffnung

/n side span

M,+fM2l-xM'=Mt

M'-Nn + -&- Ht.2
Af

A8,ff=Apt)
4*. ^\v& z2t( AMM äL

WZ fmmM/\ - _ ^(c)Moment de /apoutre en/rei//is dues aux forces de Suspension,
fachwerkmoment infoige der t/ängeknäfte.
Moment in truss due fo suspenderforces.

poun lacbargeperm.
für die stand, last
for dead load

Ms (tZwtti)(ytn p-ApJ

r Mw-Hwfy-p)
:.Af H„tM'-M$
fif'-M (y-ß/J-fftn/ttUfn-A/jJ

Fig. 1.

In consequence of the deflections rj (see Figs. 1 a and 1 c), the cable
Ordinate y increases to (y + ^), and ^ increases to (^ -f A ju). Accordingly the
bending moment M at any section, as given by Eq. (2), is relieved by the
additional amount:

(Hw + H)h — AtA)

and the complete expression for M becomes:

M M'-H(y — fA)-(Hw + H)(,i — Av) (3)
This is the b a sie equation of the Deflection Thery forcon-
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tinuous Suspension bridges. Another demonstration of this
fundamental equation is indiicated in Fig. 1 b, and c.

The value of ju is independent of the loading, and may be expressed
in terms of the dimensional constants of the structure. Let:

> {, r=k, Ä ,4)

Then, by the theory of continuous beams, for uniform suspender forces acting
on a symmetrical three-span structure, the value of ju at each tower will
be ef, where

- 1±Ü1L (5)
3 + 2/r

and

Accordingly, the value of ju at any section is given by the expressions:
(Main Span:) u ef (7a)

(Side Spans:) p ^ • ef (7b)

With the Ldeflection of the spans, let A ^ and A ju2 denote the increases
in the value of ju ef at the left and right towers, respectively. Then, at any
section of the spans, the value of A ^ denoting the increase in the continuity
moment of the suspender forces per unit //, is given by the expressions:

/ — x x
(Main Span:) A fi —j— • A iix -\- — - A ^2 (8aA^i

/ —
/

X
¦ ti tix + X

1
A ii — *1 A l"l,2(Side Span:) A^i — -± • A/liu2 (8b)

(See Fig. 1 c). The quantities A ju± and A fi2 will be evaluated in Art. 7, and
will be eliminated in Art. 8.

Neglecting the elongation of the suspenders, the truss at any point will
have the same deflection rj as the cable at that point.

By the common theory of flexure applied to the truss,
d2 j, __

M
~dx2 ~~ ~~ in

substituting Eq. (3), and introducing the symbol

Main Span:) c2 ^~j^ (9a)

(Side Spans:) c\ ^t77 (9b)

we obtain:
d2 ii c2

d2
The Solution of this differential equation, noting that —^ (A jli) 0, yields

the general formula for deflections or equation of the deflection

curve:
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•' ra[c^+c^+(£-'+'')-Mf-7/)]+^<><>>
where pK is the live load per unit length at the section x. (The terms in
the last parentheses are the second derivatives of the terms in the preceding
parentheses.)

Substituting Eq. (10) in Eq. (3), and introducing the parameter abbre-
viation,

8/' Gl=8f\ (11)

we obtain the general formula f o r Af or equation of the A/-curve:

M -H[c1e« + Cte-<*-±(2!L-±)] (12)

From Eq. (12) we observe that the bending moment M is not simply
proportional to the load p that produces it. Eq. (3) also shows that the value
of M is affected by the dead load stress Hw in the cable befoire the application

of the live load. In the Deflection Theory, influencelines
cannot be used. Stresses producible by combinations of loadings cannot
be found by adding algebraically the respective stresses producible by the
component loadings.

The general formula for shears V, or equation of the V-
curve, is obtained by differentiating Eq. (12), which gives:

V ^- —Hc[C1 eF — C2 e-<*\ (13)

Differentiating Eq. (13), we obtain an expression for the live load per
unit length actually carried by the stiffening truss at any point x:

px-(Sl-s0) -~= -^-HcnCr^ + C^e-^ (14)

where s0 and st are the initial and final values, respectively, of the suspender
loading (per unit length of span) at the point x> so that (s±—s0) is the

live load per unit length actually carried by the suspenders. Eq. (14) shows
that the suspender loading (s1~s0) is no longer constant, as in the Elastic
Theory, but becomes a variable in the Deflection Theory.

Eqs. (12), (13) and (14) are identical with the corresponding equations
for the case of two-hinged Suspension bridges.

The constants of Integration C± and C2 appearing in the foregoing equations

for rj, M, VT and s± will occur again in the general equation (Eq. 21)
for H. They are determined for a given structure from the conditions of
loading, as illustrated in Art. 5. Values of C1 and C2 for different cases of
loading are tabulated in Art. 11.

The foregoing equations for tj, M, V, and s± (Eqs. 3, 10, 12, 13, 14) are
applicable to points in the side spans as well as to those in the main span;
all that is necessary is to write the subscript Symbols xu yu lu fu qu
Iu cu rju instead of the corresponding main span quantities.

An important function, occurring repeatedly in the subsequent equations
of the Deflection Theory for continuous Suspension bridges, is the total
resultant bending moment at either tower, corrected for
deflections. This total tower moment will be denoted by 7\ for the left
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tower and T2 for the right tower. (See Fig. 4 c.) Substituting y 0, rj^=0y
and A4' =- M1 or M2 in Eq. (3), and utilizing the expressions given by Eqs.
(7) and (9), we obtain:

7\ - M, +H(ef) + EIc2{A^) (15a)
T2 M2+H(ef) + EIc2(A^) (15b)

These functions Tt and T2 are evaluated in Art. 8 and are tabulated, for dif-
ferent loading cases, in Art. 11.

With these new functions, the fundamental equation of the Deflection
Theory (Eq. 3) may be written in the form:

(Main Span:) M (M0 — Hy) - {Ele2 ,y) +(^ Tx + j T2) (3a)

(Side Spans:) M (M0-Hy{) - (EIc2iJh2) + (^ ¦ Tlj2) (3b)

The first term (M0—Hy) is the elementary expression for t>ending moment;
the second term (EIc2rj) is the deflection correction, without continuity;
and the last term (containing TU2) is the contribution of continuity.

4. Derivation of the Basic Equation for M.
The horizontal cable tension //, due to any live load p (including any

supplemental dead load) and temperature change t, all following the coin-
dition represented by the initial tension HWJ may be evaluated as follows:

The total Virtual work (W^) done in the vertical displacements rj of the
suspender loads st and the cable weight g must equal the total Virtual work
(W2) done by the cable tension (Hw + H) in stretching the cable. These
work quantities, W1 and W2, are expressed as the integrated produets of
the forces and their respective displacements, as follows, using the Symbol
ü to denote the summation of similar expressions for all the spans:

Wi S J (*i + g) n • dx 2 ^(Mw + M) yrdx, (approximately)

(Hw+H)\j^-Ls+tot-L^

In these expressions, Ac denotes the cable section at any point and A0 denotes
the cable section at mid-span.

For a parabolic w i r e cable, having uniform AC9 we may write with
sufficient aecuraey: \

Ls S^(sec3« + 8/z2.seca), Lt £ '(sec2« + y n2) (18)

/where n=~, and a is the inclination of the closing chord in any span.
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Similarly, for a parabolic eyebar cable, assuming Ac vairying with the
ds

slope secant —, we may write with sufficient accuracy:

£« S/(seCo + ^««), ^^/(seca + A.^) (1Q)

Equating the expressions given above for Wt and W2, we obtain the
work equation:

2^\i1-dx=-^--Ls-\-wt-Lt (20)
l Jq £>c7lo

(This is identical with the work equation for two-hinged Suspension bridges.)
Substituting the expression for rj from Eq. (10), the work equation (20)

may be written: <

S K |0 [Cl ** + Ca *"" + (t7 ~~ y + *) ~ c* ("H ~ \) + EIc2 A **] dX

„ [E I f Eliot >

Solving for //, we obtain the basic //-equation:

2/C f (iW' — ~)ö?a; — QC*EIiotLt + EIc* • A^if-S'{Kl)
H= -pil il (21)

S/c[-jo(c1^+c2e-)Ä + |//-^]+ ?^£.^-£/.^(/co
where E is the modulus of elasticity of the truss material and Ec that of
the cable; cd is the coefficient of temperature expansion; and q is the para-
meter of the cable parabola, defined by Eq. (11).

The summations 2 in Eq. (21) embrace the corresponding expressions
for all the spans; the symbol 21' likewise denotes ,a sumrnatiom of corresponding

expressions for all the spans, except that the side-span contributions
are to be multiplied by y2 before adding them.

The coefficient K occurring in the summations denotes the ratio of -^
ffor any span to ^ of the main span. Hence K= 1 for the main span; also

Ki 1 for the side spans if they have the same ~ as the main span. (Ge-

nerally the ratio Ki for suspended side spans is between 1.00 and 1.05, re-
presenting the ratio of side-span weight to main-span weight per unit length.)
For "umloiaded" or "straight" backstays, /d 0, and all side-span terms
vanish from the summations in Eq. (21). In any case:

K=\, and Kl=jj^ fi (22)

The symbol A juh introduced in Eq. (21), denotes the value of A fi at
the middle of the main span, or the mean of the respective values of A /u
at the two towers:

Afjf=i(AfÄ1+A^) (23)
It should be noted that two approximations are involved in the foregoing

derivation of the //-equation (Eq. 21). In writing the transformed expression
for Wu it is assumed that the suspender and cable loading (s1 -f- g) is
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uniformly distributed over the span; this is not the actual condition, as de-
monstrated in Eq. (14). (In the Deflection Theory formulas presented by
Timoshenko, this assumption is avoided; the effect on the resulting stresses
is, however, found to be practically negligible.) The second approximation
consists in writing the original cable sag / instead of the augmented cable
sag (/ + ti f) in the expression for W±. This äffects only the terms containing
Ls and Lt in the //-formula (Eq. 21), and the effect of this approximation
on the value of H does not, in extreme cases, exceed one per cent.

In the //-equation (Eq. 21), the only terms representing the effect of
continuity are one in the numerator containing A juf and one in the denomi-
nator containing ef. Both ,of these terms contain the factor 2'(Kl). With
these two terms omitted, Eq. (21) becomes identical with the corresponding
//-equation for two-hinged Suspension bridges. It may be noted that A jut
is the augmentation of ef due to the deflections of the spans, or

AfAf=A(ef) (24)

5. Evaluation of the Integration Constants.
The constants of Integration d and C2, appearing in the basic Equations

(10), (12), (13), (14), and (21), must be determined for each different
condition of loading. For each span-segment having a constant value of p
and of /, there is a pair of values for d and C2.

In the treatment that follows it will be assumed, as is usually done for
the sake of simplicity, that the moment of inertia / (or I±) is constant
throughout the length of any span under consideration, although it may have
different respective values for the three different spans. The error of ignoring
the Variation of / within a span is found to be practically negligible and
on the side of safety. (For greater accuracy, instead of the average value
of / for any span, the value of the equivalent uniform / should be used in
the computations; this equivalent uniform / may be determined by figuring
equal deflections under governing loadings.)

In this article, the Integration constants are evaluated for three general
cases, covering the division of a span into one, two, and three differently
loaded Segments, respectively. From the general formulas thus derived, special

formulas may be written for a large variety of loading conditions, in-
cluding all of the loading cases that arise in the usual design computations
(Cases I to X, Art. 11). '

One Loading Segment. — For the case of the main span fully
loaded with a uniform applied load p, and assuming constant moment of
inertia /, the quantities d and C2 are obtained from the two known conditions
that, for x=0 and x l, rj 0 in Eq. (10) or Af 7\ and T2 respectively
in Eq. (12). Substituting these values and solving the resulting two indepen-
dent equations, we find:

r __L E i 1
| TA i UV - T_)

1~(eä+\) Hc* (e* + l)\Qc*1~ ff)~r(ee' — trd) H K '

C9--_J P \ (JLjl.Il) 1 Vi ~ T.) (25b)

(Ci + C,) ^-(^ + ^) (25c)

These are the values recorded for Case II, Art. 11.
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It may be noted that the expression for C2 may be written from the
accompanying expression for d by simply changing the sign of c wherever
it occurs in an exponent. This ruie holds true for all loading cases; it is a

neccessary consequence of the syrnmetrical occurence of d and C2 as the
coefficients of ecx and e~cx, respectively, in Eqs. (10), (12), and (13). It
will therefore suffice to give the expressions for d for the loading cases
that follow, without writing out the parallel expressions for C2.

For either side span fully loaded, the following corresponding expressions

are similarly obtained, provided x1 is always measured from the free
end of the span:

c - 1 P L 1 L__ Ihl ^26a^1
(<M +1) Hc\ (<M + 1) Qlc\ (e^ — e~c^) H v ;

Ci + c» ^f-^j <26b>

These are the values recorded for Case VIII, Art. 11.
It may be noted that the formulas for d and C2 in a side span may

always be written from the corresponding formulas for d and C2 in the
main span, by simply writing cu lu and ^ instead of cu lt and o and sub-
stituting zero for 7\ (bending moment at origin of x) and 7\ or T2 for T2
(bending moment at other end of span).

The first term in each of the formulas for d and C2 is an expression
containing p and varies for different loading conditions; the remaining terms
are repeated unchanged in the respective Ct and C2 formulas for all loading
conditions.

For any span fully unloaded, Substitute p 0 in the formulas for d
and C for that span. This yields the expressions recorded for Cases I
and VII.

Two Loading Segments. — For the case of a partial loading of
the main span (Case III, Art. 11), with a uniform load p per unit length
extending a distance k from the left end of the span, the constants d and
C2 for the loaded segment (k) and the constants C3 and d for the unloaded
segment (m=^l—k) are obtained from the four known conditions that the
moment and shear at the right end B of the loaded segment must be equal
respectively to those at the left end B of the unloaded segment, and that
7] =- 0 (or M TU2) at each end of the span. Substituting these relations
in Eqs. (10), (12) and (13), and solving the resulting four independent
equations, we find:

r P (e™ + e-""-2e-*) 1 l\ TA 1 (7j - 7»,)
1 2Hc2 (ecl-e~cl) (eä+ \)\qc2 ^ H J ^ (eä-e~cl) H lZ/a;

C2=-C1+^-(-^-£) (27b)

_ pe-d (e* + er*-2) 1 / 1 TA 1 (7\ - T2)
°3 _ 2//c2 (ef-e-*) (ea + \)\qci^"H}^'(ea-e-a) H K '

C. -0,-^(^ + ^.2) -(-^ + ^) (28b)

The foregoing values of d and C2 are recorded for Case III in Art. 11.
To calculate the deflection, moment, or shear at any point in the loaded

segment of the span, the foregoing values of d and C2 must be substituted
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in Eq. (10), (12), or (13), respectively. To calculate the corresponding values
in the unloaded segment, the values of C*. and d replace the general
constants in the same basic equations; and since the segment is unloaded, the
value of px is taken as zero in Eq. (10) or (12), though p retains its value in
Eqs. (28).

As a check upon the foregoing formulas, Eq. (27) for the loaded segment
may be reduced, by substituting m 0, to Eqs. (25) for the span fully loaded.
Similarly by substituting k 0 or p 0 in Eqs. (28), the integration
constants may be obtained for the span fully unloaded (Case I).

For the case of partial loading of a side-span, corresponding formulas
for the integration constants are similarly obtained, or they may easily be
written from Eqs. (27) and (28). See Cases IX and X, Art. »11.

Three Loading Segments. — For other loading conditions, the
integration constants are determined by a procedure similar to that followed
in the cases represented by Eqs. (25) to (28). If the main span is divided
into three Segments (kJrm-{-z l) having different uniform loads pky pm
and pz1 respectively, the three corresponding pairs of integration constants
are obtained from the six known conditions that M and V at the right end
of the first segment must be equal to M and V at the left end of the second
segment, that the same two equalities hold at the junction of the second
and third segments, and that r] 0 (or M /\,2) at each end of the span.
Upon substituting these relations in Eqs. (10), (12), and (13), the Solution
of the resulting six independent equations yields the following values of the
three pairs of integration constants:

1 [(Pk-Pm) [ec(l~k) + e-«l-k)] + (pm-pz) (ecz + e-<z) - 2pke~ä + 2pz\
1 2Nc2\ (eä-e-ä) 1

1 (\ TA 1 (7j - T2)

(ed + l) \qc2 -l"7 /// ^ (ecl-e-d) H lzya;

C2 -C1+^-(^ + £) (29b)

r _ 1 j(?*-/>»)(** + *-*) e~a + (pm-Pz)(ecz+e~cz) - 2pke~ä + 2pz
3 _ 2NcH (fl-<rd)

1 M 7V\
|

1 (7\ - 7-,)
(<?l + \) \qc2 ^ H) "f" (ea-e~ä) H [JVa)

C, - C3 - jL-i [{Pk-pm)(e*+<r*) - 2pk] _ (-^ + g.) (30b)

n _ 1 I (Pk-Pm)(e*+e-*)e-tl+(pm-p1)[<*<M>+*fl->e\e~"-2pke~d + 2pz
6 2Mc2[ (^-e-'1)

1 / 1
¦ TA 1 (Tt- TA

(^+l)\?c2 T H)'r(ea-e-d) H [Ma)

Q - Q - ^^ \(pk-pmWk+<r<k) + (pm-Pz) [e'C^ + e-cfi-*)] - 2p^

-{jc^ + w) (31b)
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The three-segment loading condition represented by Eqs. (29) to (31)
may be regarded asa general case from which the more usual loading
conditions may be evaluated by simple Substitution. Thus, upon substituting
appropriate values 0, k, m, or / for the lengths £, m\, or z, and 0 or p for
the loads pk, pm, pz, Eqs. (29) to (31) reduce to the simpler cases recorded
in Eqs. (25), (27) and (28), and in Cases I to VI. Art. 11.

The expressions for the constants C for side-span conditions are
similarly obtained, or are written from the main span constants by Substitution

of the side-span magnitudes, and are recorded in Cases VII to X, Art. 11.
It should be noted that unsymmetrically loaded spans are not reversible

left to right without altering the values of the integration constants (unless
the origin of x is also reversed). That is because the integration constants
occur in Eqs. (10), (12), and (13), in which x is assumed measured from
the left end of the span (main span or left side span) and which represent
the unsymmetrical graphs of rj, M, and V respectively. It is for this reason,
for instance, that the values of C given by Eqs. (28) for a right-hand
unloaded segment cannot be applied to Case IV (Art. 11) representing a left-
hand unloaded segment. Eqs. (28) and the corresponding side-span formulas
would properly be applicable to the unloaded segmeints of Cases III and IX;
they would also be applicable to Case IV and the unloaded segment of
Case X if x were measured from the other end of the span.

It should also be noted that the expressions for the integratioin
constants C, for any loading condition in a span, are unaffected by the loading
conditions in the other spans.

Upon substituting zero for 7\ and T2 (representing continuity), the
formulas for d and C2 will reduce to the corresponding formulas for two-
hinged Suspension bridges.

6. Derivation of Working Formulas for H.
The basic equation for //, Eq. (21), may be simplified, for any parti-

cular loading condition, by substituting detailed expressions for the terms
that depend upon the loading, transferring some of the terms containing
//, and re-solving for //.

For the case of partial loading, with a uniform load p covering the left
segment k l—tri) of the main span (Case III, Art. 1), and with no applied
load in the side spans, the simplification of the general equation for // is
as follows:

For this loading condition, the principal summation term in the nume-
rator of Eq. (21) takes the following form upon substituting the respective
expressions for Mf (as defined by Eqs. 1) and integrating for the two
Segments of the main span and for the two side spans:

**J0V-£)* >*[l2-<3'-2*> - TA + i—2M ¦ *M <32>

The integration summation term in the denominator of Eq. (21) may be
written in the form:

— ZK\ (Cxecx+C^e-cx)dx — (Qecx + C2e~cx)dx —

— (C3 ecx + C4 e~cx) dx — 2Kx (Ci e*1*1 + Co e~c^) dx1
Jk Jq
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Substituting for the main-span constants Cu C2, C3, d the values given by
Eqs. (27) and (28), and for the side span constants C\ and C'2 values similar
to those given by Eqs. (26) except that p is zero for the unloaded side spans,
the foregoing summation reduces, upon integration, to the form:

-zAiCS' + Cr^dx- p (^-0(^+0 | vM^-1) 21_l

,r[ 2(^-1) (Tt + TAI

Substituting the expressions given by Eqs. (32) and (33) for the respective
summations in Eq. (21), utilizing Eqs. (15), introducing the abbre-

viation

L< l-jpr i) (approx') l" 7 (34)

and solving for //, we finally obtain:

F(P) +(Tl * T2)
• ZiKLc) + QC^-EIiotLt

H ^
^ (35)

where D, the denominator of the //-formula, is given by:

D imfl)-Z(^)A-Qc*§-.L.LS (36)

and F(p), for this loading condition (Case III), is given by:

Eq. (36) for the denominator D is found to remain unchanged for all
other loading conditions; it contains no terms involving the load intensity p,
the load length k, nor the temperature change t. Eq. (36) is therefore the
expression for the denominator of the //-formula for anycondition of loading. It should be noted, hoiwever, that D is not a
constant; although the expression for D remains unchanged, it contains
the variable c which depends upon //, and therefore the value of D varies
with the loading. The calculations for a given structure are facilitated by
Computing in advance the values of D for varying values of H, and tabula-
ting or plotting the results for reference in the subsequent computations.
(For an illustration, see Fig. 4.) It may also be noted that Eq. (36) for D
contains no terms representing continuity, and is therefore applicable to two-
hinged as well as to continuous Suspension bridges.

In the numerator of the //-formula (Eq. 35), F(p) represents the
terms containing p and is the only part of the formula that has different
expressions for different loading conditions.

The second term in the numerator of Eq. (35) contains (T1-\-T2),
representing the effect of continuity. By simply omitting this term, Eq. (35)
reduces to the //-formula for two-hinged Suspension bridges.

The last term in Eq. (35), representing temperature effect, has the
minus sign for a rise in temperature above normal, and the plus sign for a
drop in temperature below normal. In other words, // is diminished by a
rise in temperature and augmented by a drop in temperature.
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From the expression for F(p) given by Eq. (37) for Case III, the F(p)
expressions for any other loading conditions are easily written. Thus, inter-
changing k and m yields Case IV.

For füll loading of the main span, Substitute / for k and zerro for m in
Eq. (37). This yields

F{p) ^--^-Lc (38)

for the main span fully loaded (Case II). Write p 0 to obtain Case I.
Subtracting from F (p) for the main span fully loaded (Case II) the F (p)

expressions for partial loading from each end (Cases III and IV), we obtain
F(p) for the case of partial loading near the middle of the span (Case V).
Subtract Case V from Case II to obtain F(p) for Case VI.

By substituting the side-span torms Ku lu cx and Lcl in the F(p)
expressions for main-span loadings, we obtain the corresponding F(p) expressions

for side-span loadings (Cases VI to X).
The ten loading cases in Art. 11 are tabulated in complementary pairs.

The F(p) expression for each case may be obtained by subtracting the
complementary case from F(p) for the füll span loaded (Case II or VIII).

By doubling F(p) for Case VIII and adding to F(p) for Case II, we
obtain the following expression for the condition of füll loading of all three
spans:

F(p) 2[k^\-2[kLc.^\ (39)

The methods used above for deducing all other F(p) expressions, for
use in the //-formula, from the expression given by Eq. (37) for one loading
condition have eonsisted of the simple processes of Substitution, addition
and subtraction. We have made use of the fact that the expression for F(p)
(though not its value) is algebraically additive for combinations of loadings.

It is also of interest to note that unsymmetrically loaded spans are
reversible (left to right) without äffecting the value of F(p) or the expression

for H (whereas the integration constants C are altered by such re-
versal). That is because the directional variable x does not occur in the
formulas for F(p). Furthermore, an unsymmetrically loaded main span is
reversible (left to right) and unequally loaded side spans are interchangeable
without äffecting the value of //, since the shifting of any load to a
symmetrica! position about the center line of the entire structure does not alter
the value of (T±-\-T2); but an unsymmetrically loaded side span cannot be
reversed about its own center line without altering the value of (T1 -\- T2)
and therefore of Ff. (This last distinction does not apply to non-continuous
Suspension bridges.)

The abbreviation Lc, introduced in this Article, will be found convenient
in condensing the formulas and applications of the Deflection Theory. The

2
approximate value Lc l is almost exact, ranging from about 0.9985

to 0.9996 of the exact value. For the side span terms, the approximation
2

Lc\ l± is less permissible, ranging from about .80 to .90 of the exact
ci

value. If both approximations are used in the combination Zf(kEc), the
resulting summation will ränge from about .96 to .98 of the exact value for
this term; in the combination I(kLc), the resulting summation will ränge
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from about .93 to .97 of the exact value. The final error in the value of //
will, however, be negligible.

7. Evaluation of the Deflection Functions Afi.
The functions Tu T2, and (T1JrT2), occurring in the working formulas

for //, dandC2, involve in turn (by Eqs. (15) and (23)) the functions 4 (zu
A ju2, and A /uh respectively. It is therefore necessary to evaluate these
functions, representing the values of A ß at the two towers and at mid-span,
respectively.

The values of ju expressed by Eqs. (6) and (7) are for geometrically
symmetrical side spans, as initially assumed, and therefore represent equal
values of mA and u2 at the two towers. If, however, the two side spans have
unequal sags /x and /2, the Theorem of Three Moments yields differing values
of fjLx and /li2, £S follows:

"• 3^277 ''< r+277 (40)

Differentiating these expressions, we obtain:

*« TT2J? W+ "(<"¦ + ¥^r)] <?'•>

<"* Thi? W+'^A + TfSi <41b>

Taking one-half the sum of these two expressions, we obtain:

_n=*J_^ iM m+WtL±l£- (42)

Taking the difference of the two expressions in Eqs. (41), we obtain:

{A,,_ - A UA y^L- (Af, - AfA (43)

Eq. (42) may also be written by differeintiating the dependent
variables in Eq. (6), using the mean of the two side-span sag-changes, Afx
and Af2 ,(since A juf is a symmetrical function, equally affected by a change
in either side span).

Eqs. (41), (42) and (43) will yield the desired A ju functions when the
sag-changes Af, Aft and Af2 are known.

To obtain an expression for Af, for any main-span loading condition,
Substitute the appropriate expressions for d and C2 in the basic deflection

/
formula (Eq. 10), also Substitute x= — y =/, rj Af and A/ti =¦ A/uf.

(44)
^C

where
Ifid -L 1 >i

(45)

and A is an expression that does not contain any deflection terms and de-

*f A
ec

(ecl
cl

(ei

+ 1)

-l)2
(approximately) 1
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pends only upon the loading condition. The expression for A is not
affected by loading conditions in the side spans. For the generalized case
of the main span divided into any number of Segments k, each having a
different uniform load pL (which may be zero for any segments) the expression
for A is found to be:

A -H
EIc"

1 Z(p/-pk)(e*+e-<*-2) 1 / Pf 1 Mt+Mt \ Mf
2Hc* (J+e-4) «A /fc'V 2M

' JL H (46)

Bu.=

where pf denotes the uniform load (if any) at mid-span, and Mf denotes the
simple-span bending moment (M0) at mid-span. Upon substituting appro-
priate values for k and pk for each loading segment, also for ph Eq. (46)
reduces to the respective formulas for A tabulated for the six main-span
loading cases in Art. 11.

To obtain an expression for A fu for any loading condition in the left
side span, Substitute the appropriate expressions for d and C2 in the basic
deflection formula (Eq. 10) modified for side-span application by using rjl9

C\-> Xi, yu and qu also Substitute x1--=^-, y1 f1, rj1 Af1, and 4iu==^A^1.
This will yield:

Af, Bl + ^± (47)
AeCl

where (similar to Eq. 45) __ (*M +1) /AQ\e« ~ TW~~\2 (48'
\e2 —\)

and Bt is an expression (similar to A) that does not contain any deflection
terms and depends only upon the loading condition in the left side span.
Similarly, for any loading condition in the right side span, a corresponding
expression for A f2 is obtained:

Af, B2 + 4^ (49)

where B2 is an expression parallel to Bt but depending only upon the loading

condition in the right side span. The expression for Bx or B2 is not
affected by loading conditions in the other spans. For the generalized case
of a side span divided into any number of segments k, each having a
different uniform load pk (which may be zero for any segments) the expression
for Bx or B2 is found to be:

H
EIc2

1 Z(Pf^-Pk)(e^k + e-^-2)^ \t pflt 1 MU9 ej\ Mflt2

2fiel (g + e-^) 'cA Hclw* 2H 2> Ff
(50)

where pfl or pf2 denotes the uniform load (if any) at the middle of the
respective side span, and Mfl or Mf2 denotes the simple-span bending moment
(M0) at the same point. Upon substituting appropriate values for k and pk
for each loading segment, also for p/lj2, Eq. (50) reduces to the respective
formulas for B1)2 tabulated for the four side-span loading cases in Art. 11.

Substituting the expressions for Af, Aft and A f2, from Eqs. (44), (47)
and (49), in Eq. (42) for Ajuh we obtain:
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Substituting the same expressions for Af1 and Af2 in Eq. (43), we obtain:

L(Aux-A^) K-A 2J^ (52)

<¦+*">-£)
Add the values given by Eqs. (51) and (52) to obtain Ajui9 and take their
difference to obtain Aju2. This yields:

_ 2A+ir(Bl + B2) ir{B,-B2)
Al*-\,i — 77; j-t ± 77-v \oo)

<™-(f<r<'+2<»--(i;)
Eq. (53) is an exact formula giving Afi± and Aja2 in terms of A, Bx and B2,
representing the loadings in the three respective spans. Denoting the
denominator in the first term by (l-{-lr)c and that in the second term by
(l-\-tr)Cl Eq. (53) may be written in the abbreviated form:

_ 2A + ir(Bx+ B2) Ir^-Bz)^ ~ W+Tr);— ± -IT+Tr^ <53a>

As indicated in Eq. (45), ec is approximately equal to unity. (Values of
ec have been found to ränge between 1.03 and 1.08 for 1200-ft. main spans
and beetwen 1.05 and 1.09 for 800-ft. spans. For shorter spans, the error
increases.) A similar approximation for ecl is not permissible. (Values of ecl
have been found to ränge between 1.50 and 1.84 for 400-ft. and 500-ft. side
spans.)

Substituting Eq. (51) in Eq. (44), we obtain:

3 + 2lr~'AA + 'AB, + B,)

"'= ThFvr (54)

Similarly, from Eqs. (47), (49), and (53), we obtain:

_2A+ir(B1+Ba) ir(Bx-B2)Af" ~ 2eCl{\+Trjr~ ±
2eCl(\ + ir)Cl

+Ä"'» (55)

The values of the mid-span deflections' Af, A ft and Af2 are thus determined
by Eqs. (54) and (55) when A, B± and B2 are known.

The functions A, Bt and B2, tabulated for the ten loading cases in Art. 11,
will not be needed for the computation of stresses in a Suspension bridge,
since these functions are eliminated by the further simplification in Art. 8.
They are useful, however, for calculating the A/u and A f functions by Eqs. (51)
to (55), when the values of these deflection functions are separately desired.

8. Evaluation of 1\ and T2.
The formulas developed in the preceding articles are sufficient for

the complete analysis of a continuous Suspension bridge by the Deflection
Theory. The entire Operation can be made more direct, however, by elimi-
nating a number of inter-related functions. Working formulas for T1 and
T2, defined in Eqs. (15), will now be developed so as to eliminate the ne-
cessity of calculating Mu M2, A, Bu B2, Ajuu A^2, Afth and ef in .practica!
application.

The formulas for A and B (Eqs. 46, 50, and Art. 11) may be written in
generalized form as follows:
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eu-b,,,=i. „,w+i[=^+3+^+!uq+Mi__ HA (61b)

where FA(e) and FB(e) are temporary abbreviations for the terms (if any)
containing the exponential functions.

From the seven equations (15, 53, and 61), the five deflection functions
(A, Bu B2, Aju± and Afi2) are to be eliminated so as to leave two formulas
(for 7\ and T2) that do not involve these deflection functions. For clairity
of presentation, the contributions of certain groups of terms will be
evaluated separately.

The terms containing ef and / in Eqs. (61), when substituted in Eq. (53)
for Aiuli2, yield the following contribution to EIc2 • Aimly2:

j(ef)-2f+L"(ef)-2irfl
H- ^ r^ ±H (0) =-H-ef (62)

(3+2i>)-(l+9 (i+2/^-£)
which exactly cancels the term H • ef in Eqs. (15) for 7\ and T2.

The terms containing Mu M2? Mf, and MfU2 in Eqs. (61), when substituted

in Eq. (55) for AjuU2 and then combined with the term MU2 in Eqs.
(15), yield the following contribution to the terms MU2 + E fc2 • Ajuly2 in the
formula for 7\,2:

Contribution of M and Mf terms to Tli2

~ ZI-T7\ ± ~ ha
' +M>'> <63>

Inspection of the formulas for MU2 (tabulated in Art. 11) shows that,
for any condition of loading, the value of Ml92 may be written in the form:

_ F(M) F'(M)
1)2 ~ (3 + 2/>)-(l+2/r)

so that

Mt+M2_ F(M) and Mx-M2 _ F'(M)
2 (3 + 2/r)' 2 (\+2lr)

Substituting these three expressions in Eq. (63), a simplifying cancellation
results, and Eq. (63) reduces to:
Contribution of M and Mf terms to TU2

F(M) 4- 2 Af/+ ir(Mfl+MfJr F'\M) + lr(Mfl — MA)
(l + ir)c

" ~ {\ + ir)Cx

This expression m,ay be segregated into separate contributions from
the load in the three respective spans, as follows:

Main Span contribution to 7, 2 -.—r^^~ ± i—^-r^~ (64a)(\+ir)c (l + (ir)ci

27
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Left Side Span contribution to 7li2

D. B. Steinman

irNr

Right Side Span contribution to Tu2

where

(1 + ir)e
irN«

+

(1 + ir)Ci

irN2
(1 + ir)Cl

(64 b)

(64c)

(65 a)

(65 b)
(65 c)

i\+ir)c
N F{M) -\-2Mf
N' — F'(M)
Nh2= FUi(M) + MÄ,2

In writing Eqs. (64b) and (64 c), use was made of the fact that,, for
load in either side span, FU2 (M) FU2'(M).

Upon substituting the respective values of MU2, Mf and Mtu2, the N-
functions defined by Eqs. (65) reduce to the following expressions for the
ten loading conditions of Art. 11:

Case I: N±N' 0

N + N' — 0Case II:

Case III:

Case IV:

Case V:

{k>m): N±N' P^-(k2~m2 + k2)

(k<Cm): N±N'= ^ (k2 — m2 + m2)

(k>m): N±N' ^ (m2 — k2 + k2)

(k<Cm): N±N'= ^-(m2 — k2 ± m2)

N±N' 8/2

8/2

[ki + z4-k2(l-k)2-z2(l-z)2 ± k*-(l-k)2 + z2{l-z)2]

N + N' ^-[k* + z* - k2(l-k)2 - z2(l-z)2 ± k2(l-k)2 + z2(l-z)2]Case VI: N±N' ^-2[k
Case VII: Ni,t 0

Case VIII: N1>2 0

(kZ>m): Nh2
Case IX:

(k<Cm): Nu2

pm±

^(2m2-
8l\ Klm ¦k2)

Case X:
(k^>m): Nh2 — pm*

(k<m): M,2=-^|-(2/^2-Ä2)
Where double signs occur in the foregoing expressions, use the upper

sign in the value for 7\ and the lower sign in the value for T2.
It is interesting to note tha^t, for any span fully loaded, the contribution

of Mf exactly cancels the contribution of the M± and M2 terms in the
foregoing N-functions. Hence these functions reduce to zero for any span
fully loaded or unloaded (Cases I, II, VII, VIII). These Af-functions are al-
gebraically additive for combinations of loading conditions, and are alge-
braically complementary for complementary loading conditions.
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To take account of the difference of denominators in Eqs. (64), the
terms following the double signs in the foregoing expressions denote N' and
should be written over the denominator (1 -\-lr)cl\ and the foregoing expressions

for NU2 need to be multiplied by the factor

Ir Ir
(\ + lr)c ~ (1+ *>)«.'

with this double sign inverted for the right side-span contribution, as shown
by Eqs. (64b) and (64c).

The contributions of the terms containing / and the moment terms in
Eqs. (61) to the values of Tli2 have now been evaluated. The contributions
of the remaining terms of Eqs. (61) are easily written and are as follows:
Main Span contribution to Tu2

5™+*(-&+£)C QC (66 a)

(66b)

(1 + ii)e
Left Side Span contribution to T1)2

(1 + if)c ~ (1 + ir)Ci

Right Side Span contribution to Tu2

"\&™+k(-%+M-»\&™-& ,„,— ——_^ _, ^—_^ (66c)

Combining the foregoing expressions for the contributions of the /-
terms (Eq. 62), the moment terms (Eqs. 64), and the remaining terms (Eqs.
66); substituting the values of N, A/7, and Nly2, (tabulated above); and re-
storing the original expressions for FA(e), FB1,2(e) taken from the respective

formulas for A and B for the various conditions of loading, — there
are obtained the working formulas for the individual span contributions to
7\ and T2. These working formulas are tabulated for the ten loading cases
in Art. 11. In that tabulation, groups of terms containing /?, occurring in the
T-formulas, are denoted by G(p) and are separately recorded. These load
functions G(p) are separately useful in the computation of Ff, as will be
developed in the next Article.

The 7-Formulas tabulated in Art. 11 give the individual span contributions.

For any loading Kondition on the structure, the respective
contributions from all three spans must be added together to give the total value
of 7\ or T2.

The expressions for 7\,2 hereinabove derived give exact values for
the tower moments 7\ and T2. Closely approximate values of these
expressions for Tu2 are obtained by calling ec=\ to make (\ -\-ir)c
(l+^)ci and these approximate expressions for TU2, as well as the exact
expressions, are recorded for the ten loading cases in Art. 11. This
approximation eliminates the small contribution of the far side-span loading to
7\,2, so that it may then be considered that the contributions to 7\ or T2
come only from the two contiguous spans in either case. In the, tabulation
in Art. 11, the approximate expressions for the contributions to 7\,2
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from side-span loadings are written on this basis. (For an 800-ft. main span,
this approximation will introduce errors in the values of T1 or T2, ranging
from 5 percent for large tower moments to 20 percent in small values of the
tower moments. For shorter spans, the errors will be greater.)

The physical slgnificance of 7\ and T2y as defined by Eqs. (15) should
be recalled. Since Mt is the bending moment, at the left töwer, in
the unsuspended continuous truss; Ff • ef is the bending moment, at the tower,
due to the suspender forces, with deflection neglected; and EI c2 • Aju1
{Hw -f- //) • Aju± is the deflection correction in the bending moment at the
tower; therefore, 7\ i s th e total resultant bending momen't in
the stiffening truss at the left tower. Similarly, T2 i s the
total resultant bending moment in the stiffening truss
a t the right tower. Obviously these functions vanish in the 1 wo-hinged
Suspension bridge.

With the values of T t and T2 evaluated, the following direct expressions
for the Ap, functions, written from Eqs. (15), may now be used, superseding
the formulas of Art. 7:

EIc*.At*l9i Th2-Mh2 — Ff-ef (67)

9. Reduction of Working Formula for H*
The working formula for H established in Art. 6 (Eq. 35) contains, in

the numerator, the continuity term:

(I±±IÄ z'(KLc)

Physically interpreted, 1/2(^1 + ^2) is the mid-span height of the "closing
line" that represents the total continuity correction for bending moments.

The values of 7\ and T2 contributed by individual span loading cases,
as deduced in the preceding Article, are tabulated in Art. 11. The expressions

H J-f
for 7\ and T2 do inot contain Ff except in the terms —^ and ^ ; all of the

q c Q1C1

other terms are load-terms, containing p. Hence, for any combination oT

span-loadings, the expression for 1/2(T1-jrT2) will contain a group of load
terms, which may be represented by the symbol G(p); and, in addition, a

/-/ f-f
function of —z and -,. This non-load function takes the form:

QC2 Q^f

<.h(l.^l + l.j>l\
\ec ge- ec, 0. eilQC2 e^_ Q^p _ 16// 2'(njec)

(l + *>)« cH (l + /r),
Accordingly, for any condition of loading, we may write:

\—2~) G(P) + -^T- JT+Jrü i69}

Substituting this value for 1/2(^1 +^2) in Eq. (35), and transferring the
non-load term to the denominator (so as to eliminate //), we obtain the
following reduced working formula for Ff:
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H E(p) + G(p)- Z'{KLC) + QC2EIcotLt
(7Q)

where '

mKfl)-^) + ,c2lL.Ls_^.0^.r(KLc) (71)

The values of G(p) are easily written from the complete expressions
for T1 and T2, deduced as outlined in the preceding Article. For the main-

TT

span contribution, G(p) is the same as 7\,2, with the —^ term and the + load
Q c

terms omitted. For each side-span contribution, G(p) is that portion of the

expression for 7\,2 (with the -, term omitted) whose denominator is
q1 c\

(l+^)c. These values of G(p) are recorded for the ten loading cases in
Art. 11. They are algebraically additive for any combinations of loading.
The values from all three spans must be combined to give the total value
of G(p) to be used in the numerator of Eq. (70).

For practical application, Eq. (70) is preferable to Eq. (35) as a working

formula for //, in that terms containing Ff have been eliminated, and
the computation of G(p) is somewhat more direct than the computation
of MTi + T2).

In the new working formula for // (Eq. 70), the first term F(p) in the
numerator is the load term with continuity disregarded; it is identical with
the load-term in the //-formula for the two-hinged Suspension bridge. The
second term in the numerator, containing G(p), is the load term due to
continuity. The remaining term in the numerator, containing t, represents
the effect of temperature change.

In the denominator D' (Eq. 71), the first three terms (as in Eq. 36) are
identical with the denominator D of the //-formula for two-hinged Suspension

bridges. The fourth term in the denominator is new, and represents
the contribution of the geometrical constants of the structure to the
correction for continuity.

In all //-formulas (Eqs. 21, 35, 70 and 71), the terms due to continuity
are identified by their containing the modified summation 2'. For application

to two-hinged Suspension bridges, all terms containing 21' vanish.

10. Loading Conditions for Maximum Moments and Shears.
In the continuous Suspension bridge, loading conditions for maximum

stress are not as uniform and definite as in the non-continuous structure,
nor are they as easily predictable from a study of the basic equations.

A study of the loading conditions which produced maximum moment and
shear for continuous Suspension bridges that have been designed yields the
guiding indications for loading placement tabulated in Fig. 2 for maximum
moments and in Fig. 3 for maximum shears.

For maximum positive moment äi any point, it is apparent from the
basic formula Eq. (2) or Eq. (3) that the loading must be such as to make
M' as large as possible while keeping // small. Hence a length of span em-
bracing the given point must generally be covered with live load, and the
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other spans must generally be unloaded (since their loading would contribute
additional //). For points near the towers, however, these rules are changed,
since adjacent loading contributes negative M' and since (y—p) is negative
near the towers.

For maximum negative moment at any point, the reverse conditions must
be satisfied. The loading diagrams for maximum -A-M and —M are
complementary, and are shown in pairs in Fig. 2.
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Fig. 2.

For maximum positive (or negative) shear at any point, a length of
span extending to the right (or left) from the given point must be covered
with live load; the partial loading always stops at the section where the
maximum shear is sought; in addition some loading generally has to be placed
in one or both of the other spans. The complementary loading diagrams
for maximum -\-V and —V at the various points of the structure are shown
in pairs in Fig. 3. (A cyclical sequence of loaded and unloaded segments
may be observed in these diagrams.)

The load-lengths for maximum positive and negative moments and for
shears generally have to be found by trial in the Deflection Theory. The
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load-lengths determined by the Elastic Theory may be used as a guide for
the trial values to be substituted in the more exact theory. Generally, three
trial values of the lo/ad-length suffice to determine the maximum value of
the function sought.

In Figs. 2 and 3, roman numerals are marked over the loading diagrams
in the individual spans. These refer to the numbered designations of the
respective basic loading cases tabulated in Art. 11. Thus, for instance, the

Charges pour efforts tranctiants maxima
Betastungen für max/mate Querkräffe
Loadzngs_ for maximum shears

Jecl Load/ng forpos/l/ve shears

0

072,

021,

031,

041,

062,

061,

072,

061,

031,

701,

0

071

021

031

041

051

casejzaf

caseX

\/////AA

]///////..
caseX

_JZZZj

Y^y t-T)y///////////&AA.

'zum
'-TJ V/

hT)
caseJä
f-T)

7ZZ

caseM
'/;//;;///<

wzzzzzzz/X

caseW

case 7
(+TJ

caseM

frT)

hT)

' TJ VA////////////

vaaa;a;/;a;;//;;a

YAAAAAAAAAAAAAAAAAAs

VAAAAAAAAAAAAAAAA77/.

caseM

caseM case M
>A/A/A/AAA;.Ä77777A\ (+T)

caseY
y;//A/x ffl/

\/////A (+T)

y/////A'ItT)
caseM

frT) \;;;;;;;w;m

\(+T)

caseW

caseM

caseM

caseM

caseM

Load/ngfor negatzve sheans

cm
caseM
•\ (-T) \7Z7/////7?///////////ty///////////,

7^('T)

^tlL
caseM

?̂77Z\

77&7\

v;;/;;\

Ij .1-

y/////////////////^^

•/;;;a;a;;;;;;;;/;;;;;;a 777777777z

VAAAAAAAAAAAAAAAAAAA/ \

V777X (tT)

77A

VZ//////\

V/////////A
caseM

caseM

caseM

caseiuü,

caseH

>/////////,
caseM

y//////////a(+t) .Y////////A

JtIL
V/////////A

hT) zzzzzzzzz

hT)

hT)

TTTTTTm

caseM
(tT)

caseM
-T) v;;;;;;;;;;;;.

caselH
7A\hT) VA/AAAAA/A/A

'ZZZ^f-Th

'AAAAAA^f-T)z

v;aaaaa/a\

caseM
f-T)

Y//////////\ hT)

-1*

caseM

caseM

caseM
Y///////A

VAAAAAAA>AAAAA77777,

caseM

cas — Fall— case
Charge pour efforts tranc/ianfspos
Belastung fürpositive OuerIrraffe
Load/ng fon pos/t/ve shears

Charge pour efforts tranchants neg
Belastung für negaf/ve Querknaffe
Load/ng for negatzve shears

Fig. 3.

load condition shown in Fig. 2 for maximum positive moment at the 0.1
point of the main span is resoived into the elementary loading Cases VII,
II, and VIII, the formulas for which are listed in the next Article.

The Symbols (+^) and (—T) marked on the loading diagrams indicate
whether a rise or fall in temperature should be assumed in conjunction with
the indicated loading to yield the greatest resultant value of the stress sought.

The loading diagrams given in Fig. 2 for maximum moments at any
points will also generally represent, with little or no modification, the loading
placements for maximum deflections at the same points. An exception to
this Statement occurs for the mid-point of the main span whose maximum
deflection is generally produced by a fully loaded main span.
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In the case of structures of unusual geometrical proportions, the loading
diagrams given in Figs. 2 and 3 may be subject to some modification. A
preliminary analysis by the Elastic Theory will generally indicate the proper
loading placements, as well as the trial values for the load-lengths. The
ten component loading cases given in Art. 11 are fundamental, and are ex-
pected to cover all conditions arising in practical application.

11. Working Formulas for Primary Loading Cases.

iBy considering each span separately, the various loading conditions that
are usefulin design (as illustrated in Art. 10) may be resolved into ten primary
loading cases: six for main-span conditions, and four for side-span
conditions. These ten cases, in combination, cover all loading conditions of
practical importance; and they are presented below in complementary pairs.

For each primary loading case, the pertinent working formulas are given
in the accompanying charts for the following functions:

F (p): a load term in the numerator of the //-formula, Eq. (35) or Eq. (70).
The derivation of the formulas for F(p) is explained and illustrated
in Art. 6. (See Eqs. 37, 38, 39). The values of F(p) contributed
by the three spans are to be combined for Substitution in either
//-formula, Eq. (35) or (70). (The expressions for F(p) are inde-
pendent of continuity, and are the same as for two-hinged Suspension

bridges.)
G(p): another load term in the numerator of the //-formula, Eq. (70); also

required in the evaluation of 7\,2. The values of G(p) contributed
by the three spans are to be combined for Substitution in the //-
formula, Eq. (70). (The function G(p) is introduced and explained
in Art. 9; it is the load term due to continuity.)

C1,C2: the constants of integration, for Substitution in the basic formulas
(10), (12) and (13), for rj, M and V at any point in the given loading
segment. (The derivation of these formulas, and others, for C± and
C2 has been given i,n Art. 5.)

T1,T2: total bending moments at the towers, defined by Eqs. (15), and
explained and evaluated in Art. 8. Both exact and approximate formulas

for Tli2 are listed. If the exact formulas are used, the contributions
of all three spans are to be combined to give each total value of TU2:
If the approximate formulas are used, the contributions of only the
two contiguous spans are to be combined to give each total value of T:
main span and left side span to give Tu main span and right side span
to give T2. The resulting total values of 7\ and T2, either exact or
approximate, are for Substitution in the formulas for d and C2, also
for Substitution in Eq. (35) for Ff. (Tt and T2 vanish in the non-
continuous structure.)

MUM2: continuous-beam bending moments at the towers, contributed by the
indicated applied loading, with no suspender forces acting. (See
Fig. 1 and Eqs. 1.) The formulas given here for M1 and M2 are de-
rived from the Theorem of Three Moments. The contributions from
the three spans are to be combined to obtain the total values of
M± and M2 (These formulas for M± and M2 are given here for refe-
rence in the development of the theory, but are not required in the
practical application unless it is desired to use the A and B
functions.)



Deflection theory for continuous Suspension bridges 425

A,Bl32: constants defined in Eqs. (44), (47) and (49), for Substitution in
the formulas for the deflection funetions Aph A^ Ap,2, Af, Afly
and Af2 (Eqs. 51 to 55). The value of A for the main-span loading case
is to be used in conjunction with the values of B± and B2 for the
respective side-span loading cases when substituting in the formulas
for the deflection functions. (The constants A and BU2 are introduced
in Art. 7, and generalized formulas for them are given in Eqs. 46
and 50. The formulas for A and BU2 are given here only for reference
in the development of the theory or for the direct computation of the
deflection functions; they are not required in the practical stress
analysis, since they have been eliminated in the evaluation of 7\,2.)

12. Effect of Temperature Variation with No Load on Spans.
This condition pf the structure is covered by Cases I and VII, Art. 11.

Since there is no load on the spans.

0, Ml Mt 09 F(p)^0, G(p) 0, T1^T2
Accordingly, Eq. (70) reduces to:

Ht=T ^—-ry (72)

and Eq. (69) yields:

2Htn 1 1 ir\
r _ ^ __ \ec qc2 eCx qxc\1

__ \6fit 2'(nlec)
1 j 1 2 — j- : — —— • —

(\ + ir)e c2l (1+//-),
Eqs. (25) for the integration constants in the main span reduce to:

(73)

C - _
] P I ^

C2 ^= C^ 6

With these values, the general formula for moments (Eq. 12) reduces to:

Mt — Ht (Q eF + C2 tT** + ^) (74)

This give the moment curve (for temperature effect) in the main span. At

mid-span lx — ] it yields:

Max. Mt= -Ht(2Q& + -L) (75)

Since Ht is negative for a rise in temperature, Mt is positive at mid-span
(Eq. 75) and negative at the towers (Eq. 73). By Eq. (74), the temperature
moment changes sign (Mt 0) at an intermediate point x given by the
equation:

(^ + 1J__ 7^ _2_/l_ l.Jl) (76)

For maximum -\-M at any point between this section x and the symmetrical
section (/—x), highest temperature should be used. (Approximately

x=0A3l).
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For any point in the side spans, Eqs. (26) yield:
1 1 1 Tui

Q - («*'' + Qid (ec>l>-e-^) M,

C - - C LL

and Eq. (12) gives:

Mt=—Ht (cx &** + C2 e'^ -f —) (77)
\ £i£i7

Eq. (77) gives the moment graph (for temperature effect) in the side span.
At the free end (xL=- 0), it yields Mt=- 0. At the tower end (x k), it yields

Mt=T1=T2. At the mid-point of the side-span lxx ~J, Eq. (77) yields:

Mt= -Ht\Cxe- -rC2e 2 +—^
This value is positive for a rise in temperature. In the side span, as in the
main span, Mt is positive at mid-span and negative at the tower. By Eq.
(77), the temperature moment changes sign (Mt 0) at an intermediate point
xi given by:

ßCxlx _|_ 1 "T n r1

^+T ~fu
' (T=^=^] + l (78)

(Approximately ^ 0.72 IJ.
Eq. (76) determines two division points in the main span, and Eq. (78)

determines a division point in each side span. For sections near the towers,
between the adjacent division points, use lowest temperature for maximum
-\-M; for all other sections of the main and side spans, use highest temperature

for maximum -\-M. The exact locations of these division points will
be modified somewhat when temperature effect is considered in conjunction
with the live load, and the use of +^ or —t for maximum Ar-M in the critical
ränge near a division point will have to be determined by trial.

The signs of t to be used for maximum -\-M and —M, respectively, at
different sections of the spans, are indicated in Fig. 2.

A convenient rule, in practical application, is always to use highest
temperature (in conjunction with the appropriate live load placement) to
obtain the absolute maximum M (disregarding sign) at any point of any
span, and lowest temperature (with the complementary live load placement)
to obtain the maximum of opposite sign.

Following a procedure similar to that represented by Eqs. (74) to (78),
temperature criteria for maximum +Vr and —V may be derived from the
general formula for shears (Eq. 13). The temperature criteria for shears
are indicated in Fig. 3.

The deflection constants A and BU2 (Cases I and VII) reduce to

* * ^k& + y')-/.]
The temperature deflection at the mid-point of the main span is then ob-
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tained by substituting these constants in Eq. (54) for J/, which, upon
reduction, yields:

Max.,„ W),-^[i(^ + ^)-/] (79)

The temperature deflection at the mid-point of the side span is given by
substituting A and BU2 in Eq. (55) for AfU2, which, upon reduction, yields:

13. Simplified Formulas for Spans Fully Loaded or Unloaded.
Let p, p± and p2 be the intensities of loading covering the main span,

the left side span and the right side span, respectively. Then, by simply
writing zero for one or more of these loading intensities, the fully unloaded
condition of the corresponding span or spans is represented. The simple-
beam moments at mid-span will be:

Mf e£, ** *£> % ^r
Introduce the following abbreviations for the three respective spans:

R Mf-H.f, Ri=Mfl — H.f1, R2=MA-H.f2 (81)

so that R, R± a.nd R2 denote the bending moments at mid-spans, without
continuity and deflection corrections; also:

s (4_Jü.i, & (4_j^).i, 5f (^_^).i(82)\c2 QC2! ec \c\ qxc\! eCl' \c\ Q^y eCl

These respective Functions are inter-related:

<?-81/? S-81/? 9-8l/?
L l Cc L1 l\ WTj ^ 1 ^ 2 CCi

The continuous-bea»m moments, Mt amd M2, for this condition of loading,
are given by the relations:

M, + M, _ lM,+ ir(Mf, + MA)
2 ~ 3+T7> (83a)

—7— -irb^-*» ->-« ,83b>

*±* + „.<,= _ **+3'™+M (83c)

The formulas for the total values of 7\ and T2 (Cases II and VIII, Art.
11) become:

_ 2S + ir(Si+Sa) _ ir(Pl -p2)/1,.-- (]+//% +(l+ir)ei.eei.c*l (84a)

n + T, _ 25 + //-(5t + 52) .v~^r~ - (i+'>),~~ (84b)

For the symmetrical case, with both side spans equally loaded or unloaded
and the main span either fully loaded or unloaded, p! p2 and Eq. (84 a)
reduces to:
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T -T - 2S+*>(Si + S,) {f.,,

With the foregoing abbreviations, the formulas for A and BU2 for the
same Cases reduce to:

EI*.A R-S+{V^ + Hef).L

Substituting these values of A and BU2 with the values of Mt and M2 from
Eqs. (83) in the equations (44 and 51) for Af, also in the equations (47,
49, and 53) for AfU2, and reducing, we obtain the following simplified
formulas for mid-span deflections:

Ele* ¦ Af= R-S+Ldl+IA (85a)

EIS ¦ Afu* /?,,, - 51>2 + f~ (85b)

Eqs. (67) and (68), with reference to Eqs. (83), yield:

f/c • J^ _ 7\ -f 3 + 2/r + 1 + 2//- (86a)

ZT/«« • ^, ^ +^?f^ <86b>

With the aid of Eq. (85 a), Eq. (3 a) reduces to the following expression

for total resultant moment M at the mid-point ix —) of the main span:

S + (l - ^)^t7*) (approx.) S (87a)

(The approximate value is only about 3 or 4 percent too small.) Hence S

represents, very closely, the total bending moment at the middle
of the main span. Similarly, Eqs. (3b) and (85b) yield the following

expression for the resultant moment M at the mid-point lxx =^0 of the side

span:

Mh Si + (l — -)~ (approx.) S, (87b)
2 V CcJ 2

indicating that 5X represents, approximately, the total bending moment at the
middle of the side span. (This approximate value may be about 10 percent
too large.)

Accordingly, the functions R, S, and T, running through the formulas
of this Article, represent moments at jmid-spans and at towers, as above
defined. (See Fig. 4.)

Eqs. (87) are also obtained by substituting Eqs. (86) in the fundamental
Equation (3).
For any condition of loading, the general equation for moments (Eq.

12) may be written in the form:
M ee-S — H(Ct et* + C2 e~c*) (88

Ml
2
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For the main span fully loaded or unloaded (Case I or II), the constants
of integration become:

C - _J_ (fr-3-7!) 1 (Tr - r.) _ (aDDrox)
1 (ecS-n)Cl - {f + 1) ff + (** - <r«) ff ~ (aPProx-^ (e^T) ff

Cg — Q + ec ¦ S — 7*1

ff
and those for the side span fully loaded or unloaded (Case VII or VIII)
become:

Q
1 (fr, • SO 1

(*M + i) •//
fr, • Si

7\
(approx.) i tei-Sx-r,)

(^ + i) //
c, - q + //

/as/-

/A/.

;;;;;;^;;;.-/;^ttt7 ;^^^^WA^^WVVVV^W??^ '///////////////////*

Pt
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Mi

^r-TT l"i rr>^
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Fig. 4.

(The approximate expression for C± in the main span is exact for symmetrical
loading and correct within a fraction of 1 percent for unsymmetrical

loading. The approximate expression for d in the side span yields a value
that may be about 3 percent too small.)

Substitution of the foregoing integration constants in the general formula

for moments, Eq. (88), applied to the mid-span points x — and xx —
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yields expressions identical with Eqs. (87). (This is another check on the
mutual consistency of all the formulas involved.)

With the integration constants given above, the general formula for
shears (Eq. 13) yields the following values:

Atx=f

At *i |,
v± -TTi zriTi-T*) (89a)

2 / CL
_

CU

\e2 — e ~2)

\e 2 — e 2

At the ends of the main span (x 0 or x l),

K°-'-±c (**+l)\r 6_ 2 i V'-l) 2
(89C)

which yields, approximately,
v0,i= ±c(ec.s— r,,2)

(This approximate value is correct within a fraction of 1 percent).
At the ends of the side span (jcj 0 or ^ 4),

v _ c^-VL H (^ + i) r3,2
I/o,/, - ± *i (£M + 1} ^ Si,, 2 )+ x (e^ -1)2 (89d)

which yields, approximately,

K° ri £Syl^ ' 5l'2^ at the free endj

and t _.

at the tower end of the side span. (The approximate value of V0 is exact
for symmetrical loading and may be 4 percent too large for unequally loaded
side spans. The approximate value of Vn may be 1 percent too large.)

The total truss reaction at the tower is obtained by combining Eqs.
(89 c) and (89 d), which yields, approximately,

Truss Reaction ^. ec • S + cx • ^t^TI) ' s^\ — (c + ci) T^ (9°)

(The approximate value given by Eq. 90 may be 2 percent too large in the
case of unequally loaded side spans, but it is practically exact in the case
of symmetrical loading.)

Though the maximum value of the truss reaction at the tower is not
(given by Eq. (90) which is written for fully loaded or unloaded spans, that
equation indicates that for a maximum truss reaction a combination of the
greatest values of 5 (obtained when // is small) and of the greatest negative
value of T is required. The loading condition which will generally answer
these requirements and produce the maximum truss reaction is the same as
that which produces maximum negative tower moment. This loading
condition is shown in Fig. 2; it consists of the adjacent side span fully loaded
and the main span partially loaded near the tower at highest temperature.
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Since the truss reaction at the tower js obtained by combining Eqs.
(89 c) and (89 d), it follows that the maximum value of the shear at the
tower, in the main span and in the side span, is also obtained under the
same loading condition which produces maximum negative tower moment.

For Substitution in the //-formula (Eq. 35), the value of F(p), for the
T I tspans fully loaded or unloaded, is given by Eq. (39); and the value of — -

is given by Eq. (84 b).
It may be preferred to use the reduced working formula for // (Eq. 70).

The total value of G(p) to be substituted in Eq. (70) is given by Cases II
and VIII, Art. 11, as:

n(n\— 1 I2 p I ^(a+aOIl/7;"~ (\ + ir)Ae/ c*^ eCx c\ \

The contribution due to temperature Variation may be included without
any change in the formulas of this Article. All that is necessary is to in-
clude the temperature term in evaluating H (Eq. 35 or Eq. 70), which enters
the formulas of this article in Eqs. (81) and (82).

14. Application to Multiple-Span Suspension Bridges.
The Generalized Deflection Theory developed in Articles 2 to 6,

inclusive, is directly applicable to multiple-span Suspension bridges, either
continuous or hinged at the towers.

Deflections, moments, and shears in multiple-span Suspension bridges
are accurately expressed by the general formulas in Art. 3 (Fundamental
Equations). All of the general equations in that Article (Eqs. 1—4, 7—15,
3 a and 3 b) remain valid without modification. It is only the special expression

for the coefficient of continuity e (given by Eqs. 5 and 6 for the special
case of symmetrical three-span bridges) that needs to be re-written for cases
of more than three spans. The values of e for any case may be written
with the aid of the Theorem of Three Moments.

For the case of a symmetrical four-span continuous Suspension bridge
(two equal main spans and two equal end-spans), the expressions for e

will be:
9(1-1- olrv)

(At the two side towers:) e1
v*

; .—'- (91a)
3 + 4//"

(At the middle tower:) e2
2(1+2/r—/rr)

and the corresponding expressions for ef will be:

„, e,/=w+y/-M> (wb)

For the case of a symmetrical five-span continuous Suspension bridge
(spans, /2, lu /, lu /2), the expressions for ef will be:
(At the two outside towers:)

„ - p / - 2 [f (3+ h /-i) +/2 (2/8 r2 + 3/3 r3) -/]41 " lf ~ 3 (2 + /, n) + 2 (2 i2 r2 + 3 /3 r3) ^^
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(At the two inside towers:)

„ - F f _ 2 LA (h ^ + 2 /2 rt) + 2/(1 + /, r8) -/, (/, r,)]
'2 ~ £ä/ - 3(2 + /, ^ + 2(24^ + 34,3) (93b)

where

h r2 —

L k
h

' i
L k
h

' i
f\ *2 /2 P2

hr3 — y * T ~~ TT
For other numbers and proportions of spans, the appropriate expressions

for e and p may be similarly written.
If the multiple-span Suspension bridge is non-continuous at the towers,

the values of e and ju are, of course, zero; and the terms containing these
functions and their derivatives vanish from all formulas.

In Art. 4 (Derivation of the Basic Equation for //), all of the formulas
(Eqs. 16—24) remain valid without change, except for a slight modification
in writing the two continuity terms in Eq. (21) for //. The continuity term
in the numerator, E f c2 A pr 2' (K l), takes the more generalized form:
E/c2 • 2 (KT A pf), where A p,f is the mean of the values of zf(u at the two
ends of any span; and the continuity term in the denominator, ef-2'(I(l),
takes the more generalized form: 2(KTfif), where p,f is the mean of the
values oi (ä ef at the two ends of any span. (At the free ends of the
continuous structure, /n and A p are zero.) With only the two continuity terms
thus modified for greater generality, Eq. (21) takes the following generalized
form :

2K[(M' — ^)dx — Qc2E/o>tLt + Efc2-2(Kl-AMf)
H -^ c-l (94)

L Jq QC J He A0

Eq. (94) is the generalized form of the basic //-equation, applicable
to multiple spans as well as to the common three-span type. If the spans
are non-continuous, the terms containing ^f and A pf vanish.

The expressions for Ls and Lt given by Eqs. (18) and (19) are
unchanged for the generalized case of any number of spans.

All of Art. 5 (Evaluation of the Integration Constants) remains valid
for the generalized case, without any modification. Eqs. (25) to (31),
inclusive, and all of the formulas for Ct and C2 tabulated in Art. 11, are
applicable, without any change, to Suspension bridges having any number and
proportions of spans. (Formulas established for the "side spans" of the
three-span bridge remain valid for the "end spans" of the multiple-span
structure.)

In Art. 6 (Derivation of Working Formulas for //), covering Eqs.
(32) to (39), only the continuity terms ,(identified by 2') occurring in
Eqs. (32), (33), and ^35) need to be rewritten for complete generality.

In Eq. (32), the continuity term ^-^t—*1 2'(Kl) takes the generalized

form 2\Kl x-~-—-I, where Mt and M2 are the continuous beam bending
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moments at the two ends of any span. In Eq. (33), the continuity term

2'\k-
takes the generalized form

1 (^zM Üi+Jj)]
c (ed-\-\) 2// J

y|V 2- (**-!) (71 + 71Q1

~I_A '
c >r/+l)' 2// J

where Tt and T2 are the total resultant bending moments at the two ends
of any span. (For any number of spans MU2 and TU2 are zero at the free
ends of the structure.) In the H-formula (Eq. 35), the continuity term
(T 4- TA l Ti + '

• 2 (KLC) correspondingly takes the generalized form 2\KLC —-—-2
and the working formula for // becomes:

F(p) + 2[KLC • ^4"-^) + qc2EIcotLt
H + ^ ±—L (95)

Eq. (36) for D remains unchanged; and all of the expressions for F(p)
(including Eqs. 37 to 39 and all of the formulas for F(p) tabulated in Art. 11)
remain valid for the generalized case, without modification.

Articles 7 to 13 are not directly applicable to the general case of
multiple-span Suspension bridges, since the formulas there developed are based
on the special values of e and p given by Eqs. (5) and (6) for the symme^
trical three-span Suspension bridge. For symmetrical continuous bridges of
four or five spans, working formulas paralleling those of Articles 7 to 13
may be developed from the respective expressions for e and ijl given in Eqs.
(91) and (92), or (93). A generalized expression for e or p would be
required for developing the corresponding working formulas for the general
case of any number of spans. However, the formulas in Articles 2 to 6,
inclusive, with the slight generalizing modifications noted in this Article, suf-
fice for the complete analysis of multiple-span Suspension bridges. The
formulas in the subsequent Articles are a convenience for continuous spans,
but not a necessity. Without them, the interdependent functions are
determined by successive Substitution. These interdependent functions vanish when
the spans are non-continuous, and Articles 7 to 13 then lose their significance.

For non-continuous multiple-span Suspension bridges, the formulas
of Articles 2 to 6 are completely sufficient, without any modification.

15. Practical Application to Continuous Spans.
In order to test the practical applicability of the Generalized Deflection

Theory and, at the same time, to establish data for comparisons of types of
structure and theories of analysis, the theory and formulas developed in this
paper have been applied to the analysis of a three-span continuous Suspension
bridge.

Design I. The structure selected for the numerical application of the
theory has an 800-ft. main span and two 400-ft. side spans, and had been
previously designed as a two-hinged Suspension bridge. The trusses have
a constant depth of 12 ft. throughout and are spaced 45 ft. center to center.
For the first comparative design, herein referred to as Design I, the same
moments of inertia (/= 1960 in.2ft.2, ^ 2420 in.2 ft2) were assumed as in

28
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the two-hinged design, in order to ascertain comparative rigidity under
conditions of equal economy.

Comparison with Elastic Theory. The stresses in the
continuous spans were first computed by the Elastic Theory. This preliminary
analysis incidentally yielded the approximate loading conditions to be used
as a guide for assuming trial load-lengths in the more exact analysis. The
stresses were then computed more accurately by the Generalized Deflection

Theory, using the formulas and procedure developed in this paper. The
maximum bending moments yielded for Design I by the two respective theo-
ries are plotted in Fig. 5. The percentage reductions obtained by the
application of the Deflection Theory are also plotted. These reductions in ma-

fci*^<^§g* § s «•s fc§III «118 Ss>
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Fig. 5.

ximum bending moments ränge from 10 percent at the tower to 60 percent
in the center span. Except for a comparatively short stretch close to the
tower (including about Vs of the side span and V20 of the main span) where
the average reduction effected by the Deflection Theory is only about 12

percent, the reductions are approximately 50 percent in the main span and
45 percent in the side span. A comparison of the total areas under the bending
moment graphs for the two respective theories, as plotted in Fig. 5, shows
that the reduction or saving yielded by application of the Deflection Theory
to a continuous stiffening truss is 45.5 percent as an average for the entire
length of the structure.

The percentages of reduction from the Elastic Theory in the case of
continuous spans are closely comparable to the reduction percentages pre-
viously established for two-hinged Suspension bridges. The direct application

of any approximate factor of reduction, however, is modified in the
continuous structure by the Variation of reduction ratio near the towers.
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Comparison of Deflections. The maximum deflections in the
two-hinged design, computed by the Deflection Theory (using Eqs. 85 with
Tt T2 0) were 5.16 ft. in the main span and 3.30 ft. in the side spans. In
the continuous structure of Design I (having the same assumed moments
of inertia to represent equal economy), the maximum deflections were also
computed by Eqs. (85a) and (85b), and were found to be 5.24 ft. in the
main span and only 2.92 ft. in the side spans. The comparison of maximum
deflections shows a reduction of 11.5 percent in the side spans of the
continuous design and an increase of 1.5 percent in the center span, or an
average reduction of 5 percent for the entire structure. Hence, for designs
of equal economy, the continuous structure of 800-ft. main span is, on the
whole, about 5 percent more rigid than the two-hinged type.

Design II. In order to ascertain comparative economy for equal
rigidity, the assumed moments of inertia for the continuous structure were

>4
^ 800

-700

§ -200
28000 23000 30000 J/OOO 32000 33OOO 34000 35 OOO

Va/euns de O'enp/eds
Werte von D'/n fuss2 VaZues ofD'/nfZ*

Couröe pourZa determ/nat/on de D/
Kurve zur ßesf/mmung von D/
Oraph for deferm/naf/on of Df

Fig. 6.

modified for a second analysis. Following the indications of the foregoing
comparison of deflections yielded by Design I, the new assumptions for
Design II were / /i=1960 in.2 ft.2 (as compared with the values of /
1960 and Ix 2420 in the two-hinged design). Typical computations for
Design II, illustrating the application of the Generalized Deflection Theory
to a three-span continuous Suspension bridge, are herewith presented.

Generei Data-Calculation of Constants. The following are
the dimensional constants:

Main Span: / 64 panels 800 ft., / 84 ft, n 0.105
Side Spans: lx 32 panels 400 ft., f 21 ft., n1 0.0525

sec«! 1.03484 Q Qi 952.381 Ki 1.00

A 87.8 in.2 r 0.5 v 0.25

The following are the loading constants (all values per cable):
Dead Load: w=3850 lb./ft. Live Load: p=1300 lb./ft.

wl2Hw=z^- 3667 kips.
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Temperature: t =¦ ± 60° F., E 29,000,000, co .0000065,
Ecot 11,310 Ib. per sq. in.

By Formulas (18): Ls 2075, Lt 1998, (Ee 25,000,000).
The truss constants are as follows:

El 56,840,000 ft.2 kips
Eh— 56,840,000 ft.2 kips

Main Span: / 1960 in.2 ft.2;
Side Span: h i960 in.2 ft.2;

/ 1.000

Calculation of Values of D'. Preparatory to obtaining values of
H for various conditions of loading, the values of D', the denominator of the
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formula for //, were calculated by Eqs. (71) for different values of // from
—100 kips to +1200 kips. These computations are made by a systematic
tabular method which embraces the step-by-step numerical Operations. The
principal constants and the values of D' for the different values of // are
tabulated below:

//(kips) c Ci ed ec,k U

- 100 0.007921 0.007921 566 23.77 28742
0 0.008032 0.008032 617 24.85 29223

100 0.008141 0.008141 673 25 95 29683
200 0.008248 0.008248 734 27.09 30150
300 0.008354 0.008354 799 28.26 30602
400 0.008458 0.008458 869 29.47 31048
600 0.008664 0.008664 1024 32.00 31908
800 0.008865 0.008865 1202 34.67 32742

1000 0.009061 0.009061 1407 37.50 33544
1200 0.009253 0.009253 1640 40.50 34321
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For convenience of reference and interpolation, the values of D' are
plotted against H in Fig. 6.

Values of // for Advancing Uniform Load. The values of
H and 7\ for certain lengths of a continuous advancing uniform live load
(/?= 1300 Ib. per ft.) in the main span, at highest temperature and with no
load in the side spans, are necessary in the computation of the maximum
positive moments at several points in the main span. By use of the formulas
of Cases III and VII the values of H and T± are calculated for the above-
described loading for successive load-lengths varying by 0.1 of the span.
A trial value of H is usually first assumed for which D' and the other quan-
tities have already been found in the preparation of the D' curve, and H is
then computed, using these quantities. From the value thus obtained, a second
trial H is selected from which a corrected value of H is calculated, em-
ploying a value of D' taken from the graph of Fig. 6. The value of H thus
obtained in the second trial is generally in close agreement with that
assumed. The Operations and results are indicated in Condensed form in
the following tabulation, and the values of H and Tt thus obtained are plotted
in Fig. 7.

Load
k\l

Trial
//(kips) Dt Calculated

H 7\ (ft.-kips)

0 -100 28742 -92.1 - 2015
0.2 - 30 29078 -30.1 - 7315
0.4 220 30241 217 -10267
0.6 594 3190S 595 - 4997
0.8 824 32822 836 - 1229
1.0 891 33108 891 - 247.5

Maximum Positive Moments in Main Span
xMaximum moments are positive for Points — 0.2 to 0.5 and negative

xfor Points — 0 and 0.1.
xMaximum positive moments for Points — 0.2, 0.3, and 0.4 are calculated

by Eq. (12) for the load condition of Case III (as indicated in Fig. 2).
For each section x, M is calculated for three or four different trial load-
lengths k, until the maximum value of M for the section is determined. The
values of H and 7\ for each load-length are taken from the H and T1 graphs,
Fig. 7. The tabulation of governing quantities, in abbreviated form, is as
follows:

Section: x\l 0.2 0.3 0.4

Load: k\l (assumed) 0.41 0.41 0.53
ff (from Fig. 7) 238.6 238.6 467.0
c (by Eq. 9a) 0.00829 0.00829 0.00853
7\ (from Fig. 7) -10,046 -10,046 -7180
Tx-T2 (by Formula, Case III) -13,310 -13,310 -14270
C1H (by Formula, Casa III) 617.26 617.26 225.4
C2ff (by Formula, Case III) 24959 24959 18095
ecx 3.768 3.768 15.35
Max. M (by Eq 12) + 6590 + 7610 + 6501
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Maximum Positive Moment at Mid-Span.
Maximum positive moment at the center of the main span, as indicated

in Fig. 2, is produced when the central portion of the span is symmetrically
loaded with a uniform load for a length tn, at highest temperature and with
no load on the side spans. In order to find the value of m for which the
moment at this point is a maximum, it is necessary to assume different trial
values of tn and calculate the corresponding values of M by use of the
formulas of Case V. Before thus Computing each M, however, it is also
necessary to obtain, by trial, the value of H corresponding to the assumed
value of tn. The final quantities in Condensed form, are:

m\l (assumed) 0.330
k z 0.335
// (assumed trial value) 488.6 kips
c (by Eq. 9 a) 0.00855
ecl 934.6
eck g g
ecm g'6
D' (by Fig. 6) 31425
// (by Eq. 70) 487.6 kips
7\ (by formulas, Cases V and VII) 5130 ft.-kips
CXH (by formula, Case V) 82.13
C2H (by formula, Case V) 76688

ecx ei 30.57
Max. M (by Eq. 12) 5762 ft.-kips

Maximum negative Moment in Main Span Near Tower.
xThe maximum negative moment at the point — 0.1 occurs when the

adjacent side span is fully loaded at highest temperature and the other two
spans unloaded. For this condition of loading, H is determined by trial,
using the formula of Case VIII. The value of M is then calculated by the
formulas of Cases I, VII, and VIII, and Eq. (12). A summary of the principal

resulting values is as follows:
H (final value by Eq. 70) - 60.5 kips
c (by Eq. 9 a) 0.007965
ecl 585.31
e°x 1.89
Tx (by formulas Cases I and VIII) -8356
Ti-T* (by formulas Cases VII and VIII) - 7030
CXH (by formula Case I) 3.94
C2H (by formula Casa I) 9353
Max. M (by Eq. 12) -3957 ft.-kips

Maximum Negative Moment at Tower.
To obtain the maximum negative moment at the tower, it is necessary

to load fully the adjacent side span and a portion of the main span next
to the tower at highest temperature as shown in Fig. 2. The main span load-
length for which the tower moment is a maximum must be determined, by
the formulas of Cases III and VIII, as previously outlined for the computation
of maximum moment at mid-span. This computation is briefly summarized
in the following tabulation:
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ff (trial value) 200 kips
c 0.008248
gCl 733.84
gC^k 27.09
k 0.365
gCk 11.12
D' (from Fig. 6) 30150
ff (by Eq. 70) 197.8 kips
Ti (by formulas, Cases III and VIII) -16,387 ft.-kips

Maximum Moments in Side Span.
Maximum moments are positive for sections -jL== 0.1 to 0.7 and negative

for sections -^ 0.8 to 1.0.

Th^ loading condition producing maximum positive moments at sections
x
-^ 0.1 to 0.7 is shown in Fig. 2 to be the same as that for negative mo-

1 xment at point -y 0.1 in the main span, the side span fully loaded at highest

temperature with no load on the other two spans. The computation of H
and T1 for this loading with that of the moment at mid-span (x± 0.5 lt)
are indicated below; the constants of integration are calculated by the
formulas of Case VIII:

H (trial value)
cx c
pcxlx

Di (from Fig. 6)
H (by Eq. 70)
7\ (by formulas, Cases I and VIII)
C1H (by formula, Case VIII)
C2 // (by formula, Case VIII)
M (by Eq. 12)

-60.5 kips
0.007965

24.193
28932

-60.5 kips
-8356

1199.1
20293

+ 11468.5 ft.-kips

Maximum Negative Moment in Side Span Near Tower.
The maximum negative moment at point -j- 0.9 occurs under a partial

1

loading of the side span and main span, at highest temperature, as shown
in Fig. 2. In obtaining the maximum value of this moment, it must be
computed by use of the formulas of Cases III, VII, and IX for several trial load-
lengths in both spans. The computation of the maximum value of this
moment with the corresponding values of k/I and -A- is given below:

n
k\l (assumed)
m1jl1 (assumed)
// (trial value)
c cx
ecl

eck

ecxmx

D' (from Fig. 6)

0.39 0.365
0.65 0.65

240 kips 200 kips
0.00829 0.00825

759.0 733.8
27.55 27.09
13.3 11.12
8.61 8.52

30332 30150
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H (by Eq. 70)
Ti (by formulas, Cases III and IX)
C1ff (by formula, Case IX)
C2H (by formula, Case IX)

Max. M (by Eq. 12)

240.7 kips
-13448

440.0
-67720

19.8
-8970 ft.-kips

198.5 kips
-13593

479.0
-66940

19.5
-8980 ft.-kips

The loading condition for maximum negative moment at point — 0.8

in the side span is shown in Fig. 2 to be the same as for positive moments
in the main span. This moment is computed in the same manner as for

x
maximum positive moments at sections y=0.2, 0.3, and 0.4 in the main

span, except for the use in this computation of the integration coiibtatits
of Case VII.

Minimum Moments. — The loading conditions under which minimum

moments are produced in the trusses are shown in Fig. 2. The values
of these moments are obtained in the same general manner as outlined for
the calculations of maximum moments, and usually occur at lowest temperar
ture in combination with the above live loadings.

Maximum Shears. — The maximum positive and negative shears
are calculated for the loading conditions indicated in Fig. 3. The method of
procedure is the same as that for the calculation of maximum moments, in-
volving the assumption of successive trial values of H and trial load-lengths
to obtain the values for which the shears are a maximum or minimum. The
shear is computed from the values of H, Cl9 and C2 by Eq. 13.

Maximum Deflection in Main Span. — Maximum deflection
in the main span is produced by fully loading the main span at highest
temperature. H is obtained by trial from the formulas of Case II, the result
having been plotted in the //-curve for advancing load in the main span
(Fig. 7). The calculation of the deflection at the center of the span is
indicated below in Condensed form:

// (trial value) 891 kips
c 0.008955
ed 1291.9
Ei (from Fig. 6) 33108
// (by Eq. 70) 891.3 kips
7i 7*2 (by formulas, Cases II and VII -247.5
Ct H (by formula, Case II) 3.704
C2H (by formula, Case II) 4785
il (by Eq. 85 a) 5.398 ft.

Maximum Deflection in Side Span. — Maximum downward
side span deflection occurs when the one side span is fully loaded at highest
temperature. The computation of the necessary constants for this loading
condition have already been indicated in the calculation of positive moments
in the side span. The downward deflection at the center of the side span
is computed by Eq. (85 b) and is found to be 3.223 ft.

It will be noted that the side span deflection is 2.5 percent less than
in the two-hinged design, while the main span deflection is 4.5 percent
greater. The average rigidity over the entire length differs from that of the
two-hinged design by approximately 1 percent.
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Comparison of Maximum Moments for Continuous
and Two-Hinged Designs. — The maximum bending moments
produced by live load and temperature in the continuous spans of Design II,
computed as hereinabove outlined, are plotted in Fig. 8. On the same chart
are plotted, for comparison, the maximum bending moments produced by
live load and temperature in the corresponding two-hinged design. The saving
in chord material by the adoption of the continuous type, as indicated by
the percentage of difference between the moment areas under these two
respective graphs, is 8 percent, and this figure is substantiated by the actual
design of the truss members.
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Fig. 8.

The two-hinged design, represented by the maximum moments plotted
in Fig. 8, is a "balanced" design, i. e. the chord sections have been adjusted
until the final values of / agree with those assumed. The hingeless design,
on the other hand, is not quite "balanced", the calculated bending moments
requiring values öf / somewhat higher than those assumed. The necessary
revision of the continuous design to make it balanced would reduce the
indicated saving over the two-hinged design from 8 percent to approximately
5 percent.

Advantages of the Continuous Type. — The foregoing
comparative design studies indicate that, for a Suspension bridge of 800-ft.
main span, the continuous type is approximately 5 percent more rigid than
a two-hinged design of the same economy, and about 5 percent more economical

than a two-hinged design of the same rigidity. These percentage dif-
ferences in favor of the continuous type will be greater in shorter spans or
with deeper trusses.

As the length of span or its flexibility is increased, the effect of
continuity at the towers is lost out on the spans at points proportionately nearer
and nearer the towers. It is for this reason that the advantage of the
continuous type is greater with shorter spans and deeper stiffening trusses.
As the ratio of dead load to live load is increased, the necessity for a
stiffening truss is minimized or obviated; accordingly the advantage of the
continuous truss will also diminish with increase of dead load. In general,
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the advantage of the continuous type over the two-hinged design will be
governed by the stiffness factor

°=m=?i w

which also governs the percentage correction between the results of the
Elastic and Deflection Theories.

The continuous type has an advantage in respect to behavior under lateral

forces. The lateral rigidity is greater than in the two-hinged design, and
there is a better distribution and absorption of stresses from lateral loading.
In fact, for spans of 800 ft. or less, for which the ratio of width to span
is greater than 1: 20, the chord sections in a continuous design are not affected

by wind stresses, since the better distribution of these stresses brings
them under the 25 percent increase in allowable stress jpermitted under this
loading by the usual design specifications.

As a general conclusion, we may state that the continuous type of
Suspension bridge offers advantages over the two-hinged type for spans under
1000 ft. designed for highway loading, and for longer spans when designed
for railroad loading.
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Case V.
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Case X.
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Summary.
This paper presents an extension of the Deflection Theory to cover

Suspension bridges with continuous stiffening trusses.
The more general adoption of the continuous type of Suspension bridge,

offering advantages of economy and rigidity, has been retarded by the lack
of an accurate theory for its analysis. The Deflection Theory for simple-
span Suspension bridges has been available to the profession for over 40

years; but the corresponding theory for the Suspension bridge with
continuous stiffening truss has thus far been lacking.

In order to supply this deficiency, the writer has undertaken to develop
the Deflection Theory for continuous Suspension bridges, with working
formulas for practical application.
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The resulting analysis, presented in this paper, is a generalized Deflection

Theory for Suspension bridges, applicable to both continuous and non-
continuous types. By simply dropping the recognizable terms due to
continuity, the formulas are reduced to those for the two-hinged Suspension
bridge. Moreover, the general formulas are also found to be applicable
to multiple-span Suspension bridges, with or without continuity.

In the development of the analysis herein presented, maximum sim-
plicity of formulas and ease of practical application have been governing"
considerations. Incidentally, new simplifieations are here developed and
introduced in the working formulas hitherto published for the two-hinged
type.

Interdependent functions necessarily introduced in the earlier portions
of the theoretical analysis are resolved and eliminated in deducing the final
working formulas.

iSimplified approximate formulas are also given as alternatives, with
their departure from exact values indicated, to facilitate preliminary or
approximate evalution. These approximate formulas also facilitate the
Interpretation of the expressions or relations represented.

To show the practical workability of the Generalized Theory here
developed, this paper includes a numerical example of the application of the
formulas to the analysis of the stresses and deflectioins in a continuous
Suspension bridge of 800-ft. main span. For the continuous stiffening truss,
the Deflection Theory is found to yield an average reduction of 45 percent
in the bending moments as previously found by the common Elastic Theory.
In comparison with the two-hinged type, the continuous design is found to
be approximately 5 percent more rigid for the same economy, or 5 percent
more economical for the same rigidity. For shorter spans, these percentages
of superior efficiency would be increased.

Resume.
Le present memoire a pour but d'exposer une extension de la theorie

des deformations que subissent les ponts suspendus comportant des elements
raidisseurs Continus en treillis.

Les ponts suspendus du type continu presentent des avantages des
points de vue de Feconomie et de la rigidite. Toutefois, Fabsence d'une
theorie suffisamment precise concernant Fetude de cette dispo,sition n'a pas
ete sans en entraver la generalisation. La theorie des ponts suspendus
comportant une seule ouverture est connue des milieux techniques depuis plus
de 40 ans; par contre, cette theorie ine s'etend pas encore aux ponts comportant

des elements de renforcement Continus en treillis.
Afir de combler cette lacune, Fauteur a entrepris de mettre la question

au point du point de vue theorique et de fournir des formules susceptibles
d'etre employees dans les calculs pratiques.

Les resultats ainsi obtenuis, et qui fönt Fobjet du present memoire,
constituent d'ailleurs une theorie generalisee des ponts suspendus, theorie
que Fon peut appliquer aussi bien aux ponts du type continu que du type
non continu. II suffit de laisser de cote, dans les formules, les expressions
qui traduisent la continuite; les formules simplifiees ainsi obtenues sont en-
suite valables dans le cas des ponts suspendus comportant des articulations
aux appuis (cas des ponts suspendus ä deux articulations sur trois appuis). En
outre, les formules generales elles-memes peuvent s'appliquer aux ponts

29
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suspendus (ä travees multiples, avec ou sans articulations aux appuis. L'auteur
s'est .d'ailleurs preoccupe tout particulierement, au cours des etudes qui sont
exposees dans ce memoire, des possibilites pratiques d'application, en ce
qui concerne la sjmplicite et la facilite. II a en outre apporte quelques sim-
plifications nouvelles aux formules qui ont ete publiees jusqu'ä maintenant
pour le type ä deux articulationis. Les fonctions reciproques introduites par
necessite au debut de Fetude theorique ont ete resolues, puis eliminees dans
l'etablissemewt des formules definitives.

Afin de rendre plus facile un calcul preliminaire ou approximatif, des
formules tres simplifiees et approchees ont ete egalement mises au point;
toutes indications sont d'ailleurs donnees en ce qui concerne les ecarts aux-
quels il faut s'attendre par rapport aux valeurs exactes. Ces formules fad-
litent egalement la comprehension des expressions et notations employees.

Afin de montrer les possibilites de mise en oeuvre de la theorie gene-
ralisee, dans la pratique, le memoire contient en outre un exemple nume-
rique d'emploi de ces formules pour Fetude des contraintes et des
deformations dans un pont suspendu continu ayant une ouverture principale d'en-
viron 250 m. Pour les elements de renforcement Continus en treillis, la theorie
des deformations donne pour les moments flechissants une reduction moyenne
de 45 o/o par rapport ä la theorie courante de l'elasticite. Par comparaison
avec le type ä deux articulations, on a constate qu'ä egalite de prix, le type
continu est de 5 o/0 plus rigide et qu'ä egalite de rigidite, il est de 5 <y<>

plus economique. £e pourcentage est d'ailleurs encore plus eleve pour les
faibles portees.

Zusammenfassung.
Die vorliegende Abhandlung stellt eine Erweiterung der Verformungs-

theorie betreffend Hängebrücken mit durchlaufenden Versteifungsfachwerken
dar.
Die allgemeinere Anwendung des durchlaufenden Typus der

Hängebrücken, der bezüglich Wirtschaftlichkeit und Steifigkeit Vorteile bietet,
wurde durch den Mangel an einer genauen Theorie für dessen Untersuchung
hintangehalten. Die Verformungstheorie für Hängebrücken über eine
Öffnung ist im Ingenieurfach schon seit über 40 Jahren bekannt; 4ie entsprer
chende Theorie für die Hängebrücken mit durchlaufendem Versteifungsfach-
werk hingegen war noch mangelhaft.

Um diesem JMangel abzuhelfen, hat es der Verfasser unternommen, die
Verformungstheorie für durchlaufende Hängebrücken sowie Formeln für ihre
praktische Anwendung, zu entwickeln.

Die resultierende ^Untersuchung, die in dieser Abhandlung vorgelegt
wird, ist eine verallgemeinerte Verformunigstheorie für Hängebrücken,
anwendbar sowohl für Brücken vom durchlaufenden als auch vom nicht
durchlaufenden Typus. Wenn man in den Formeln die erkennbaren Glieder der
Kontinuität einfach fallen läßt, so vereinfachen sich die Formeln und gelten
für den Fall der Hängebrücken mit Gelenken über den Stützen (für sog.
Zweigelenkhängebrücken über drei Öffnungen). Außerdem eignen sich die
allgemeinen Formeln zur Anwendung auf Hängehrücken mit vielen Öffnunigen

mit oder ohne Geleriken über den Stützen. In der Entwicklung der
Untersuchung, die hier gezeigt wird, wurde hauptsächlich auf äußerste Einfachheit

und Leichtigkeit in der praktischen Anwendung getrachtet. Daneben
wurden neue Vereinfachungen entwickelt und in die bis jetzt veröffentlichten
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Formeln für den Zweigelenktyp eingesetzt. Die am Anfang der theoretischen
Untersuchungen notwendigerweise eingeführten gegenseitigen abhängigen
Funktionen werden gelöst und beim Ableiten der Endformeln eliminiert.

Um eine vorläufige bezw. approximative Kalkulation zu erleichtern,
werden auch vereinfachte Näherungsformeln als alternative angegeben; es
wird gezeigt, inwieweit sie von genauen Werten variieren können. Sie
erleichtern ebenfalls die Erklärung der dargestellten Ausdrücke und
Beziehungen.

Um die praktische Ausführbarkeit der verallgemeinerten Theorie, die
hier entwickelt wurde, zu zeigen, enthält diese Abhandlung ein numerisches
Beispiel der Anwendung der Formeln für die Untersuchung der Spannungen

und Verformungen in einer durchlaufenden Hängebrücke mit einer
Hauptöffnung von 800 Fuß. Für die durchlaufenden Versteifungsfachwerke ergibt
die Verformungstheorie eine durchschnittliche Reduktion der Biegungsmomente

von 45 o/o gegenüber der gewöhnlichen Elastizitätstheorie. Im
Vergleich mit dem Zweigelenktypus fand man, daß das durchlaufende System
ungefähr 5 <y0 starrer ist bei gleicher Wirtschaftlichkeit, oder um 5 <y0

wirtschaftlicher bei gleicher Steifigkeit. Bei kleineren Spannweiten würden diese
Prozentsätze noch höher sein.
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