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ALLGEMEINE THEORIE DES ELASTISCH
EINGESPANNTEN BALKENS.

THEORIE GENERALE DE LA POUTRE ENCASTREE
ELASTIQUEMENT.

OENERALIZED THEORY OF THE ELASTICALLY
RESTRAINED BEAM.

Prof. Dr. M. RITTER, Zürich.

Vor längerer Zeit hat der Verfasser die Theorie "des elastisch
eingespannten Balkens entwickelt und der Berechnung verschiedener biegungsfester

Stabwerke mit festen Knoten zu Grunde gelegt1). Nachstehend soll
diese Theorie auf den Fall elastisch in der Höhenlage verschiebbarer Stützen
ausgedehnt werden; diese Erweiterung ermöglicht die einfache Behandlung
praktisch wichtiger Systeme mit beweglichen Knoten, so vor allem des
durchlaufenden Balkens auf elastisch senkbaren Stützen und des Stockwerkrahmens.

1. Die Elasiiziläisgleichungen.
Entsprechend den frühern Darstellungen wählen wir als statisch

bestimmtes Grundsystem den einfachen Balken von der Stützweite /, an dem
die Einspannmomente Mx und M2 als äußere Kräfte wirken, vergl. Abb. 1.
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Die Auflager verschieben sich in lotrechtem Sinne um die Strecken vx und v2

(positiv nach abwärts), in waagrechtem Sinne um e± und e2 (positiv gegen
die Balkenmitte); diese Beträge werden als klein vorausgesetzt, weshalb
für den „Drehwinkel" yj des Balkens mit genügender Genauigkeit

v2 — v1
V —,—

gesetzt werden kann. Wirj^ehen von der Annahme aus, daß sich der Balken

*) Vergl. Schweizer Bauzeitung: Bd. 53, 1909 «Über die Berechnung elastisch
eingespannter und kontinuierlicher Balken mit veränderlichem Trägheitsmoment»; Bd. 57, 1911
»Der kontinuierliche Balken auf elastisch drehbaren Stützen»; Bd. 61, 1913 «Der biegungsfeste

Rahmen mit Flächenlagerung». Ferner «Beiträge zur Theorie und Berechnung der
vollwandigen Bogenträger ohne Scheitelgelenk», Berlin 1909.
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mit Einschluß der Widerlager rein elastisch und dem Gesetze der Super-
position gehorchend deformiert. Darnach gelten für die „Auflagerdrehwinkel"

fix und e2 mit den in Abb. 1 eingetragenen Bezeichnungen die
Gleichungen

ex a -f~ xp -= a0 -\- Mx ax -\- M2 cc2 ~r ty; > \

e2 ß — xp ß0 + Mx ß\ + M2 ß2 — xp. I

Darin bezeichnen a0 und ß0 die Werte von a und ß für Afx ykf2 0,
a2 und ßx diejenigen für fA1 — 1, «2 und ft diejenigen für M2 1.

Wir denken uns das linke Widerlager vom Balken losgetrennt und an
der Schnittstelle die Schnittkräfte Mu A und H1 als äußere Kräfte
angebracht, vergl. Abb. 2. M± ist das Einspannmoment des -Balkens, das mit
umgekehrtem Vorzeichen am Widerlager angreift. A ist identisch mit dem
lotrechten Auflagerdruck des Balkens, hat also den Wert

M2 — MxA=A0 + —^j ?-, (2)

wo A0 den Auflagerdruck für freie Auflagerung bezeichnet. H1 bezeichnet
eine waagrechte, in der Balkenachse wirkende Kraft. Im Sinne der Definition
der „elastischen Einspannung" nehmen wir an, daß das Widerlager durch
keine andern Ursachen deformiert wird, als durch die ihm vom Balken
zugeführten Kräfte Mu A und Ht. Nach dem Gesetze der Superposition sind
alsdann die Bewegungen eu v± und e1 lineare Funktionen von M± A und
Mi oder mit Rücksicht auf Gleichung (2) auch von Mu M2, A0 und Hx. Wir
können in den Rechnungen H1 ausschalten, indem wir e± als gegebene Größe
betrachten; dann läßt sich nämlich H1 eliminieren und s± und v± ergeben
sich als lineare Funktionen von Mu M2, A0 und elm Dieses Vorgehen
vereinfacht die Theorie wesentlich, und empfiehlt sich, weil bei den meisten
Anwendungen die waagrechten Verschiebungen der Einspannstellen bekannt
oder in einfacher Weise aus Gleichgewichtsbedingungen zu berechnen sind.
In gleicher Weise lassen sich die Bewegungen £2, v2 und e2 des rechten Widerlagers

als lineare Funktionen ihrer Ursachen, M1? M2y B0 und e2 darstellen.
Für die Drehungen ex und e2 der Widerlager schreiben wir nach dem

Gesagten
«i £io — M1ell +iW2fii2 + Si*> I ,- v

«2 «20 — M2 ^22 + Mt S21 + S2e
1 ^

Darin bezeichnen e10 und£20 die Drehungen bei freier Auflagerung des Balkens
(M1 M2=0, e1 0), elt und e12 die Drehungen links für Ml ~l bezw.
M2 1 (^1 0), £22 und £21 die Drehungen rechts für M2 — \ bezw. M1 \
(e2 0), elc die Drehung links für el3 e2e die Drehung rechts für e2. Den
Werter eu und e22 ist das Minuszeichen beigefügt, damit für ein negatives
Einspannmoment die betreffenden Beiträge positiv ausfallen.

Sinngemäß lauten nach dem Gesetze der Superposition die Gleichungen
für die lotrechten Auflagerverschiebungen vx und v2

vx v10 — Mx vn + M2 v12 -f vley |

^2 ^20 — M2 v22 + Mx v21 + v2e.
1 { }

Bei der Berechnung der Formänderungen s und v ist zu beachten, daß sowohl

Ml — \ als auch M2 \ im Balken die Querkraft Q= erzeugen, die

neben dem Moment am Widerlager als äußere Kraft anzubringen ist; ferner
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wirken noch die Horizontalkräfte H1 und H2, die in den Gleichungen (3)
nicht direkt erscheinen, aber für die Zustände e 0, e± und e2 leicht
ermittelt werden können.

Der Drehwinkel xp des Balkens (positiv im Sinne des Uhrzeigers) kann
mit Hilfe der Gleichungen (3b) ebenfalls als lineare Funktion der ihn
erzeugenden Ursachen dargestellt werden. Wir finden

xp l l + Mt fn + ^i
/

¦M<
^22

/
^12 _|_ V<ie

l
oder in abgekürzter Schreibweise

V ¥o + M\ Vi —M2ip2+ipe, (4)

wobei ip0i xply xp2 und xpe die Drehwinkel für freie Auflagerung, M1= 1,

M2 =— 1 und für die waagrechten Verschiebungen ex und e2 bezeichnen.
Gleichung (4) heißt die Superpositionsgleichung des Drehwinkels.

Indem wir die Ausdrücke für eu e2 und xp in die Grundgleichungen (1)
einsetzen, gewinnen wir die Elastizitätsgleichungen des elastisch
eingespannten Balkens; sie lauten

«o + V'o— ßio + V* — eie + Mx (a1 + ip1-\-en) -\-M2 (a2 — xp2 ~ s^) — 0,
ßo — V\) — £20 — We — e2e + M2 (ß2 + xp2 -f- £22) ~f Mx (ßi — vi — €21) 0. (5)

2. Festpunkte und Feslpunktmomente.
Um die Auswertung der Elastizitätsgleichungen zu erleichtern, empfiehlt

sich die Einführung neuer überzähliger Größen M±' und M2'. Wir denken
uns an den Balkenenden starre Scheiben angeschlossen, und verlegen die
durch die Einspannung bedingten Reaktionen an die Endpunkte 0± und 02
in den waagrechten Abständen a und b von den Auflagern, vergl. Abb. 3.

/y

Fig. 3

Diese Transformation ergibt die lotrechten Kräfte
M2 —M±A" —B' l

und die Momente M±' und M2, die sich aus M± und M2 leicht berechnen lassen.
Die Momentengleichungen für die Auflager ergeben

AM AM > A> AM' M* ~ Ml
Mx Mx — A a Mx — - a,

Mo M, B'b M.M1=Jjhx
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woraus m> a, l —a i a
Mx Mx — \-Mt r
m: — M9

l
l-b ¦Ml l

(6)

Zeichnet man für den mit Mt und M2 belasteten, einfachen Balken das
Momentendiagramm, so bedeuten gemäß Gleichung (6) Mx' und M2 dessen
Ordinaten in den Abständen a und b von den Auflagern, vergl. Abb. 3.
Umgekehrt liefern die Gleichungen (6) mit der Bezeichnung / — a — b c

Mx =r Mx
t l — b

Ali > a
c c

M, M9 l — a m;
(7)

Wir setzen diese Ausdrücke in die erste der Elastizitätsgleichungen (5) ein
und fassen zur Abkürzung alle Glieder, die die Einspannmomente nicht
enthalten, in dem Ausdrucke a0' zusammen. Die Gleichung lautet dann

(«i + Vh + «n) \MX ¦M, a

oder

m;

m2

+ («2 — V'2 — «12) [M2 —^ — Mi —j + a0' 0

[/(«! -f- xp1 + en) — b (al \- a2 -j- Vi —W2+ «ii — «12)]

[l(a2 W2 S12) — a(al + Ct2 +Wl— ¥2 + «11 — «12)] -f «o' 0.

Jetzt verfügen wir über den Abstand a derart, daß die Gleichung von M2
befreit wird, indem wir den Abstand a zu

a
W2 «12

«1 + «2 + Vi — ¥'2 + «11 — «1

wählen. Daraus folgt zunächst

/— a

l (8a)

*i + Vi + «u :(«2 •^2 «12/>

und die Elastizitätsgleichung geht über in

Mi
c

Wird a0' wieder ausführlich geschrieben, so ergibt sich daraus

— [ (a2 — xp2 — £12) — (a2 — xp2 — £12)J + «0 0.

m; a ao -t- V'o — «10 + We -

/ Cf2 — Xp2 £12
(Oa)

In gleicher Weise läßt sich die zweite der Elastizitätsgleichungen (5)
vereinfachen. Wir definieren den Abstand b zu

* -- Ä Wi

ß! + ß2 + </'* — V;l + «22 — «21
(8b)
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und erhalten nach analoger Rechnung

l ß1—yj1_€fil
Entsprechend der Theorie des Balkens auf festen Stützen bezeichnen

wir die Lotrechten durch die Endpunkte der starren Scheiben (Abb. 3),
deren Lage von der Belastung und von den waagrechten Verschiebungen
et und e2 unabhängig ist, als F e s 11 i n i e n und ihre Schnittpunkte / und K
mit der Balkenachse als Festpunkte; die Momente M/ und M2 heißen
sinngemäß Festpunktmomente.

Wenn die Auflager in lotrechter Richtung unverschieblich sind, so
vereinfachen sich die Abstände (8) und (9), weil dann alle Drehwinkel xp,
sowie auch die Größen £10, £20, ei2, e21 verschwinden. Die Festpunktabschnitte
betragen in diesem Sonderfalle

a21 r ß, /a= a -i-a-TT' &= ß -L.lt 4-r"' 00)
ai ~r a2 ~r «ii (J\ i /J2 ~r «22

und die Festpunktmomente lauten

m; - af «o^i*, M; - b, Az~^. (ii)l a2 l ßx

3. Besondere Belastungen.
Wir setzen in der Folge voraus, das maßgebende Trägheitsmoment /

sei längs der Balkenachse konstant. Dann lassen sich die Ausdrücke der
Festpunktmomente in eine für die numerische Berechnung geeignetere Form
bringen.

Es handle sich zunächst um die gleichmäßig verteilte Belastung g pro
Längeneinheit des Trägers. Die Elastizitätslehre liefert für die
Auflagerdrehwinkel bei konstantem Trägheitsmoment die Ausdrücke

„ — t> — _____ a — ft — _JL_
«o -Po - 24EJ, «2 -tj1-6£J.

Nach der eingeführten Bezeichnungsweise ist v12 die Einsenkung des linken
Widerlagers infolge M2 1 und Mx 0, also für die am linken Widerlager

angreifende Querkraft Q -y\ somit erzeugt die Belastung g im Grundsystem

die Einsenkung

^10 — ^12 A0 l V12 -—

Ähnliche Ausdrücke ergeben sich für v_0 und e10, und wir erhalten daher

_ *_o — Vio _ / x £l Sl2
yjo — «io — ~~~~~~l ^10 — '^21 — Vl2' 9 — €l2 ~n~'

Nach dem MAxwELL'schen Satze besteht ferner die Beziehung

*_1 ^12
«12 ~ J

deshalb wird einfacher
gl

^o —«10 (i_i — Vn) —

((2)
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Ferner ist
^22 + i_2 vn — v12 vtl + v22

V2 +£12 —- + -— ——
Damit folgt für gleichmäßig verteilte Belastung und unter Ausschluß der
waagrechten Verschiebungen

~-a2 -f—(v*i _ vlx)
M '

__
a «o + Vo —Cio _____ 4 2

v -1 ___'

/ a2 V2 — «12 * ^11 + ^22
a2-- -

M' — gCl1 ^/+ 2(^21 — ^ll). /1Q>

entsprechend läßt sich ableiten

Af,- - *f'. *_^«p_»>. (i3b)

In gleicher Weise lassen sich die Ausdrücke der Festpunktmomente für
eine Einzellast P in den Abständen x und x' von den Auflagerlotrechten
ableiten. Für die Auflagerdrehwinkel im Grundsystem gelten die Formeln

xx'(l+x') __ ^]_+^).C° ~ 7 ' ~~6lEj~' /o ~ 7

61EJ '

ferner ergibt sich

Vo — «10 V<L\ #0 "- ^12 A0 — €12 A0 l
X X

v21 B0 — vn A0 v21 ¦ P — — vn ¦ P l
Wir erhalten damit

xx'(l + x') nx x

M, — — •

«2 j
P 12_axx'(l+x) a2l^V21x'(l+x) Vl1

x (/+*'),~ /3 es/-(Vn + v22) ' U4^
ebenso findet man

/2 /2

_ 0 *'*(/+*) ^l/+|/l2 x(l+x) "™ x'jl + x)
(14b)

Es ist möglich, die bekannten MoHR'schen Konstruktionen zur graphischen

Ermittlung der Schlußlinie der Momentenfläche auf den Balken mit
elastisch verschiebbaren Stützen auszudehnen. Zu diesem Zwecke führt man
„gedachte Belastungen" ein, die so angesetzt werden, daß der Gültigkeitsbereich

der graphischen Konstruktionen erweitert wird. Für gleichmäßig
verteilte Belastung lauten beim Balken auf festen Stützen die Festpunktmomente

Mx - 4
M2 _ 4



296 M. Ritter

Für elastisch senkbare Stützen setzen wir statt g

gi g
(*2l + 2(v2l - l'u)
«2^ — ^11 + ^22)

womit die Gleichungen (13) in
gi al

Mx — **

— ^.A/ +2(^12 — ^22)

&\l — {v\\ + ^22) 'g

m: —
g^bl

4 7

4

übergehen. Im Falle der Einzellast P setzen wir

(15)

Pi tt*J~ (Vn + V.22)

P.= P-

J K

V N ' ''' '/

x(l + x) x'(l-+- X)

und erhalten für die Festpunktmomente

m; -pt

m: —

axx'(l-\-x')

bx'x(l-\- x)
- TS • (16)

Fig. 4 a

Das sind die bekannten Beziehungen, die der graphischen Lösung für eine
Einzellast zu Grunde liegen. In Abb. 4 sind die daraus leicht abzuleitenden
Konstruktionen für die Schlußlinie dargestellt; sie unterscheiden sich von

-i^ K ^f „-^^r^c
^*^^r s

Fig. 4 b

den MoHR'schen Konstruktionen für feste Stützen nur dadurch, daß an Stelle
der wirklichen Belastungen g bezw. P die „gedachten" Belastungen gt, g2
bezw. Pu P2 treten. Das Aufzeichnen der Einflußlinien für Momente und
Querkräfte kann im Prinzip nach derselben einfachen Methode erfolgen, wie
beim Balken auf festen Stützen.

4. Der einseitig elastisch eingespannte Balken.
Wir betrachten einen unbelasteten Balken, dessen rechtes Auflager sich

aus irgendwelchen Ursachen, die rechts vom Balken liegen, um den Winkel
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e2 gedreht und um die Strecke v2 gesenkt hat, vergl. Abb. 5. Die Momentenlinie

ist eine Gerade; der Wendepunkt habe vom linken Auflager den
Abstand r±. Das linke Widerlager wird beansprucht durch das Moment M±

und die Querkraft —^—- Die Bewegungen el und vx sind somit lineare

Funktionen von Mx und M2, d. h. es liegt am linken Widerlager elastische
Einspannung vor. Es gelten die Beziehungen (3 a) und (4 a)

cx — Mx en + M2 cl2 4- ele,
vx — Mv Vix + M2 v12 + cle.

~1

__l

Fig. 5

Die Gleichungen (1) gehen damit über in

Mx \ax -f «u + X~i) + M2 (a2—c12 — ^ +

MAß,- + M9 [ß2 + -^ — €9 —
Vo

V2 — V\e

16 0.

ele 0,

Daraus ergeben sich die Bewegungen ?> und v2 des rechten Auflagerquerschnittes

mit Beachtung der Beziehung (12) zu

c2 — Mx (ax -r ßx + tlx) + M2 (a2 + ß2 — £12) — clß,

^ -M^a, + Cll + Vf)-M2(a2~V-f) + Vy -r cle
(17a)

Der Abstand rv des Wendepunktes der elastischen Linie vom linken
Auflager berechnet sich jetzt zu

_ Mx l
ri - M, ¦M<

/_=
1

Mx

En +
(18 a)

1 + /
Vn 1 [V2 — Vle

da — ~r r Ä/r\ / «

l M2\ l
Die Lage des Wendepunktes ist demnach abhängig von M2 und von

den Bewegungen v2y vle und ele. Sind diese Bewegungen gleich Null, so
verschwindet auch der Einfluß von M2, d. h. rL wird zu einem Festwert.
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In gleicher Weise lassien sich die Ausdrücke für eu v± und r2 an einem
Balken ableiten, dessen rechtes Auflager elastisch eingespannt ist, während
das linke aus Ursachen, die links vom Balken liegen, Bewegungen ausführt
und dadurch den Balken deformiert, vergl. Abb. 6. Mit Hilfe der Beziehungen
<3b) und (4 b)

£2 — M2 e22 -f- Mx s2l + e2e,

V2 =r — M2 V22 + M± V2l + V2e

und der Grundgleichungen (1) erhalten wir

«i M2 (ß2 + or2 + «22) + Mx (ft + «i — «21) — «20
v22

M2 ft +«22 + / -M1(ß1-Vf) + Vf + e2e.
07b)

-1

L_

-___d^

Fig. 6.

Der Wendepunkt der elastischen Linie hat vom rechten Auflager den Abstand

M9
r*

M2 — Mx
l

l
ß2 + €22 + /

(18b)

p ^22 1 /Vi - V2e

5. Die Elastizitätsmasse der Widerlager.
Die Anwendung der Theorie des elastisch eingespannten Balkens

erfordert die Berechnung der „Elastizitätsmaße" der Widerlager, d.h. der
verschiedenen Formänderungen e und v, die in den Gleichungen auftreten.
Werden die Widerlager durch keine andern Kräfte deformiert, als durch
die ihnen vom Balken zugeführten Auflagerkräfte und Momente, so können
sie als „einseitig elastisch eingespannte Träger" im Sinne der Definitionen
betrachtet werden, die den Gleichungen (17) zu Grunde liegen.

Wir begnügen uns nachstehend, den Fall des elastisch eingespannten
Balkens auf senkbaren Stützen nach Abb. 7 zu behandeln. Zur Berechnung

von £n sind am rechten Auflager M — 1 und Q — als angreifende Kräfte

anzubringen, unter / die Stützweite des rechts anschließenden, belasteten
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Balkens verstanden. Die Auflagerreaktion A berechnet sich leicht zu

A- i + r +/'
somit senkt sich die rechte Stütze um

Vll k-A=k(f + ]r+\); (19)

darin bezeichnet k das Elastizitätsmaß der Stütze, d. h. die Stützensenkung
für v4 l. Zur Berechnung von vtl steht ferner Gleichung (17 a) zur
Verfügung; wird darin M2 — 1 gesetzt und vom Einflüsse'waagrechter
Verschiebungen abgesehen, so ergibt sich

^i(*i' + «n+ /")+«2/ /' *

Die Summanden sind mit Strich versehen, da sie sich auf die Öffnung /'
beziehen und von den entsprechenden Werten der Öffnung / unterschieden
werden müssen.

i__ 2

)r-E/2 zk--*'"'?,»,

--- £,

2~\-^

y
Fig. 7

Werden die beiden Ausdrücke für v±1 einander gleichgesetzt, so läßt
sich das Moment M{ am linken, elastisch eingespannten Auflager berechnen.
Man findet

M±
i \i ^ i)

«/+*'. + -£ + £
(20)

Das linke, elastisch eingespannte Auflager senkt sich gemäß Gleichung (3 b)
um '

i

Vi — vx\ Mx — v12 • 1.

Der Stabdrehwinkel \p' in der Öffnung /' hat den Wert

*¦ ¦-*-?*= r(j +r) + -? + Mt. + tY
Gleichung (1) ergibt für die Drehung des rechten Widerlagers

«9

oder
*n Mx ft' — 1 • ft' — y;

k
1' (21)
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Zur Berechnung von e12 belastet man das rechte Balkenende mit Q y-
Die rechte Stütze senkt sich um

Mt 1

v12 =kA k[-S +T (22)

die linke um v\ -— v,', iWi (Af2 0'),
daher ist jetzt

W - 7'7 + Aft (7*.-+t)
und aus <31eichung (1) folgt

«1 2

k
77 ¦ Af,(/?,'

' k
/'2

worin k

M,
«i

' + «ii

Ti

+ ¦7^ + /'2

(23)

(24)

Die vorstehenden Beziehungen ermöglichen die Berechnung der
Elastizitätsmaße £n, £12, Vn und v12 unter der Voraussetzung, daß die Elastizitätsmaße

des linken, benachbarten Auflagers bekannt sind. In manchen Fällen
können die Beziehungen im Sinne von Rekursionsformeln verwendet werden,
so besonders beim durchlaufenden Balken auf frei drehbaren, elastisch
senkbaren Stützen. Wird bei diesem System eine Öffnung belastet, so berechnen
sich die Elastizitätsmaße der angrenzenden Auflager, indem man von den
beiden Enden her gegen die belastete Öffnung fortschreitet. Die Berechnung
unterscheidet sich im Prinzip nicht von der bekannten Behandlung des
durchlaufenden Balken auf festen Stützen mit Hilfe der Festpunkte; nur sind
beim Balken auf elastisch senkbaren Stützen die Wendepunkte der elastischen
Linie in den unbelasteten Öffnungen nicht Festwerte, sondern in ihrer Lage
von der Belastung abhängig. Für jede Öffnung links der belasteten Öffnung
gilt Gleichung (18a), für jede Öffnung rechts davon Gleichung (18b). Die
hier entwickelten Beziehungen bilden auch die Grundlage für kompliziertere
Gebilde z. B. für den durchlaufenden Balken auf elastisch senkbaren und
elastisch drehbaren Stützen und für den Stockwerkrahmen. Ob das
Verfahren b(H der praktischen Anwendung Vorteile bietet im Vergleich zu der
Methode der Iteration, die sich für Stabwerke mit beweglichen Knoten
hervorragend eignet, muß vorläufig dahin gestellt bleiben.

Zusammenfassung.
Die Theorie des beidseitig elastisch eingespannten Balkens wird auf

dem Fall elastisch senkbarer Stützen erweitert. Mit Hilfe von Festpunkten
und Festpunktmomenten lassen sich einfache Beziehungen zur Bestimmung
der Schlußlinie der Momentenfläche aufstellen. Die Formänderung der
Widerlager wird für den Fall, daß diese wieder elastisch eingespannte Stäbe
darstellen, behandelt.

Resume.
L'auteur etend la theorie de la poutre encastree elastiquement des deux

cötes au cas oü les appuis sont susceptibles d'un affaissement elastique. En
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faisant intervenir les points fixes et les moments de points fixes, on arrive
ä des relations simples pour la determination de la ligne de fermeture de
Faire des moments. L'auteur etudie la deformation des appuis dans le cas
oü ils sont constitues eux-memes par des elements ä encastrement elastique.

Summary.
The theory of beams flexiblj fixed at both ends is extended to the

case of elastically yielding supports. With the help of fixed points and
fixed-point moments, simple relations can be found for determining the
closing line of the diagram of the moments. The change in shape of the
abutments is treated for the case where these again represent flexibly fixed
bars.
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