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DIE BERECHNUNG PYRAMIDENARTIGER SCHEIBENWERKE

UND IHRE ANWENDUNG AUF KAMINKÜHLER.

LE CALCUL DES PAROIS EN FORME DE PYRAMIDE ET LEUR
UTIL1SATION DANS LES TOURS DE REFRIGERATION.

THE DESIGN OF PYRAMID-SHAPED DISK WALLS AND THEIR
APPLICATION ON COOLING TOWERS.

Dr. Ing. ERNST GRUBER, Wien.

A. Einleitung.
Die Scheibenwerke zerfallen in zwei Hauptgruppen: 1. in solche, die aus

rechteckigen Einzelscheiben bestehen und prismatische Scheibenwerke
genannt werden, und 2. in solche, deren Einzelflächen Trapeze oder Dreiecke
sind und die wir pyramidenartige Scheibenwerke nennen wollen. Einige
einfache Beispiele für deren bautechnische Anwendung sind in Abb. 1 und 2

dargestellt.

Section quefconyue de la construction a disai/e
Beliebigen Querschnitt des Scheibentver/res
Any cross • section of the disc construction

Disque rigide
Steife Scheibe

Stiff disc

Toit d'une toun
Turmdach

Roofof Tower

Fig. 1.

Tour nefnigenante
Kühltunm

Cooiing Tonen

Axe de la constructton a disqt/e
Achse des Scheiben Werkes
Axis of the disc construct/on

Fig. 2.

Während in den letzten Jahren schon einige Aufsätze über die Berechnung

prismatischer Scheibenwerke erschienen sind, unter diesen auch ein
Aufsatz des Verfassers im 1. Band 1932 dieser Abhandlungen, sind hingegen
bis heute meines Wissens noch keine Versuche einer theoretischen Lösung
von pyramidenartigen Scheibenwerken angestellt worden. Der folgende Aufsatz

beschäftigt sich infolgedessen mit dieser letzteren Aufgabe.
Die oben genannte vorigjährige Abhandlung des Verfassers über

prismatische Scheibenwerke hat sich sowohl mit dem gelenkartigen als auch mit
dem im Eisenbetonbau ausschließlich üblichen steifknotigen Scheibenwerk
beschäftigt und für beide Systeme allgemeine Lösungen gebracht. Das
steifknotige System ist bekanntlich dadurch ausgezeichnet, daß seine Einzelflächen
in den Schnittkanten nicht gelenkartig, sondern biegungssteif verbunden sind.
Hierbei hat es sich gezeigt, daß einerseits die strenge Lösung eines
steifknotigen Scheibenwerkes eine erhebliche Mehrrechenarbeit erfordert und
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daß hingegen andererseits die Ergebnisse beider Systeme, wie an einem
Beispiel dargelegt, oft erheblich voneinander abweichen.

Infolgedessen hat sich der Verfasser vor Beginn dieser Arbeit die
grundlegende Frage vorgelegt, in welchen Fällen man auch bei steifknotigen
Scheibenwerken zum Zwecke der Rechnungsvereinfachung ohne unzulässigen
Fehler von der steifen Verbindung der Einzelflächen absehen darf, somit
näherungsweise auch steifknotige Scheibenwerke als Gelenkscheibenwerke
berechnen darf. Hierbei ergab sich der einleuchtende Grundsatz, daß dies umso
eher gestattet ist, je kleiner die zum Gelenkscheibenwerk gehörigen
Formänderungen sind. In näherer Untersuchung ergab sich:

1. Die Formänderungen von Gelenkscheibenwerken werden umso kleiner,
je größer die Neigungswinkel y der aufeinander folgenden Einzelflächen sind
(Abb. 2). Bei Winkeln über 40° wird der Fehler infolge Vernachlässigung
der Steifknotigkeit in der Regel unbedeutend.

2. In sich geschlossene Scheibenwerke, siehe Abb. 2, sind in dieser
Hinsicht günstiger als offene.

A?,/7-/.

n+i

Pn ni-7

Ml

an
n+7

rj^oydx
Fig. 4

Axe du d/sgue
Scheibenachse
Axisofdisc

Fig. 3.

3. Die Verformung der Querschnitte eines Scheibenwerkes, d. s. die
Schnitte senkrecht zur Achse des Scheibenwerkes, siehe Abb. 2, wird ganz
erheblich vermindert, wenn man in größeren Abständen, besonders in den
Querschnitten größter Formänderungen, biegungssteife Querscheiben,
Querschotten oder Ringe einbaut. Als Beispiel hiezu diene der in Abb. 10
dargestellte Kaminkühler mit oberem Versteifungsring, der durch den dort
notwendigen Revisionssteg gebildet wird. Somit kann auch bei ausreichender
Anordnung obiger konstruktiver Maßnahmen das steifknotige System ohne
nennenswerten Fehler durch ein Gelenkwerk ersetzt werden.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramidenartigen

Scheibenwerken geringer als bei prismatischen.
Aus diesen Richtsätzen ergibt sich, daß man eine große Anzahl von

pyramidenartigen Scheibentragwerken statisch ausreichend genau als Gelenkwerke

betrachten und dementsprechend berechnen kann. Infolgedessen
beschäftigt sich der folgende Abschnitt B mit der allgemeinen Lösung des
pyramidenartigen Gelenkscheibenwerkes ohne Versteifungsquerscheiben,
Abschnitt C hingegen zeigt an Hand eines Anwendungsbeispieles den
allgemeinen Lösungsvorgang, wenn Versteifungsquerscheiben vorhanden sind.
Beide Abschnitte beschränken sich hiebei auf regelmäßige Scheibenwerksformen.

B. Gelenkscheibenwerk.
Im Folgenden wird die Auflösung eines allgemeinen pyramidenartigen

Gelenkscheibenwerkes unter allgemeiner stetiger Belastung seiner
Einzelscheiben durchgeführt. Zuerst werden die Flächenlasten pro Scheibe in
bekannter Art durch gleichwertige Lasten längs der die Scheiben beiderseits
begrenzenden Kanten ersetzt, so daß sich längs jeder Kante eine stetig ver-
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teilte, aber sonst beliebige Linienlast pn (x) ergibt, wie eine solche für die
Kante n in Abb. 3 dargestellt ist. Diese beliebig gerichteten Lasten pn(x)
ersetzen wir gleichwertig durch folgende komponentale Lasten pro lfdm
Kante (je), Abb. 3:

Sn>n+i in der Scheibe n, n+\ parallel zur Grundkante n,n+\ wirkend
sn\n-i in der Scheibe n-\,n parallel zur Grundkante n-\,n wirkend

und sn in der Kante n wirkend.
Ebenso geht man für jede andere Kante vor.
Die aus obiger Zerlegung in jede Scheibe fallenden Lasten s werden

nun am zweckmäßigsten wie folgt zusammengefaßt, wobei die in den Kanten

1)

Qn-in n-7 n
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n+7

n+dt1n.Jn

JWn.jn+dNn.,

y*n-in+dQn-in

% nn n.n+i
n+ilpt1

n+7 n+t
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nt/*

^ dNnn+7 ntl
\? n+7
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^>e.t

m'<*»
\Ps

*OAt&

w I ?n,n-7.1
XJ^e

Anve* 6fi,n

I
än.m-7. 1

Direction de faxe de dtsque
Richtung der Scheibenachse
Direction ofdisc axis

D/rechon de faxe de d/sque
Richtung der Scheibenaxe
Direct/on of disc axis

Fig. 5. Fig. 6.

wirkenden Lasten sn je zur Hälfte auf die beiden benachbarten Scheiben
aufgeteilt werden, Abb. 4:

J ,SLa
cos a 2

1. in eine Transversallast: pn,n+i — (sn+i,n — s«,/h-i)- + ^r (sn

2. in eine Achsiallast: ln, n+i — i (sn •+¦ Sfi+l)

3. in eine Momentenlast: mn,n+i «-tga (sn+1 — sn)

3)

4)

wobei alle diese Lasten auf die Längeneinheit der Scheibenachse x bezogen
sind.

Da die Scheiben miteinander nur gelenkig verbunden sind, können von
einer Scheibe zur anderen nur Schubkräfte T„ übertragen werden (siehe
Abb. 3). Es wirken.daher auf eine aus dem Verbände losgelöste Scheibe

n,n-\\ nur die Lasten pn,n + 1, nn,n + 1, //i/;,/H x und die Schnittkräfte Tn und
Tn + i ein. Da alle diese Kraftwirkungen in einer Ebene liegen, ergibt sich,
daß das ganze Scheibenwerk in ebene Träger zerfällt.

Wir schneiden nun aus zwei benachbarten Scheiben n,n -\-1 und n — \,n
zwei Elemente heraus und bringen an diesen die freiwerdenden Querschnittskräfte

M, N und Q, die pro Längeneinheit der Kante bezogene Schubspannung

xn und die Belastungen p, n und m an. In Abb. 5 sind beide Elemente,
in eine Ebene geklappt, zur Darstellung gebracht. Nach Obigem wird jedes
der beiden Elemente von einem ebenen Kraftsystem ergriffen. Es ergeben
sich daher für das Element n,n-\-\ folgende Gleichgewichtsbedingungen:

Q'ntn+i — (U + T/i+i) tg a — Pntn+l 5)
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N'*,ä+1 (rn ~ rn+i) + #«,«+! 6)
M*n n+i Qn,n+x — x(Tn+1 + T„) tg a -f /W/i, «+i 7,

Dieses Gleichungssystem können wir durch Elimination der Größe Qn, n + i
vereinfachen. Hiezu differentieren wir Gl. 7 und setzen in diese so erhaltene
Gleichung Gl. 5 ein. Es ergibt sich also

Mn9n+i — ^ [*0^ + r^J tg «] — tg « (f„ + r„+1) — pn,n+i 4- /w«,/i+i 8

Man sieht nun, daß durch die Differentialgleichungen 6) und 8) die inneren
Kräfte M und N und somit die Randspannungen der einzelnen Scheiben als
Funktionen der %n und der Belastungen bestimmbar sind. Unsere nächste
Aufgabe ist es daher, die xn zu ermitteln. Da die einzelnen Scheiben längs der
Kanten n unverschieblich verbunden sind, müssen die Randspannungen zweier
benachbarter Scheiben n,n-\-\ und n — \,n längs der Kante n punktweise
übereinstimmen. Es gilt daher für jede Kante die Kontinuitätsbedingung

On,n-\ tf/2,/2+i 9)

wenn die adie zur Kante/z parallel gerichteten Normalspannungen bedeuten.
Solche Gleichungen gibt es nun ebensoviele als Kanten, somit als unbekannte
Funktionen xn (x) vorhanden sind. Daraus folgt, daß wir aus den Gl. 9 die
t„ bestimmen können.

Hiezu schneiden wir aus den Rändern zweier benachbarter Scheiben je
ein dreieckiges Volumselement I und II heraus und bringen an diesen die
freiwerdenden Spannungen o, t und ö als äußere Kräfte an, Abb. 6. °
bedeutet, wie aus Abb. 6 ersichtlich ist, die zur x-Achse parallel wirkende
Normalspannung. Eine einfache Gleichgewichtsbetrachtung an I und II ergibt

on,n+i ö ~rtgo: 10)' COS2a d ^ }

On,n-i I ^ Hn
On,n-i —9 h ~7 tg« 11)COS2« d fe '

Durch Subtraktion von Gl. 10 und 11 erhalten wir die Kontinuitätsbedingung 9
in der neuen Form

4 tg« • cos2«
On,n+i — On,n-i ~ ~~^

^ U — 0 12)

Ist nun der Winkel a nicht zu groß, so ergibt sich nach Mohr

rr J Mn_1%n Nn-i,n
1 ox°w ~ 2x^dt^a + TxdJga 13)

Wir müssen nun aus Gl. 6, 7, 8, 12, 13 alle Größen bis auf die %n eliminieren.
Hiezu setzen wir zunächst Gl. 13 in Gl. 12 ein, multiplizieren mit 2 x2 -d • tg2 u
und differentieren nachher einmal nach x. Es ergibt sich auf diese Weise

3 (M'n_lfn + Mntn¥l) tg CX + *(AV1>Ä — 7V\W+1) tg « +
+ (Nn-Un ~ N„tn+l) tg CX ~\ 8 tg CX d • ~ (X2 Tn) 0 14)

wobei a=^sin2a bedeutet. Differentieren wir Gl. 14 noch einmal nach x und
setzen wir in die so erhaltene Gleichung die Gl. 6 und 8 ein, so erhalten wir
die Beziehungen

14
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d d2
tg ex • *^(^-i +4rw + rn+l) + 2tgcx(Tn^x+ATn + rn+l) 4atga^(x2Tn) +
f 3 3 3, 3, d r ,17 v A 1

in denen nur mehr die unbekannten Funktionen %n (x) vorhanden sind.
Unsere weitere Aufgabe besteht nun in der Integration des Systems 15.

Es liegen simultane, lineare, nicht homogene Differentialgleichungen zweiter
Ordnung mit veränderlichen Koeffizienten vor. Durch Einführung der neuen
Funktion yn %n_i + 4%n -f-tn-+ 1 ergibt sich zunächst die Differentialgleichung

d2
tg«- xyn-\~2tgcx .yn 4atga — (x2Tn) + Nn 16)

Nehmen wir das erste Glied der rechten Seite obiger Gleichung zur Störungsfunktion

hinzu, so lautet das Integral von Gl. 16

Q
X2 '

JC2tg

wobei Cn willkürliche Konstanten bedeuten.
Formen wir den zweiten Integralausdruck von Gl. 17 durch partielle

Integration in
Aax-Tn + Aaxn 18) 0

um, so erhalten wir weiters
1 f C^+4(1-0)^+^ 4axrn' + ^-]xNndx + ~ß 19)

Es ist hiemit die Differentialgleichung zweiter Ordnung auf eine solche
erster Ordnung zurückgeführt. Diese können wir nun folgendermaßen auf
eine lineare Differenzengleichung mit konstanten Koeffizienten zurückführen.
Multiplizieren wir jede der Gl. 19 der Reihe nach mit lu l2 lm und
addieren wir alle so erhaltenen Gleichungen, so ergibt sich

rÄ-1+4T„+ cn+1 =^ + —-jxNndx+ ~ J x^ (x2rn) dx 17)

n m /i m -# n — m r* ^>

S [K-i^A(\-a)ln + K+i]Tn Aax^lnTn+-Tr— S^ \xNndx + -^ 20)
n \ n — \ X lg«// — 1 J X

Es kann nun immer ein Multiplikator pt so gewählt werden, daß die Identität
n=m n tn

2 [ln-i + 4 (1 ~d) ln + h+i] *n jU 2 K *n 21)
n 1 n I

erfüllt ist. Bedenkt man, daß t,,=j=02), so ergibt sich, daß Gl. 21 nur
bestehen kann, wenn

ln.x + [4 (1 -a) - a<] K + Vi 0 22)
n — 1, 2, 3 /#

womit wir eine Differenzengleichung zur Bestimmung der Multiplikatoren /
und pL gefunden haben.

ix4af d2 (x2vn) j„ Aa[ 4a, 4ö/3r' «_. \

2) Diese triviale Lösung würde ein unbelastetes Tragwerk bedeuten.
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Diese m Gleichungen enthalten m + 2 Unbekannten. Die beiden
fehlenden X gewinnen wir durch die jeweiligen Randbedingungen, die aus cjer
Art des Tragwerkes und dessen Belastung erwachsen und die bei der
Aufstellung des Gleichungssystems 15 für die r„ zu berücksichtigen sind. So sind
z. B. bei antisymmetrischer Belastung die zur Antisymmetrieebene symmetrisch
liegenden %n einander gleich. Bei symmetrischer Belastung ergeben sich
entweder die zur Symmetrieebene symmetrisch liegenden %n einander entgegengesetzt

gleich bezw. es sind die in der Symmetrieebene liegenden %n identisch
gleich Null. In letzterem Falle lauten also bei entsprechender Indexbezeichnung

(Index 0 fällt in die Symmetrieebene) die Randbedingungen
*o Tm+i — 0, 22')

Die Berücksichtigung dieser Sonderwerte bei der Summierung Gl. 20 ergibt
die uns noch fehlenden beiden Beziehungen

X0 Xm+1 0. 22")
Die Lösung der allgemeinen Differenzengleichung 22 lautet:

Xn c sin rn -f- c2 cos m 23)
wobei cl und c2 willkürliche Konstanten bedeuten. Setzt man Gl. 23 in Gl. 22
ein, so erkennt man, daß r der Bedingung

2 cos r +4(1— a) fi 24)
genügen muß. Wegen X0 0 folgt c2 0, während wegen Xl?l + x 0

sin rn — 0 25)
oder

r\ r= 1,2 m 26)
m + \

wird.
Wir erhalten somit m verschknene Werte? pq(q \, 2, 3 m) für pi

und ebenso m verschiedene Lösungssysteme
lnQ csmrQn 27)

Bestimmen wir die Konstante c von Gl. 27 so, daß

c Yj sin2 rQn 1

n=\
wird, so ergibt sich die Lösung von Gl. 27 in normierter Form, nämlich

l"ß= yyiL7rnsinren 28>

Nachdem wir nun die Bestimmung der Multiplikatoren pt und X durchgeführt
haben, können wir die Integration von Gl. 20 auch tatsächlich durchführen.
Da wir im ganzen m Werte für p,Q und m Wertsysteme für lnQ (gefunden haben,
können wir Gl. 20 für jede Werfegruppe XnQ einmal anschreiben und erhalten
m Bestimmungsgleichungen für die %n. Setzen wir Gl. 21 in Gl. 20 ein und
schreiben für

n — m n tn

Zj ^tiQ * fn -=¦ Zq\ 2*i ^riQ Vn Zq ^*)
n \ n= 1

so ergibt sich die lineare Differentialgleichung

4«*zff' +x*^glx"*\*"ndx+ Cxn2 30)

q 1,2,3 m
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deren Integral lautet

zg — 2j ^ngTn — CQ 2 ' ^i XH

' n in

YjK(,lxNndx
~-dxs) 31)

4a
X2 ' e 4atg«

Q 1,2, 3 //Z •/

Beachtet man, daß Gl. 31 2 m willkürliche Konstanten enthält, so erkennt
man, daß wir in Gl. 31 das allgemeine Integral von Gl. 15 gefunden haben,
allerdings noch in impliziter Form. Während nun Gl. 31 für die Bestimmung
der Integrationskonstanten C^ und C^;) gut geeignet ist, ist sie für die
Bestimmung der Unbekannten %n nicht bequem, da man hiezu tn lineare
Gleichungen auflösen muß, bei denen in jeder Gleichung alle m Unbekannten
vorkommen. Wir werden daher Gl. 31 explizit darstellen. Betrachtet man
die Differenzengleichung

bn^ + 4 (1 - a) bn + A*+i rn 32)
n — 1, 2, 3 m

so lautet die Lösung derselben
q — m n n tn g 7n j

i ST\ ^ng sr\ o sr\ "no 00,b Zj 2j ^ngTn Zj ~ * ZQ 33)
q 1 p q 71 \ Q 1 ^Q

da ja p0 die Eigenwerte und XnQ die Eigenlösungen von Gl. 32 sind, siehe
Gl. 22. Setzt man nun Gl. 33 in GL 32 ein und nimmt für XnQ den Wert
Gl. 28, so ergibt sich unter Bedachtnahme auf Gl. 24 nach einigen
Reduktionen

g m

Tn —~ Zj ^ng ' zg 3 ' /

womit das allgemeine Integral in expliziter Form gefunden ist.
Die bisherigen Beziehungen gelten natürlich für jedes reguläre

pyramidenartige Scheibenwerk. Die Integrationskonstanten der Gl. 31 können
jedoch nicht mehr allgemein angegeben werden. Man muß hiezu vielmehr
auf die Bauart und Belastung des jeweils vorliegenden Tragwerkes eingehen.
Wir wollen dies für einen Kaminkühler für Windangriff vorführen. Dabei
nehmen wir an, daß nur eine Scheibe belastet ist. (Siehe Abb. 10.) Durch
Übereinanderlagerung mehrerer solcher Belastungen kann man die
Spannungen für den Fall, daß das gesamte Tragwerk unter Winddruck steht,
bestimmen. Nehmen wir den Wind horizontal wirkend an und vernachlässigen
die kleinen Belastungsglieder n und m (siehe Gl. 3, 4), so ergibt sich die
Belastungsfunktion

Nn A„x; A0 A1 ^-S^-w; A2=As 0 34)
z sin y

Da es sich um m simultane Differentialgleichungen zweiter Ordnung
handelt, benötigen wir 2 m Randbedingungen. Zunächst sehen wir, daß der
obere Rand kraftfrei ist. Es ist daher

in 04) 35)

3) Handelt es sich für die rn um andere Randbedingungen als GL 22, so sind hiefür

die dazu gehörigen kn und p zu ermitteln und in Gl. 31 einzusetzen.
4) Von nun an bedeuten die oben genullten Funktionen den Funktionswert

derselben an der Stelle x x0 (Abb. 5).
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womit wir m Bedingungen gefunden haben. Außerdem ist Q 0, weshalb
aus Gl. 6 und 7 M' N' 0 folgt. Setzt man diese Ergebnisse in Gl. 14
ein, so folgt mit N 0

16 tg « • a x0 In 0; r„' 0 36)
womit wir die restlichen Bedingungen erhalten haben.

Bestimmt man nun mit Hilfe der Gl. 31 und der obigen Randbedingungen
die Konstanten C^ und C&\ macht das Ergebnis mit Hilfe der Gl. 31'
explizit, so ergibt sich

'S- I- - (~ Fl 'S"—H- Slo An +tg«L*o \x0! \g \Pg — Aan \

g mKg\(-r) — [—)*a\n m

+ 4/cos2« 2 -^^\x^A s 3
e i (i"e — 4ß) (^ + 8a) ßfi ^

In diesem Ausdruck verursacht das zweite Glied große Ziffernrechnungen.
Glücklicherweise ist es in Bezug auf das erste Glied sehr klein, so daß wir
es ganz unterdrücken dürfen5). Wir können uns jedoch von dem Einfluß
dieser Annäherung auf das Endergebnis überzeugen, indem wir die näherungsweise

berechneten Spannungen o in die exakte Gl. 12 einsetzen. Diese
Substitution wird nicht auf 0 ausgehen, sondern einen Rest A ergeben, aus dessen
Größe man auf die Genauigkeit der Rechnung schließen kann. Da die
Kontrolle erst am Schlüsse der Rechnung durchgeführt werden muß, ist sie eine
durchgreifende.

Greifen am oberen Rand in jeder Scheibe ebene horizontale Tangentialkräfte
Pn _!, n an, so ergibt eine ähnliche Ableitung wie oben

o v g tn 5 n m

Ttl O \ctn T2 ^ TT An ^ Kng(Pn-un+ Pntn+i) 38)
Z tg « X g=\ Pg 4flß=i

ein Resultat, das wir im folgenden Abschnitt benötigen werden. Dabei sind
die P mit den p gleichgerichtet anzunehmen (siehe Abb. 5 und 9).

C. Die durch biegungssleife Scheiben verstärkten pyramiden-
artigen Gelenkwerke.

Wir wollen diese Theorie an Hand eines Kaminkühlers, der am oberen
Rand durch einen biegungssteifen Ring zusammengehalten wird, erörtern,
siehe Abb. 10. Wie es naheliegend ist, wählen wir das im vorhergehenden
Abschnitt behandelte gewöhnliche Gelenkwerk als Grundsystem. Hiezu führen
wir im oberen Ring in den Knotenpunkten n Gelenke ein und bringen an
diese die unbekannten Schnittmomente Xn als äußere Kräfte an, Abb. 9. Das
von den gegebenen Belastungen und den Xn ergriffene Grundsystem können
wir nun nach den Methoden des vorhergehenden Abschnittes auflösen. Hiezu
ersetzen wir zunächst die Xn durch Kräfte Pn-Un (Abb. 9), welche in der
Ringebene längs der oberen Scheibenränder wirken. Eine einfache
Gleichgewichtsbetrachtung ergibt diese zu

5) Man erhält auch dasselbe Ergebnis, indem man in Gl. 19 näherungsweise
4,axxn' 4flin setzt, was bei schwach gekrümmten r-Linien richtig ist. Eine etwas
langwierige Rechnung ergibt, daß das näherungsweise ermittelte Integral die Gl. 15
und die Randbedingung Gl 35 genau erfüllt. Der zweiten Randbedingung Gl. 36 ist
jedoch nur näherungsweise Genüge geleistet.
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Pn-\,n — (~Xn-2 -\~ 'SXn-i — 3 Xn + Xn+i)
ctg^
~4T 39)

Es ergibt sich nun durch Übereinanderlagerung der Resultate Ql. 37
und 38

2 sin y\

t g=m1 s2tg« £•* ~, ^"3fc„§/«fi(/>*-1'"+/>-^l)

bn

a0 a, 1; a2 a3

Pn 40)

0;
*0

Setzen wir dieses Ergebnis in Gl. 6 und 7 ein, so erhalten wir durch
bestimmte Integration von x0 bis x

M -m xlw'igax(^ i1 3
Mn-hn - Mn^n- 2Smy *\2 +

1; 2 ¦)(*M+4-)~(™l)(iVx + Ä0
4

•^-i,^o(f-l)
Nn-itn

Xo W

2 sin 7 \ 2 + y-y) (*„-!-*«) +
1

2tg«\f
1 (/Vi-P/,) 42)

womit wir sämtliche innere Kräfte als Funktionen der Xn und der äußeren
Belastungen gefunden haben. Dabei bedeutet <^in_1,n das Moment, das in
der Scheibe n — \,n allein durch die äußeren Lasten entsteht, wenn das
Gelenkwerk längs der Kanten n aufgeschnitten wird.

Stellen wir nun für den Scheibenring die Dreimomentengleichungen

Xn-, + 4Xn + Xn+l + ^(bn-un ~ Kn+x) 0 43)

auf, so erhalten wir in diesen die Bestimmungsgleichungen für die Xn.

Disque -Scheibe - Disc

X. U'n, n+/. Zg<*.Qn,n+j ^

n.tgaOl

Fig. 7.

Anete - Kante-

Y^**;rApete-Kante -fdge
&nnti*te

y\ Disque -Sche/be -Disc
ZV~ ri-i,n

Fig. 8.

Um die in diesen Gleichungen auftretenden SehnendrehwinkeL §
angeben zu können, müssen wir uns zuerst mit den Verformungen der
pyramidenartigen Scheibenwerke im allgemeinen befassen.

Denken wir uns das Gelenkwerk längs der Kanten n aufgeschnitten, so
könnte sich jede Scheibe n — \,n für sich in ihrer Ebene den inneren
Kraftwirkungen Mn_un und Nn^ljn gemäß verformen. Dabei wird jeder Punkt
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der Scheibenachse eine Verschiebung vn _ lyn in Richtung der .r-Achse und eine
Verschiebung un_un normal zu derselben ausführen. In Abb. 7 sind die
Ränder zweier benachbarter Scheiben n — \,n und n,nJ-\ in eine Ebene
geklappt dargestellt. Es würde sich also der Punkt v der Kante n als Punkt
der Scheibe n,n-\-\ von v nach v" und als Punkt der Scheibe n— 1,/z von
v nach v' bewegen. Dabei bestehen die Verschiebungen w" und vv aus je
drei Komponenten und zwar aus der transversalen Verschiebung a, aus der
Achsenverschiebung v und aus der von der Verdrehung der Scheibenquerschnitte

herrührenden Verschiebung xtga-u'. Infolge dieser Bewegungen
wird das aufgeschnittene Scheibenwerk längs der Kante n klaffen. Es muß
also in den Kanten n der Zusammenhang zweier benachbarter Scheiben
wieder punktweise hergestellt werden. Dies kann nur so geschehen, daß
sich v" normal auf die Scheibe n,n -f-1 und v' normal auf die Scheibe n — \,n
bewegt, denn jede andere Möglichkeit würde Verformungen in den Scheiben
bedingen, welche mit den inneren Kräften M und N nicht in Einklang stünden.
Da gemäß GL 9 anv bnv sein muß, liegen die beiden oben erwähnten
normalen Bewegungsrichtungen in einer Ebene, welche durch die Punkte v" und

nn.

n-t.n

Fig. 9.

v' geht und auf die Kante n senkrecht steht. In Abb. 8 sind die für die Kanten
n und n -\ 1 bestehenden obigen Normalebenen in eine Ebene geklappt zur
Darstellung gebracht. Aus dieser Abbildung ergibt sich der Öffnungswinkel
zweier benachbarter Sehnen zu

^ q q '/n-un 'jn,n-i y/fl,/z+i + >//z+i,/z AA^Ofn - ^n-i,n — Jn.n+i - 2x~tga }

Lösen wir nun die Vierecke v v v0 v" v v v0 v' und v v"vv' auf und eliminieren
aus allen diesen Gleichungen alle Größen bis auf die a und v, so ergibt sich

* o —
COSa V3/ nt i

Jn-itn ~^n,n+1 - 2 X tg CX • SM €
'^ U '^^«^ +

f
sin« t? v cos« 45)
2sin€^0v *> ~™+<>»-w ^n~*>" ~n>n+"xtgatge

sin« sin«
' \Un-\, n ~ U,iy n+i) ~T~ y^n-x, n-2 ~~ Vn, n-\ ~~ Vn, n+i + ^«+1, /z+2/ *

tg« v»-1'*-* "n>n~l vn>n+1"n+1>n+*' 2xtgcxtge
Die in diesen Gleichungen auftretenden Verschiebungen v und u ergeben
sich nun weiters aus den Biegelinien, nach welchen sich die in ihrer Ebene
frei beweglich gemachten Scheiben unter dem Einfluß der M und N
verformen. Es ergibt sich nach Mohr unter Zuhilfenahme der Gl. 41 und 42

KXq

^ J "^T- 9»«.- äV + ———r-^ (bn-i + bn) +2Edtg6a) y?> "-i'" r ' 4£-^tg2«-sin/

+ JML(p +J5) + JM1/) 46)+ 4^tg3« (/*-1+/"'+2Erftg8a Ä-1'* 40)
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_ 3 f M„_hn ^ 3x0w • ^(g)

°Mfl (J5 ,/jv 3 MD P 47)

"~1'" 4£-rftga-sinyv ""' "' ' 4£'a'tg2a
wobei

xo.tm_(\ £ 3.1 1 3\. ,,«_/! 1 1 ,r—» ^-^-y-^ +^-^ + ^J, ™-\2l^7"2^ + 7,

*,(f)=(-f+ -J + ^/| + f-y;*.«) (-} + {-4) bedeutet. 49)

X
Setzen wir in Gl. 49 f — 1 und eliminieren aus Gl. 43, 45, 46,

47, 48 alle Größen bis auf die Xn, so gelangen wir zu den
Elastizitätsgleichungen unserer Aufgabe.

Führt man diese mühsame Rechnung durch, so kann man feststellen, daß
jedes Glied, welches von der Achsverlängerung v und den Verdrehungen u'
herrührt, mit dem kleinen Faktor tg2« behaftet auftritt. Da tg« immer
ungefähr 0,10 ist, gelangen wir zu dem wichtigen Ergebnis, daß bei pyramidenartigen

Scheibenwerken der Einfluß der Achsverlängerungen und
Querschnittsverdrehungen auf die Deformation der Querschnitte des gesamten
Scheibenwerkes vernachlässigt werden kann. Man begeht damit nur Fehler
zweiter Ordnung.

Macht man von dieser Erkenntnis Gebrauch, so ergeben sich die
Elastizitätsgleichungen der Xn zu

Xn_y + 4 Xn + Xn+1 + 3 A k± (bn-2 — bn+2) — 6 A *4 cos e (bn-r — bn+l)

+ ^3Bk5(Pn-2-~P/n2) - 6Bk6 coseiPn^ — P^,)]-*^- +
ctg{

+ 2Bkc>Z(-\yPn-,+,,n-,+,'^1 ABkQCOSe(Pn.hn~Pn,n+l) ^
ctg| ctg|

J X o - X'
x0

worin
y

o r 9/cos« ctg^- n r
A 3ir/cos« B=r 2 r 9/cos«

32</tg4«.sin*/.sin£' ' 32tf/Mg3«.siW 4tf/2tg*'«.sin£ '
bedeutet.
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Setzen wir diese Ergebnisse in Gl. 39, 40, 41, 42 ein, so erhalten wir
die inneren Kräfte A4 und N, mit welchen wir die Randspannungen ö- nach
Gl. 13 ermitteln können. Für die untere Einspannstelle des Kühlers ergeben
sich diese allgemein zu

__
3/w \y? A_i_J_l lw ih a oh\'>n, n-i - o^s^TT ,;„ .[ 6 2 + 3 J _ 2xrfte8«.f- - K°n'1 "*" n)2 dt2 tg2«-sin y

3(*-l)+ (/ n-\ ~~\~ *¦ I n i n-\,n)

: dtg* a • sin y

4/

ctg^
2tfx2/tg«

—
^lW \ ?L_

— _L JL1 _1_ ^ n h v

""-'•"- 2rf*2tff2a.sinyL 6 2 + 3 J + 2zrftg2«-siny ^^"1 ^ °n)

+

tg2

3(x-l) 4/
2dv:2ltga{2Pn-1 + Pn~Pn-1>n)

t y
Ctg ^ 52)

Bei allen Gleichungen sind für symmetrische Belastungen die Xn symmetrisch,
alle anderen Größen jedoch antisymmetrisch in Bezug auf die Symmetrieebene.

Disque rigide enforme d'anneau

Steifer Scheibenring
Stiff disc ring

s=Tf

wVi

6.00

Axe symmetngue
Sym Achse
Axis ofsymmetry3

Fig. 10.

D. Praktische Anwendung.
Wir wollen nun die Berechnung eines achteckigen Kühlturmes mit

oberem Versteifungsring durchführen. Man kann zweckmäßig den
Versteifungsring als Revisionssteg ausbilden. In Abb. 10 ist das Tragwerk mit seinen
Abmessungen dargestellt.

Zuerst müssen wir sämtliche Konstante berechnen. Es ergibt sich:

tga 0,091437; Aa 0,033172; x0 16,4047; z 2

A4 +0,08528; kb -0,56815; kn +0,06815
A 155,464 u>; B 21,576; C 107,24

e 43°49'48"
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Ferner ergeben sich aus Gl. 34 die Belastungsglieder

N0=N1 ^fa/x Aox Aix*> Ai=As 0 53)

Das vom Wind und von den Xn ergriffene Gelenkwerk ist nach Gl. 40
aufzulösen. Hiezu brauchen wir nicht etwa die Eigenlösungen pQ und XnQ der
Differenzengleichung 22 tatsächlich zu bestimmen. Betrachtet man nämlich
die Differenzengleichung

/-«_! -j- 4 (1 — 2d) t + vn+1 An 54)
so lautet deren Lösung

g tn t n m

Tn ==: Zj ^a Zj '^ng An DO)
g lPg — Aan=\

Man erhält also die in Gl. 37 und 38 vorkommenden Koeffizienten
g m j n m

V ie— y)Xno, indem man Gl. 54 mit Berücksichtigung der Randbedin-
g \ Pg — Aa n \

*¦

gungen für die %n als lineares Gleichungssystem anschreibt und dieses nach
den Regeln der Algebra auflöst. Die in der Lösung vorkommenden Beiwerte

g m -> n in
der rechten Seiten An sind die gesuchten Koeffizienten V ^— Y\ X

ö
g \Pg — Aa n \

~

Für unseren besonderen Fall lauten die Randbedingungen t0 —1 — \\
t3= —t4. Unser Gledchungssystem 54 ergibt sich daher zu

2,93366 tq + Tt A1

t0 + 3,93366 T1Jrr2 A2

tx + 3,93366 r2 + t3 A3 '
t2 -|~ 2,93366 r3 A±

dessen Lösung

r0 0,375924^0 — 0,102833^ + 0,028623 A2 — 0,009755 Ad

rx - 0,102833 A0 + 0,301677^ — 0,083969 A2 + 0,028623,4,
t2 0,028623,40 - 0,083969^ + 0,301677A2 — 0,102833^3 '
ts - 0,009755 A0 + 0,028623 A — 0,102833/12 + 0,375924 A3

lautet.
Nach Gl. 53 ergeben sich die bn der Gl. 40 durch algebraische Addition

der Beiwerte von A0 und At der Gl. 57 zu
b0 0,271955
*i 0,198844 s
b2 - 0,055350

;

b3 0,018868
Bildet man nun unter Berücksichtigung der Randbedingungen X0 X±;
X1 =¦ X_2; Xo, X±; X2 X5 nach Gl. 39 die P„ _ u n + Pn, n + i Pn, so
ergibt sich

ctg —

P0 [2X0-3X1 + X% ]~P, [ X0 -2X2+X3] • „ 59)
P2 [-X0 i-2X, — X3] • „
^3 [ - Xx + 3X2-2X3] „
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Setzen wir Gl. 59 in Gl. 57 ein, so erhalten wir die P als Funktion der Xn

P0 + 0,620392 X0 — 1,060772 Xi + 0,552325 X2 — 0,111946 X3
Py + 0,179980 X0 + 0,119460 Xi — 0,620319 X2 + 0,328401 X3 60\
P2 =~ 0,328408 X0 + 0,620392 Xx - 0,111946 X2 — 0,179980 X3
Ps + 0,111946 X0 — 0,552325 Xi + 1,060772 X2 — 0,620392 X3

Da ?x»
x — x0 Ix0w\'k2 z 5 1,3 ,1 v

J ' jcü 2sinyL6 3 3z 3z2 2 J

können wir nach Gl. 50 die Elastizitätsgleichungen bestimmen und erhalten
— 31,4955 X0 + 56,7157 Xx — 10,2526 X2 - 8,9672 X3 -186,5634 w

+ 56,7157 X0 - 98,4666 Xx + 58,0029 X2 — 10,2527 X3 230,0581
— 10,2526 X0 + 58,0029 Xi — 98,4666 X2 + 56,7157 X3 -105,3492
— 8,9672 X0 — 10,2528 Xi + 56,7137 X2 — 31,4955 X3 7,2287 „
deren Lösungen lauten
X0 5,3593 w; Xx - 5,8833 w; X2 -0,3161 w; X3 +2,6386 w 63)
Mit diesen Werten ergibt sich nach Gl. 39

62)

ctg{

und nach Gl. 60 4 /

ctgf

P01 + 5,4870 iv 64)
Pi» =—8,1396 „
As — 0,3422 „
P3i 0

^o + 2,0960 w

» ^i — 0,6620 „ 65

» P8 —2,1437 „
„ P3 +0,6141 „

Setzt man nun Ql. 58, 64 und 65 in Ql. 52 ein, so ergeben sich die
Normalspannungen im Fuße des Kühlturmes zu

<?o,-i — 150,33 w t/m2 a10 + 158,85 w t/m2
o01 — 143,77 „ <x12 166,88 „
«2i — 21,16 „ a32 5,93 „ '
o*3 — 21,94 „ ff34 5,28 „

Die Schubspannungen an der Stelle x x0 /. ergeben sich nach Gl. 40 zu

*o 2,155 w t/m; rt 1,796 w t/m; r2 - 0,266 w t/m; tt3 0,103 w t/m 67)
Wir können nun die auf S. 213 angedeutete Kontrolle durchführen. Hiezu

setzen wir diese Spannungen in Gl. 12 ein und erhalten die Reste A zu

— 143,77 + 150,33 — 7,82 — 1,26

- 21,94+ 21,16 + 0,97 =—0,19
166,88 — 158,85 — 6,52 + 1,51 '

5,28 — 5,93 — 0,37 — 1,02
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Man ersieht hieraus, daß die bei Gl. 37 gemachte Vernachlässigung von sehr
geringem Einfluß ist.

Wir müssen uns noch überzeugen, welchen Einfluß die steifen
Kantenverbindungen ausüben. Wir wollen die dadurch auftretenden Spannungen
für den Scheibenwerksquerschnitt in der halben Höhe des Kühlturmes rechnen.
Hiezu müssen wir zunächst nach Gl. 46 und 49 für jede einzelne Scheibe die
Ausbiegung u rechnen. Aus diesen ergibt sich nach Gl. 45 die Differenz zweier
benachbarter Sehnendrehwinkel. Sind uns diese bekannt, so sind wir im
Stande, die Dreimomentengleichungen (Gl. 43) aufzustellen. Diese lauten
für die Randbedingungen X0 X_±; X, X4

5*0 + * —- Wdt
~ °'732 67tg^

-1,421 „
0,927 „

-0,240 „

X0+4X,+Xa

X2+5X;
Die Auflösung derselben ergibt

X0 0,0345 w tm; X1 — -0,0685 w; X2 0,0520 w; X3 -0,0168 w

oi2mM

69)

t5 28
+5 93

U,
¥

' f?0 05m

27.76

16688
J7SWB,

143 77
020"'A

Fig. 12 Fig. 11.

Dem größten dieser Momente entspricht für w
eine Biegespannung

0,150 t/m2 in der Kante 1

0,0685-0,150-6
a — -

• 0,12
6,15 t/m2

Die Spannungen im Querschnitt knapp unterhalb des Versteifungsringes
ergeben sich aus der Tatsache, daß sich dieser Scheibenquerschnitt genau so
verformt wie der Versteifungsring. Die Biegungsmomente verhalten sich
daher wie die bezüglichen Trägheitsmomente. Für das Ringmoment 5,8833 w

ergibt sich also das entsprechende Biegemoment des obersten Scheibenquerschnittes

X _ 0,13- 1,0
5,8833 w 0,086 w tm

0,703 • 0,2

Die dazugehörige Kantenspannung beträgt 7,75 t/m2.
Man sieht also, daß man den Einfluß der steifen Scheibenverbindungen

tatsächlich vernachlässigen kann.
Wir haben auf Seite 207 angenommen, daß dde Lasten nur längs der

Kanten angreifen. Tatsächlich greifen diese aber zwischen den Kanten des
Tragwerkes an und erzeugen in den einzelnen Scheiben Biegemomente Xn.
Da man nach Obigem die durch die steifen Scheibenverbindungen auf-
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tretenden Wirkungen vernachlässigen kann, ergeben sich diese Momente Xn,
indem man in die zu den einzelnen Scheibenwerksquerschnitten gehörigen
Dreimomentengleichungen die ¦# 0 setzt.

Um das Spannungsbild anschaulich vor Augen zu führen, sind die
Normalspannungen, die im Fuß des Kühlturmes auftreten, in Abb. 11 dargestellt.
Da auch die Verformungen des Tragwerkes von Interesse sein können,
wurden dieselben für den Scheibenwerksquerschnitt in halber Höhe berechnet
und in Abb. 12 dargestellt. Man sieht daraus deutlich, daß sich die
Querschnitte immerhin noch so stark deformieren, daß die bisher übliche Berechnung

solcher Kaminkühler als unten eingespannter Stab mit ringförmigem
Querschnitt (Schornsteinberechnung) vollständig unrichtig wird.

Zusammenfassung.
Während vom Verfasser im Jahrgang 1932 dieser Zeitschrift die Theorie

der gelenkigen und der steifknotigen prismatischen Scheibenwerke
behandelt wurde, befaßt sich diese Abhandlung mit der Berechnung der py ra-
mydenartigen Scheibenwerke. (Abb. 2.) — Zu Beginn der Arbeit wird
die grundlegende Frage erörtert, in welchen Fällen man bei steifknotigen
Scheibenwerken zum Zwecke einer einfacheren Rechnung ohne unzulässigen
Fehler von der steifen Verbindung der Einzelflächen absehen darf. Es
ergibt sich der einleuchtende Grundsatz, daß dies umsomehr gestattet ist, je
kleiner die zum Gelenkwerk gehörigen Formänderungen sind. Die nähere
Untersuchung ergibt:

1. Die Formänderungen von Gelenkscheibemwerken sind umso kleiner,
je größei die Neigungswinkel y der aufeinanderfolgenden Einzelflächen sind.
(Siehe Abb. 2.)

2. In sich geschlossene Scheibenwerke sind in dieser Hinsicht günstiger
als offene.

3. Die Verformung der Querschnitte eines Scheibenwerkes wird ganz
erheblich vermindert, wenn man in größeren Abständen, besonders in den
Querschnitten größter Formänderung, biegungssteife Querscheiben einbaut.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramidenartigen

Scheibenwerken geringer als bei prismatischen.
Aus diesen Richtsätzen ergibt sich, daß man eine große 'Anzahl von

pyramidenartigen Scheibenwerken statisch ausreichend genau als Gelenkwerke

berechnen kann. Es wird daher im Abschnitt B das „p yramiden-
artige Gelenk w erk" allgemein gelöst, wobei als statisch unbestimmte
Funktionen die längs der Kanten auftretenden Schubspannungen % gewählt
werden. Die zur Bestimmung der r aufgestellten Elastizitätsgleichungen
ergeben sich in der Form von simultanen, linearen, nichthomogenen
Differentialgleichungen zweiter Ordnung mit veränderlichen Beiwerten. Für dieses
Gleichungssystem wird unter Zuhilfenahme einer Differenzengleichung
sowohl das exakte allgemeine Integral als auch eine für die Ziffernrechnung
einfachere 'Näherungslösung angegeben. Der Abschnitt C behandelt unter
Zuhilfenahme der obigen Ergebnisse an Hand eines Kaminkühlers, der am
oberen Rand durch einen biegungssteifen Ring zusammengehalten wird, „d i e
durch biegungssteife Scheiben verstärkten pyramyden-
artigen G e 1 e n k w erk e". —- Schließlich wird im Abschnitt D ein
achteckiger Kühlturm mit oberem Versteifungsring für wagrechten Windangriff
ziffernmäßig durchgerechnet. Es ergibt sich, daß die durch die Steifknotigkeit
entstehenden Nebenspannungen tatsächlich ganz unbedeutend sind, falls
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beim Entwurf des Bauwerkes die eingangs erwähnten 4 Grundsätze befolgt
werden.

Resume.
Dans le premier volume de ces Memoires (1932), l'auteur a etudie la

theorie des constructions prismatiques ä parois minces, ä noeuds rigides
et articulees. Dans la presente etude, il aborde le calcul des constructions
pyramidales ä parois minces (figure 2). II discute tout d'abord la question

de savoir dans quels cas il est possible, sans erreur excessive et dans
le but de simplifier les calculs, de laisser de cote la rigidite des assemblages
entre les differentes surfaces elementaires qui constituent les ouvrages ä

parois minces ä noeuds rigides. II en arrive ä cette notion principale tres
claire, que cette simplification est d'autant plus admissible que les
deformations correspondant aux articulations sont plus faibles.

L'etude montre ensuite que:
1° Les deformations des constructions articulees sont d'autant plus

faibles que les angles d'inclinaison relative des differents elements entre
eux (y) sont plus grands (voir figure 2).

2° Les constructions fermees sur elles-memes sont ä ce point de vue
plus avantageuses que les constructions ouvertes.

3° La deformation des sections d'un ouvrage est notablement reduite
par l'interposition d'elements de renforcement plans transversaux rigides,
admettant entre eux de grands ecartements et places tout particulierement
sur les sections accusant les plus fortes deformations.

4° Les contraintes additionnelles resultant de la rigidite des assemblages
sont plus faibles dans les constructions pyramidales que dans les constructions

prismatiques.
II resulte de ces notions essentielles que de tres nombreuses constructions

pyramidales peuvent etre calculees statiquement d'une maniere suf-
fisamment precise comme ouvrages articules. C'est pourquoi, dans le cha-
pitre iB, Pauteur etudie la resolution generale du probleme de la construction

pyramidale articulee, en considerant les contraintes de
cisaillement t qui se manifestent le long des aretes comme des fonctions
statiquement indeterminees. Les equations elastiques etablies pour la
determination des contraintes t se presentent sous la forme d'equations diffe-
rentielles du second ordre, simultanees, lineaires, non homogenes, avec
coefficients variables. En s'appuyant sur une equation aux differences, Paur
teur indique pour ce Systeme non seulement une Solution approchee simple
pour Fapplication pratique dans les calculs, mais egalement Fintegrale
generale exacte.

Dans le chapitre C, il traite la question des constructions articulees
pyramidales, ä parois minces rigides de renforcement, en se basant sur les
resultats qui precedent, et en s'appuyant plus pairtioulierement sur le cas
d'une tour de refroidissement renforcee ä sa partie superieure par un
element plan mince rigide.

Enfin, dans le chapitre D, est expose le calcul complet d'une tour oc-
togonale de refroidissement munie d'une couronne superieure de renforcement,

dans le cas d'un vent horizontal. Ce calcul montre que gräce ä la
rigidite des assemblages, les contraintes secondaires sont effectivement tres
peu importants si l'on prend soin de tenir compte des 4 notions essentielles
signalees plus haut.
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Summary.
In the 1932 issue of this Journal, the author dealt with the theory of

hinged and of rigidly jointed prismatic slab structures; he now, in this
paper, considers the calculation of pyramid-like slab structures (fig. 2).
First of all the fundamental question is discussed, in what cases, in rigidly
jointed slab structures, the rigid connection of the separate surfaces may
be neglected without any impermissible error, in order to simplify the
calculation The result is the obvious principle that the smaller the changes of
shape occurring in the hinged structure, the less will be the error caused by
neglectirig the rigidity of the joints. A closer investigation shows that:

1) The greater the angle of inclination y of the successive separate
surfaces to each other, the smaller will be the changes of shape in hinged slab
structures. (See fig. 2).

2) Slab structures closed in themselves are in this respect more ,fa-
vourable than open ones.

3) The deformation of the cross-section of a slab structure is very con-
siderably reduced, if transverse slabs resistant to bending are built-in at
great distances from each other and particularly in the cross-sections where
the deformation is greatest.

4) The additional stresses in consequence of rigid joints are smaller
in pyramid-like slab structures than in prismatic ones.

From these leading principles it results that a large number of
pyramid-like slab structures may be calculated with sufficient accuracy as hinged
structures. In Section B, therefore, the problem of the "pyramid-like
jointed structure" is solved in general, whereby the shearing stresses
t occurring along the edges are chosen as statically indeterminate functions.
The elasticity equations for determining the shearing stresses r take the
form of simultaneous, linear, non-homogeneous differential equations of the
2nd order with variable coefficients. For this system of equations, with the
help of a difference equation, the exact general integral as well as an appro-
ximate Solution simpler for numerical calculations are given. Section C deals
with "hinged pyramid-like jointed structures strength e-
ned with slabs resistant to b e n d i n gu, making use of the above-
mentioned results, taking as an example a cooling tower, the upper edge of
which is held together by a ring resistant to bending. — Finally, in Section

D, an octagonal cooling tower with upper stiffening is calculated nu-
merically for horizontal wind pressure. It results that the additional stresses
caused by the rigidity of the joints are quite insignificant, if the four
fundamental principles mentioned at the beginning are observed when the structure

is being designed.
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