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DIE BERECHNUNG PYRAMIDENARTIGER SCHEIBEN-
WERKE UND IHRE ANWENDUNG AUF KAMINKUHLER.

LE CALCUL DES PAROIS EN FORME DE PYRAMIDE ET LEUR
UTILISATION DANS LES TOURS DE REFRIGERATION.

THE DESIGN OF PYRAMID-SHAPED DISK WALLS AND THEIR
APPLICATION ON COOLING TOWERS.

Dr. Ing. ERNST GRUBER, Wien.

A. Einleitung.

Die Scheibenwerke zerfallen in zwei Hauptgruppen: 1. in solche, die aus
rechteckigen Einzelscheiben bestehen und prismatische Scheibenwerke ge-
nannt werden, und 2. in solche, deren Einzelflichen Trapeze oder Dreiecke
sind und die wir pyramidenartige Scheibenwerke nennen wollen. Einige ein-
fache Beispiele fiir deren bautechnische Anwendung sind in Abb. 1 und 2
dargestellt.

Seclion guelcongue o /a construction 3 disque
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SHEF dise Achse des Scheibenwerkes
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Turmaiach Huhlturm
Roof of Tower Cooling Towen
Fig. 1. Fig. 2.

Waihrend in den letzten Jahren schon einige Aufsidtze iiber die Betrech-
nung prismatischer Scheibenwerke erschienen sind, unter diesen auch ein
Aufsatz des Verfassers im 1. Band 1932 dieser Abhandlungen, sind hingegen
bis heute meines Wissens noch keine Versuche einer theoretischen Losung
von pyramidenartigen Scheibenwerken angestellt worden. Der folgende Auf-
- satz beschaftigt sich infolgedessen mit dieser letzteren Aufgabe.

Die oben genannte vorigjahrige Abhandlung des Verfassers iiber pris-
matische Scheibenwerke hat sich sowohl mit dem gelenkartigen als auch mit
dem im Eisenbetonbau ausschlieBlich iiblichen steifknotigen Scheibenwerk
beschiftigt und fiir beide Systeme allgemeine Losungen gebracht. Das steif-
knotige System ist bekahntlich dadurch ausgezeichnet, daB seine Einzelflichen
in den Schnittkanten nicht gelenkartig, sondern biegungssteif verbunden sind.
Hierbei hat es sich gezeigt, daB einerseits die strenge Losung eines steif-
knotigen Scheibenwerkes eine erhebliche Mehrrechenarbeit erfordert und
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daB hingegen andererseits die Ergebnisse beider Systeme, wie an einem
Beispiel dargelegt, oft erheblich voneinander abweichen.

Infolgedessen hat sich der Verfasser vor Beginn dieser Arbeit die grund-
legende Frage vorgelegt, in welchen Fillen man auch bei steifknotigen Schei-
benwerken zum Zwecke der Rechnungsvereinfachung ohne unzulassigen
Fehler von der steifen Verbindung der Einzelflachen absehen darf, somit niahe-
rungsweise auch steifknotige Scheibenwerke als Gelenkscheibenwerke be-
rechnen darf. Hierbei ergab sich der einleuchtende Grundsatz, daBl dies umso
eher gestattet ist, je kleiner die zum Gelenkscheibenwerk gehoérigen Form-
anderungen sind. In ndherer Untersuchung ergab sich:

1. Die Forminderungen von Gelenkscheibenwerken werden umso kleiner,
je groBer die Neigungswinkel y der aufeinander folgenden Einzelflichen sind
(Abb. 2). Bei Winkeln itber 40° wird der Fehler infolge Vernachlidssigung
der Steifknotigkeit in der Regel unbedeutend.

2. In sich geschlossene Scheibenwerke, siehe Abb. 2, sind in dieser Hin-
sicht giinstiger als offene.

Axe du disque
Scherbenachse

1y 2 Axss of dise
Py
T Fax2

Fig. 3. Fig. 4.

3. ‘Die Verformung der Querschnitte eines Scheibenwerkes, d.s. die
Schnitte senkrecht zur Achse des Scheibenwerkes, siehe Abb. 2, wird ganz
erheblich vermindert, wenn man in gréBeren Abstinden, besonders in den
Querschnitten groBter Formanderungen, biegungssteife Querscheiben, Quer-
schotten oder Ringe einbaut. Als Beispiel hiezu diene der in Abb. 10 dar-
gestellte Kaminkithler mit oberem Versteifungsring, der durch den dort not-
wendigen Revisionssteg gebildet wird. Somit kann auch bei ausreichender
Anordnung obiger konstruktiver MaBnahmen das steifknotige System ohne
nennenswerten Fehler durch ein Gelenkwerk ersetzt werden.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramiden-
artigen Scheibenwerken geringer als bei prismatischen.

Aus diesen Richtsiatzen ergibt sich, daB man eine groBe Anzahl von
pyramidenartigen Scheibentragwerken statisch ausreichend genau als Gelenk-
werke betrachten und dementsprechend berechnen kann. Infolgedessen be-
schaftigt sich der folgende Abschnitt B mit der allgemeinen Losung des
pyramidenartigen Gelenkscheibenwerkes ohne Versteifungsquerscheiben, Ab-
schnitt C hingegen zeigt an Hand eines Anwendungsbeispieles den all- -
gemeinen Losungsvorgang, wenn Versteifungsquerscheiben vorhanden sind.
Beide Abschnitte beschrianken sich hiebei auf regelm#Bige Scheibenwerks-
formen.

B. Gelenkscheibenwerk.

Im Folgenden wird die Auflosung eines allgemeinen pyramidenartigen
Gelenkscheibenwerkes unter allgemeiner stetiger Belastung seiner Einzel-
scheiben durchgefiihrt. Zuerst werden die Flichenlasten pro Scheibe in be-
kannter Art durch gleichwertige Lasten lings der die Scheiben beiderseits be-
grenzenden Kanten ersetzt, so daB sich lings jeder Kante eine stetig ver-
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teilte, aber sonst beliebige Linienlast p, (x) ergibt, wie eine solche fiir die
Kante #» in Abb. 3 dargestellt ist. Diese beliebig gerichteten Lasten p, (x)
ersetzen wir gleichwertig durch folgende komponentale Lasten pro 1lfdm
Kante (x), Abb. 3:

Suns1 in der Scheibe 7, n+1 parallel zur Grundkante 7, n+1 wirkend 1
Sn,n—y in der Scheibe 7 -1, n parallel zur Grundkante n—1, n w1rkend} )
und s, in der Kante n wirkend.
Ebenso geht man fiir jede andere Kante vor.
Die aus obiger Zerlegung in jede Scheibe fallenden Lasten s werden
nun am zweckmaBigsten wie folgt zusammengefaBit, wobei die in den Kanten

”ﬂ n+7
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577,
_@j, or [T “a.re “
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Fig. 5. Fig. 6.

wirkenden Lasten s, je zur Halfte auf die beiden benachbarten Scheiben auf-
geteilt werden, Abb. 4:

.. 1 tg «
1. in eine Transversallast: p, n.y = (Sny1,n— Sn,nr1) cos a -+ g2 (Sn — Sny1) 2)
2. in eine Achsiallast: Rponin = % (Sn + Snat) ’ 3)
3. in eine Momentenlast: my, .y = x tg « - (S — Sn) 4)

2

wobei alle diese Lasten auf die Lingeneinheit der Scheibenachse x bezogen
sind.

Da die Scheiben miteinander nur gelenkig verbunden sind, kénnen von
einer Scheibe zur anderen nur Schubkrifte 7, iibertragen werden (siehe
Abb. 3). Es wirken .daher auf eine aus dem Verbande losgeloste Scheibe
n,n -+ 1 nur die Lasten p,,, + 1, 7y 0+ 1, Musny . und die Schnittkriafte 7, und
T, ., ein. Da alle diese Kraftwirkungen in einer Ebene liegen, ergibt sich,
daB das ganze Scheibenwerk in ebene Triager zerfallt.

Wir schneiden nun aus zwei benachbarten Scheiben n,7 +1und n — 1,n
zwei Elemente heraus und bringen an diesen die freiwerdenden Querschnitts-
krafte M, N und Q, die pro Lingeneinheit der Kante bezogene Schubspan-
nung 7, und die Belastungen p, n und m an. In Abb. 5 sind beide Elemente,
in eine Ebene geklappt, zur Darstellung gebracht. Nach Obigem wird jedes
der beiden FElemente von einem ebenen Kraftsystem ergriffen. Es ergeben
sich daher fiir das Element 7,7 1 folgende Gleichgewichtsbedingungen:

Q’n, ny1 — — (Tn + Tn-&-l) tg o« — /]n,tzﬂ 5)
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.N,rz,n-i-l = (Tn — '5n+1) + nn,nia | 0)
M, nir = Qungr — X Ty + Ta) € ¢ + min, nin 7.
Dieses Gleichungssystem konnen wir durch Elimination der GréBe Q,,, ;.

vereinfachen. Hiezu differentieren wir Gl. 7 und setzen in diese so erhaltene
Gleichung Gl. 5 ein. Es ergibt sich also

e d : , '
Mu iy = — e [x(zn + Tnpr) tg o] — 1€ a(Tn + Tnyy) ~— Pn,nt1 + Mn, ni 8

Man sieht nun, daB durch die Differentialgleichungen 6) und 8) die inneren
Krafte M und N und somit die Randspannungen der einzelnen Scheiben als
Funktionen der z, und der Belastungen bestimmbar sind. Unsere nachste Auf-
gabe ist es daher, die 7, zu ermitteln. Da die einzelnen Scheiben lings der
Kanten » unverschieblich verbunden sind, miissen die Randspannungen zweier
benachbarter Scheiben n,n -1 und » — 1,7 lings der Kante n punktweise
tibereinstimmen. Es gilt daher fiir jede Kante die Kontinuitatsbedingung

On,n1 = On,np 9)

wenn die o die zur Kante 7 parallel gerichteten Normalspannungen bedeuten.
Solche Gleichungen gibt es nun ebensoviele als Kanten, somit als unbekannte
Funktionen 7, (x) vorhanden sind. Daraus folgt, daB wir aus den Gl. 9 die
7, bestimmen konnen. ,

Hiezu schneiden wir aus den Rindern zweier benachbarter Scheiben je
ein dreieckiges Volumselement I und Il heraus und bringen an diesen die
freiwerdenden Spannungen o, v und ¢ als duBere Krifte an, Abb. 6. ¢ be-
deutet, wie aus Abb. 6 ersichtlich ist, die zur x-Achse parallel wirkende Nor-
malspannung. Eine einfache Gleichgewichtsbetrachtung an I und Il ergibt

Gnnet 21

On,ny1 — cos’e 4 tg 04 10)
_ Omm1 27 |
On,n-1 — COS2(X+ d tga 11)

Durch Subtraktion von GI. 10 und 11 erhalten wir die Kontinuititsbedingung 9
in der neuen Form

_ étgg - CO0S?2a

(—sz, ny1 —— Onny — d — 1, =0 | 12)
Ist nun der Winkel « nicht zu grof}, so ergibt sich nach MoHRr
'—_ . 3 Mll—l,ll er-—x./z
Uit = g tdtgra T dxdige 13)

Wir miissen nun aus Gl. 6, 7, 8, 12, 13 alle GréB8en bis auf die v, eliminieren.
Hiezu setzen wir zunichst Gl. 13 in Gl. 12 ein, multipliziqren mit 2 x2- d - tg? «
und differentieren nachher einmal nach x. Es ergibt sich auf diese Weise

3 (Mln—1,n + M’n,n+1) tg 4 + x(N’n~1,/z — N/ll,lH—l) tg o+

. d

—+ (Nuei,n — Nyynyy) t€ a 4 Stga'a-g); (*%*t,) = 0 14)
wobei « = sin?a bedeutet. Differentieren wir Gl. 14 noch einmal nach x und
setzen wir in die so erhaltene Gleichung die Gl. 6 und 8 ein, so erhalten wir
die Beziehungen

14 -
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2

()c2 Tn) -+

3 3

4 3 +3 , +£[x-t a(n —n )] + (7 —1 t
éﬁn_l,n—épn,n+1+ém¢_1,n 2/71;1,/24-1 T g n, n+1 n-1,n n, nit ln—x,n) ga}

Ny

in denen nur mehr die unbekannten Funktionen 7, (x) vorhanden sind.

Unsere weitere Aufgabe besteht nun in der Integration des Systems 15.’
Es liegen simultane, lineare, nicht homogene Differentialgleichungen zweiter
Ordnung mit verinderlichen Koeffizienten vor. Durch Einfithrung der neuen
Funktion y, =7, _, + 4%, +17,,, ergibt sich zunichst die Differential-
gleichung

tga-xy,+2tga - y,l__4atga (x Tn) + N, 10)

Nehmen wir das erste Glied der rechten Seite obiger Gleichung zur Storungs-
funktion hinzu, so lautet das Integral von GIl. 16

c,z I 4a{ @ |
Tn- + 4 Tn + Thy = -J{— 2tg_‘" ij dx “'— e { 3;2 (x" Tﬂ) dx 17)

wobei C, willkiirliche Konstanten bedeuten.
Formen wir den zweiten Integralausdruck von Gl. 17 durch partielle Inte-
gration in
4ax.-t,+4at, 18) %)

um, so erhalten wir weiters
7 C
Tny+-4(1-a) v, + 19y = daxe, +thé;ijndx—{—x{_f 19)

Es ist hiemit die Differentialgleichung zweiter Ordnung auf eine solche
erster Ordnung zuriickgefithrt. Diese konnen wir nun folgendermaBen auf
eine lineare Differenzengleichung mit konstanten Koeffizienten zuriickfithren.
Multiplizieren wir jede der Gl. 19 der Reihe nach mit 4,, 2, ... 1, und ad-
dieren wir alle so erhaltenen Gleichungen o) ergibt sich

Z[xn_1+4(1_a)x + Aup] Tn _4ax2l,,r,z Zl ij,de& 20)

n=1 O pn=1

Es kann nun immer ein Multiplikator u so gewahlt werden, daB die Identitat

Z[An— +4(1-a) by + Any] Tﬂ*ﬂlzﬂrzrn 21)

n=

erfiillt ist. Bedenkt man, daB 7,5 0°2), so ergibt sich, daB Gl. 21 nur be-
stehen kann, wenn

”_1 "l“' [4 (1 ‘_a) — ‘ll] )“Il + }"lﬂl-l p— 0 ’ 22)
n=1,23....m
womit wir eine Differenzengleichung zur Bestimmung der Multiplikatoren 4

und p gefunden haben.

da) @& W? 4a ,_4a, da s - ‘
K FJ‘”HF(Z““’Z)‘?": xzjxdz = x2 —2) = -x—g(x%n + x27,)

2) Diese triviale Losung wiirde ein unbelastetes Tragwerk bedeuten.

15)
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Diese m Gleichungen enthalten m -+ 2 Unbekannten. Die beiden feh-
lenden 4 gewinnen wir durch die jeweiligen Randbedingungen, die aus der
Art des Tragwerkes und dessen Belastung erwachsen und die bei der Auf-
stellung des Gleichungssystems 15 fiir die 7, zu beriicksichtigen sind. So sind
z. B. bei antisymmetrischer Belastung die zur Antisymmetrieebene symmetrisch
liegenden z, einander gleich. Bei symmetrischer Belastung ergeben sich ent-
weder die zur Symmetrieebene symmetrisch liegenden t, einander entgegen-
gesetzt gleich bezw. es sind die in der Symmetrieebene liegenden 7, identisch
gleich Null. In letzterem Falle lauten also bei entsprechender Indexbezeich-
nung (Index O fillt in die Symmetrieebene) die Randbedingungen

Tog = Tmyy = 0, 227)
Die Beriicksichtigung dieser Sonderwerte bei der Summierung Gl. 20 ergibt
die uns noch fehlenden beiden Beziehungen

}\«0 : }bm_’_l m—r O. 22”)
Die Losung der allgemeinen Differenzengleichung 22 lautet:
by = csin rn -+ c, COS rn ' 23)

wobei ¢, und ¢, willkiirliche Konstanten bedeuten. Setzt man GI. 23 in Gl. 22
ein, so erkennt man, daB r der Bedingung

2cosr+4(1—a) = u 24)
geniigen muBl. Wegen 4, =0 folgt ¢,= 0, wiahrend wegen 2, =20
sinrn = 0 25)
oder
Fy = 7;Tr, r=1,2....m 26)
wird. :
Wir erhalten somit m verschienene Werte u,(0o=1, 2, 3 ... m) fiir u
und ebenso m verschiedene Losungssysteme
Ao = cSiNryn 27)
Bestimmen wir die Konstante ¢ von Gl. 27 so, daB

¢ 2 sin?ron =1
n=1
wird, so ergibt sich die Losung von Gl. 27 in normierter Form, ndmlich

hng = sinz,n 28)

1+
- Nachdem wir nun die Bestimmung der Multiplikatoren x und 4 durchgefiihrt
haben, kénnen wir die Integration von Gl. 20 auch tatsdchlich durchfiihren.
Da wir im ganzen m Werte fiir u, und m Wertsysteme fiir 1,, gefunden haben,
konnen wir Gl. 20 fiir jede Wertegruppe 1,, einmal anschreiben und erhalten
m Bestimmungsgleichungen fiir die 7,. Setzen wir Gl. 21 in GI. 20 ein und
schreiben fir

R=m

Z )“ng Tn = Zyo; Z Ao T,, = Z@ 29)
so ergibt sich die lmeare leferentlalglelchung
Uy 2z, = 4axz, + Q:g Zlngij dx + '—f) 30)

0e=1,23....m
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deren Integral lautet

n=im

n=nm » u ';;i-’ Z/ngj‘an dx
1])1 @) .1a Xxea n=1 3
Zo = ZIAHO = Gy + Co x4 — 4a th;X _ﬁ""“*u;**' ——dax’?) 31)
n= DAY
0=1,23. xfa”

Beachtet man, daB Gl. 31 2m w111kur11che Konstanten enthilt, so erkennt
man, dall wir in Gl 31 das allgemeine Integral von GIl. 15 gefunden haben,
allerding% noch in impliziter Form. Wahrend nun Gl. 31 fiir die Bestimmung
der Integrationskonstanten C(” und C( ) gut geeignet ist, ist sie fiir die Be-
stimmung der Unbekannten z, nicht bequem da man hlezu m lineare Glei-
chungen auflosen muf}; bei denen in jeder Gleichung alle m Unbekannten
vorkommen. Wir werden daher Gl. 31 explizit darstellen. Betrachtet man
die Differenzengleichung

buy +4(1 —a) by + by = 12 32)
n=123.
so lautet die Losung derselben

o=m n=m =m =

b= e SN e = 3 e 33)

o=1 “o n=1 o=1 My

da ja u, die Eigenwerte und 1,, die Eigenlosungen von Gl 32 sind, siehe
Gl. 22. Setzt man nun Gl. 33 in Gl. 32 ein und nimmt fiir Z,, den Wert
Gl. 28, so ergibt sich unter Bedachtnahme auf GIl. 24 nach einigen Re-
duktionen

Tn =— hno * Zo 31°)

womit das allgemeine Integral in expliziter Form gefunden ist.

Die bisherigen Beziehungen gelten natiirlich fiir jedes regulire pyra-
midenartige Scheibenwerk. Die Integrationskonstanten der Gl. 31 koénnen
jedoch nicht mehr allgemein angegeben werden. Man muB hiezu vielmehr
auf die Bauart und Belastung des jeweils vorliegenden Tragwerkes eingehen.
Wir wollen dies fiir einen Kaminkiihler fiir Windangriff vorfithren. Dabei
nehmen wir an, daB nur eine Scheibe belastet ist. (Siehe Abb. 10.)- Durch
Ubereinanderlagerung mehrerer sclcher Belastungen kann man die Span-
nungen fiir den Fall, daB das gesamte Tragwerk unter Winddruck steht, be-
stimmen. Nehmen wir den Wind horizontal wirkend an und vernachldssigen
die kleinen Belastungsglieder » und m (siehe Gl. 3, 4), so ergibt sich die Be-
“lastungsfunktion

3tge

N, = A,x; Ay = A; = - ZSmy

W; AQ—:A3:....:O, 34)

Da es sich um m simultane Differentialgleichungen zweiter Ordnung
handelt, ben6tigen wir 2m Randbedingungen. Zunachst sehen wir, daf§ der
obere Rand kraftfrei ist. Es ist daher:

T, = 04) 35)

%) Handelt es sich fiir die 7, um andere Randbedingungen als Gl. 22, so sind hie-
‘fiir die dazu gehdrigen A,,Q und t, zu ermitteln und in Gl. 31 einzusetzen.

4) Von nun an bedeuten die oben genullten Funktionen den Funktionswert der-
selben an der Stelle x = x, (Abb. 5).
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womit wir m Bedingungen gefunden haben. AuBerdem ist Q = 0, weshalb
aus Gl. 6 und 7 M’ = N’ = 0 folgt. Setzt man diese Ergebnisse in Gl. 14
ein, so folgt mit N = 0"
16tgw-ax,©, =0; &, =0 30)

womit wir die restlichen Bedingungen erhalten haben.

Bestimmt man nun mit Hilfe der Gl. 31 und der obigen Randbedingungen
die Konstanten C{? und C®, macht das Ergebnis mit Hilfe der Gl 31’ ex-
plizit, so ergibt sich ‘

_ Ko | x (_x ‘T":’” S

n — 3thtlx0 xo) . 21M9_4an§1}vno/‘n+
wl () ()]

o—=m"™no xo n=m

+4cos?a D] (60— 4) (. T 83) D hng An 37)

o=1 n=1

In diesem Ausdruck verursacht das zweite Glied groBe Ziffernrechnungen.
Gliicklicherweise ist es in Bezug auf das erste Glied sehr klein, so daB wir
es ganz unterdriicken diirfen®). Wir konnen uns jedoch von dem EinfluB3
dieser Annaherung auf das Endergebnis iiberzeugen, indem wir die naherungs-
weise berechneten Spannungen ¢ in die exakte Gl. 12 einsetzen. Diese Sub-
stitution wird nicht auf 0 ausgehen, sondern einen Rest 4 ergeben, aus dessen
GroBe man auf die Genauigkeit der Rechnung schlieBen kann. Da die Kon-
trolle erst am Schlusse der Rechnung durchgefiihrt werden muB, ist sie eine
durchgreifende.

Greifen am oberen Rand in jeder Scheibe ebene horizontale Tangentlal-
krafte P, _,,, an, so erglbt eine dhnliche Ableitung wie oben

nh=m

Vi
T = e A Pn_t1,n nyn
= g Sy e, By Pt P )
ein Resultat, das wir im folgenden Abschnitt benotigen werden. Dabei sind
die P mit den p gleichgerichtet anzunehmen (siehe Abb. 5 und 9).

C. Die durch biegungssteife Scheiben verstirkten pyramiden-
artigen Gelenkwerke.

Wir wollen diese Theorie an Hand eines Kaminkiihlers, der am oberen
Rand durch einen biegungssteifen Ring zusammengehalten wird, erértern,
siehe Abb. 10. Wie es naheliegend ist, wihlen wir das im vorhergehenden
Abschnitt behandelte gewohnliche Gelenkwerk als Grundsystem. Hiezu fithren
wir im oberen Ring in den Knotenpunkten n Gelenke ein und bringen an’
diese die unbekannten Schnittmomente X, als duBlere Krifte an, Abb. 9. Das
von den gegebenen Belastungen und den X, ergriffene Grundsystem kénnen
-wir nun nach den Methoden des vorhergehenden Abschnittes auflésen. Hiezu
ersetzen wir zunichst die X, durch Krafte 2, _,,, (Abb. 9), welche in der
Ringebene lings der oberen Scheibenrinder wirken. Eine einfache Gleich-
gewichtsbetrachtung ergibt diese zu

%) Man erhilt auch dasselbe Ergebnis, indem man in Gl. 19 nidherungsweise
4axt, = 4at, setzt, was bei schwach gekriimmten z-Linien richtig ist. Eine etwas
langwierige Rechnung ergibt, daB das naherungsweise ermittelte Integral die Gl. 15
und die Randbedingung Gl 35 genau erfiillt. Der zweiten Randbedingung Gl. 36 ist
jedoch nur ndherungsweise Geniige geleistet.
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ctg = 2
Poyn = (~Xng + 3 Xuy — 3 X, + Xu1) — AT 39)

Es ergibt sich nun durch Ubereinanderlagerung der Resultate Gl. 37
und 38

P 2siny 0 21 Fhu,-4a i 2tga Eox S pg—
b, P,
X
ao-—:m:l; a2:a3:"":0; “‘:E
Xo

Setzen wir dieses Ergebnis in Gl. 6 und 7 ein, so erhalten wir durch be-
stimmte Integration von x, bis x

2.t : 1 3 3x (1 \,~ =
Myin =My o x_o_wfggx(g, e ,ﬁ) o) _1) (Poy + Py

2siny "\2 & 2 & 41)
— Pruy,n % (5-1)
oxiw (& 1_3) 3(1 )_ _
Nivn = 5o 5 +5 = 5) C=td + 500 (¢ —1) P — Py 92

womit wir samtliche innere Krafte als Funktionen der X, und der duBleren
Belastungen gefunden haben. Dabei bedeutet M, _,,, das Moment, das in
der Scheibe n — 1, n allein durch die duBeren Lasten entsteht, wenn das Ge-
lenkwerk lings der Kanten n aufgeschnitten wird.

Stellen wir nun fiir den Scheibenring die Dreimomentengleichungen

3/F o
Xucs 44X+ X+ 2E (B — i) = 0 43)

auf, so erhalten wir in diesen die Bestimmungsgleichungen fiir die X,,.

Disque -Scherbe - Disc

nnrr

14
v bn
n—< E
o VNSV | S| Disque -Schesbe - Dise
Do n-7.n
Zn-in
v X Un-g) fga
Fig. 7. Fig. 8.

Um die in diesen Gleichungen auftretenden Sehnendrehwinkel. ¢ an-
geben zu konnen, miissen wir uns zuerst mit den Verformungen der pyra-
midenartigen Scheibenwerke im allgemeinen befassen.

Denken wir uns das Gelenkwerk lings der Kanten » aufgeschnitten, so
konnte sich jede Scheibe » — 1,7 fiir sich in ihrer Ebene den inneren Kraft-
wirkungen M, _,,, und N, _,,, gemiB verformen. Dabei wird jeder Punkt

1185m Z‘no n=m 3 1 o=m /1 n=in
Lo LS R S 2 L Bt

40)
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der Scheibenachse eine Verschiebung v, _ ;,, in Richtung der x-Achse und eine
Verschiebung u, _ ,, normal zu derselben ausfithren. In Abb. 7 sind die
Rinder zweier benachbarter Scheiben n — 1,7 und n,n -~ 1 in eine Ebene ge-
klappt dargestellt. Es wiirde sich also der Punkt » der Kante » als Punkt
der Scheibe 7n,n -+ 1 von v nach »” und als Punkt der Scheibe n — 1,7 von
v nach » bewegen. Dabei bestehen die Verschiebungen »»” und »' aus je
drei Komponenten und zwar aus der transversalen Verschiebung «, aus der
Achsenverschiebung v und aus der von der Verdrehung der Scheibenquer-
schnitte herrithrenden Verschiebung xtga-u’. Infolge dieser Bewegungen
wird das aufgeschnittene Scheibenwerk lings der Kante n klaffen. Es muB
also in den Kanten n der Zusammenhang zweier benachbarter Scheiben
wieder punktweise hergestellt werden. Dies kann nur so geschehen, daf§
sich »” normal auf die Scheibe 7,7 + 1 und » normal auf die Scheibe n — 1, n
bewegt, denn jede andere Moglichkeit wiirde Verformungen in den Scheiben
bedingen, welche mit den inneren Kraften M und N nicht in Einklang stiinden.
Da gemiB Gl. 9 a,v = b, v sein muB}, liegen die beiden oben erwidhnten nor-
malen Bewegungsrichtungen in einer Ebene, welche durch die Punkte »” und

Fa-1n

Fig. 9.

v geht und auf die Kante n senkrecht steht. In Abb. 8 sind die fiir die Kanten
n und 7 -}-1 bestehenden obigen Normalebenen in eine Ebene geklappt zur
Darstellung gebracht. Aus dieser Abbildung ergibt sich der Offnungswinkel
zweier benachbarter Sehnen zu

2xtga

Y Hy ey — 1 + oA
n = Yn-,n— Inonp = el A e 44)
Losen wir nun die Vierecke v v vy v” vvv,»" und »»” ¥»' auf und eliminieren
aus allen diesen Gleichungen alle GroBen bis auf die « und v, so ergibt sich

COS o
Gty n = I = mgia—gm p tZ( sty gitnqet +

Cos a 45)
xtgoatge

Sma Sln [
tga ~(Vi—1,n-2=Vn, n1="Va, ne1+ Vi1, nea) - thb

Die in diesen Gleichungen auftretenden Verschlebungen v und z ergeben
sich nun weiters aus den Biegelinien, nach welchen sich die in ihrer Ebene
frei beweglich gemachten Scheiben unter dem EinfluB der M und N ver-
formen. Es ergibt sich nach MoHRr unter Zuhilfenahme der Gl. 41 und 42

KXy

J 1'”1/, Wy, ndy +

sin «

+ [ — Z ( 1) u,, Q+f, n—1+4+f T (urz~1 n— ’2 ’2+1)

2sine /=

- (un’!—l n ull Iz+l)

3
botn = Ty Fdtgta (bnr 1+ bn) +

Oks () - P+ SIAGH
+4Edtg3a(p””'+[)") 2Fditgie " 40)

Bxiw - ky(8)
4 Edtg?a-siny
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K Xg

e = g ] Ty )
o) Bt Py — )P 47)
Vatin = 41':“xcz’]’:go];CT (fl)ny G ”)+42%8§a( n1— 1) 48)
wobei |
i-(f;k«f):(z}-é—z%z‘,—z‘, 5‘) kz<f>—(22f%-z%+:})
o=kl mo = oLl L
kT('f):(* §+; +g lj§+42 1), kg(&) = (——1 +J»~l§> bedeutet
Setzen wir in Gl. 49 & = i;f',: 1 und eliminieren aus GIl. 43, 45, 46,

47, 48 alle GroBen bis auf die X,, so gelangen wir zu den Elastizitéts-
gleichungen unserer Aufgabe.

Fithrt man diese mithsame Rechnung durch, so kann man feststellen, daB
jedes Glied, welches von der Achsverlingerung v und den Verdrehungen «’
herrithrt, mit dem kleinen Faktor tg2a behaftet auftritt. Da tga immer un-
gefiahr 0,10 ist, gelangen wir zu dem wichtigen Ergebnis, daB bei pyramiden-
artigen Scheibenwerken der FEinfluB der Achsverlangerungen und Quer-
schnittsverdrehungen auf die Deformation der Querschnitte des gesamten
Scheibenwerkes vernachldssigt werden kann. Man begeht damit nur Fehler
zweiter Ordnung.

Macht man von dieser Erkenntnis Gebrauch so ergeben sich die Elasti-
zititsgleichungen der X, zu

Xpoy +4 Xy 4+ Xoyy +3Ak, (bpg — buyy) — 6 Ak, cOs ¢ (b,l L —buir)

-+ [33/@05 (]3” p,,+2) — 6Bk COS E(Piz 1 rz+1)] - +

ng

P , 4] 4/
4+ ZBkG;(f 1) Posin oty + ——— — 4 Bkgc0S & (Py_y y— P sy) ——

Vi 7
ctg - cto -
) )
KXo ® Xy
(x x°2 Y Mgv, 1+Va’x+2Ccose[ O Moy, p- M pyy) dx =0 50)
worin
v
Swjcose /ey 9jcosa
~ 32dtgta-siny. iny.sine’ 32d0 tgda-sine’ ~  4dtgia-sine
bedeutet. :

51)

49)
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Setzen wir diese Ergebnisse in Gl. 39, 40, 41, 42 ein, so erhalten wir
die inneren Krafte M und N, mit welchen wir die Randspannungen ¢ nach
Gl. 13 ermitteln kénnen. Fiir die untere Einspannstelle des Kiihlers ergeben
- sich diese allgemein zu s

_ - 3iw lvﬁ % 1] [w
O = agigrasingle T 2 T3l T 2uatgrarsing (0 20
41
—1' 2d£ l ) (P—1+2PIZ“—Pn1n)—__7
' ctg2
- 3w A3 ] lw
Onotin =" 5 d % tgZa- Sl‘n;/l_ﬁ— _2——*_ +2/dtg a- sm;/( bu-y 4 bu)
T
ctgg . 52)

Bei allen Gleichungen sind fiir symmetrische Belastungen die X, symmetrisch,
alle anderen GroBen jedoch antisymmetrisch in Bezug auf die Symmetrie-
ebene,

ﬂ/syue rigide en forme dsnnssv
Steifer .S'cbe/benﬂmg
SHfF disc ring

16.00

Axe symmelrigue
dym. Achse
Axis of symmelry 3

D. Praktische Anwendung.

Wir wollen nun die Berechnung eines achteckigen Kiihlturmes mit
oberem Versteifungsring durchfithren. Man kann zweckmiBig den Verstei-
fungsring als Revisionssteg ausbilden. In Abb. 10 ist das Tragwerk mit seinen
Abmessungen dargestellt.

Zuerst miissen wir siamtliche Konstante berechnen. Es ergibt sich:

tga = 0,001437; 4a = 0,033172; x, = 16,4047; » =2
k, — +0,08528; %, = —0,56815; k, = +0,06815
A 155,464 w; B — 21,576, C = 107,24
e — 43049748”

I
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Ferner ergeben sich aus Gl. 34 die Belastungsglieder

3tga-w

Nolezi—%lTx:AO;:Alx; Ay = A, =0 53)
Das vom Wind und von den X, ergriffene Gelenkwerk ist nach Gl. 40 auf-
zulésen. Hiezu brauchen wir nicht etwa die Eigenlosungen u, und 7,, der
Differenzengleichung 22 tatsichlich zu bestimmen. Betrachtet man nimlich
die Differenzengleichung

Ty +4(1 — za) T 4 T = As 54)
so lautet deren Losung

n—=m

i Do A | 55)

ap=1

Man erhilt also die in ul. 3 und 38 vorkommenden Koeffizienten
o=m n=m
> _tne i > Any, indem man Gl. 54 mit Beriicksichtigung der Randbedin-
o=1MUHg —38 p=)
gungen fiir die 7, als lineares Gleichungssystem anschreibt und dieses nach
den Regeln der Algebra auflost. Die in der Losung vorkommenden Beiwerte

o=m n=m
no

der rechten Seiten A, sind die gesuchten Koeffizienten Z - ~4 Z Y
o=1MUg— a ,=1 =~

Fiir unseren besonderen Fall lauten die Randbedingungen 7, = —v_;
13 = —1,. Unser Gleichungssystem 54 ergibt sich daher zu
2,03366 ¢, + 7, _ = A,
7o + 3,93360 7, -} 7, = A, 56)
7/—1 + 3,93366 T2 + T3 _— A3

Ty + 2,933607; —= A,
dessen Losung
t, = 0,375924 A, — 0,102833 A, + 0,028623 A, — 0,000755 A,
7, -0,102833 A4, + 0,301677 A; — 0,083960 A, 4 0,028623 A,
7, = 0,028623 A, — 0,0839690 4, + 0,301677 A, — 0,102833 4,
5 = —0,000755 A, + 0,028623 4, — 0,102833 A2 + 0,375924 A,
lautet.
- Nach Gl. 53 ergeben sich die &, der Gl. 40 durch algebraische Addition
der Beiwerte von A4, und A4, der Gl. 57 zu
by = 0,271955
b, = 0,108844
b, = —0,055350
b; = 0,018868
Blldet man nun unter Beriicksichtigung der Randbedingungen X, —= X,;
Xi=X_5; Xs = Xy; Xo = X;nach Gl. 39 die P, _1,, + Puynr1 = P, soO er-
gibt sich

H

57)

58)

ctg%
p0:[2X0—-3X1+X2 ]'—4‘1—
P =1 X, —2X, +X5] - 59)
P, = [—Xo + 2X, ‘—X3] : » ‘

P3=[ - Xl+3X2m2X3]'”
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Setzen wir Gl. 59 in GIl. 57 ein, so erhalten wir die P als Funktion der X,

1?0 = + 0,620392 X, — 1,060772 X; -+~ 0,552325 X; — 0,111946 X5
Py = +0,179980 X, + 0,119460 X; — 0,620319 X + 0,328401 X; 60)
P, = — 0,328408 X, +- 0,620392 X; — 0,111946 X; — 0,179980 X
P; = +0,111946 X, — 0,552325 X, + 1,060772 X, -— 0,620392 X
Da kxy,
X — X0 g M[’%?_‘ﬁ_i 1.3 ] |
Wrn = = 560,16 3 3T 3a T2 " 61)
konneu wir nach Gl. 50 die Elastizititsgleichungen bestimmen und erhalten
— 31,4955 X, -+ 56,7157 X; — 10,2526 X, — 8,9672 X5 = —186,5634 w

56,7157 Xo — 08,4666 X; - 58,0020 X; — 102527 X; = 230,0581 ,
— 10,2526 X, -+ 58,0020 X; — 08,4666 Xz + 56,7157 X5 = —105,3492 ,,
— 80672 Xo — 10,2528 X; + 56,7137 X» — 31,4055 X; = 17,2287 ,

deren Losungen lauten
Xo =53593w; X, =-58833w; X,=-03161w; X;=+26386w 63)
Mit diesen Werten ergibt sich nach Gl. 39

417

P,=0
ctg s
2
» Py, = -+ 5,4870 w 64)
" ]312 = — 8,1396 »
Py =—03422,
» Py = 0
und nach Gl. 60 ij Py = + 2,0060 w
Ctg 5 i
” [31 = — 0,6620 9 05
” ];72 o ——-2,1437 »
, Py =+406141,

Setzt man nun GIl. 58, 64 und 65 in (Gl. 52 ein, so ergeben sich die Normal-
~spannungen im FuBe des Kiithlturmes zu

09,1 = — 150,33 w tjm? 050 = + 158,85 w t/m?

0oy = — 143,77 » [ 166,88 ” 66)
oy, = — 21,16 Og9 =— 5,93 »

0y = — 21,94 G = 528

Die Schubspannungen an der Stelle x == x,z ergeben sich nach Gl. 40 zu

7o = 2,155 wtim; 7; = 1,706 w t{m; 7, = —0,266 wt/m; v; = 0,103 wt/m  67)
Wir konnen nun die auf S. 213 angedeutete Kontrolle durchfithren. Hiezu
setzen wir diese Spannungen in Gl. 12 ein und erhalten die Reste 4 zu

— 143,77 + 150,33 — 7,82 = — 1,26

— 21,94+ 21,16+ 0,97 = — 0,19

166,88 — 158,85 — 6,52 = + 1,51

528 — 503 —037 = — 1,02

68)
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Man ersieht hieraus, daBl die bei Gl. 37 gemachte Vernachlassigung von sehr
geringem EinfluB ist.

Wir miissen uns noch uberzeugen, welchen EinfluB die steifen Kanten-
verbindungen ausiiben. Wir wollen die dadurch auftretenden Spannungen
fiir den Scheibenwerksquerschnitt in der halben Hoéhe des Kiithlturmes rechnen.
Hiezu miissen wir zunichst nach Gl. 46 und 49 fiir jede einzelne Scheibe die
Ausbiegung u rechnen. Aus diesen ergibt sich nach Gl. 45 die Differenz zweier
benachbarter Sehnendrehwinkel. Sind uns diese bekannt, so sind wir im
Stande, die Dreimomentengleichungen (Gl. 43) aufzustellen. Diese lauten
fiir die Randbedingungen X, = X_;; X, = X,

5X0+X1 — 0732

Xy +4X + X,
X, +4X, + X3
X, +5X;
Die Auflosung derselben ergibt
Xy = 0,0345 w tm; X, =-0,0685 w; X, = 0,0520w; X; =-0,0168 w
&0—5—”’{’—" +5 28 :
3 +5.93

, \.
012 "'/m:i: # A 23’ }:‘

/66.88)

wd?

6/tg2a

- 1,421 » 69)
0,927

-0,240

. ~/43.77 |
.20 -150.33W

Fig. 12. Fig. 11.

Dem groBten dieser Momente entspricht fiir wﬁO 150 t/m? in der Kante 1
eine Biegespannung

~0,0685-0,150 - 6
o - 0,12

Die Spannungen im Querschnitt knapp unterhalb des Versteifungsringes
~ergeben sich aus der Tatsache, daB sich dieser Scheibenquerschnitt genau so
verformt wie der Verstelfungsrmg Die Biegungsmomente verhalten sich da-
her wie die beziiglichen Trigheitsmomente. Fiir das Ringmoment 5,8833 w
ergibt sich also das entsprechende Biegemoment des obersten Schelbenquer-
schnittes

= 6,15 t/m?

0,70° - 02
Die dazugehorige Kantenspannung betrigt 7,75 t/m2.
Man sieht also, daB man den EinfluB der steifen Scheibenverbindungen
tatsichlich vernachlissigen kann. 4
Wir haben auf Seite 207 angenommen, daf die Lasten nur lings der
Kanten angreifen. Tatsichlich greifen diese aber zwischen den Kanten des
Tragwerkes an und erzeugen in den einzelnen Scheiben Biegemomente X,.
Da man nach Obigem die durch die steifen Scheibenverbindungen auf-

- 58833 w = 0086wtm
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tretenden Wirkungen vernachlidssigen kann, ergeben sich diese Momente X,
indem man in die zu den einzelnen Scheibenwerksquerschnitten gehorigen
Dreimomentengleichungen die 9 = 0 setzt.

Um das Spannungsblld anschaulich vor Augen zu fiihren, sind die Nor-
malspannungen, die im FuB des Kiihlturmes auftreten, in Abb. 11 dargestellt.
Da auch die Verformungen des Tragwerkes von Interesse sein konnen,
wurden dieselben fiir den Scheibenwerksquerschnitt in halber Hohe berechnet
und in Abb. 12 dargestellt. Man sieht daraus deutlich, daB sich die Quer-
schnitte immerhin noch so stark deformieren, daB die bisher iibliche Berech-
nung solcher Kaminkithler als unten emgespannter Stab mit ringférmigem
Querschnitt (Schornsteinberechnung) vollstindig unrichtig wird.

Zusammenfassung.

Wahrend vom Verfasser im Jahlgang 1932 dieser Zeitschrift die Theorie
der gelenkigen und der steifknotigen prismatischen Scheibenwerke be-
handelt wurde, befaB3t sich diese Abhandlung mit der Berechnung der p y r a-
mydenartigen Scheibenwerke. (Abb. 2.) — Zu Beginn der Arbeit wird
die grundlegende Frage erortert, in welchen Fillen man bei steifknotigen
Scheibenwerken zum Zwecke einer einfacheren Rechnung ohne unzulidssigen
Fehler von der steifen Verbindung der Einzelflichen absehen darf. Es er-
gibt sich der einleuchtende Grundsatz, dal dies umsomehr gestattet ist, je
kleiner die zum Gelenkwerk gethorlgen Formanderungen sind. Die nahere
Untersuchung ergibt:

1. Die Forminderungen von Gelenkscheibenwerken sind umso kleiner,
je groBer die Neigungswinkel y der aufeinanderfolgenden Einzelflichen sind.
(Siehe Abb. 2.)

2. In sich geschlossene Scheibenwerke sind in dleser Hinsicht giinstiger
als offene. ‘

3. Die Verformung der Querschnitte eines Scheibenwerkes wird ganz
erheblich vermindert, wenn man in gréBeren Abstinden, besonders in den
Querschnitten groBter Forminderung, biegungssteife Querscheiben einbaut.

4. Die Zusatzspannungen infolge Steifknotigkeit sind bei pyramiden-
artigen Scheibenwerken geringer: als bei prismatischen

Aus diesen Richtsidtzen ergibt sich, daB man eine groBe iAnzahl von
pyramidenartigen Scheibenwerken statisch ausreichend genau als Gelenk-
werke berechnen kann. Es wird daher im Abschnitt B das ,pyramiden-
artige Gelenkwerk allgemein geldst, wobei als statisch unbestimmte
Funktionen die lings der Kanten auftretenden Schubspannungen v gewahlt
werden. Die zur Bestimmung der = aufgestellten Elastizititsgleichungen er-
geben sich in der Form von simultanen, linearen, nichthomogenen Differen-
tialgleichungen zweiter ‘Ordnung mit verinderlichen Beiwerten. Fiir dieses
Gleichungssystem wird unter Zuhilfenahme einer Differenzengleichung so-
wohl das exakte allgemeine Integral als auch eine fiir die Ziffernrechnung
einfachere ‘Naherungslosung angegeben. Der Abschnitt C behandelt unter
Zuhilfenahme der obigen Ergebnisse an Hand eines Kaminkiihlers, der am
oberen Rand durch einen biegungssteifen Ring zusammengehalten w1rd, ,ndie
durch biegungssteife Scheiben verstirkten pyramyden-
artigen Gelenkwerke‘“. — SchlieBlich wird im Abschnitt D ein acht-
eckiger Kiithlturm mit oberem Versteifungsring fiir wagrechten Windangriff
ziffernmaBig durchgerechnet. Es ergibt sich, daB die durch die Steifknotigkeit
entstehenden Nebenspannungen tatsichlich ganz unbedeutend sind, falls
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beim Entwurf des Bauwerkes die eingangs erwihnten 4 Grundsitze befolgt
werden.

Résumeé.

Dans le premier volume de ces Mémoires (1932), Pauteur a étudié la
théorie des constructions prismatiques a parois minces, a noeuds rigides
et articulées. Dans la présente étude, il aborde le calcul des constructions
pyramidales a parois minces (figwre 2). Il discute tout d’abord la ques-
tion de savoir dans quels cas il est possible, sans erreur excessive et dans
le but de simplifier les calculs, de laisser de c6té la rigidité des assemblages
entre les différentes surfaces élémentaires qui constituent les ouvrages a
parois minces a noeuds rigides. Il en arrive a cette notion principale tres
claire, que cette simplification est d’autant plus admissible que les défor-
mations correspondant aux articulations sont plus faibles.

L’étude montre ensuite que:

10 Les déformations des constructions articulées sont d’autant plus
faibles que les angles d’inclinaison relative des différents éléments entre
eux (y) sont plus grands (voir figure 2).

20 Les constructions fermées sur elles-mémes sont a ce point de vue
plus avantageuses que les constructions ouvertes.

30 La déformation des sections d’un ouvrage est notablement réduite
par linterposition d’élements de renforcement plans transversaux rigides,
admettant entre eux de grands écartements et placés tout particulierement
sur les sections accusant les plus fortes déformations.

49 Les contraintes additionnelles résultant de la rigidité des assemblages
sont plus faibles dans les constructions pyramidales que dans les construc-
tions prismatiques.

Il résulte de ces notions essentielles que de trés nombreuses construc-
tions pyramldales peuvent étre calculées statiquement d’une maniére suf-
fisamment précise comme ouvrages articulés. C’est pourquoi, dans le cha-
pitre B, "auteur étudie la résolution générale du probléme de la construc-
tion pyramidale articulée, en considérant les contraintes de cisail-
lement = qui se manifestent le long des arétes comme des fonctions sta-
tiquement indéterminées. Les équations élastiques établies pour la déter-
mination ‘des contraintes = se présentent sous la forme d’équations diffé-
rentielles du second ordre, simultanées, linéaires, non homogeénes, avec
coefficients variables. En s’appuyant sur une équation aux différences, ’au-
teur indique pour ce systéme non seulement une solution approchée simple
pour l'application pratique dans les calculs, mais également I’intégrale gé-
nérale exacte. '

Dans le chapitre C, il traite la question des constructions articulées
pyramidales, a parois minces rigides de renforcement, en se basant sur les
résultats qui précedent, et en s’appuyant plus particuliérement sur le cas
d’une tour de refroidissement renforcée a sa partie supérieure par un élé-
ment plan mince rigide.

Enfin, dans le chapitre D, est exposé le calcul complet d’une tour oc-
togonale de refroidissement munie d’une couronne supérieure de renforce-
ment, dans le cas d’un vent horizontal. Ce calcul montre que grice a la
rigidité des assemblages, les contraintes secondaires sont effectivement tres
peu importants si ’on prend soin de tenir compte des 4 notions essentielles
signalées plus haut.
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Summary.

In the 1932 issue of this journal, the author dealt with the theory of
hinged and of rigidly jointed prismatic slab structures; he now, in this
paper, considers the calculation of pyramid-like slab structures (fig. 2).
First of all the fundamental question is discussed, in what cases, in rigidly
jointed slab structures, the rigid connection of the separate surfaces may
be neglected without any impermissible error, in order to simplify the cal-
culation. The result is the obvious principle that the smaller the changes of
shape occurring in the hinged structure, the less will be the error caused by
neglectirig the rigidity of the joints. A closer investigation shows that:

1) The greater the angle of inclination y of the successive separate sur-
faces to each other, the smaller will be the changes of shape in hinged slab
structures. (See flg 2).

2) Slab structures closed in themselves are in this respect more fa-
vourable than open ones.

3) The deformation of the cross-section of a slab structure is very con-
siderably reduced, if transverse slabs resistant to bending are built-in at
great distances from each other and particularly in the cross-sections where
the deformation is greatest.

4) The additional stresses in consequence of rigid joints are smaller
in pyramid-like slab structures than in prismatic ones.

From these leading principles it results that a large number of pyra-
mid-like slab structures may be calculated with sufficient accuracy as hinged
structures. In Section B, therefore, the problem of the "pyramid-like
jointed structur e“ is solved in general, whereby the shearing stresses
r occurring along the edges are chosen as statically indeterminate functions.
The elasticity equations for determining the shearing stresses z take the
form of simultaneous, linear, non-homogeneous differential equations of the
2nd order with variable coefficients. For this system of equations, with the
help of a difference equation, the exact general integral as well as an appro-
ximate solution simpler for numerical calculations are given. Section C deals
with "hinged pyramid-like jointed structures strengthe-
ned with slabs resistant to bending‘, making use of the above-
mentioned results, taking as an example a cooling tower, the upper edge of
which is held together by a ring resistant to bending. — Finally, in Sec-
tion D, an octagonal cooling tower with upper stiffening is calculated nu-
merically for horizontal wind pressure. It results that the additional stresses
caused by the rigidity of the joints are quite insignificant, if the four fun-
damental principles mentioned at the beginning are observed when the struc-
ture is being designed.
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