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DIE BERECHNUNG ZYLINDRISCHER, BIEGUNGSSTEIFER
SCHALEN UNTER BELIEBIGEM LASTANGRIFF.

CALCUL DES VOUTES CYLINDRIQUES MINCES RIGIDES,
SOLLICITEES PAR DES CHARGES QUELCONQUES.

ANALYSIS OF STIFF CYLINDRICAL SHELLS UNDER ANY
DIRECTION OF LOAD.

Dr. Ing. ERNST GRUBER, Wien.

A. Einleitung.

Im neuzeitlichen Industriebau werden hohe Schornsteine, Kiihltiirme,
Tonnendiacher u.s.w. sehr hiufig als diinnwandige Schalen ausgefiihrt.
Meines Wissens werden solche Konstruktionen immer nur als gerade Stibe
mit ebener Spannungsverteilung berechnet. Diese Annahme ist fiir dick-
wandige Schalen in hohem MaBe zutreffend. Fiir dilnnwandige Schalen ist
jedoch, wie in dieser Arbeit gezeigt werden wird, die Verteilung der Normal-
spannungen iiber den Querschnitt krummlinig und von der Art des Last-
angriffes abhiangig. AuBlerdem sind die durch die Verformungen der ring-
formigen Querschnitte bedingten Biegungsmomente M schon so groB, daB
sie bei der Bemessung beriicksichtigt werden miissen. Da seit der Erfindung
der gleitenden Schalung diese Bauten fast nie konisch, sondern immer nur
zylindrisch mit konstanter Wandstiarke ausgefiihrt werden, hat sich der Ver-
fasser nur mit der Berechnung der zylindrischen Schalen befafit. In der Folge
wird deren Theorie bekannt gegeben?).

B. Die zylindrischen Schalen.

Da die biegungssteife Schale im Gegensatz zur Membrane statisch un-
bestimmt ist, sind wir schon fiir die Spannungsberechnung genétigt, auf die
Forminderungen des Tragwerkes einzugehen. So wie in der Plattentheorie
nehmen wir hiebei auch hier an, daB eine zur Achsflache senkrecht stehende
Strecke d’ — d” wihrend der Verformung gerade und senkrecht zur Achs-
fliche bleibt (siehe Abb. 2). Es ist also durch die Verzerrung der letzteren
der Verformungszustand der gesamten Schale bestimmt. Da es sich um ein
riumliches Problem handelt, benotigen wir zur Beschreibung des Verschie-
bungszustandes der Achsfliche drei Parameter. ZweckmidBig wahlen wir
diese folgendermaBen:

1. eine horizontale, radiale Verschiebung r,b
2. eine horizontale, tangentiale Verschiebung ¢,
3. eine lotrechte, achsparallele Verschiebung s.

1) Die Theorie der Tonnendicher wurde von Finsterwalder eingehend behandelt
(siehe ,,Abhandlungen‘‘ der Intern. Vereinigung fiir Briickenbau u. Hochbau, Bd. 1, 1932).
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Es wird also ein beliebiges Bogenelement R-dg eines Querschnittes
nach der Verformung die Lage A einnehmen (siehe Abb. 1). Nehmen wir
an, daB dabei R-dg seine Linge beibehilt, so ergibt sich aus dem Viereck
1234 o

ot 7
e 0 | 1)
1 (ar )
poe= |2 ¢ .
y R T 2)

wobei y der Winkel ist, um welchen sich das Element R-dg um eine achs-
parallele Gerade dreht. Einige einfache differentialgeometrische Uber-

Elevation
Aufriss

Surface mediane
Midd/e -area

Fig. 1. Fig. 2.

legungen liefern uns nun die fiir die folgende Rechnung n5tigen Verformungs-
groBen der Achsfliache:

1. die bezogene Dehnung einer Zylindererzeugenden

_ 9
0y = o 3)
2. die Kriitmmungsanderung des Querschnittes
1 (?2” . if_) ~
R \3¢* QJ¢ 4)

3. die Anderung des rechten Winkels, den die Zylindererzeugende mit
einer Querschnittstangente einschlieBt
1 9s 9t |
Weiters ergibt sich fiir eine zur Achsfliche im Abstande #» konzentrisch
liegende Zylinderfliche (siehe Abb. 2) die der oberen Winkelinderung »
entsprechende Winkeldnderung ;, zu
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Um iiber das auftretende Kraftespiel Klarheit zu gewinnen, wurde in
Abb. 2 ein Volumselement mit den daran angreifenden Spannungen dar-
gestellt. So wie wir beim geraden Stab die zur Stabachse senkrecht stehenden
Normalspannungen wegen ihrer Kleinheit vernachldssigen, werden wir auch
hier die zur Achsfliche normalen Spannungen o, als unbedeutend unter-
driicken. Eine weitere Vereinfachung ergibt sich, wenn wir wie in der Platten-
theorie die langs der Strecke d’ — d” liegenden Elemente in eines zusammen-
fassen. Es ergibt sich so das in Abb. 3 dargestellte Volumselement von der

Elevation
oT Aufriss
ol S
o T"ax XN‘,*;—N!dx Flevaton
T+ 5y 9% < il
X
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A oM,
1 My + d x dX
p ozm, A loxm
T‘T’\'\‘/ viax 0
N9l \ 8
| 0p7P X 8 RdSmli |=
]
_ dx ‘; |
Plan dJ / 7‘-‘4_3_— dx Bord inferieur
Grundriss > P, * Unterer Rand
Vol Lower Rand
Fig. 3. ~ Fig. 4.

endlichen Dicke 4. Bei diesem Vorgang werden die in Abb. 2 dargestellten
Spannungen ¢ und 7 lings der Schalendicke summiert. Fiihren wir diese
Integrationen durch, so gelangen wir zu den in Abb. 3 dargestellten end-

lichen Querschnittskraften M, Q, N,, T, M, M,, N, My und 7. Ist nun die
Lange der Schale gegeniiber deren Durchmesser groB, so werden sich die
Erzeugenden bedeutend weniger verkriimmen als die Querschnitte, so daB
wir M, gegeniiber M vernachlissigen konnen. Handelt es sich auBerdem um
ditnnwandige Schalen, so kann man in Gl. 6) das zweite Glied gegeniiber
dem ersten Glied unterdriicken. Die durch die Winkeldinderung y (siehe
Gl. 5) bedingten Schubspannungen = werden daher lings der Schalendicke &
niherungsweise konstant sein. Es ist also M, = 0 und M7= 0. Hiermit er-
gibt sich aus der Momentengleichung um die Querschnittstangente auch die
Schubkraft 7 = 0. Es bleiben also an einem Volumselement nur die in Abb. 3
mit vollen Linien dargestellten Querschnittskriafte {ibrig. '

Da diese mit den duBeren Lasten im Gleichgewicht stehen miissen, folgen
daraus die Gleichgewichtsbedingungen
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1 M .
EW‘F Q =0 7)

ON, 1 o7 __
dx + R 3¢ — ¢ 8)

2Q

p-R+ 39 0 9)

oN
R - 5; 0 0 10)

welche sich durch Elimination der GréBen Q und N zu
op _oT 1 M
R dgp  ox R+R J ¢l =0 1)
N, T '

o 2l = 12)

vereinfachen lassen.

Wir wollen nun die Querschmttskrafte T, N, und M durch die Verschie-
bungskomponenten s, ¢ und r ausdriicken. Ermnern wir uns, dafl die Bogen-
linge R-dg ihre Lange beibehalten soll so erhalten wir nach den Regeln
der Dehnungslehre

m? ds

szm'E'd'% 12a)
ds 1 ot
r—gea (2142
R R+ax 13)
_ Ed? m? (92/’_81)_ E d? m? v<a3t at)
M= 12R® m*—1 Q¢ a9/ 12RT m*—1 W+3<P 14)

Setzen wir diese Werte in Gl. 11) und Gl. 12) ein, so erhalten wir nach
einigen Umformungen die Beziehungen

m2 a& m? F d3 a5 (a2t )
i R E G — 2—1'12R3'a¢5 +¢)+R- =0 15)
2m 1 3%s Pt
n—1 R 5x_2+§ 2 g2 axag 0 10)

in welchen wir mit Gl. 1) drei simultane, partielle, lineare, nicht homogene
Differentialgleichungen dritter Ordnung zur Bestimmung der Unbekannten
r, s und ¢ gefunden haben. Unser nichstes Ziel ist nun die Integration des
obigen Systems. Zunichst 16sen wir diese Aufgabe fiir den Fall, daB die Be-
lastungsfunktionen die Form

p = f(x) - (I)(<p):f(x).§0.jcn-cosn(p 17)

besitzen, wobei der Summenausdruck die Fourier’sche Reihenentwicklung fiir
@ (@) sein soll. Fiir einen Windangriff stellt z. B. in Gl. 17) f (x) die Wind-
starke in ihrer Abhingigkeit von der Bodenentfernung x dar, wihrend @ (¢)
das Gesetz ist, nach welchem der Wind lings der Rundung der Schale ab-
gleitet. Lautet fiir die Partialbelastung p, = C,-f (x) - cos np die Losung
des Systems schematisch £,, so ergibt sich nach dem Uberlagerungsgesetz der
Baustatik die Losung fiir die Gesamtlast
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p = F(x)- 3 C - cos ng

zu 2 2,.
0
Fiir pn= Cn-f(x)-cosneg
148t sich aber eine alle Randbedingungen befriedigende Losung in der Form
s =y'(x).-cosng 18)

darstellen, wobei die noch unbekannte Funktion y (x) so gewdhlt werden
muB, daB die Differentialgleichungen 15 und 16 erfiillt werden. In diesem -
Sinne ergibt sich zundchst aus Gl. 16) unter Bedachtnahme auf Gl. 18)

_ 2m R n ] )
t—-[”?"]‘ n Y (x)‘{‘*R.V(x) L Smrg. 19)
Substituiert man Gl. 18) und Gl 19) in GI. 15), so erhalten wir
2m d? d? m*-1 n*C,
v_ . _ 6 (12 —
Vo ) g ) e Vs Ea g /0 =0 20

in welcher man die Bestimmungsgleichung fiir y (x) erkennt. Das allgemeine
Integral derselben lautet fiir f (x) =
y=C,Cojfx+ C, Sinfx + Cy Cof yx + C, Sinyx +
m?—1 C.-Ro
+ “m?  Exdnt(n2—1)

21)

wenn

522 = 12%2”7/%@; (n® 7 + l/ (/z—* [n (n_:f)? _]z(mml) H

% R 22)
bedeutet. Da der Beiwert von y positiv ist, miissen entweder 2 und y2 gleich-
zeitig reell und gleich bezeichnet, oder gleichzeitig konjugiert komplex sein.
Daraus folgt, daB entweder alle vier Wurzeln von GIl. 22) reell oder alle
vier Wurzeln konjugiert komplex sind.

Wahrend nun die bisherigen Gleichungen fiir jede zylindrische Schale
mit konstanter Wandstarke giltig sind, ist es nicht méglich, die Integrations-

konstanten C,, C,, C, und C, der Gl. 21) fiir alle Schalen gemeinsam an-
zugeben. Um die fiir die Bestimmung obiger Konstanten nétigen Rand-
bedingungen zu erhalten, muB man auf den statischen Charakter des jeweils
vorliegenden Tragwerkes eingehen. Wir wollen dies fiir eine unter Wind-
angriff stehende lotrechte, unten eingespannte Kragschale vorfiithren (siehe
_ Abb. 4). Fiir eine solche ergibt sich
t=0; s =0 fir x =0 23)
T—0; N=0 , x=nh _ 24)
Diese Gleichungen lassen sich unter Zuhilfenahme von Gl. 12), 18) und 19)
umformen in
y@©@ =20 25)
¢0-y"(0) = y(0) 27)
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Yy =0 | 28)
) 2 m R?
m—1 n® 29)

Q__

womit wir die vier Randbedingungen unserer Aufgabe gefunden haben. Fiihrt
man nun die Auflésung der Gl. 25) bis 28) im Detail durch, so ergeben sich
fiir den Fall der komplexen Wurzeln der Gl. 22) und fiir / (x) = w die Inte-
grationskonstanten in der umgebildeten Form:

L UM = E, . cos?gn + 1— Gof (2Nph c0s ¢); U = (E, + 4)sin 2,

UM = F,-sin2q,; U = —2F, - cos?g, 30)
wobei ' _
E, = Gof 2N,k -cos¢,) — cos (2N, -k -sing,) — 8 - sin? ¢, 31)
Fy, = tg ¢, - ©in(2 N, cos ¢,) + sin (2N, - sin ¢,) 32)
Bn = An+ Bni = N,(cos ¢, + isin¢,) (siehe Gl. 22) 33)

bedeutet. S ist hiebei die erste Wurzel von 2. Mit diesen Werten erhalten
wir weiters die Funktion y (x) mit ihren ersten drei Ableitungen

0 _ () , () )
¥ ZD tcos B,x- Gof A, x (U_+_cos( venyn OS2 (’+Uﬂ+vcos(y+1)ﬂ 1n7(p)
_ () e0s e o 17
+ cos B, x @mA”x(U3.+ic05m _ cosqu+U;+}2cosm Sll’lvq))
] , ()
+ sin B, x - Sin 4, x(U¥+ sty COS TP U (i cos(wl)nsn (p)
+ sin B, x - Gof 4, x(U7 L eaatoin) -cosvp—Us 5 s smwp)]
a
+?l’;;(kn) 7:0,1,2,3, . 3)
wobei
D, = N, 0, €08 2¢, — c0s 4¢, — c08® ¢, (Npo,— 1) - cOS (2N, - k - sin ¢,) +
+ sin? Pn - (N1§9+1)(5’Di (2N,,°/1-COS ‘pn) 35)

12(m*—1)- Cy - R* o

bn = S5 E. 23 nt(n2 —1)

36)

bedeutet.

Mit Hilfe der Gl. 1), 8), 12a), 13), 14) und 19) erhalten wir mit den
obigen Werten die Spannungen und Forminderungen des Tragwerkes in
der Form

—C h2ow (&2 . 1 m2 EZ
o =4, p\2 ¢ + 2) cosq + o~ Yn(x)-cosng 37)
— lzm (1—§&) - sin (p—ARin;f EZ—}Z < Yn(x) - sinng 38)
Em?-d- 72 & ) R ]
M= 12 (”l"; Z (’Z — 1)[— Hzfﬁui T -y’l (x) =t R Yn (x) Cos ’l(// 39)
_ m _1 (47 ] hdé E‘ e ’
s = - Cy 2Ed.R(~3~5+1)C05(p+§yﬂ(x) COS 1 40)
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m*-1 w-h? g &2 8 m Rg]
r= m2 "Ed-RC [ ( B )+h2<§Z 64t m;T/?> b
S = 2 R k) cos g 41)
2

m
m2-1 wh? [Zm 9(§ > (El 53 & m Rg)] )
_ . _2m g8 pe(S 8, m R
‘ 5 Fd RO 1RG5 g~ e Ty Ty RS

+2[ m——l *]Syn(x)-i-Ryn(x)]smmp 42)

Ist in Gl. 35) das Glied mit dem hyperbolischen Cosinus gegeniiber den
anderen Qliedern groB, so ergibt sich die Funktion y (x) mit ihren Ab-
leitungen in sehr guter Naherung ohne vorherige Bestimmung der Kon-

stanten U z
(V) ( )1+1 . kn N; .
sin ¢, (N} on + 1)

e—An* . sin [Byx + (1 —v) ¢,] +

v=0,1,2,3

dx” « (kn) 43)

Fiir den sehr selten vorkommenden Fall reeller Wurzeln ergeben sich
die Integrationskonstanten zu

Co = 2222 [ (1) 601 (B — (B + 72) Gof (ra— )+ 22

44)
Ci=— *”n”cn : [(Kfn —7n) + @t (yn+ Bu) h—(7u + 84) St (74— 1) ’Z]
= kn 7 nOn— 1 | ~ Yn o~
C =1 Cpie 1 =G
wobei
2 (i + 84 9

Gn =2 ﬁn Yn le 711 “!‘ ﬂ ) (I;))” ?—/n—ﬂ_) - (1811 + 7”). (7!1 ﬁn On— 1) @:Di (ﬁn’—‘}’n)h —
— (B —7n)* (7aBr0n + 1) - Cof (Bn+ yn) A 44)

ist. ,

Es ist selbstverstindlich, daB man nach dieser hier vorgefiihrten Methode
jede wie immer geartete zylindrische Schale berechnen kann, indem man
fiir jeden einzelnen Fall die n6tigen Randbedingungen beriicksichtigt.

C. Praktische Anwendung.

Wir wollen die Berechnung eines Kiihlturmes unter Windangriff ziffern-
maBig durchfithren. Die Abmessungen des Tragwerkes sind aus vor-
stehender Abb. 4 ersichtlich. Nehmen wir die Windlast nach der 6sterreichi-
schen Verordnung an, so lautet die Funktion @ (¢)

@O (p) = 0; fiir x = 0 bis j% und x = %76 bis 27

D (p) = cos?y fiir x = th— bis % 7.
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GemaB Gl. 17) haben wir @ (¢) in eine Fourier’sche Reihe zu ent-
wickeln und erhalten fiir die Koeffizienten derselben 2)

4 1 4 :
G=—g, G=+,5 G=—g5 G=0; G=q50_--

37[

Fiir dic Berechnung des Gliedes # = 2 beniitzen wir die exakten Ausdriicke
Gl. 30)—36). Es ergibt sich zunichst aus Gl. 22)

By = N,(COS gy + i sin g5) = 0,05657 (0,71413 -+ 0,700006 7)

D, = 4,86570
U= —036134; U® = + 861739
U® = 4+ 949617; UL = — 8,793108.

Fiir die weiteren Glieder unserer Losung geniigen die Niaherungswerte
Gl. 43). Es ergibt sich zunichst

fiir n = 3 ps = 0,1328 (0,7242 + 0,6896 i) 0s = 5,55556
fir n =4 kommt nicht in Frage da C, = 0 »
fiir n =5 Bs = 0,3701 (0,7576 + 0,0528 i) 05 = 2,00000

Mit diesen Werten findet man nach Gl. 43) die Funktion y (x) mit ihren
Ableitungen, woraus man mit den Gl. 37)—42) die Spannungen und Form-

Moments fléchissant du bond superieur Deformation en m du bord supénieur
Momente intm.am ob. Rand o Verformung inm des obernRandes
Bending moment's in tm of e K 5/ Deformation in m af the upper end
[ > °
the upper end A EF_ ‘$\ @ o Gim2 sm
) o - <\ & & +0.S _ 404.-70°6
Fression exterieure ==

%, 2 4 - = <
i N 5 ~795.4 - 10
+ Exterion pressure ® + [3[ 3 729.70°5 -l47.2 -448,
P ST 2
Aussendruck i B 4 gi'-“ﬁ’ ! 7
S % 17 / -182,5 -991.9-7076
- - 3_?” 10" '
= = \
NN Sl ’ \ 89,5 -870.0-1076
VN 0 %,
| 1 20 1, / N
N / 690-70°% N -45,2 -~2459.70°6
g.,‘ "lp:\7037 105 P\t 472 v695.8-70~F

>
Y
02336

ng— 5 % erag TRI%896 1078
° t‘:’v 3 o . . +768 A 1775\5-10'6
o & Tension normale su bord inferrevr \ﬁacc Y. f des genera n/ces
w=0.150 ¢ /m? Normaslspannung am vnl. Rand Verkurzung der Zyl)
(EERSESEANEEI Normal stress af the lowen end Shorteming of the line /Jﬂoo’m:mg the

cylinder

Fig. 5.

anderungen in jedem Punkte des Tragwerkes berechnen kann. Wir wollen
jedoch hier nur die maximalen Werte derselben angeben. Es ergibt sich mit
o = 0,150 t/m? fiir den unteren Einspannungsrand

0= —T8cos¢p+90cos2¢ —11,8cos3¢ 4 0,488 cosb5¢p + ... tim?

v = — 222 sin ¢ 4+ 16,7 sin 2¢p — 0,294 sin 3¢
und fiir den oberen freien Rand

M = 0,200 cos 2¢ — 0,0354 cos 3¢ + 0,00182 cos 5¢ ..

00 8T
=T F Srt g

»

o . ... Meter

2) Der Koeffizient C, spielt bei dieser Aufgabe keine Rolle, da dieses Glied einer
gleichformigen radial gerichteten Gleichlast entspricht, welche entsprechend der An-
nahme S. 197 keine Spannungen zur Folge hat.
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;o= 18,2 sin ¢ + 1—0099 sin 2 ¢ — 443 sin3¢.... Meter
E E
r o= + 483 CoSs ¢ — 30200 s2¢ + —40 cos 3¢ ... Meter

Diese Ergebnisse smd der besseren Ubersicht halber in Abb. 5 zur Dar-
stellung gebracht. Man sieht, daB die genauen Resultate von der iiblichen
Rechnungsweise mit ebener Spannungsverteilung erheblich abweichen. Wird
jedoch das Verhiltnis der Schalendicke zum Radius gréBer, so nahern sich
die Ergebnisse ungemein rasch der linearen Spannungsverteilung. Der Ver-
fasser rechnete dasselbe Beispiel fiir 4 = 0,1 m, R = 1,00 m, /# = 35 m durch
und fand fiir diesen Fall die Abweichung von der linearen Spannungsver-
teilung zu ~ 0,5 0. Zum Schlusse sei noch erwihnt, daf} dic Rechnungen in
der Regel mit einem vierstelligen Rechenschieber durchgefiihrt werden
konnen.

Zusammenfassung.

Im neuzeitlichen Industriebau werden hohe Schornsteine, Kiihltiirme usw.
sehr haufig als diinnwandige Schalen ausgefiihrt. Solche Bauwerke wurden
bisher immer als gerade Stibe mit ebener Spannungsverteilung berechnet.
Diese Annahme ist fiir dickwandige Schalen in hohem MaBe zutreffend. Fiir
diinnwandige Schalen ist jedoch, wie in dieser Arbeit gezeigt wird, die Ver-
teilung der Normalspannungen iiber den Querschnitt krummlinig und von
der Art des Lastangriffes abhingig. AuBlerdem sind die durch die Verformung
der ringft')rmigen Querschnitte auftretenden Biegemomente schon so groB,
daB sie bei der Bemessung des Tragwerkes schon beriicksichtigt werden
miissen. Im Abschnitt B wird nun fiir die zylindrischen biegesteifen Schalen
eine Theorie entwickelt, welche auf den Annahmen der bekannten KiRCHHOFF-
schen Plattentheorie aufgebaut ist. Indem man die Spannungen durch die
Verschiebungskomponenten der Achsfliche ausdriickt, gelangt man zu den
Bestimmungsgleichungen des Problems. Sie ergeben sich als 3 simultane,
lineare, nicht-homogene partielle Differentialgleichungen 7ter Ordnung, deren
allgemeines Integral sich in Form einer Fourier’schen Reihe leicht angeben
1468t. :

Mit Hilfe dieser allgemeinen Losung werden nun fiir den ‘Sonderfall
eines unten eingespannten Schornsteines gebrauchsfertige Berechnungsfor-
meln abgeleitet. Zum Schlusse wird ein solches Tragwerk ziffernmaBig durch-
gerechnet. Es zeigt sich dabei, daB die eingangs erwihnten Behauptungen
richtig sind.

Résumé.

L’industrie emploie depuis un certain temps des cheminées et des tours
de refroidissement de grande hauteur, qui sont trés fréquemment congues
comme ouvrage a parois minces. Ces ouvrages ont toujours été calculés,
jusqu’a maintenant, comme des éléments rectilignes avec répartition uniforme
des efforts. Cette hypotheése est exacte, dans une large mesure, en ce qui
‘concerne les ouvrages a parois épaisses; toutefois, ainsi que le montre la
présente étude, dans les ouvrages a parois minces, la répartition des con-
traintes normales sur la section présente une allure incurvée et dépend du
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mode d’application de la charge. En outre, les moments fléchissants qui se
manifestent sous l’influence de la déformation de la section annulaire sont
assez élevés pour qu’il soit nécessaire de les faire intervenir dans le calcul
du systeme porteur.

Dans le chapitre B, 'auteur expose une théorie concernant les parois
minces cylindriques rlgldes théorie qui est basée sur les hypotheses de la
théorie des dalles, bien connue, de KiRcHHOFF. En exprimant les contraintes
au moyen des composantes de déformation de la section médiane, on arrive
aux ¢quations de détermination du probleme. Elles se présentent sous la
forme de 3 équations différentielles partielles du septieme ordre, simultanées,
linéaires, non homogenes, dont 'intégrale générale peut étre obtenue facile-
ment sous la forme d’une série de Fourier.

A Paide de cette solution générale, Pauteur étudie des formules de cal-
cul pratique, dans le cas particulier d’une cheminée encastrée a sa base. Il
termine par le calcul complet d’un systeme porteur analogue, calcul qui met
en évidence l’exactitude des considérations exposées au début de I’étude.

Summary.

Structures such as tall chimneys, cooling towers, etc. for industrial pur-
poses, are very often designed as thin-walled shells Such structures have
hitherto always been calculated as straight bars with uniform distribution
of the stresses. This assumption is to a large extent correct for thik-walled
shells. But in the case of thin-walled shells, as is shown in this paper, the
distribution of the normal stresses over the cross-section is curvilinear and
depends on the way in which the load acts. In addition, the bending mo-
ments induced by the deformation of the annular cross- sectlons are so great
that they must be taken into consideration when the dimensions of the struc-
ture are being calculated. In Section B, a theory is developed for cylindrical
shells resistant to bending; this theory is based on the assumptions of the
well-known KIRCHHOFF slab theory. The stresses are expressed through the
components of the displacement of the axial surfaces, and in this way the
equations determining the problem are obtained. They are three simulta-
neous, linear, non-homogeneous partial differential equations of the T7th
order, whose general integral can easily be obtained in the form of a-
FOURIER’s series.

With the help of this general solution serviceable formulae are derived
for calculating the special case of a chimney rigidly fiked at the bottom.
Finally, such a supporting structure is calculated numerically. It is thereby
demonstrated that the assumptions made at the start are correct.
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