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DIE BERECHNUNG ZYLINDRISCHER, BIEGUNGSSTEIFER
SCHALEN UNTER BELIEBIGEM LASTANGRIFF.

CALCUL DES VOÜTES CYLINDRIQUES MINCES RIGIDES,
SOLLICITEES PAR DES CHARGES QUELCONQUES.

ANALYSIS OF STIFF CYLINDRICAL SHELLS UNDER ANY
DIRECTION OF LOAD.

Dr. Ing. ERNST GRUBER, Wien.

A. Einleitung.
Im neuzeitlichen Industriebau werden hohe Schornsteine, Kühltürme,

Tonnendächer u. s. w. sehr häufig als dünnwandige Schalen ausgeführt.
Meines Wissens werden solche Konstruktionen immer nur als gerade Stäbe
xnit ebener Spannungsverteilung berechnet. Diese Annahme ist für
dickwandige Schalen in hohem Maße zutreffend. Für dünnwandige Schalen ist
jedoch, wie in dieser Arbeit gezeigt werden ward, die Verteilung der
Normalspannungen über den Querschnitt krummlinig und von der Art des
Lastangriffes abhängig. Außerdem sind die durch die Verformungen der
ringförmigen Querschnitte bedingten Biegungsmomente M schon so groß, daß
sie bei der Bemessung berücksichtigt werden müssen. Da seit der Erfindung
der gleitenden Schalung diese Bauten fast nie konisch, sondern immer nur
zylindrisch mit konstanter Wandstärke ausgeführt werden, hat sich der
Verfasser nur mit der Berechnung der zylindrischen Schalen befaßt. In der Folge
wird deren Theorie bekannt gegeben1).

B. Die zylindrischen Schalen.
Da die biegungssteife Schale im Gegensatz zur Membrane statisch

unbestimmt ist, sind wir schon für die Spannungsberechnung genötigt, auf die
Formänderungen des Tragwerkes einzugehen. So wie in der Plattentheorie
nehmen wir hiebei auch hier an, daß eine zur Achsfläche senkrecht stehende
Strecke d' — d" während der Verformung gerade und senkrecht zur
Achsfläche bleibt (siehe Abb. 2). Es ist also durch die Verzerrung der letzteren
der Verformungszustand der gesamten Schale bestimmt. Da es sich um ein
räumliches Problem handelt, benötigen wir zur Beschreibung des
Verschiebungszustandes der Achsfläche drei Parameter. Zweckmäßig wählen wir
diese folgendermaßen:

1. eine horizontale, radiale Verschiebung r,
2. eine horizontale, tangentiale Verschiebung /,
3. eine lotrechte, achsparallele Verschiebung 5.

*) Die Theorie der Tonnendächer wurde von Finsterwalder eingehend behandelt
(siehe „Abhandlungen" der Intern. Vereinigung für Brückenbau u. Hochbau, Bd. 1, 1932).
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Es wird also ein beliebiges Bogenelement R • dcp eines Querschnittes
nach der Verformung die Lage A einnehmen (siehe Abb. 1). Nehmen wir
an, daß dabei R • dcp seine Länge beibehält, so ergibt sich aus dem Viereck
1 234
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wobei xp der Winkel ist, um welchen sich das Element R • dcp um eine
achsparallele Gerade dreht. Einige einfache differentialgeometrische Über-
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legungen liefern uns nun die für die folgende Rechnung nötigen Verformungsgrößen
der Achsfläche:

1. die bezogene Dehnung einer Zylindererzeugenden
ds
dx

2. die Krümmungsänderung des Querschnittes
1

#
(&r _ dt\

R
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3. die Änderung des rechten Winkels, den die Zylindererzeugende mit
einer Querschnittstangente einschließt
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Weiters ergibt sich für eine zur Achsfläche im Abstände rj konzentrisch
liegende Zylinderfläche (siehe Abb. 2) die der oberen Winkeländerung y
entsprechende Winkeländerung ytJ zu
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Um über das auftretende Kräftespiel Klarheit zu gewinnen, wurde in
Abb. 2 ein Volumselement mit den daran angreifenden Spannungen
dargestellt. So wie wir beim geraden Stab die zur Stabachse senkrecht stehenden
Normalspannungen wegen ihrer Kleinheit vernachlässigen, werden wir auch
hier die zur Achsfläche normalen Spannungen or als unbedeutend
unterdrücken. Eine weitere Vereinfachung ergibt sich, wenn wir wie in der Plattentheorie

die längs der Strecke d' — d" liegenden Elemente in eines zusammenfassen.

Es ergibt sich so das in Abb. 3 dargestellte Volumselement von der
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endlichen Dicke d. Bei diesem Vorgang werden die in Abb. 2 dargestellten
Spannungen o und % längs der Schalendicke summiert. Führen wir diese
Integrationen durch, so gelangen wir zu den in Abb. 3 dargestellten
endlichen Querschnittskräften M, Q, Nv, T, Mh, Mv, N, MT und 7. Ist nun die
Länge der Schale gegenüber deren Durchmesser groß, so werden sich die
Erzeugenden bedeutend weniger verkrümmen als die Querschnitte, so daß
wir Mv gegenüber M vernachlässigen können. Handelt es sich außerdem um
dünnwandige Schalen, so kann man in Gl. 6) das zweite Glied gegenüber
dem ersten Glied unterdrücken. Die durch die Winkeländerung y (siehe
Gl. 5) bedingten Schubspannungen % werden daher längs der Schalendicke d
näherungsweise konstant sein. Es ist also Mh 0 und MT= 0. Hiermit
ergibt sich aus der Momentengleichung um die Querschnittstangente auch die

Schubkraft 7=0. Es bleiben also an einem Volumselement nur die in Abb. 3

mit vollen Linien dargestellten Querschnittskräfte übrig.
Da diese mit den äußeren Lasten im Gleichgewicht stehen müssen, folgen

daraus die Gleichgewichtsbedingungen
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vereinfachen lassen.
Wir wollen nun die Querschnittskräfte T, Nv und M durch die

Verschiebungskomponenten s, t und r ausdrücken. Erinnern wir uns, daß die Bogenlänge

R • dcp ihre Länge beibehalten soll, so erhalten wir nach den Regeln
der Dehnungslehre

JrV+«A dcp
0

dNv i d t
dx ~t~ r' dcp
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dT dN
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0

welche sich durch Elimination der Größen Q und N zu
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Setzen wir diese Werte in Gl. 11) und Gl. 12) ein, so erhalten wir nach
einigen Umformungen die Beziehungen

m2
n2 ^ f ^s m" Ed" 35 (d2t \ d2p n „v— T

> R2 - d • E- —-r- r • j^-^ • —-g I—--r + *) + /?• x—ä 0 15)
m2—1 dx3 m2 — 1 \2Rd d<p ^dop2 I dop2

2m d2s 1 d2s d2t
m—\ dx2 R dop2 dxdop

in welchen wir mit Gl. 1) drei simultane, partielle, lineare, nicht homogene
Differentialgleichungen dritter Ordnung zur Bestimmung der Unbekannten
r, s und t gefunden haben. Unser nächstes Ziel ist nun die Integration des
obigen Systems. Zunächst lösen wir diese Aufgabe für den Fall, daß die
Belastungsfunktionen die Form

oo

p =r f(X) .®(<p)= f(x) • £ Cn • COS tlcp 17)
0

besitzen, wobei der Summenausdruck die Fourier'sche Reihenentwicklung für
0 (cp) sein soll. Für einen Windangriff stellt z. B. in Gl. 17) / (x) die Windstärke

in ihrer Abhängigkeit von der Bodenentfernung x dar, während 0 (<p)
das Gesetz ist, nach welchem der Wind längs der Rundung der Schale
abgleitet. Lautet für die Partialbelastung pn Cn- f (x) • cos ncp die Lösung
des Systems schematisch ün, so ergibt sich nach dem Überlagerungsgesetz der
Baustatik die Lösung für die Gesamtlast
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oo

p f(x) • 2 Cn • cos n cp
o

oo

ZU 2 &n.
0

Für pn Cn -f(x) • cos n cp

läßt sich aber eine alle Randbedingungen befriedigende Lösung in der Form
5 y'(x) • cos ncp 18)

darstellen, wobei die noch unbekannte Funktion y (x) so gewählt werden
muß, daß die Differentialgleichungen 15 und 16 erfüllt werden. In diesem
Sinne ergibt sich zunächst aus Gl. 16) unter Bedachtnahme auf Gl. 18)

-S=i' n -y W + ^Wl-sm»^ 19)

Substituiert man Gl. 18) und Gl. 19) in Gl. 15), so erhalten wir
n/ 2 m n d2 „ „x d2 m2-\ n2 Cn nJ^-^rT-"1(*,-1)-T^^ + «b(»,-1)T^^--7^-£7^/W 020>

in welcher man die Bestimmungsgleichung für y (x) erkennt. Das allgemeine
Integral derselben lautet für / (x) a>

y=Cx ©of ßx + C2 ©in /?jc -f- C3 Gof yx + C4 ©in y * +
¦ ^2— 1 C/z ¦ 7?2 cti

"^ /rc2
'
£V/z4(//2 — 1) 2U

wenn
ß2 mv. - ii6
/2 {(«8-l)«-z± j/'(«*-!)[«»(«2-l)^-12(m^i)8]

22)

12(/w-l)/?2

x= 7?

bedeutet. Da der Beiwert von y positiv ist, müssen entweder ß2 und y2 gleichzeitig

reell und gleich bezeichnet, oder gleichzeitig konjugiert komplex sein.
Daraus folgt, daß entweder alle vier Wurzeln von Gl. 22) reell oder alle
vier Wurzeln konjugiert komplex sind.

Während nun die bisherigen Gleichungen für jede zylindrische Schale
mit konstanter Wandstärke giltig sind, ist es nicht möglich, die Integrationskonstanten

d, C2, C3 und C4 der Gl. 21) für alle Schalen gemeinsam
anzugeben. Um die für die Bestimmung obiger Konstanten nötigen
Randbedingungen zu erhalten, muß man auf den statischen Charakter des jeweils
vorliegenden Tragwerkes eingehen. Wir wollen dies für eine unter
Windangriff stehende lotrechte, unten eingespannte Kragschale vorführen (siehe
Abb. 4). Für eine solche ergibt sich

/ 0; 5 0 für x 0 23)

T= 0; Nv= 0 „ x h 24)

Diese Gleichungen lassen sich unter Zuhilfenahme von Gl. 12), 18) und 19)
umformen in

/(0) 0 25)

y"(h) 0 26)

Q.y"(0)=y(0) 27)
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9= S%'Z 29)

f{h) 0 28)
2//z R2

tu — 1 II2

womit wir die vier Randbedingungen unserer Aufgabe gefunden haben. Führt
man nun die Auflösung der Gl. 25) bis 28) im Detail durch, so ergeben sich
für den Fall der komplexen Wurzeln der Gl. 22) und für / (x) co die
Integrationskonstanten in der umgebildeten Form:

iU{n) En- cos2 <pn+ l—&ol (2 Nnh cos <pn); U$n) (En + 4) sin 2cpn

Uin> En • sin 2 cpn; Uin) — 2Fn • cos2<pn 30)
wobei

En ©of (2Nnh • coscPn) — co${2Nn • h • sin9^) — 8 • sin2^ 31)

En tgcpn- ®in (2 Nn cos cpn) + sin (2 Nn • sin cpn) 32)

ßn An^rBni — Nn(cos cpn + i sin cpn) (siehe Gl. 22) 33)
bedeutet, ß ist hiebei die erste Wurzel von ß2. Mit diesen Werten erhalten
wir weiters die Funktion y (x) mit ihren ersten drei Ableitungen

ynv) Jfe- -Jcosß**. <$,olAnx(lfip 1 -cosi'^+f/^ 1 sinr<p\

-\-cosBnx-©inAnx(U{3) 1 >cosvcp + u\n) 1 sin^

+ sin^x • (&inAnx(U(1n) 1 -cosi'w-^^ 1 sin
\ Y+2C0S(v+1)jr Y+2cos(vfl)7r

+ sin Bnx • ©of/l«x /f/7 1 'COSvcp-U-s 1 sin^

+ "£r(*») »- 0,1,2,3, 34)

wobei
D« N„ Qn COS 2 cpn — COS 4 cpn —COS2 cpniNZün— 1) • COS (2 Nn • Ä • Sl'n ?>„) +

+ sin2 ^ -(NZq + I). ©of (2Ak • A • cos cpn) 35)

_ \2(m2-\).Cn.R2co
n ~ m2 • E.v*n±(n2 — \) JO'

bedeutet.
Mit Hilfe der Gl. 1), 8), 12 a), 13), 14) und 19) erhalten wir mit den

obigen Werten die Spannungen und Formänderungen des Tragwerkes in
der Form

h2 co [B2 1 \ m2 ™

o Cx
d t [^ — S + 2

cos q + Jn^ZTi • ^Zj J/* (*) • cos /*<p 37)

_ Aw _ Rm2 _^ 1
,„,r Cx —t- (1 — £) • sin 99 1-^Z/- -yn(x)'Smn<p 38)

a /?z~ — 1 2 ^

l ^99 j

]

Em2 - d - y.2 ^y „ 1X[ 2m R „ // /|ITK^-T)-?^^-1^-/«-!-^ ^W+ ^^Wjcos»v 39)

~W •C12ZZ7^l3"^+1)COS'/, + ?-),"(x)-COS^1 40)
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m2-\ to

^ f 2 m R n .1
— ^n[-^ZT] * ~yn(x)-r~^yn(x)^ cos ncp 41)

' -^'f^^'fc^ V^-^ + 2J+Ä l24 6+4+w-l A*JJ ^
+ 2 [-^=1 ' yj'"w + 7^WJsin ^ 42)

Ist in Gl. 35) das Glied mit dem hyperbolischen Cosinus gegenüber den
anderen Gliedern groß, so ergibt sich die Funktion y (x) mit ihren
Ableitungen in sehr guter Näherung ohne vorherige Bestimmung der
Konstanten U(vn> zu

0,1,2,3 +-^r-(*») 43)

Für den sehr selten vorkommenden Fall reeller Wurzeln ergeben sich
die Integrationskonstanten zu

Ca *l£l \(ßn _ yn) 60f (yn + ßn)h- (ßn + yn) 6of (y„- ft,) A + ^1
44)

C4 - ^^L [(&- y„) • ©in (yÄ + &) A — (yn + /?„) ©in (y„- ßn) h\

r —
kn

__ r Y"Qn ~~ * r — — l±r
P« Qn — 1 P« ß« — 1 Pä

wobei

O« 2ßnynqn{rl + ßl)-2^^^--{ßn + 7n)2

- (& — 7nY (y„ /?«?« + 1) • ®of (& + yÄ) A 44)
ist.

Es ist selbstverständlich, daß man nach dieser hier vorgeführten Methode
jede wie immer geartete zylindrische Schale berechnen kann, indem man
für jeden einzelnen Fall die nötigen Randbedingungen berücksichtigt.

C. Praktische Anwendung.
Wir wollen die Berechnung eines Kühlturmes unter Windangriff ziffernmäßig

durchführen. Die Abmessungen des Tragwerkes sind aus
vorstehender Abb. 4 ersichtlich. Nehmen wir die Windlast nach der österreichischen

Verordnung an, so lautet die Funktion 0 (cp)

TC 3
(D(cp) 0; für x 0 bis -y und x -^n, bis 27t

TC 3
®(cp) cos2 cp für x — — bis -=-7c.
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Gemäß Gl. 17) haben wir & (cp) in eine Fourier'sche Reihe zu
entwickeln und erhalten für die Koeffizienten derselben 3)

Q C9 + h Cs
4

Q 0; Cä3?c' ~2 ~ ' 4' ~a ~ 15tt' "«-"' "*-105nr
Für die Berechnung des Gliedes n 2 benützen wir die exakten Ausdrücke
Gl. ,30)—36). Es ergibt sich zunächst aus Gl. 22)

ß2 N, (cos <ps + i sin <pt) — 0,05657 (0,71413 + 0,700006 /)

0^ 4,86570

U^ — 9.36134; U™ +8,61739
(/«> + 9,49617; U™ — 8,793108.

Für die weiteren Glieder unserer Lösung genügen die Näherungswerte
Gl. 43). Es ergibt sich zunächst

für n 3 (fa 0,1328 (0,7242 + 0,6896 i) qs 5,55556
für n 4 kommt nicht in Frage da C4 0
für n 5 ß5 0,3701 (0,7576 + 0,6528 i) q6 2,00000

Mit diesen Werten findet man nach Gl. 43) die Funktion y (x) mit ihren
Ableitungen, woraus man mit den Gl. 37)—42) die Spannungen und Form-
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the upper end
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Fig. 5.

änderungen in jedem Punkte des Tragwerkes berechnen kann. Wir wollen
jedoch hier nur die maximalen Werte derselben angeben. Es ergibt sich mit
co 0,150 t/m2 für den unteren Einspannungsrand

o —78 cos ^ + 90 cos 2^ — 11,8 cos 3cp -f 0,488 cos 5cp + t/m2
x — 22,2 sin cp -f- 16,7 sin 2 cp — 0,294 sin 3cp

und für den oberen freien Rand

M 0,200 cos 2 cp — 0,0354 cos 3 cp + 0,00182 cos 5 cp

910
5

E
870 _ 1,14

COS cp ~\ — cos 2 cp -\ 1—— cos 3 cp

tm

Meter

2) Der Koeffizient Cq spielt bei dieser Aufgabe keine Rolle, da dieses Glied einer
gleichförmigen radial gerichteten Gleichlast entspricht, welche entsprechend der
Annahme S. 197 keine Spannungen zur Folge hat.
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18,2 10000 0 443 _t — j|— sin 99 H — sin 2 <^ — sin 3 99... Meter

18,2 30000 3540
Q Mr =r -| ~r- cos 99 — -^— cos 2cp -\——- cos 3 cp Meter

Diese Ergebnisse sind der besseren Übersicht halber in Abb. 5 zur
Darstellung gebracht. Man sieht, daß die genauen Resultate von der üblichen
Rechnungsweise mit ebener Spannungsverteilung erheblich abweichen. Wird
jedoch das Verhältnis der Schalendicke zum Radius, größer, so nähern sich
die Ergebnisse ungemein rasch der linearen Spannungsverteilung. Der
Verfasser rechnete dasselbe Beispiel für d — 0,1 m, R 1,00 m, h 3^ m durch
und fand für diesen Fall die Abweichung von der linearen Spannungsverteilung

zu ^ 0,5 oo. Zum Schlüsse sei noch erwähnt, daß die Rechnungen in
der Regel mit einem vierstelligen Rechenschieber durchgeführt werden
können.

Zusammenfassung.
Im neuzeitlichen Industriebau werden hohe Schornsteine, Kühltürme usw.

sehr häufig als dünnwandige Schalen ausgeführt. Solche Bauwerke wurden
bisher immer als gerade Stäbe mit ebener Spannungsverteilung berechnet.
Diese Annahme ist für dickwandige Schalen in hohem Maße zutreffend. Für
dünnwandige Schalen ist jedoch, wie in dieser Arbeit gezeigt wird, die
Verteilung der Normalspannungen über den Querschnitt krummlinig und von
der Art des Lastangriffes abhängig. Außerdem sind die durch die Verformung
der ringförmigen Querschnitte auftretenden Biegemomente schon so groß,
daß sie bei der Bemessung des Tragwerkes schon berücksichtigt werden
müssen. Im Abschnitt B wird nun für die zylindrischen biegesteifen Schalen
eine Theorie entwickelt, welche auf den Annahmen der bekannten Kirchhoff-
schen Plattentheorie aufgebaut ist. Indem man die Spannungen durch die
Verschiebungskomponenten der Achsfläche ausdrückt, gelangt man zu den
Bestimmungsgleichungen des Problems. Sie ergeben sich als 3 simultane,
lineare, nicht-homogene partielle Differentialgleichungen 7ter Ordnung, deren
allgemeines Integral sich in Form einer Faurier'schen Reihe leicht angeben
läßt.

Mit Hilfe dieser allgemeinen Lösung werden nun für den Sonderfall
eines unten eingespannten Schornsteines gebrauchsfertige Berechnungsformeln

abgeleitet. Zum Schlüsse wird ein solches Tragwerk ziffernmäßig
durchgerechnet. Es zeigt sich dabei, daß die eingangs erwähnten Behauptungen
richtig sind.

Resume.
L'industrie emploie depuis un certain temps des cheminees et des tours

de refroidissement de grande hauteur, qui sont tres frequemment congues
comme ouvrage ä parois minces. Ces ouvrages ont toujours ete calcules,
jusqu'a maintenant, comme des elements rectilignes avec repartition uniforme
des efforts. Cette hypothese est exacte, dans une large mesure, en ce qui
concerne les ouvrages ä parois epaisses; toutefois, ainsi que le montre la
presente etude, dans les ouvrages ä parois minces, la repartition des
contraintes normales sur la section presente une allure ineurvee et depend du
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mode d'application de la charge. En outre, les moments flechissants qui se
manifestent sous Finfluence de la deformation de la section annulaire sont
assez eleves pour qu'il soit necessaire de les faire intervenir dans le calcul
du Systeme porteur.

Dans le chapitre B, Fauteur expose une theorie concernant les parois
minces cylindriques rigides, theorie qui est basee sur les hypotheses de la
theorie des dalles, bien connue, de Kirchhoff. En exprimant les contraintes
au moyen des composantes de deformation de la section mediane, on arrive
aux equations de determination du probleme. Elles se presentent sous la
forme de 3 equations differentielles partielles du septieme ordre, simultanees,
lineaires, non homogenes, dont Fintegrale generale peut etre obtenue facile-
ment sous la forme d'une serie de Fourier.

A Faide de cette Solution generale, Fauteur etudie des formules de calcul

pratique, dans le cas particulier d'une cheminee encastree ä sa base. II
termine par le calcul complet d'un Systeme porteur analogue, calcul qui met
en evidence Fexactitude des considerations exposees au debut de Fetude.

Summary.
Structures such as tall chimneys, cooling towers, etc. for industrial pur-

poses, are very often designed as thin-walled Shells. Such structures "have
hitherto always been calculated as straight bars with uniform distribution
of the stresses. This assumption is to a large extent correct Tor thik-walled
shells. But in the case of thin-walled Shells, as is shown in this paper, the
distribution of the normal stresses over the cross-section is curvilinear and
depends on the way in which the load acts. In addition, the bending
moments induced by the deformation of the annular cross-sections are so great
that they must be taken into consideration when the dimensions of the struc-
ture are being calculated. In Section B, a theory is developed for cylindrical
shells resistant to bending; this theory is based on the assumptions of the
well-known Kirchhoff slab theory. The stresses are expressed through the
components of the displacement of the axial surfaces, and in this way the
equations determining the problem are obtained. They are three simulta-
neous, linear, non-homogeneous partial differential equations of the 7th
order, whose general integral can easily be obtained in the form of a

Fourier's series.
With the help of this general Solution serviceable formulae are derived

for calculating the special case of a chimney rigidly fiked at the bottom.
Finally, such a supporting structure is calculated numerically. It is thereby
demonstrated that the assumptions made at the start are correct.
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