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DREI BEITRAGE ZUR FRAGE DES TRAGVERMDGENS
STATISCH UNBESTIMMTER STAHLTRAGWERKE.

TROIS CONTRIBUTIONS Ä LA QUESTION DE LA RESISTANCE DES
CHARPENTES METALLIQUES HYPERSTATIQUES.

THREE CONTRIBUTIONS ON THE LOADING QESTION OF
STATICALLY INDETERMINED STEEL TRUSSES.

Dr. Ing. ERNST CHWALLA,
Professor an der Deutschen Technischen Hochschule, Brunn.

Die in den letzten Jahren durchgeführten theoretischen und empirischen
Untersuchungen 1) über das Verhalten statisch unbestimmter Stahltragwerke
brachten den Nachweis, daß die Bemessung derartiger Systeme bei Zugrundelegung

„zulässiger Inanspruchnahmen" auf einen größeren Sicherheitsgrad
des Bestandes führen 'kann, als für statisch bestimmte Systeme gefordert
wird. Bei Voraussetzung eines ideal plastischen Werkstoffes existiert sowohl
im Falle der Achsialbelastung (Fachwerke), wie auch bei Biegungsbeanspruchung

(Balkentragwerke) oder Verknüpfung von Achsialbelastung und
Biegung ,(Bogen- und Rahmentragwerke) ein oberer Grenzwert des inneren
Widerstandes und es gilt dann die folgende Feststellung: Ist die Belastung
eines n-fach statisch unbestimmten Tragwerkes bis auf einen gemeinsamen
Multiplikator p gegeben und wächst p von Null an, dann wird der obere
Grenzwert des Widerstandes der Reihe nach an verschiedenen Stellen des
Tragwerkes erreicht werden, wodurch der Grad der statischen Unbestimmtheit

(bezogen auf die jeweils neu hinzukommenden Lastanteile) einen schrittweisen

Abbau erfährt. Dieser Abbau der überzähligen Bindungen wird
fortgesetzt, bis der Grenzwert des inneren Widerstandes an mindestens (n-\-\)
durch ein kinematisches Gesetz verknüpften Tragwerkstellen zur Geltung
kommt. Das System geht dann in eine kinematische Kette über und ist einer
weiteren Steigerung der Belastungsintensität nicht mehr fähig, so daß der
zugeordnete Multiplikator max^ die obere Grenze des Tragvermögens unter
der gegebenen ruhenden Belastung festlegt. Neben einem ideal plastischen
Werkstoffverhalten (das der Baustahl nur innerhalb eines verhältnismäßig
engen Formänderungs-Bereiches mit größerer Annäherung zeigt) wird
bei dieser Schlußweise auch vorausgesetzt, daß ein Vorzeichenwechsel der
auftretenden Verformungen im Zuge des geschilderten Abbaues der sta-

*) Vgl. M. Gruning, Die Tragfähigkeit stat. unbest. Tragwerke aus Stahl Berlin
1926 und „Der Eisenbau", I. Bd., Berlin 1929; J. Fritsche, Z. Der „Bauingen " 1930/31 u.
„Z. f. ang. M. u. Mech." 1931; K. Hohenemser, Ing.-Archiv 1931; K. Girkmann, Sitzungs-
ber. d. Ak. d. W. in Wien, IIa, 1931; G. v. Kazinczy, Z. „Technika" 1931 und Z. „Der
Stahlbau" 1931; H. Bleich, Z. „Der Bauingenieur" 1932; E. Melan, „Z. f. ang. M. u.
Mech." 1932; F. Kann, Z. „Der Stahlbau" 1932; F. Lleich, Stahlhochbauten I ; weitere
Arbeiten von Kist, Knackstedt, Eisenmann u. a.

Über Versuche berichten Maier-Leibnitz, Z. „Die Bautechnik" 1928 und 1929;
H. Schaim, Z. „Der Stahlbau" 1930; F. Hartmann, Schweiz. Bauzeitung 1933; G. Gruning

u. E. Kohl, Z. „Der Bauingenieur" 1933.
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tischen Unbestimmtheit ausgeschlossen bleibt, da andernfalls das
Entlastungsgesetz die Begrenzung des inneren Widerstandes aufheben würde.
Auch wird bei diesen Untersuchungen die Möglichkeit eines vorzeitigen
Ausknickens von Tragwerksteilen theoretisch nicht näher behandelt, und
da diese Frage für die praktische Anwendung der Theorie von großer
Bedeutung ist, soll in den. folgenden Abschnitten A und B der Einfluß des
Verhaltens gedrückter Baustahlstäbe auf das Tragverhalten und Tragvermögen

einfach statisch unbestimmter Systeme an Hand übersichtlicher
Beispiele geklärt werden. Der Abschnitt C ist dem von Grüning behandelten
Problem des Tragverhaltens bei wiederholter Überlastung eines statisch
überzähligen Baustahlstabes gewidmet.

A. Das Tragverhalten einfach statisch unbestimmter Fachwerke
bei Überlastung eines überzähligen Druckstabes.

Um das Tragverhalten in übersichtlicher Weise darstellen zu können,
beziehen wir uns auf das in Figur 1 a gezeichnete Fachwerkmodell. Wir
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fassen die Druckkraft X in der Vertikalen als überzählig auf, durchschneiden
den Stab und bringen die Doppelkraft X zwischen den Schnittflächen an.
Aus der Gleichgewichtsbedingung für den Lastknoten folgt, daß die beiden
Streben (die in unserem Beispiel das den überlastetein Stab „stützende Grund-
system" bilden) die Druckkräfte S =- P — X erhalten. Ein Ausknicken der
Stäbe aus der Fachwerksebene soll ausgeschlossen sein und wenn wir vorerst

auch voraussetzen, daß die Streben vollkommen elastisch und knicksteif

sind, treten in den Streben bloß die Verkürzungen

die eine gegenseitige Schnittflächenverschiebung Ah

C(P — X) f(X) bewirken; die Größe C 2s_
EE

S 's — (P~X) 's
E-Fs

(P-X)
E.FS ein,

25
EFS

stellt hiebei allgemein
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die „Federkonstante" des stützenden Grundsystems vor. Die Verschiebung
As muß durch eine entsprechende Verkürzung der Vertikalen ausgeglichen
werden und da der funktionale Zusammenhang Ax cp (X) zwischen der
gegenseitigen Annäherung Ax der Endpunkte dieses Stabes und der Stab-
Kraft X in der Regel durch eine Kurve festgelegt wird, wollen wir die
Formänderungsbedingung As Ax graphisch befriedigen, indem wir die
beiden Kurven / (X) und cp (X) zeichnen und zum Schnitt bringen. Die Funktion

/ (X) wird in Figur 1 b durch die Gerade „Gu dargestellt, die auf der
Ordinatenachse die Knotenlast P und auf der Abszissenachse die Größe C • P
abschneidet; sie schließt mit der Ordinatenachse den Winkel a arctg C
ein, der umso kleiner ist, je steifer das stützende Grundsystem ausgebildet
wird. Die Kurve cp (X) schneidet diese Gerade im Punkte I, dessen Koordinaten

X und Ai den gesuchten Gleichgewichtszustand festlegen; hiebei stellt
P die Knotenlast, A' die Stabkraft in der Vertikalen, A/ die Senkung des
Knotenpunktes und S P — X die Strebenkraft vor.

Wird die Vertikale durch einen geraden, zentrisch gedrückten Stab aus
HooKE'schem Idealmaterial gebildet, der unter der EuLER'schen Knicklast

TT2 • E • fv
XE 2~~ ^ie Stabilitätsgrenze erreicht, dann tritt unter X XE die

Ausbiegung des Stabes ein. Der achsiale Stabwiderstand X nimmt hiebei
nur geringfügig2) zu, so daß der mit der Ordinatenachse den Winkel xp

v
arctg ——— einschließende Ast der Kurve cp (X) an der Stelle X XE in

eine sehr flach verlaufende Kurve übergeht (Figur 1 c). Im erreichten, durch
die Größen X XE, S P — XE und A A£ gekennzeichneten
Gleichgewichtszustand ist die Vertikale schon ausgeknickt, doch ist ihre seitliche
Ausbiegung durch die kinematisch zugelassene Sehnenverkürzung genau
festgelegt und beträgt (da sich die Gleichgewichtsfigur des knickenden
Stabes hier von einer Sinuslinie praktisch nicht unterscheidet) y0

— • 1/ v • yAi — ^yr - XEJ. Wird die Last P entfernt, dann geht die

Ausbiegung auf Null zurück und das Fachwerk nimmt wieder die ursprüngliche
Form an. Wenn hingegen die Streben nicht extrem knicksteif ausgebildet
sind und unter der Eulerlast SF selbst die Knickgrenze erreichen, dann wird
das Tragvermögen des Fachwerks unter der Knotenlast max P XE -\-SE
erschöpft. Würde P nur wenig über diesen Grenzwert anwachsen, dann
würde der in Figur 1 d dargestellte Fall eintreten und das Grundsystem,
das die Vertikale stützt, würde versagen, bevor sich noch ein Gleichgewichtszustand

ausbilden kann3).
Wir haben bisher Stäbe aus HooKE'schem Idealmaterial vorausgesetzt

und wollen nun einen Schritt weiter gehen und die Vertikale aus einem
Baustahl ausgebildet denken, dessen Formänderungsgesetz z. B. durch die
folgenden Werte gekennzeichnet sein möge: Proportionalitätsgrenze oP
1900 kg/cm2, 8P 0,86 %o, Elastizitätsmodul E 2,210 000 kg/cm2,
Fließbereich aF= 2700 kg/cm2 const. von sF=2,b bis e/ 6%o, Zugfestigkeit
oB 4200 kg/cm2. Der Stabquerschnitt sei ein Rechteck Fv b • h und für

2) Vgl. dazu A. Schneider, Z. d. öst. Ing. Arch. Ver. 1901; R. v. Mises, Z. f. ang. M.
u. Mech. 1924; I. Malkin, Z. f. ang. M. u. Mech. 1926; O. Domke, Z. „Der Bauingenieur"
1926 u. a.

3) Der nach sehr kleinen Erhöhungen von max P theoretisch existierende
Gleichgewichtszustand ist wegen der großen zugeordneten Verformung praktisch bedeutungslos.
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den Schlankheitsgrad wählen wir lv 60, wobei /
h

Vl2
bedeutet. In

Figur 2 sind die „Kurven des achsialen Widerstandes" für zentrisch gedrückte,
beiderseits gelenkig gelagerte Stäbe aus dem geschilderten Baustahl
dargestellt4) und wir entnehmen aus dem Verlaufe der Kurve „l 60", daß

4) Vgl. den Beitrag d. Verfassers im Bericht über d. I. Int. K. f. Brückenbau u.
Hochbau, Paris 1932.
unsere Vertikale unter der Druckkraft Xk 2521 • Fv kg (Knicklast nach
Engesser-Kärmän) ihre Stabilitätsgrenze erreicht und daß der in der
ursprünglichen Achsenrichtung ausgeübte Widerstand bei zunehmender
Scheitelausbiegung y0 (d.i. die Ausbiegung der Gleichgewichtsfigur in Stabmitte)
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Fig. 2.

sehr stark abfällt; beispielsweise ergibt sich im Gleichgewichtsfalle für

0,2, 0,4, 0,6, 0,8 und 1,0 der Reihe nach 1830, 1420, 1150, 960
h v,±, v,,^, w,w, v,v uti« x,„ vtw *V— na,u ^
und 810 kg/cm2. Um die durch die Ausbiegung bedingte Verkürzung A' der
Stabsehne bestimmen zu können, müssen wir die der Druckkraft X und der
Scheitelausbiegung y0 eindeutig zugeordnete „Gleichgewichtsfigur" (Biegelinie)

y F (x) bestimmen 5) und A' aus der Beziehung A' \ • (tt-) * dx

durch Quadratur ermitteln6). Mit Hilfe dieser Werte A' können wir den
funktionalen Zusammenhang, der im Falle l 60 zwischen der gegen-

5) Vgl. diesbezügl. die Abhandlung d. Verf. in den „Sitzungsber. d. Ak. d. Wiss.
in Wien", II a, 1928, S. 469.

6) Begnügt man sich hier mit einer Näherungslösung, dann kann man die
Gleichgewichtsfiguren durch Sinushalbwellen der Länge v und der Scheitelausbiegung y0

ersetzen und findet dann A'
0,1425auch Af

¦im-*- y02 oder wegen k -r -\\2 — 60

• y02; die so erhaltenen Näherungswerte sind grundsätzlich zu groß,
doch beträgt der Fehler, wie ein Vergleich mit den genauen Lösungen zeigte, nicht mehr
als etwa 8,5 o/0.
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seifigen Annäherung der Stabenden Ax und dem Stabwiderstand X besteht,

durch die in Figur 3 a gezeichnete Kurve —^ cp1 (—r) darstellen. Wächst
y ll \ ly I

die mittlere Druckspannung — von Null bis zur Proportionalitätsgrenze

oP 1900 kg/cm2 an, dann steigt -~ von Null bis zum Wert Vt
' °^ 0,0149

X X '

an; erreicht — den Wert der Knickspannung -~-= 2521 kg/cm2, dann ergibt
Fv Fv jsich aus der zugrundeliegenden Spannungs-Dehnungslinie -£¦ 0,0251 und

h ^der Stab beginnt sich auszubiegen, so daß von nun an die Werte -£- um die
A' h

Beträge^- vermehrt werden. Da jedoch mit dieser Ausbiegung ein starker
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Abfall der zum Gleichgewicht erforderlichen Belastung X einsetzt, erfährt
die Stabachse eine dem Entlastungsgesetze gehorchende geringe Verlänge-

A'
rung. Wir tragen daher -— in Figur 3 a von der gestrichelt gezeichneten

Entlastungsgeraden auf, sind uns aber bewußt, daß dieser Vorgang nicht
vollkommen exakt ist, da die in der Stabachse gelegenen Stabfasern nicht nur

durch die mittlere Druckspannung — sondern auch durch die mit der Aus-

biegung zunehmende Biegespannung (die Biegespannungs-Nullinie liegt nicht
im Querschnittsschwerpunkt) beeinflußt werden; dieser Vernachlässigung
dürfte die in Figur 3 a gefundene geringfügige Abnahme der Abszissenwerte
bei Beginn des Ausknickens zuzuschreiben sein.
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Wächst nun die Knotenlast P unseres Modellfachwerkes Figur 1 a an,
bis die Vertikale die Knickgrenze Xk überschreitet, dann tritt (sofern das
Strebenpaar weder ausknickt noch den HooKE'schen Bereich verläßt) der in
Figur 3 b dargestellte Fall ein. Der Schnittpunkt I der Geraden G mit der
aus Figur 3 a übernommenen Kurve Ax cp (X) legt den Gleichgewichtszustand

fest und wir erkennen, daß die Strebenkräfte S P — X nunmehr
wesentlich größer als bei Verwendung einer Vertikalen aus HooKE'schem
Idealmaterial (Figur 1 c) erhalten werden. Wenn wir daher die Streben
bloß so bemessen würden, daß ihre Knickkraft Sk nur wenig größer als
P — Xk ist (was im Falle Figur 1 c als ausreichend festgestellt wurde), dann
würde der in Figur 3c skizzierte Fall „1" zur Geltung kommen: Die Vertikale

würde wieder unter der bis auf P± anwachsenden Knotenlast ausknicken,,
den geschilderten starken Abfall des Widerstandes zeigen und dadurch dem
stützenden Grundsystem eine erhebliche Mehrbelastung zuweisen. Das
Strebenpaar würde sich aber dieser Mehrbelastung nicht gewachsen zeigen
und vor Erreichen des Gleichgewichtszustandes selbst ausknicken, worauf
der Zusammenbruch des Tragwerks (da der Ordinatenunterschied der Kurven

cp (X) und / (X )stark zunimmt) mit wachsender Beschleunigung erfolgt.
Werden die beiden Streben biegesteifer ausgebildet, so daß ihre Knicklast
Sk eine starke Erhöhung erfährt, dann kann die Tragfähigkeit des Systems
bei unveränderter Vertikalen auf einen Wert P2 gesteigert werden (Fall 2
in Figur 3 c). Die Streben vermögen hier die große Mehrbelastung, die nach
dem Ausknicken der überzähligen Vertikalen entsteht, aufzunehmen und einen
Gleichgewichtszustand gerade noch zuzulassen. Wir erkennen jedoch, daß
dieser Grenzwert P2 erheblich kleiner ist als der Wert Xk + Sk, den wir im
Fall Figur 1 d bei Voraussetzung eines HooKE'schen Idealmaterials erhalten
haben.

Zur ziffernmäßigen Festlegung des Einflusses, den das geschilderte
Verhalten gedrückter Baustahlstäbe auf das Tragvermögen statisch unbestimmter
Fachwerke nehmen kann, denken wir uns die zentrisch gedrückten Stäbe
unseres Fachwerkmodells Figur 1 a aus dem oben geschilderten Baustahl
ausgeführt. Die Stablängen seien v bezw. s 2v, die Stabquerschnitte Fv b • h
bezw. Fs. Im Sinne der bestehenden Vorschriften müssen wir die
Elastizitätsgleichung aufstellen und daraus die Stabkräfte

p n
X — und 5 P — X

+ *•£- 1+4. £* V * s

X 4P
berechnen; die Normalspannung in der Vertikalen beträgt dann — — ——

« v Fs -\~ 4 * Fv
und ist allgemein viermal so groß als die Strebenspannung S/Fs. Werden
nun die Stäbe so ausgebildet, daß ihre Schlankheitsgrade hinsichtlich Knickung
in der Fachwerksebene z.B. ^, ^ 60 betragen, dann bildet die für die

•y
Vertikale geltende Knickspannung -^= 2521 kg/cm2 die maßgebende Grund-

Fv
läge bei der Bemessung auf „zulässige Inanspruchnahme", während die
Festigkeit der beiden geringer belasteten Streben unausgenützt bleibt. Ist
v der geforderte Knicksicherheitsgrad, dann ist die „zulässige" Stabkraft

1 2521 / F \
Xzui — Xk und daher die „zulässige" Knotenlast Pzul 11 -f- r-s I • Fv.

V V \ t1 F\> /
Die Größen v • Pzuh die wir rein formell als „Tragfähigkeiten" des auf zu-
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lässige Inanspruchnahme bemessenen Fachwerkmodells bezeichnen können,
Zusind in der nachfolgenden Tabelle für die drei Fälle -^ 0,5, 1,0 und 2,0

zusammengestellt worden; sie sind an den angegebenen Engesser-Kärmän-
schen Knickspannungswert gebunden, im übrigen aber von der amtlichen
Vorschrift unabhängig. Die Größe v • Pzui bleibt unverändert in Geltung, auch

pwenn .wir die Streben bei Wahrung des Flächenverhältnissesi —- etwas
Fv

schlanker ausführen, da die Knickspannung der Vertikalen nach wie vor für
die Bemessung maßgebend ist.

Wenn wir nun, unabhängig von der eben dargelegten Bemessung auf
„zulässige Inanspruchnahme", die oberste Grenze des Tragvermögens

Pmax bestimmen wollen, dann haben wir an die in Figur 3 c

geschilderten Fälle anzuknüpfen und vorerst die Kurve —- — <px
I — 1 für die

n \ly/
Vertikale darzustellen; diese Kurve ist in Figur 4 gestrichelt gezeichnet

No. K As
Fv

V-PZul P' max Xk + $k
Xk + Sk~ Pmax

W'Pmax
P - V • P iÄ max v £ zul

vPzul

1 60 60 0,5 2836 ¦ Fv 2922 • Fv 3782 ¦ Fv 29,4% 3,0 %
2 60 60 1,0 3151 - /v 3501 ¦ Fv 5042 ¦ Fv 44,1 % 11,1 %
3 60 60 2,0 3782 • Fv 6022 ¦ Fv 7563 • Fv 25,6% 59,2%
4 60 120 0,5 2836 ¦ Fv 2922 • Fv 3279 ¦ Fv 12,2% 3,0%
5 60 120 1,0 3151 -Fv 3322 • Fv 4037 • Fv 21,5% 5,4%
6 60 120 2,0 3782 ¦ Fv 4325 Fv 5553 ¦ Fv 28,4% 14,4%

und stimmt mit Rücksicht auf unsere Voraussetzungen mit der Kurve Figur 3 a

überein. Die Gerade G, die die Funktion —- fx \y~\ im HooKE'schen

Bereich unterhalb der Knickgrenze festlegt, verläßt die Ordinatenachse unter
dem Winkel a arctg C, wobei die Federkonstante des stützenden
Grundsystems mit Rücksicht auf 5 2 v =¦ 2y[\2hlv 34,70. h die Größe

C -?J- 0,0000314-§ • A besitzt. Im Falle Nr. 1 ist ^ 0,5 gewählt
Lrs Fs Fv v I X\worden. Wenn wir für verschiedene Wehrte P die Kurve /i(-^-l zeichnen,

p \FV J

finden wir, daß -~- 2922 kg/cm2 die größte, ein Gleichgewicht zu-
Fv

lassende Knotenbelastung festlegt. Die zugeordnete Grenzlage der Kurve

/i —) ist in Figur 4 eingetragen und durch die beigeschriebene Nummer 1

gekennzeichnet worden; bis zur Stelle ^ 950kg/an.>4 !£. Op
Fv ' Fv

0,0596 verläuft sie geradlinig, verläßt dann den HooKE'schen Bereich und

erreicht an der Stelle ^ 2521 ~ 1261 kg/cm2, 4~= 0,1004 die Knick-
Fv Fv ö/ h

grenze, wie in der Figur durch den nach oben (Richtung der abnehmenden
Strebenwiderstände) weisenden Pfeil angedeutet wurde. Werden die Streben

fbei Wahrung des Flächenverhältnisses —- schlanker, z. B. mit Xs 120 aus-



Zur Frage des Tragvermögens statisch unbestimmter Stahltragwerke 1Q3

gebildet, dann liegt die Knickspannung der Strebe —~ 1516 kg/cm2 im
A Ps

HooKE'schen Gebiet und wird an der Stelle — 0,0476 erreicht; die oberste

Grenzlage der Kurve /i(-^-) ist jedoch die gleiche wie früher, so daß Pmax

2922 •/%, nach wie vor die Tragfähigkeit begrenzt (Fall Nr. 4). Auch im
Fall Nr. 5 wird das Tragvermögen schon im Augenblick des Ausknickens der
Vertikale erschöpft, da auch hier das stützende Grundsystem die entstehende
Mehrbelastung nicht aufzunehmen vermag; für die Grenzlast wurde hier
Pmax 3322 • Fv gefunden.
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In den drei bisher geschilderten Fällen Nr. 1, 4 und 5 wird die
Tragfähigkeit des Fachwerks durch den Knickwiderstand der Vertikalen
festgelegt, der auch bei der Bemessung auf „zulässige Inanspruchnahme"
maßgebend war. Die Grenzlast Pmax stimmt daher in diesen Fällen praktisch 7)
mit der Rechnungsgröße v • Pzut überein und die Bemessung statisch
unbestimmter Fachwerke auf zulässige Inanspruchnahme braucht nicht als
unwirtschaftlich verworfen zu werden. Hingegen wäre die Voraussetzung von
Stäben aus HooKE'schem Idealmaterial (also die Voraussetzung eines
funktionalen Zusammenhanges zwischen Verformung und Widerstand, wie er
ähnlich auch im Falle des Zuges oder der Biegung für Stäbe aus
idealplastischem Material erhalten wird) vollkommen unzulässig, denn dann wäre

7) Der geringe Unterschied, der in der Tabelle zwischen den beiden Werten
besteht, ist darauf zurückzuführen, daß die gedruingene Vertikale vor dem Ausknicken
schon eine plastische Verkürzung erfährt und daner einen etwas kleineren Belastungsr-
anteil erhält, als aus der Elastizitätsgleichung erhalten wird.
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nach Figur 1 d einfach Pmax Xk + Sk anzusetzen und wir würden in den
Fällen Nr. 1, 4, 5 der Reihe nach Werte erhalten, die um 29,4, 12,2 und 21,5 °/o

größer als Pmax sind (vgl. die Tabelle).
In den Fällen Nr. 2, 3 und 6 erweisen sich die Streben als ausreichend

widerstandsfähig, um einen Gleichgewichtszustand nach erfolgtem
Ausknicken der Vertikalen zuzulassen. Die Tragfähigkeit des Fachwerkes wird
hier erst in dem Augenblick erschöpft, in dem das Strebenpaar an die
Knickgrenze gelangt; sie kann erheblich größer als die Rechnungsgröße v ¦ Pzut

sein, so daß die Vorschreibung „zulässiger Inanspruchnahmen" auf ungewollt

45mm

\45mm
: war\n

im irr«

¦a*"Ad

RHil

Z~3 l£)

c.

r:

c:::n

Fig. 5.

hohe Sicherheitsgrade (unwirtschaftliche Abmessungen) führt. Deutlich tritt
dies im Fall Nr. 3 (lv ls 60, ~ 2,0) zu Tage, für den die oberste

(X\ ^v
Grenzlage der Kurve /il-^-l durch den Ordinatenabschnitt Pmax 6022 -Fv

\FV I S F
festgelegt wird. Diese Kurve, die an der Stelle - — -=? • oF 3800 kg/cm2,
^j Pv Fv

0,0596 den HooKE'schen Bereich verläßt, erreicht die Knickgrenze an

jener Stelle
Sk

2521 • ^ 5042 kg/cm2, — 0,1004, an der sie die ge-
ly ly n

strichelte Kurve (die hier die Ordinate X 980 • Fv besitzt) trifft. Wenn
daher die Knotenlast von Null bis auf den Grenzwert Pmax 980 • Fv +
5042 • Fv 6022 • Fv ansteigt, knickt vorerst die Vertikale geringfügig aus,
die Streben werden dadurch stark überlastet und gelangen in dem Augenblick,

in welchem ein Gleichgewichtszustand ausgebildet werden könnte,
selbst an die Knickgrenze, so daß das Tragwerk mit wachsender Beschleunigung

zusammenbricht. Der Wert Pmax ist um 59,2 <y0 größer als die
Rechnungsgröße v. Pzui, die sich ergibt, wenn wir das Fachwerk auf „zulässige
Inanspruchnahme" dimensionieren. Andererseits würden wir, wenn wir das
Fachwerk so wie ein System mit Stäben aus HooKE'schem Idealmaterial
bemessen würden, nach Figur 1 d den Wert Pmax' Xk f- Sk 7563 • Fv, d. i.
um 25,6 o/o mehr als Pmax erhalten.
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Abschließend können wir feststellen, daß bei der Ermittlung der
Tragfähigkeit Pmax eines einfach statisch unbestimmten Stahlfachwerkes mit
gedrückten Stäben je nach der Widerstandsfähigkeit des den überlasteten Druckstab

stützenden Grundsystems zwei Fälle 1 und 2 (Figur 3 c) unterschieden
werden müssen. Im Fall 1 (relativ schwaches Grundsystem) liefert die
Bemessung des untersuchten Fachwerkes auf „zulässige Inanspruchnahme"
praktisch dieselben Abmessungen bezw. Sicherheitsgrade wie die unmittelbare

Bezugnahme auf die Grenze des Tragvermögens; hingegen führt im
Fall 2 (relativ widerstandsfähiges Grundsystem) die Zugrundelegung
„zulässiger" Spannungen auf größere Grade der Bestandsicherheit, als bei
statisch bestimmten Systemen gefordert werden. Die Voraussetzung eines
HooKE'schen Idealmaterials für die überlasteten Druckstäbe (also die
Verwendung von Widerstandskurven, die ähnlich verlaufen wie die von Zugoder

Biegungsstäben aus ideal-plastischem Material) erscheint unzulässig,
da dadurch sowohl im Fall 1 wie auch im Fall 2 das Tragvermögen des
Systems erheblich überschätzt werden kann. Sind die untersuchten Stäbe
nicht genau zentrisch gedrückt und wird der Einfluß der Exzentrizität nicht
voll in Rechnung gestellt, dann kommen die geschilderten Verhältnisse in
noch ausgeprägterem Maße zur Geltung.

Versuche über das Tragverhalten einfach statisch unbestimmter Fachwerke
mit überlasteten Druckstäben.

Zur Überprüfung der geschilderten theoretischen Ergebnisse wurden
vom Verfasser Versuche mit einfach statisch unbestimmten Systemen
durchgeführt8). Um in Übereinstimmung mit den Voraussetzungen der Theorie
ein elastisches, zahlenmäßig genau erfaßbares Verhalten des statisch
bestimmten Grundsystems und eine gelenkige Lagerung des überzähligen
Druckstabes zu erzielen, wurde die Fachwerkskonstruktion des „stützenden
Grundsystems" durch einen kräftigen Stahlbügel ersetzt. (Der Bügel ist in
Figur 5 a in der Ansicht und im Grundriß dargestellt und besteht aus
wassergehärtetem Federstahl „Poldi T6H - Extra" mit rund 10 000 kg/cm2
Proportionalitätsgrenze.) Die Eichung des Bügels erfolgte mit derselben
Meßeinrichtung, die bei den Hauptversuchen Verwendung fand, und ergab im
gewählten Nutzbereich (für gegenseitige Annäherungen der Lagerpfannen bis
zu 7,5 mm) ein lineares Formänderungsgesetz mit der Federkonstanten
C ==¦- 0,205 cm/t. Die Druckstäbe hatten rechteckigen Querschnitt 11,9/
19,9 mm und erhielten gehärtete Schneidenkörper, die mit Hilfe eines
Keilpaares gleichmäßig an die Lagerpfannen des Bügels angedrückt werden
konnten. In Figur 5 c ist ein „zentrischer" und ein ^exzentrischer" Druckstab
dargestellt. Die Scheidenentfernung betrug 227 mm, so daß für den Schlank-

227
heitsgrad l =- -r^j- 66,0 gefunden wird. Alle Versuchsstäbe stammten'

aus derselben Stange; der statische Zugversuch lieferte für das Stabmaterial
eine Streckgrenze oF 2,36 t/cm2, die Zugfestigkeit oB 4,02 t/cm2, die
Bruchdehnung 610 33 <y0 und die Einschnürung \p 67 o/o. Das aus dem

8) Die Versuche wurden im La,boratorium für Elastizitäts- und Festigkeitslehre der
Deutschen Technischen Hochschule in Brunn durchgeführt. Für die freundliche
Überlassung des Laboratoriums bin ich Herrn Prof. Dr. Girtler und für die Unterstützung
bei der Herstellung der Probestäbe Herrn Prof. Dr. Kothny zu Dank verpflichtet und
ebenso danke ich meinen Mitarbeitern, den Herren Dr. Weinhold, Dr. Scheinost und

Joscht.
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Bügel mit dem eingebauten überzähligen Druckstab bestehende statisch
unbestimmte System wurde der in kleinen Stufen gesteigerten Druckbelastung
P ausgesetzt und hiebei die seitliche Ausbiegung y0 in Stabmitte und die
gegenseitige Annäherung A der Druckplatten9) gemessen. Auf Grund des
Eichungsergebnisses konnte dann für jede Laststufe der vom Bügel
übernommene Lastanteil P — X und daraus die Stabkraft X berechnet werden10).
Die auf diese Weise gewonnenen Kurven, die das Tragverhalten des
untersuchten statisch unbestimmten Systems festlegen und der theoretischen
Figur 3 b entsprechen, sind im Fig. 6 und 7 wiedergegeben.

Figur 6 bezieht sich auf zwei Versuche mit überzähligen Stäben, deren
Druckkraft mit einem Hebelarm von ungefähr 0,5 mm angreift. Der Verlauf
der Kurve Ax cp (X) ist in seinen kennzeichnenden Eigenschaften der
gleiche, den wir in Figur 3 a theoretisch abgeleitet haben. Die kritischen Zu-

/?
X-r /& &s

<5V4t yO
5*V

/O
JV

/<>
<V

19.9mm}\=66ß P/k~V4 2

11.3

7mm A

Fig. 6.

stände des statisch unbestimmten Systems werden unter den Lasten Pmax

4,80 bzw. 4,50 t erreicht und die Belastungsanteile des Bügels betragen
hiebei 0,840 bzw. 0,688 t, so daß für die kritische Druckkraft des
überzähligen Stabes Xkr 3,960 bzw. 3,812 t gefunden wird; diesen Werien
Xkr entsprechen (vgl. die theoretisch strenge Lösung für den exzentrisch

gedrückten Baustahlstab unter Fußnote 4) die Exzentrizitätsmaße -— ^r-
I h 26,7

bzw. TyTT und daher die „rechnungsmäßigen" Hebelarme p 0,45 bzw.

0,56 mm. Wir erkennen, daß der Widerstand des überzähligen Stabes im
kritischen Zustand sehr stark abfällt und daß demgemäß die Verformung A

9) Diese Werte A sind mit Rucksicht auf die Zusammenpressung der Unterlagsplatten

u. a. etwas größer als die reinen Sehnenverkürzungen des ausgebogenen Drucke
stabes, was bei der Beurteilung der Abszissenwerte in Fig. 6, 7 zu beachten ist.

10) Es sei erwähnt, daß die Kurven X — F (y0), die sich auf Grund der
Messungsergebnisse punktweise zeichnen ließen, eine sehr gute Übereinstimmung mit den vom
Verfasser theoretisch ermittelten Kurven (vgl. unter Fußnote 4) zeigten.
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des Systems zunimmt, bis bei A 7,88 bzw. 7,57 mm ein neuer
Gleichgewichtszustand ausgebildet wird. Der Lastanteil des Bügels ist hier auf
3,85 bzw. 3,69 t, d. i. gegenüber dem kritischen Zustand auf das 4,58- bzw.
5,35-fache gestiegen und nur der elastostatischen Hochwertigkeit des hier
verwendeten „stützenden Grundsystems" ist es zu danken, daß diese
Gleichgewichtszustände noch ausgebildet werden konnten.

Figur

Druckkraft mit dem Exzentrizitätsmaß angreift (Stabausbildung

7 bezieht sich auf zwei Versuche mit überzähligen Stäben, deren

JL- JL
h 6

nach Figur 5d). Die kritische Last des statisch unbestimmten Systems wird
hier bei Pmax 3,20 bzw. 3,29 t erreicht und der Belastungsanteil des Bügels
beträgt hiebei 0,510 bzw. 0,598 t, so daß sich für die kritische Druckkraft
des Stabes Xkr 2,690 bzw. 2,692 t ergibt; wenn wir Xkr mit Hilfe der

yO
«V*^<£j* ^^*«¦¦ 3a*^sOW

xP
<*;

>x

N.

1 ~

13.9mmfA=661 P/#-f
11.9

Fig. 7

6mm A

theoretisch ermittelten Tabellen für beiderseitig gelenkig gelagerte Baustahlstäbe

(vgl. unter Fußnote 4) bestimmen, dann erhalten wir genau denselben
Wert. Der achsiale Widerstand fällt auch hier nach Erreichen des kritischen
Zustandes stark ab, so daß die Verformung A des statisch unbestimmten
Systems stark zunimmt und erst bei A 4,08 bzw. 4,49 mm ein neuer
Gleichgewichtszustand erreicht wird. Das stützende Grundsystem wird auch hier
stark überlastet, da die Bügelkraft im neuen Zustand 1,99 bzw. 2,19 t, d.i.
das 3,90- bzw. 3,66-fache des Wertes im kritischen Zustand beträgt.

Wir können somit feststellen, daß das gefundene theoretische Ergebnis
durch die Versuchsergebnisse voll bestätigt wird. Der starke Widerstandsabfall,

den gedrückte Baustahlstäbe jiach Erreichen des „Knickzustandes"
zeigen, hat eine Mehrbelastung des stützenden Grundsystems zur Folge, die
ein Vielfaches des im Augenblick der Knickung des überzähligen Stabes
übernommenen Lastanteils betragen kann. Am stärksten kommt diese
Mehrbelastung bei zentrisch und nahezu zentrisch gedrückten Stäben und zwar,
wie aus dem Verlauf der Kurven Figur 2 leicht zu schließen ist, bei
Schlankheitsgraden von etwa 2 40 bis 100 zur Geltung.
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B. Das Tragverhalten einer über drei Felder durchlaufenden Stütze
bei exzentrischer Druckbelastung.

Wir haben im Abschnitt A gezeigt, daß die Tragfähigkeit statisch
unbestimmter Fach werke in großem Maße vom Verhalten der gedrückten
Stäbe beeinflußt werden kann und wollen nunmehr das Tragverhalten eines
statisch unbestimmten Stabwerkes bei Auftreten von Druckbelastung in
Untersuchung ziehen. Als Beispiel wählen wir eine über drei gleiche Felder
durchlaufende Stütze aus Baustahl, die im Mittelfelde durch eine exzentrisch
angreifende Druckkraft belastet wird (Figur 8a). Der Stabquerschnitt sei
ein Rechteck F b-h und die Hebelarme p der Druckkraft P a0F seien

*//,

0.30
1)

i/h
Z.0

a[P4<H- 1.5

1.0

tl/h
m -0.5

0.351

K- 0.1 0.2 0.3y/h0.2 0.1

41

'0.155 d

Fig. 8.

beiderseits gleich groß; der Baustahl möge der gleiche sein, den wir im
Abschnitt A zugrunde legten (Proportionalitätsgrenze oP 1900 kg/cm2,
eP 0,86 %o, Elastizitätsmodul E 2,210 000 kg/cm2, Fließbereich oF
2700 kg/cm2 const. von eF 2,5 bis eF' 6,0 %0, Zugfestigkeit ob
4200 kg/cm2).

Der Stab wird sich unter der Druckkraft P nach der in Figur 8 b
gezeichneten symmetrischen Kurve verbiegen und es werden über den beiden
Mittelstützen gleichgroße Biegemomente Tt entstehen, die wir als statisch
überzählig ansehen wollen. Zur Bestimmung dieser Momente schalten wir
über den Mittelstützen reibungsfreie Gelenke ein, lassen Wl als äußeres
Doppelmoment wirken und stellen die Bedingung auf, daß die
Endverdrehungen tgr der an der Gelenkstelle zusammenstoßenden beiden Stabteile

gleiche Größe besitzen müssen. Solange der HooKE?sche Bereich nicht
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verlassen wird, werden die Stäbe in den beiden Seitenfeldern nach kubischen

Parabeln verbogen und die Endverdrehung beträgt tgr -r--, welche
3£y

bh3
Beziehung nach Einführung des Stabträgheitsmomentes / —^ auch in

der Form tgr ~= • ^— • —r-^ angeschrieben werden kann. Wird
bh2 $Jl

9W >-t— • op oder -—> 316,7 kg/cm2, dann wird der HooKE'sche Bereich
6 bh1

verlassen und wir müssen den funktionalen Zusammenhang zwischen tgx
und Wl auf folgende Weise ermitteln: Wir bestimmen vorerst auf Grund der
vorgegebenen Spannungs-Dehnungslinie (die wir den Biegezug- und
Biegedruckspannungen zugrunde legen) und des rechteckigen Stabquerschnittes
F b • h den Zusammenhang zwischen dem resultierenden Spannungsmoment

M und der örtlichen Achsenkrümmung — in Form der Kurve
h t M \ $

cp l-rv^)11)- In Figur 9a ist die so erhaltene Kurve dargestellt worden,

wobei die Punkte P, F, F' und G der Reihe nach jenen Normalspannungsverteilungen

zugeordnet sind, in denen die Randspannungen die
Proportionalitätsgrenze, die Fließgrenze, den Beginn der Verfestigung und die
Größe ö ^4000 kg/cm2 erreichen. Wirkt nun auf den Stab das
Endmoment Wl ein, dann können wir für den Gleichgewichtsfall die lineare Ver-

M M
teilung der Größe -—-^ angeben (Figur 9 b) und jedem Wert —7^- aus Figur 9a

/. ö fi 0 n
einen Wert — zuordnen. Da mit Rücksicht auf die Kleinheit der entstehenden

£ 1 d2y
Stabausbiegungen der linearisierte Ansatz — c^ — -^ verwendet werden

q dx jt
darf, können wir nach dem Satz von Mohr die Verteilung — als Belastung

auffassen und die A-fache Endverdrehung tgt als Stützkraft unter dieser
gedachten Belastung ermitteln (Figur 9b). Auf diese Weise erhalten wir

L Wt 9K
tgx in der Form tgr =- k ¦ -yy-

• -—— und finden z. B. für —~ 316,7, 454,3,

604,5, 696,6 und 794,7 der Reihe nach k 3,62, 3,70, 4,18, 6,65 und
12,73 mal 10~6.

Im Mittelfeld wirkt auf den Stab außer dem Endmoment 3K noch die
exzentrische Druckkraft P ein. Da wir die Untersuchung im weiteren auf
einzelne Laststufen P const. beziehen, dürfen wir Wl P • p' setzen, wobei

der gedachte Hebelarm p' dem Angriffshebel p entgegenwirkt und der
entlastenden Wirkung des Stabes im Seitenfeld Rechnung trägt. Die
resultierende Belastung des Mittelfeldes besteht dann aus einer Druckkraft
P o0F, die mit dem Hebelarm a=-p—pf exzentrisch angreift und eine
Gleichgewichtsfigur nach Art der Figur 8 c erzeugt. Der innerhalb der
Wendepunkte gelegene Ast dieser Figur ist offenbar identisch mit der Biege-

n) Bezüglich der Ermittlung dieses Zusammenhanges siehe unter Fußnote 5. Es
erscheint empfehlenswert, die Kurve Fig. 9 a mit der Kurve zu vergleichen, die bei
Voraussetzung; eines idealplastischen Werkstoffes erhalten wird und den unter Fußnote

1 erwähnten theoretischen Untersuchungen im Fall der Biegung zugrunde liegt. Wir
erkennen, daß die Kurventangente an keiner Stelle parallel zur Ordinatenachse verläuft,
daß also auch bei beschrankter Verformung sog. „Plastizitatsgelenke" mit Rucksicht auf
die starke Verfestigung nicht zur Ausbildung gelangen.
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linie, die ein beiderseits gelenkig gelagerter, zentrisch gedrückter Stab der
Länge L0 unter der Druckkraft P o0- F ausbildet und als „Grundkurve"
y yj (x) bezeichnet werden möge. (Bezüglich der Bestimmung dieser
Grundkurven vgl. unter Fußnote 5.) Wir legen das Koordinatenkreuz mit
der x-Achse in die Grundkurvensehne und mit dem Ursprung an das eine
Grundkurvenende, fassen die außerhalb der Wendepunkte liegenden Äste
als polarsymmetrische Fortsetzungen dieser Grundkurve auf und können

feststellen, daß die für die Stelle x =——, y -= — a gefundenen Achsen-
dy

Verdrehung -^- mit Rücksicht auf unsere Formänderungsbedingung
aX y — — a

mit der Endverdrehung tgx übereinstimmen muß. Nach Einführung von
Tt P • p' bh-oo. (p — a) läßt sich diese Bedingung auch in der Form
a P I 2 h dy \

—r — -7 t • -t— • -y- schreiben und ermöglicht so eine bequeme
n iL rC ' Oq F aX '

y — — q

Ermittlung der Gleichgewichtszustände für zugrunde gelegte Laststufen
P

o0 =¦• j-r- Wir gehen hiebei zweckmäßig von einem gewählten Wert y0 aus,

bestimmen den genauen Verlauf und die Länge L0 der Grundkurve, zeichnen
diese Grundkurve einschließlich ihrer polarsymmetrischen Fortsetzungen und
suchen jene Größe L auf, für die unsere Formänderungsbedingung befriedigt
wird. Diese „Gleichgewichtslänge L" legt die Feldweite fest, die die drei-
feldrige Stütze besitzen muß, damit bei Einhaltung des Wertes y0 ein
Gleichgewichtszustand unter der gegebenen Druckbelastung ausgebildet werden
kann; die hiebei entstehende Biegelinie ähnelt der Kurve Figur 8b und zeigt
in Stabmitte eine seitliche Ausbiegung von der Größe y0 y0 -\- p' — p
y0 — a.

Die Durchführung dieses Lösungsverfahrens sei an einem Zahlenbei-

^= 1500 kg/an«, £ 0,20, f
Die Grundkurve für den prismatischen Stab aus dem geschilderten Baustahl

ist für den Fall o0 1500 kg/cm2, ^ 0,30 in Figur 8 d einschließlich ihrer
XVpolarsymmetrischen Fortsetzung im Koordinatensystem —, y- dargestellt

worden und da für jede Stelle ~- die Länge der vom Scheitelpunkt aus ge-
L dy

messenen Sehne ^-r und auch die Größe -f- bekannt ist, können wir für jede
2 k dx J

Stelle ^r- die Hilfsgröße -^ • —— --- bestimmen und die Kurve
h ö h k • o0 L dx

~TT fAu) zeichnen (Figur 8d). Der HooKE'sche Bereich wird im Seiten-

* i^ 1 / m M6,7. bh2 n011 u f a no p'feld verlassen, wenn p' -=- <g
' ——— 0,211 h, also ~r 0,2 — VP 1500 • bh h h

—0,011 beträgt und demgemäß sind die Ordinaten dieser Kurve rechts

von der Stelle -j- —0,011 mit Verwendung des HooKE'schen Wertes
o h

k — und links von dieser Stelle mit Hilfe eines nach Figur 9 ermittelten

größeren Wertes k zu berechnen. Die Kurve /l(-v-) ermöglicht uns, unmittelbar

jenen Punkt des Grundkurvenzuges anzugeben, für den die Formände-

spiel gezeigt, für das wir — 1500 kg/cm2, -— 0,20, ^ 0,30 wählen.
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rungsbedingung
h h

A
h

0,2 A
Ä

befriedigt wird; es ist dies der

Punkt A mit den Koordinaten

geordneten Hilfsgröße A
h

_ 4,48, 4~ -r- — °>155 und der zu"
a* h h

0,355. Der Ordinatenunterschied des Scheitels

und des Punktes A besitzt die Größe — ~>- + 4,48 15,76, so daß die
2 h 2 h j

Gleichgewichtslänge L 31,52-h und der Schlankheitsgrad A=— • Vl2
109,0 beträgt. Wir können somit feststellen, daß die untersuchte drei-

feldrige Stütze, sofern sie die Feldweite L 31,52 -h besitzt, unter der
exzentrischen Druckbelastung P 1500 • b • h, p== 0,2 h eine Gleichgewichts-

6.
h/ei

006

004

r
002

b. M/bh2

200 400 600k3/cmz M/^2

"/bh>

T
h/9

h.tgr
Fig. 9.

figur nach Art der Figur 8 b ausbildet, deren Wendepunkte in der Entfernung
4,48 • h von den Mittelstützen gelegen sind und die in Stabmitte die
seitliche Ausbiegung y0 0,30 • h + 0,155 • h 0,455 h aufweist. Das Stützenmoment

beträgt in diesem Zustand Tt bh- o0- (p — a) 532 .b.h2 und die
größte Randspannung im Seitenfeld liegt (vgl. Figur 9 a) noch unterhalb der
Fließgrenze.

Die systematische Bestimmung der Schlankheitsgrade X L/i, die zur
Ausbildung von Gleichgewichtszuständen der untersuchten dreifeldrigen
Stütze notwendig sind, wird in Figur 10 vorgeführt. Auch dieses Graphikon
bezieht sich auf Stäbe, deren Querschnitt ein Rechteck F b - h ist und deren
Baustahl dem geschilderten Formänderungsgesetz gehorcht; die Laststufe

Pist durch die mittlere Druckspannung a0 -=¦ 1500 kg/cm2 festgelegt ,und

als Angriffsexzentrizität werden verschiedene Werte p/h in Rechnung gestellt.
Wir haben vorerst die Schar der Grundkurven, die unter der Druckkraft
p 1500-/7 bei verschiedenen Werten der Scheitelausbiegung y0/h aus-
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gebildet werden, genau zu bestimmen und ferner auch die Hilfsgröße „ku
für verschiedene Werte jy^ nach dem geschilderten Verfahren festzulegen;

für den HooKE'schen Bereich ergab sich k 3,62.10~6. Um das
Auftreten sehr kleiner Dezimalwerte zu vermeiden, wollen wir unsere Form-

10G-£
änderungsbedingung beiderseits mit -^-^- multiplizieren, also in der Form

106-£
3,62

Die Funktion

106
3,62

2h dy
dx

oder kurz A
h h

schreiben.
3,62-1500 L

£ 184,17- 24-f-
h L dx

Figur 8 d gezeigt wurde, für verschiedene Parameter ^ aus den Grundkurven
¦'.(* läßt sich, ähnlich wie in

h
bestimmen (in Figur 10 wird sie durch die dick gezeichneten Kurven wieder-

\ '**$%, Llh^̂̂ /\
W^N 2 0-

^^ \ » N ~40^/

/ ^^t~^-~
r=

^--^_ \ 10~ -20\ NXx (Oi?)^

l [
1 ~ !¦

-040 -030 -0 20 -010

Fig. 10.

oio y_^a_ 020
h h

gegeben, die für ^ 0,20, 0,30, 0,40 und 0,45 dargestellt wurden). Auch
p a p Tt

können wir für verschiedene Werte '—- _.—--- die Hilfs-
h h h 1500 • b h2

große ^ —
Q AO - • y- berechnen und, da für die Lösung y- — gilt,

' f*\u\ darstellen (in Figur 10 wird diese
h 3,62 h

gleichfalls als Funktion *.
h JZ\h

Funktion durch die dünn ausgezogenen Kurven wiedergegeben, die für die

Exzentrizitätsmaße L— 0, 0,2 und 0,4 gezeichnet wurden). Auf diesen

Kurven finden wir die Punkte fi und F, die jenen Zuständen zugeordnet
sind, in denen im Seitenfeld die Proportionalitätsgrenze bzw. die Fließgrenze
erreicht wird; links vom Punkt F nehmen die Beiwerte „ku stark zu und
daher steigen die Kurven hier steil an. Die Schnittpunkte der beiden Kurven
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h und /2 befriedigen die Formänderungsbedingung; damit wir.h)—'*\h) a
an den Abszissenorten -v — -,- dieser Schnittpunkte unmittelbar die zuge-h h ^ _ordnete Größe L/h abmessen und daraus die gesuchte Schlankheit X — • Vi 2

berechnen können, wurde mit Hilfe der Grundkurvenschar auch die Funktion

y- /3 (—-) graphisch festgelegt (gestrichelte Kurven in Figur 10, gezeichnet

für die Parameter ^ 0,20, 0,30, 0,40 und 0,45). Wir gewinnen auf diese

^^/SOO^/cm2
7i J

167.0 ?-^

ff
150

133.6

125
\115.5

\101.0
700

87.0

50

25

Qu St

OJ 0.4 0.5 y<>/h

gehöriger Wertepaare 1, ~- und können daher die Kurven X /4 [—-

0.2 o.s

Fig. 11.

Weise für jedes gewählte Exzentrizitätsmaß p/h eine Serie zusammen-

punkt-
weise bestimmen. In Figur 11 ist das so erhaltene „Diagramm der

Gleichgewichtszustände" für die Exzentrizitätsmaße y-= Q, 0,1, 0,2, 0,3, 0,4 und

0,5 dargestellt worden; die Abszissen beziehen sich hiebei, wie nochmals
erwähnt sei, auf die Scheitelausbiegungen der Grundkurve und führen erst in
der Form y0 y0 — a auf die effektiven seitlichen Ausbiegungen in
Stabmitte.

Um in Figur 11 die größte im Mittelfeld auftretende Stabspannung
leicht abschätzen zu können, wurde die Grenzgerade „//", das Quetschintervall

„Qu" und das Streckintervall „St" eingezeichnet. Alle Diagrammpunkte
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links von „FI" gehören Gleichgewichtszuständen an, in denen im Mittelfeld
die Proportionalitätsgrenze noch nicht erreicht ist. Fällt die Abszisse eines

Diagrammpunktes in das Intervall „St", dann liegt die größte (am Außenrand

des Stabscheitels auftretende) Zugspannung im Streckbereich oF
4 2700 kg/cm2, während die gleichzeitig auftretende größte Randpressung
(da das Quetschintervall schon verlassen wurde) dem Verfestigungsbereiche
angehört. Um auch die größte im Seitenfeld auftretende Randspannung
bequem abschätzen zu können, wurden die Grenzlinien „GH" und „GF"
gestrichelt eingetragen. Alle Kurvenpunkte links außerhalb von GH gehören
Gleichgewichtszuständen an, in denen im Seitenfeld der HooKE'sche Bereich
nicht verlassen wird (Wl < 316,7 • bh2); alle Kurvenpunkte rechts außerhalb
von GF hingegen sind Zuständen zugeordnet, in denen Wl > 604,5 • bh2 ist
und daher die Randspannumg im Seitenfeld die Fließgrenze oF 2700 kg/cm2
erreicht hat.

P
Die Kurve für den Sonderfall des zentrischen Kraftangriffes »-r- 0"

zweigt von der Ordinatenachse (die einen Ast dieser Kurve bildet) mit
waagrechter Tangente ab. Die Ordinate Xk des Verzweigungspunktes stellt
die Gleichgewichtsschlankheit für eine infinitesimale Ausbiegung
(„Knickschlankheit") vor und wird nach den Lehren der Stabilitätstheorie aus
der „Knickbedingung" gewonnen. Wenn wir uns auf die maßgebenden
symmetrischen Biegelinienformen beschränken, laute^diese Knickbedingung

cos t± + 3'i'f'J • sin^ 0, wobei ß \l^- bedeutet und T den
2 P • L 2 f J J p

Engesser-Kärmän'sehen Knickmodul vorstellt. In unserem Falle ist — 1500

kg/cm2, somit T E, und wir erhalten als kleinste Knickwurzel ß • L 4,35

und daraus Xk 4,35 • I/^kqq- 167>° als Ordinate des Abzweigungspunktes

der Kurve „ '— 0".

Betrachten wir das gefundene Diagramm der Gleichgewichtszustände
Figur 11, dann sehen wir, daß die Kurven für exzentrische Lastangriffe
ausgeprägte Maxima aufweisen. Die diesen Maxima zugeordneten Ordi-
naten max/ Xkr („kritische Schlankheitsgrade") stellen die größten
Schlankheitsgrade der dreifeldrigen Stütze vor, die noch die Ausbildung eines
Gleichgewichtszustandes unter der gegebenen Belastung zulassen; wäre die
Schlankheit größer als Xkn dann würde der Stab die
gegebene Last nicht zu tragen vermögen und sich immer mehr
ausbiegen, bis er eine äußere Stützung findet oder eine Gefügetrennung
erfährt. So können wir z. B. aussagen, daß die Stütze mit der Feldschlankheit

— 101,0 zusammenbricht, wenn die mit p 0,3 • h exzentrisch angreifende
i p

Druckkraft die Größe P 1500-/7 erreicht, da die Wertegruppe ^= 1500,

y- 0,3, X 101,0 in Figur 11 einem kritischen Gleichgewichtszustand

angehört12). Aus der Lage des Kurvenpunktes gegenüber den Intervallen „Qu"

12) Die Lösung ist exakt und zur Begründung dieser Exaktheit erscheint noch die
folgende Bemerkung geboten: Wachst P von Null bis zum kritischen Wert an, dann
ändert sich der Biegelinienverlauf und die Wendepunkte werden sich innerhalb eines
bestimmten Bereiches verschieben. Es existiert daher in der Umgebung der Wendepunkte
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und „St" sowie der Grenzkurve „GF" können wir hier den Schluß ziehen,
daß im kritischen Zustand (d.i. im Augenblick des Zusammenbruches) die
größte Pressung des Stabes im Mittelfeld innerhalb des Quetschbereiches
und die größte Zugspannung unter der Fließgrenze gelegen ist und daß auch
die größte Randspannung im Seitenfeld die Fließgrenze noch nicht
erreicht hat.

In gleicher Weise vermögen wir aus Figur 11 auch zu entnehmen, daß
die untersuchte dreifeldrige Stütze zusammenbricht, wenn die Feldschlankheit

— =- 133,8 beträgt und die mit dem Hebelarm p 0,1 • h angreifende

Druckkraft die Größe P Pkr 1500-/7 erreicht. Dieses Ergebnis ist
deshalb von besonderem Interesse, weil hier der Zusammenbruch des
statisch unbestimmten Systems schon eingeleitet wird,
bevor noch im Seitenfelde der HooKE'sche Bereich
verlassen wird und die größte Pressung im Mittelfelde ganz an die Quesch-
grenze gelangt. 'Es erscheint daher in dieser Beziehung bei der
Beurteilung des Tragvermögens statisch unbestimmter Stabwerke mit gedrückten
Gliedern einige Vorsicht am Platze33). Den genauen Wert der im kritischen
Zustand entstehenden Größtspannung im Seitenfeld können wir mit Hilfe
der Figur 10 leicht ermitteln, da sich hier für -£- 0,1, ^ 0,203 dis Ab-

a
h h

szisse y- — 0,077 ergibt und damit Tt P • (p — a) 265,5 • bh2 und

omax - 1593 kg/cm2 berechnet werden kann. Die im kritischen

Zustand auftretende seitliche Ausbiegung in Stabmitte beträgt y0 y0 — a
0,280 • h und für die Entfernung der Wendepunkte der Biegelinie von den
Mittelstützen finden wir 0,102 • L, so daß der Biegelinienverlauf im Augenblick

des Zusammenbruches der Figur 8 b ähnelt. Würden wir auf die
entlastende Wirkung der Stäbe in den beiden Seitenfeldern verzichten und das
statisch bestimmte Grundsystem (mit Gelenken über den Mittelstützen)
ausführen, dann wäre die Grenzlast des Systems mit der kritischen Druckkraft

des Mittelstabes identisch und würde Pkr 850 • F betragen (vgl. die
unter Fußnote 4 genannte Abhandlung, in der sich eine Tabelle der kritischen
Spannungen von exzentrisch gedrückten, beiderseits gelenkig gelagerten
Stäben aus dem hier zugrunde gelegten Baustahl befindet). Wir ersehen
daraus, daß die Tragfähigkeit im untersuchten Beispiel durch die Wahl der
statisch unbestimmten Anordnung (d. h. durch die biegesteife Verbindung

ein Bereich, innerhalb dessen das Vorzeichen der Achsenkrümmung
während der Laststeigerung geändert wird und daher im allgemeinen das lineare
Entlastungsgesetz im Spannungsbilde zur Geltung kommen kann. Im untersuchten
Fall ist eine derartige (an sich nicht bedeutungsvolle) Beeinflussung des der Rechnung
zugrunde liegenden Formänderungsgesetzes ausgeschlossen, da die mittlere
Druckspannung nur bis zum kritischen Wert 1500 kg/cm2 anwächst und die überlagerten
Biegespannungen in der Nähe der Wendepunkte sehr klein sind.

13) In diesem Zusammenhang sei auch auf das Verhalten schlanker Stahlbogenträger
mit geringer Pfeilhöhe hingewiesen. Die theoretischen Untersuchungen des Verfassers
haben hier ergebeu, daß für den Nachweis der „Knicksicherheit*' nicht die Vollbelastung
sondern die halbseitige Belastung maßgebend ist, da dann die Stützlinie von der Bogeri-
achse stark abweicht, also eine stark exzentrische Druckbelastung des Stabes eintritt. Bef
üblicher Bemessungsweise (Nachweis der „zulässigen Inanspruchnahme" im Querschnitt
des Viertelspunktes) kann der Sicherheitsgrad gegen diese Art des Zusammenbruches
bis auf etwa ,61 heruntersinken.
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mit den Seitenfeldern) von Pkr
steigert wird.

Ernst Chwalla

850 F auf 1500 F, d.i. um 77 o/0 ge-

C. Das Tragverhalten eines einfach statisch unbestimmten Fach¬
werks bei wiederholter Überlastung.

Während wir in den beiden früheren Abschnitten den Einfluß gedrückter
Stäbe klarzulegen versuchten und hiebei ein allmähliches Anwachsen der
Belastung bis zur Erschöpfung des Tragvermögens voraussetzten, wollen wir
nunmehr einen statisch überzähligen Z u g s t a b untersuchen, der einer
wiederholten Überlastung ausgesetzt ist. Wir beziehen uns wieder auf
unser Fachwerkmodell Figur 1 a und legen den Gleichgewichtszustand in
der gleichen übersichtlichen Weise fest, wie im Abschnitt A geschildert

X

i ~

Xi Ki

CÄ- fl. xo

I ^

4 I
l f

n+7

Fg. 12.

wurde (Figur 12a). Vom stützenden Grundsystem, das von den beiden
Streben gebildet wird, verlangen wir die Befolgung des HooKE'schen
Gesetzes, so daß wir die Funktion As f (X) wieder durch eine Gerade „G"
darstellen können; der funktionale Zusammenhang Ax cp (X( zwischen
der Längenänderung und der Achsialkraft des untersuchten, überlasteten
Stabes ist hingegen in der Form einer Kurve gegeben, die affin verwandt
ist mit der Spannungs-Dehnungslinie des Baustahls und deren Schnittpunkt I
mit der Geraden „G" den Gleichgewichtszustand unter der Knotenzugkraft P
bestimmt. Nimmt nun P ab, dann wird der elastische Formänderungsanteil
der überlasteten Vertikalen wieder abgebaut und die Kurve cp (X)
beschreibt die Entlastungsgerade. Die Stabkraft X sinkt hiebei bis auf
Null und wächst hierauf als Druckkraft an, bis ein Gleichgewichtszustand
des unbelasteten Systems erreicht wird. Die Gleichgewichtsbedingung
lautet für diesen Selbstspannungszustand 5 — X und liefert die Beziehung

25
As

EFS
X C - X, die in Figur 12 a durch die Gerade G' dargestellt

wird. Der Schnittpunkt dieser Geraden (die durch den Ursprung geht und
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parallel zu „G" verläuft) mit der Kurve cp (X) legt den Selbstspannungs-
zustand II fest, der nach Entfernung von P ausgebildet wird; die Vertikale
besitzt hier die Druckkraft Xn, die Strebe die Zugkraft Sn —Xn und der
Lastknoten erreicht nicht mehr die ursprüngliche Lage sondern zeigt die
bleibende Verschiebung A//. Wächst die Last nunmehr zum zweiten Mal
von Null auf den früheren Endwert P an, dann steigt die Kurve cp (X) wieder
bis zur Geraden G an und legt hier den neuen Gleichgewichtszustand III
fest u. s. w.; wir sehen, so lange die obere Lastgrenze P unverändert bleibt,
müssen die Punkte I, III, V, (Gleichgewichtszustände unter P) auf der
Geraden G und die Punkte II, IV, VI, (Selbstspannungszustände nach
Entfernen von P) auf der Geraden G' gelegen sein.

Da die Achsialspannung in der plastisch gedehnten Vertikalen beim
Übergang in den Selbstspannungszustand das Vorzeichen wechselt, wird der
Verlauf des Kurvenzuges cp (X) durch jenen Komplex von Erscheinungen
beeinflußt, der unter dem Namen „Bäuschingereffekt" bekannt ist. Im Rahmen
dieses Effektes werden die konventionellen Grenzen, vor allem die
Elastizitätsgrenze, entsprechend ihrer Abstufung und je nach der Größe der vorher

aufgetretenen plastischen Verformung verändert14). Der Einfluß des
zeitlichen Ablaufes der Belastungen kann durch die beiden Grenzfälle Fig. 12 b
und c zur Darstellung gebracht werden. Im ersten dieser Grenzfälle, der
durch die Einschaltung ausreichend großer Ruhepausen zwischen den
Lastwechseln gekennzeichnet ist, erfährt die Elastizitätsgrenze im Zuge der Alterung

eine Hebung bis zum vorher erreichten Punkt I, so daß bei der zweiten
und jeder weitern Belastung derselbe Ast I—II der Kurve cp (X) durchlaufen

wird und der Formänderungszustand ein stationärer ist. Im Grenzfall
unmittelbar aufeinander folgender Lastwechsel erscheint hingegen die

Elastizitätsgrenze für die jeweils folgende Beanspruchung des entgegengesetzten

Vorzeichens merkbar gesenkt, so daß die Kurve cp (X) eine offene
Schleife bildet, deren Spitzen I, III, V, bzw. II, IV, VI, die
Gleichgewichtszustände nach der Belastung bzw. Entlastung festlegen. Diese
Einzwängung des Schleifenzuges in das Geradenpaar G, G' ist durch das Übermaß

an kinematischer Bindung des Systems bedingt und daher typisch für
statisch unbestimmte Tragwerke; sie bewirkt bei zunehmender plastischer
Verformung eine fortschreitende Abnahme der Stabkraft X (also eine
fortschreitende Entlastung des überzähligen Stabes im überlasteten System),
die allerdings mit einer Zunahme der entgegengesetzt gerichteten Stabkraft
im Selbstspannungszustand verknüpft ist. Je steifer das stützende Grundsystem

ist, je kleiner also der Neigungswinkel a des Geradenpaar^s G, G'
ist, umso ausgeprägter tritt dieser Entlastungsprozeß in Erscheinung. Durch
die Abwärtsführung der Schleife werden die durch die Belastungen neu
hinzukommenden Dehnungsanteile allmählich verkleinert und jene des Selbst-
spannungszustandes immer mehr vergrößert, so daß nach einer ausreichenden
Zahl von Wechseln beide Anteile übereinstimmen werden. Die Schleife ist
dann in sich geschlossen, der Formänderungszustand wird stationär. Die
lotrechten Senkungen A des Lastknotens pendeln dann zwischen den Werten
An und An + 1 hin und her, es besteht zwar keine Proportionalität, jedoch
vollkommene Elastizität. Erfährt die Elastizitätsgrenze des Baustahls im Zuge

u) Vgl. dazu L. Bauschinoer, Ziviling. 1881 und Mitt. Mech. Techn. Laborat.
München 1886; G. Masino und W. Mauksch, Wiss. Ver. Siemens Konzern, 1925/26;
G. Sachs und H. Shoji, Z. f. Physik, 1927; W. Kuntze, Z. d. V. d. Ing., 1928, S. 1488;
W. Kuntze und G. Sachs, Mitt. d. deutschen Mat.-Prufungsanst., Sonderheft XIV, 1930.
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der Belastungswiederholung eine fortschreitende Hebung, dann nimmt die
Breite der Schleifen ab und es kann zur „vollständigen Konvergenz" kommen,
bei der der Schleifenzug in einer einzigen Geraden n —> n -\-1 zusammenfällt.

Die Frage, ob das Erreichen eines stationären Formänderungszustandes
durch Schließen der Hysteresisschleife auch vom Standpunkt der
Dauerfestigkeit der Rückführung in den elastischen Bereich gleichkommt,
scheint noch nicht endgültig geklärt zu sein. Würde der überlastete Stab
einem statisch bestimmten System angehören, dann würde die
Stabspannung bei jedem Lastwechsel zwischen der unteren Grenze ou 0 und
einer oberen Spannungsgrenze a0 schwanken und daher einer Zeitfestigkeit
vom Typus der „Ursprungsfestigkeit" unterliegen. Ist der wiederholt
gereckte Stab ein überzähliger Stab eines statisch unbestimmten
Systems, dann tritt die geschilderte Abwärtsführung der beiden Spannungsgrenzen

ou und o0 ein; die Spannungsdifferenz o0 — ou bleibt hiebei
angenähert die gleiche, hingegen nimmt das arithmetische Mittel i(tf0+ <?„), die
„statische Vorspannung", immer mehr ab, so daß sich die Beanspruchungsweise

immer mehr der „schwingenden" nähert. Da nun der doppelte Wert der
Schwingungsfestigkeit (also die ganze Spannungsdifferenz o0 — ou) für den
Baustahl im allgemeinen größer15) ist als die Ursprungsfestigkeit, wirkt sich
der geschilderte Entlastungsprozeß auch vom Standpunkt der Dauerfestigkeit
günstig aus; allerdings darf nicht übersehen werden, daß die vorangegangene
Überlastung des Stabes die Dauerfestigkeit herabzusetzen vermag.

Versuche über das Tragverhalten einfach statisch unbestimmter Fachwerke
mit wiederholt überlasteten Zugstäben.

Bei den Versuchen mit wiederholt überlasteten, statisch überzähligen
Zugstäben fand ebenso wie bei den im Abschnitt A geschilderten
Druckversuchen der in Figur 5 a gezeichnete Stahlbügel Verwendung, der die
Fachwerkskonstruktion des „stützenden Grundsystems" vertritt und ein elastisches,

ziffernmäßig genau festlegbares Verhalten dieses Grundsystems
gewährleistet sowie eine gelenkige Lagerung des untersuchten Stabes ermöglicht.

Die Eichung des Bügels zeigte, daß innerhalb des Nutzbereiches
(Vergrößerungen der Lagerentfernung bis zu 7,5 mm) das HooKE'sche Gesetz
befolgt wird und die Federkonstante, wenn die Messung mit derselben
Meßeinrichtung wie bei den Hauptversuchen erfolgt, C= 0,197 cm/t beträgt16).
Die nach Figur 5 b ausgebildeten Versuchsstäbe wurden mit ihren verstärkten
Enden (Querschnitt 20/20 gegenüber einem Kreisquerschnitt mit d-= 16 mm,
F 2,01 cm2 innerhalb der Meßstrecke) in die Beißkeile der Maschine
eingespannt, nachdem die gehärteten, beiderseits angeordneten Schneidenkörper
mit Hilfe eines Keilpaares gleichmäßig an die Lagerpfannen des Bügels
angedrückt wurden. Alle Versuchsstäbe stammten aus derselben Stange; der
statische Zugversuch ergab für das Stabmaterial eine obere und untere Streckgrenze

oFo 2,42 bzw. oFu 2,36 t/cm2, eine Zugfestigkeit oB 4,02 t/cm2,
die Bruchdehnung d10 33 o/0 und die Einschnürung \p 67 o/o.

Die Messung der Dehnungen A0 erfolgte über eine Meßstrecke von
150 mm. Da aus diesen Messungsergebnissen auf die gesamte Längenände-

15) Vgl. O. Graf, Die Dauerfestigkeit der Werkstoffe, Berlin 1929; K. Schaechterle,
Z. „Die Bautechmik" 1932, S. 592; A. Thum und W. Buchmann, Dauerfestigkeit und
Konstruktion, Berlin 1932; P. Ludwik u. J KRVSTOF, 7.6 V. d. In«? 19*3, S 629.

16) Dieser Wert ist um 0,008 cm/t kleiner als der bei den Druckversuchen in Rechnung

gestellte, da bei der hier gewählten Meßeinrichtung die Einpressungen der
Unterlagsplatten etc. im Ablesungsergebnis nicht enthalten sind.
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rung des Stabes zwischen den beiden Schneidenkörpern geschlossen werden
mußte, wurden die Ergebnisse des statischen Zugversuches verwendet, um
die Dehnungen der beiden Stabenden (vom Ende der Meßstrecke bis zum
Schneidenkörper) allgemein als Bruchteil kyo der Meßstrecken-Dehnung
auszudrücken17). Mit Hilfe des so gewonnenen Graphikons konnte zu jeder
Ablesung A0 unmittelbar die zwischen den Schneiden auftretende

Gesamtdehnung (^ H—Trirr) ' ^° ange&et>en werden und mit Hilfe des Ergebnisses

der Bügeleichung ließ sich dann auch der Lastanteil (P — X) des Bügels
und die Kraft X im überzähligen Stab genau festlegen. Die auf diese Art

i
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Fig. 13.

punktweise bestimmten Kurven sind in Fig. 13, 14 und 15 für drei Versuche
wiedergegeben worden. Die Darstellungsweise ist die gleiche wie im
theoretischen Schaubild Figur 12 und jeder Laststufe P entspricht eine Gerade G,
während den Selbstspannungszuständen die Gerade C zugeordnet ist.

Im Rahmen des ersten Versuches (Figur 13) wurde die Belastung des
statisch unbestimmten Systems vorerst auf P ==¦ 5,55 t, d. i. bis zum Erreichen
der oberen Streckgrenze im Stabe gesteigert und hierauf wieder abgebaut;
im Zuge der neuen Belastung konnte die „obere" Streckgrenze mit Rücksicht
auf ihre Labilität nicht mehr erreicht werden18). Die Last wurde nunmehr
der Reihe nach auf P 5,70, 6,00, 7,00, 8,15 und 9,10 t erhöht. Die oberen
Äste der Kurve A cp (X) beschreiben hiebei die Formänderungslinie des

X Xstatischen Zugversuches und die Spannungen —r ^tt^t t/cm2 des StabesF 2,01
gelangen tief in den Verfestigungsbereich. Die Schleifenbreite nimmt nach
jeder Laststeigerung zu und da der Bauschingereffekt bei den abwärts und

17) Der Korrekturbeiwert „ku schwankt nach Beginn des Fließens in der Meßstrecke
zwischen 8,5 un|d 11 o/0; innerhalb des elastischen Bereiches, der auch bei den
Entlastungen zur Geltung kommt, beträgt er 22,6 o/0.

18) Vgl. dazu die Diskussion in der Z. V. d. L, 1928, S. 1859 und K. Memmler und
K. Laute, Mitteilungen d. d. Materialprüfungsanstalten, Sonderheft XV, 1931, S. 60.
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aufwärts führenden Schleifenästen angenähert im gleichen Maße zur Geltung
kommt, wird der Zuwachs an bleibender Dehnung unter der vorher schon
erreichten Laststufe nur sehr klein. Nach Ausbildung des Selbstspannungs-
zustandes XII wurde das System durch 21 Tage unbelastet gelassen. Die
Gesamtdehnung AXu des Stabes nahm während dieser Ruhepause (unter
Berücksichtigung der Temperaturwirkung) auf den Wert AXu ab und da auch
die Elastizitätsgrenze des Stabmaterials im Zuge der Alterung eine Hebung
erfuhr, ergab sich bei der neuerlichen Belastung mit P 9,1 t ein
Gleichgewichtszustand XIII, dem ein kleinerer Dehnungswert als dem vorher
ausgebildeten Gleichgewichtszustand XI zugeordnet ist. Die Gesamtdehnung
AXi konnte hier auch nach mehreren Lastwechseln nicht erreicht werden.

Beim 2. Versuch (Figur 14) wurde die Belastung des statisch
unbestimmten Systems in einem Zuge bis auf P 8.0 t gesteigert, so daß der
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überzählige Stab eine starke plastische Dehnung erfährt. Hierauf wurde
entlastet und nun sechsmal dieser Lastwechsel vollzogen. Wir sehen, daß die
bleibenden Dehnungen nur geringfügig zunehmen, da der Bauschingereffekt
bei der Be- und Entlastung nahezu in gleichem Maße zur Geltung kommt.
Die in der Mitte (bei P 4,0 t) gemessene Schleifenbreite betrug bei diesen
sechs Lastwechseln der Reihe nach 0,1777, 0,1176, 0,1070, 0,1010, 0,0973
und 0,1218 mm; die Konvergenz wird durch das letzte Messungsergebnis
gestört. Die Belastung wurde dann auf P 9,1 t erhöht und hier ein
Lastwechsel durchgeführt, durch den die bleibende Dehnung gleichfalls nur
geringfügig vermehrt wurde.

Während die Zeit für die Durchführung eines Lastwechsels bei den ersten
beiden Versuchen mit Rücksicht auf die vielen erforderlichen Ablesungen
3 bi$ 5 Minuten betrug, wurde beim 3. Versuch (Figur 15) die
Versuchsgeschwindigkeit nach Möglichkeit erhöht, um eine Annäherung an
Überlastungen dynamischer Natur zu erzielen. Es wurde daher die Dehnungsmessung

nur an den Schleifenspitzen und in der Schleifenmitte durchgeführt,
wodurch die Versuchsgeschwindigkeit auf rund 30 Sekunden pro Lastwechsel
gesteigert werden konnte. Für die Laststufe wurde P 6^5 t gewählt, so



Zur Frage des Tragvermögens statisch unbestimmter Stahltragwerke 121

daß der überzählige Stab an das Ende des Fließbereiches gelangt. Die
Schleifenbreite nahm bei den zwölf in rascher Folge durchgeführten
Lastwechseln im allgemeinen ab (sie betrug der Reihe nach 0,0725, 0,0575, 0,0534,
0,0495, 0,0490, 0,0534, 0,0435, 0,0448, 0,0454, 0,0447, 0,0450 und 0,0508
mm), doch wird auch hier die Konvergenz gestört. Nach Erhöhung der Last
auf P 9 t und zwei weiteren Lastwechseln wurde der Selbstspannungszustand

XXX erreicht. Nun sollte festgestellt werden, wie sich das System
bei wiederholter Einwirkung kleinerer Lasten verhält und es wurden
daher zwölf Lastwechsel mit P=4,0 t durchgeführt, für das sich nach der
üblichen Berechnung (d. h. aus der Elastizitätsgleichung für den Anfangszustand)

angenähert — oP ergeben würde. Wie wir aus Figur 15 entnehmen,

pendelt die Stabkraft X bei diesen Lastwechseln zwischen den Grenzen
X — 2,94 und + 0,97 t hin und her, der Stab wird also durch die Ein-
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Wirkung der vorhandenen großen Restspannungen nunmehr vornehmlich g e-
drückt. Die einzelnen Schleifen fallen hier mit großer Annäherung in einer
Geraden zusammen, der Formänderungszustand ist praktisch stationär (die
bleibenden Dehnungen nahmen bei diesen zwölf Wechseln) sogar um 0,015
mm ab). Die starke Überlastung des Systems hat somit außer einer großen
bleibenden Verformung auch die Verwandlung des Zugstabes in einen
vorwiegend gedrückten Stab zur Folge und diese Änderung der Beanspruchungsweise

wird ebenso wie die vorangegangene Überlastung des Stabes von Einfluß

auf die Dauerfestigkeit sein.

Zusammenfassung.
Im Abschnitt A wird der Einfluß, den das Verhalten gedrückter und bis

über die Knickgrenze belasteter Baustahlstäbe auf das Tragverhalten eines
einfach statisch unbestimmten Fachwerks nimmt, theoretisch untersucht und
das gefundene Ergebnis durch sorgfältig durchgeführte Versuche bestätigt.
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Wird bei einem gedrückten Baustahlstab üblichen Schlankheitsgrades der
Knickzustand erreicht, dann sinkt der vom Stab ausgeübte achsiale Widerstand

im Zuge der eintretenden Ausbiegung stark herunter (Figur 2) und
die Kurve, die den Zusammenhang zwischen diesem Widerstand und der
gegenseitigen Annäherung der beiden Stabenden festlegt, zeigt den in
Figur 3 a gezeichneten Verlauf. Wenn nun der Stab einem statisch
unbestimmten Fachwerk als statisch überzähliger Stab angehört und durch eine
Überlastung des Systems an die Knickgrenze gelangt, bewirkt dieser
Widerstandsabfall eine starke Mehrbelastung des „Grundsystems", das den
überzähligen Stab stützt. Ist das Grundsystem einer derartigen Mehrbelastung
nicht gewachsen, dann ist das Tragvermögen des statisch unbestimmten
Fachwerks in dem Augenblick erschöpft, in dem der überzählige Stab den
Knickzustand erreicht. Ist hingegen das stützende Grundsystem so kräftig
ausgeführt, daß es die große Mehrbelastung übernehmen kann, dann wird ein
neuer Gleichgewichtszustand ausgebildet und das Fachwerk ist einer weiteren
Belastungssteigerung bis zur Traggrenze des „stützenden Grundsystems"
fähig; die Bemessung auf „zulässige Inanspruchnahme" führt in derartigen
Fällen auf eine größere Bestandsicherheit, als für statisch bestimmte Systeme
gefordert wird. Die theoretisch erhaltenen Ergebnisse wurden durch
Versuche, bei deren Durchführung die Fachwerkskonstruktion des „stützenden
Grundsystems" durch einen geeichten Stahlbügel (Figur 5a) ersetzt wurde,
voll bestätigt (Fig. 6 und 7).

Der Abschnitt B enthält eine theoretisch exakte Untersuchung einer über
drei gleiche Felder durchlaufenden Stütze aus Baustahl, in deren Mittelfeld
eine Druckkraft exzentrisch angreift (Figur 8 a). Der Baustahl ist hiebei
durch seine Formänderungskurve gegeben und für den Stabquerschnitt wird
ein Rechteck F b-h vorausgesetzt. Als Beispiel wird in Figur 11 der
Verlauf jener Schlankheitsgrade L/i dargestellt, die die Stütze besitzen muß,
wenn sie die Druckkraft P 1500-/7 kg bei verschiedenen Werten der
anwachsenden Ausbiegung im Gleichgewichte halten soll. Die Kurven weisen
ausgeprägte Maxima auf, die den „kritischen" Gleichgewichtszuständen
unmittelbar vor dem Zusammenbruch zugeordnet sind. Es zeigt sich, daß der
Zusammenbruch dieses statisch unbestimmten Tragwerks grundsätzlich schon
einsetzen kann, bevor noch die größte Spannung im Seitenfeld an die
Proportionalitätsgrenze gelangt und die größte Pressung im Mittelfeld die
Quetschgrenze erreicht.

Im Abschnitt C wird das Tragverhalten eines einfach statisch
unbestimmten Fachwerks bei wiederholter Überlastung eines überzähligen
Zugstabes theoretisch und experimentell untersucht. Bei rasch aufeinander
folgenden Lastwechseln findet, wie schon Grünino festgestellt hat, im Zuge
des Anwachsens der bleibenden Dehnung eine fortschreitende Entlastung
des überlasteten Stabes statt. Diese Entlastung, mit der ein Ansteigen der
im Stabe auftretenden Restspannungen verknüpft ist, wird in der Regel noch
vor Erreichen des „elastischen" Bereiches beendet, da sich durch Schließen
der Hysteresisschleife ein stationärer Formänderungszustand ausbildet.
Durch die in den Selbstspannungszuständen auftretenden großen
Restspannungen wird die Beanspruchungsweise des Stabes verändert und der
Mittelwert der Spannungsgrenzen herabgesetzt. Dem günstigen Einfluß, den
diese Verminderung der „statischen Vorspannung" auf die weitere
Dauerfestigkeit des Stabes ausübt, steht die ungünstige Beeinflussung durch die
vorangegangene Überlastung entgegen.
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Resume.
Dans la partie A de la presente etude, Fauteur etudie theoriquement

Finfluence qu'exerce le comportement de barres en acier de construction
soumises ä une compression et chargees jusqu'au-dessus de la limite de flambage

sur la capacite de charge d'une charpente en treillis simplement sta-
tiquement indeterminee. Ses recherches sont d'ailleurs confirmees par des
essais extremement poussees. Lorsque dans une barre en acier de construction,

presentant un degre de finesse courant et soumise ä une compression,
Fetat de flambage se trouve atteint, la resistance axiale exercee par cette
barre diminue considerablement au für et ä mesure de son flechissement
(figure 2) et la courbe qui traduit la relation entre cette resistance et Pim-
portance du rapprochement entre les deux extremites de la barre presente
Fallure qu'indique la figure 3 a.

Si la barre consideree appartient ä une charpente en treillis statiquement
indeterminee, ä titre d'element statiquement surabondant et si cette barre
se trouve amenee ä Fetat de flambage par suite d'une surcharge de ce
Systeme, la chute de resistance qui en resulte intervieint alors sous la meme
forme qu'une forte surcharge du Systeme qui soutient cette barre. Si ce
Systeme n'est pas lui-meme en mesure de subir une teile surcharge, il en
resulte une chute immediate de la capacite de charge du Systeme statiquement
indetermine, au moment meme oü la barre surabondante atteint Fetat de
flambage. Si, par contre, le Systeme de base sur lequel s'appuie la barre est
assez robuste pour supporter cette forte augmentation de charge, on arrive
ä un nouvel etat d'equilibre et la charpente elle-meme est susceptile de se
preter ä une nouvelle augmentation de la charge jusqu?ä ce que Fon ait
atteint la limite de capacite du Systeme de base sur lequel s'appuie la barre
consideree. La determination des contraintes admissibles conduit, en pareil
cas, ä un degre de securite effectif plus eleve que ne Fexigent les systemes
statiquement determines.

Les resultats determines par des voies theoriques ont ete entierement
confirmes par des essais (figures 6 et 7), pour Fexecution desquels on a
remplace la construction en treillis pour le Systeme de base servant d'appui
par un etrier metallique dont on connaissait les caracteristiques de resistance
(figure 5).

La partie B expose les resultats d'une etude theorique rigoureuse por-
tant sur une poutre d'appui continue, interessant trois panneaux ou travees
egales, la travee mediane etant soumise ä un effort de compression excentre
(figure 8 a). L'acier de construction employe est caracterise par son dia-
gramme de deformation et on admet que la section de la barre est un rect-
angle de section F b-h. A titre d'exemple, on a represente sur la figure 11

les degres divers d'elancement L/i que doit posseder Pelement pour pouvoir
equilibrer Feffort de compression P ^1500 F kg pour differentes valeurs
croissantes du flechissement. Ces courbes accusent des maxima tres marques,
auxquels correspondent les etats d'equilibre „critiques" qui precedent imme-
diatement la rupture. On constate que, en principe, la rupture de ce Systeme
statiquement indetermine peut se produire avant meme que la contrainte
maxima sur le panneau lateral ait atteint la limite de proportionnalite et
que la compression la plus forte dans le panneau median ait atteint la limite
de compression.

Dans la partie C, Fauteur etudie theoriquement et experimentalement
le comportement d'un Systeme une fois statiquement indetermine sous Fin-
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fluence d'une surcharge repetee appliquee ä uine barre tendue surabondante.
Lorsque les alternances de la charge se produisent ä une cadence rapide,
et ainsi que Grüning Fa dejä montre, il se produit une decharge progressive
de la barre surchargee au für et ä mesure de Fapparition de Pallongement
permanent. Cette decharge, qui s'accompagne d'une augmentation de Pim-
portance des contraintes remanentes dans la barre, prend fin, en regle
generale, avant meme que Fon arrive ä la zone elastique, car par suite de la
fermeture de la boucle hysteretique, il prend naissance un etat de deformation
stationnaire. Le regime de contrainte de la barre se trouve modifie par les
contraintes remanentes importantes et la valeur moyenne des limites des
efforts admissibles se trouve reduite. L'influence defavorable de la
surcharge se trouve opposee ä Finfluence favorable que cette reduction de
„contrainte statique preliminaire" exerce sur la resistance ulterieure de la
barre ä la fatigue.

Summary.
In section A, a theoretical investigation is made on the influence of the

behaviour of structural steel members, which are under compression and
loaded up to and over the buckling limit, on the carrying capacity of a simply
Statically indeterminate lattice-work; the result obtained is confirmed by care-
fully conducted tests. When a structural steel member of the usual degree
of slenderness is under compression and reaches the buckling limit, the axial
resistance exerted by the member falls greatly in consequence of the bending
(fig. 2), and the curve determining the connectioin between this resistance
and the mutual approach of the two ends of the member, runs as indicated
in fig. 3 a. If now the member forms part of a statically indeterminate
lattice-work as a statically superfluous member, and reaches the buckling limit
owing to an overloading of the system, this reduction in resistance causes
a considerably increased loading of the "main system" by which the
superfluous member is supported. If the main system ist not capable of withstanding
such an increased loading, the carryiing capacity of the statically indeterminate

framework is exhausted at the moment when the superfluous member

reaches the buckling stage. On the other hand, if the supporting main
system is made so strong that it can stand the increased loading, a new
condition of equilibrium will then be formed and the framework is capable of
standing a further increase in load up to the carrying limit of the "supporting

main system"; in such cases, choosing the dimensions in accordance
with "admissible stressing" leads to a greater certainty of stability than
is required for statically determinate Systems. The results obtained
theoretically were fully confirmed by tests (figs. 6 and 7). When carrying out the^e
tests the framework structure of the "supporting main system" was repla-
ced by a calibrated steel yoke (fig. 5 a).

Section B contains a theoretically accurate investigation of a structural
steel member, passing through three equal bays and eccentrically loaded by
pressure applied in the middle bay (fig. 8 a). The structural steel is defined
by its tension-extension diagram, and for a cross-section of the rnember
a rectangle F b-h is assumed. As an example, in /fig. 11 the run of
the curve of the degree of slenderness Lji is shown which the member
must have if it is to keep the pressure force />-= 1500 F kg in equilibrium
for various values of the increasing bending. The curves s'how pronounced
maxima, which are associated with the "critical" State of equilibrium imme-
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diately before collapse. It is seen that the collapse of this statically
indeterminate supporting structure may in principle start before the greatest
stress in the side bay has reached the limit of proportionality and before
the greatest pressure in the middle bay come& to the squeezing limit.

In section C, the behaviour of a simply statically indeterminate frame
work with repeated overloading of a superfluous tension member is investi-
gated theoretically and experimentally. When the changes in load occur
rapidly after each other, a progressive reduction in tension in the overloaded
member takes place in connection with the increase of the permanent elon-
gation, as has already been determined by Grüning. This reduction in tension,
with which an increase of the residual stresses occurring in the member is
connected, has as a rule already terminated before the elastic zone is reached,
since a permanent condition of change of shape is formed by closing the
hysteresis loop. Through the great residual stresses occurring in the self-
stressing stages, the manner in which the member is stressed is changed,
and the average value of the stress limits is reduced. This reduction of the
"static pre-stressing" of the member has a favourable effect on its sub-
sequent fatigue strength, but against that has to be set the unfavourable
effect of the previous overloading.
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