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'DREI BEITRAGE ZUR FRAGE DES TRAGVERMOGENS
STATISCH UNBESTIMMTER STAHLTRAGWERKE.

TROIS CONTRIBUTIONS A LA QUESTION DE LA RES[STANCE DES
CHARPENTES METALLIQUES HYPERSTATIQUES.

THREE CONTRIBUTIONS ON THE LOADING QESTION OF
STATICALLY INDETERMINED STEEL TRUSSES.

Dr. Ing. ERNST CHWALLA|
Professor an der Deutschen Technischen Hochschule, Briinn.

Die in den letzten Jahren durchgefiihrten thecretischen und empirischen
Untersuchungen !) iiber das Verhalten statisch unbestimmter Stahltragwerke
brachten den Nachweis, daB die Bemessung derartiger Systeme bei Zugrunde-
legung ,,zulidssiger Inanspruchnahmen‘‘ auf einen groBeren Sicherheitsgrad
des Bestandes fiithren kann, als fiir statisch bestimmte Systeme gefordert
wird. Bei Voraussetzung eines ideal plastischen Werkstoffes existiert sowohl
im Falle der Achsialbelastung (Fachwerke), wie auch bei Biegungsbeanspru-
chung (Balkentragwerke) oder Verkniipfung von Achsialbelastung und Bie-
gung (Bogen- und Rahmentragwerke) ein oberer Grenzwert des inneren
Widerstandes und es gilt dann die folgende Feststellung: Ist die Belastung
eines n-fach statisch unbestimmten Tragwerkes bis auf einen gemeinsamen
Multiplikator u gegeben und wichst ¢ von Null an, dann wird der obere
Grenzwert des Widerstandes der Reihe nach an verschiedenen Stellen des
Tragwerkes erreicht werden, wodurch der Grad der statischen Unbestimmt-
heit (bezogen auf die jeweils neu hinzukommenden Lastanteile) einen schritt-
weisen Abbau erfihrt. Dieser Abbau der iiberzihligen Bindungen wird fort-
gesetzt, bis der Grenzwert des inneren Widerstandes an mindestens (7 -+ 1)
durch ein kinematisches Gesetz verkniipften Tragwerkstellen zur Geltung
kommt. Das System geht dann in eine kinematische Kette {iber und ist einer
weiteren Steigerung der Belastungsintensitit nicht mehr fihig, so daff der
zugeordnete Multiplikator max u die obere Grenze des Tragvermogens unter
der gegebenen ruhenden Belastung festlegt. Neben einem ideal plastischen
Werkstoffverhalten (das der Baustahl nur innerhalb eines verhiltnismaBig
engen Formanderungs-Bereiches mit gr6Berer Anndherung zeigt) wird
bei dieser SchluBweise auch vorausgesetzt daB ein Vorzeichenwechsel der
auftretenden Verformungen im Zuge des geschilderten Abbaues der sta-

1) Vgl. M. Groning, Die Tragfiahigkeit stat. unbest. Tragwerke aus Stahl ..., Berlin
1926 und ,,Der Eisenbau‘, I. Bd., Berlin 1929; J. FritscHE, Z. Der .,Bauingen “ 1930/31 u.
»Z. f. ang. M. u. Mech.” 1931; K. HoHENEMSER, Ing.-Archiv 1931; K. Girkmann, Sitzungs-
ber. d. Ak. d. W. in. Wien, Il a, 1931; G. v. Kazinczy, Z. ,,Technika‘* 1931 und Z. ,,Der
Stahlbau‘“ 1931; H. Bieich, Z. ,,Der Bauingenieur“ 1932; E. Mrran, ,,Z. f. ang. M. u.
Mech.*“ 1932; F. Kann, Z. ,,Der Stahlbau‘‘ 1932; F. LLEICH, Stahlhochbauten | ; weitere
Arbeiten von KIST, KNACKSTEDT, EISENMANN u. a.

Uber Versuche berichten Maier-LemsNiTZ, Z. ,,Die Bautechnik‘“ 1928 und 1929;
H. Schamv, Z. ,,Der Stahlbau 1930; F. HartmanN, Schweiz. Bauzeitung 1933; G. GrU-
NING u. E. KonL, Z. ,,Der Bauingenieur‘t 1933,
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tischen Unbestimmtheit ausgeschlossen bleibt, da andernfalls das Ent-
lastungsgesetz die Begrenzung des inneren Widerstandes aufheben wiirde.
Auch wird bei diesen Untersuchungen die Moglichkeit eines vorzeitigen
Ausknickens von Tragwerksteilen theoretisch nicht ndher behandelt, und
da diese Frage fiir die praktische Anwendung der Theorie von grofSer Be-
deutung -ist, soll in den. folgenden Abschnitten A und B der EinfluB des
Verhaltens gedriickter Baustahlstibe auf das Tragverhalten und Tragver-
mogen einfach statisch unbestimmter Systeme an Hand iibersichtlicher Bei-
spiele geklart werden. Der Abschnitt C ist dem von GRUNING behandelten
Problem des Tragverhaltens bei wiederholter Uberlastung eines statisch iiber-
zahligen Baustahlstabes gewidmet.

A. Das Tragverhalten einfach statisch unbestimmter Fachwerke
bei Uberlastung eines iiberzihligen Druckstabes.

Um das Tragverhalten in iibersichtlicher Weise darstellen zu kénnen,
beziehen wir uns auf das in Figur 1a gezeichnete Fachwerkmodell. Wir

XA

Fig. 1.

fassen die Druckkraft X in der Vertikalen als iiberzihlig auf, durchschneiden
den Stab und bringen die Doppelkraft X zwischen den Schnittflichen an.
Aus der Gleichgewichtsbedingung fiir den Lastknoten folgt, daB die beiden
Streben (die in unserem Beispiel das den iiberlasteten Stab , stiitzende Grund-
system‘‘ bilden) die Druckkrafte S = P — X erhalten. Ein Ausknicken der
Stibe aus der Fachwerksebene soll ausgeschlossen sein und wenn wir vor-
erst auch voraussetzen, daB die Streben vollkommen elastisch und knicksteif
S-s _ (P—X)-s

sind, treten in den Streben bloBf die Verkiirzungen E L~ E.F ein,
die eine gegenseitige Schnittflichenverschiebung 4, = 2s (P—X) =
2s LF;

C-(P—X) = f(X) bewirken; die GroBe C — FE stellt hiebei allgemein

N
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die ,,Federkonstante’ des stiitzenden Grundsystems vor. Die Verschiebung
ds; mubB durch eine entsprechende Verkiirzung der Vertikalen ausgeglichen
werden und da der funktionale Zusammenhang 4, = ¢ (X) zwischen der
gegenseitigen Anndherung 4, der Endpunkte dieses Stabes und der Stab-
Kraft X in der Regel durch eine Kurve festgelegt wird, wollen wir die
Formidnderungsbedingung 4, = A, graphisch befriedigen, indem wir die
beiden Kurven f (X) und ¢ (X) zeichnen und zum Schnitt bringen. Die Funk-
tion f(X) wird in Figur 1b durch die Gerade ,,G* dargestellt, die auf der
Ordinatenachse die Knotenlast P und auf der Abszissenachse die GréB8e C - P
abschneidet; sie schlieBt mit der Ordinatenachse den Winkel a = arctg C
ein, der umso kleiner ist, je steifer das stiitzende Grundsystem ausgebildet
wird. Die Kurve ¢ (X) schneidet diese Gerade im Punkte I, dessen Koordi-
naten X und 4; den gesuchten Gleichgewichtszustand festlegen; hiebei stellt
P die Knotenlast, X die Stabkraft in der Vertikalen, 4; die Senkung des
Knotenpunktes und S= P — X die Strebenkraft vor.

Wird die Vertikale durch einen geraden, zentrisch gedriickten Stab aus

HookEe’schem Idealmaterial gebildet, der unter der EuLer’schen Knicklast
2. F.

Xg = i vt; J die Stabilititsgrenze erreicht, dann tritt unter X = X die

Ausbiegung des Stabes ein. Der achsiale Stabwiderstand X nimmt hiebei

nur geringfiigig?) zu, so daB der mit der Ordinatenachse den Winkel ¢ =

o VF einschlieBende Ast der Kurve ¢ (X) an der Stelle X = X in

eine sehr flach verlaufende Kurve iibergeht (Figur 1c). Im erreichten, durch
die GroBen X = Xg, S = P —Xg und 4 = A, gekennzeichneten Gleich-
gewichtszustand ist die Vertikale schon ausgeknickt, doch ist ihre seitliche
Ausbiegung durch die kinematisch zugelassene Sehnenverkiirzung genau
festgelegt und betrdgt (da sich die Gleichgewichtsfigur des knickenden
Stabes hier von einer Sinuslinie praktisch nicht unterscheidet) y, =

2 4 -XE>. Wird die Last P entfernt, dann geht die Aus-

:—VV(A[—EF
v

4
biegung auf Null zuriick und das Fachwerk nimmt wieder die urspriingliche
Form an. Wenn hingegen die Streben nicht extrem knicksteif ausgebildet
sind und unter der Eulerlast Sg selbst die Knickgrenze erreichen, dann wird
das Tragvermogen des Fachwerks unter der Knotenlast max P —= Xg -+ Sg
erschopft. Wiirde P nur wenig iiber diesen Grenzwert anwachsen, dann
wiirde der in Figur 1d dargestellte Fall eintreten und das Grundsystem,
das die Vertikale stiitzt, wiirde versagen, bevor sich noch ein Gleichgewichts-
zustand ausbilden kann 3).

Wir haben bisher Stibe aus Hooke’schem Idealmaterial vorausgesetzt
und wollen nun einen Schritt weiter gehen und die Vertikale aus einem Bau-
stahl ausgebildet denken, dessen Formidnderungsgesetz z. B. durch die fol-
genden Werte gekennzeichnet sein moége: Proportionalititsgrenze op =
1900 kg/cm?, ep = 0,869/, Elastizititsmodul £ = 2,210 000 kg/cm2, Fliel-
bereich o = 2700 kg/cm? = const. von e = 2,5 bis ¢’ = 69/, Zugfestigkeit

op = 4200 kg/cm2. Der Stabquerschnitt sei ein Rechteck F, = &4 und fir

arctg

2) Vgl. dazu A. ScHNEIDER, Z. d. 6st. Ing. Arch. Ver. 1901; R. v. Mises, Z. f. ang. M,
u. Mech. 1924; I. Maikin, Z. f. ang. M. u. Mech. 1926; O. DomkEg, Z. ,,Der Bauingenieur
1926 u. a.

3) Der nach sehr kleinen Erhohungen von max P theoretisch existierende Gleich-
gewichtszustand ist wegen der groBen zugeordneten Verformung praktisch bedeutungslos.
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den Schlankheitsgrad wihlen wir 2, = TV = 60, wobel i = % bedeutet. In

Figur 2 sind die ,,Kurven des achsialen Widerstandes fiir zentrisch gedriickte,
beiderseits gelenkig gelagerte Stibe aus dem geschilderten Baustahl dar-
gestellt4) und wir entnehmen aus dem Verlaufe der Kurve ,1 = 00, daB}
4) Vgl. den Beitrag d. Verfassers im Bericht itber d. I. Int. K. f. Briickenbau u.
Hochbau, Paris 1932. ,
unsere Vertikale unter der Druckkraft X, = 2521-F, kg (Knicklast nach
ENGESSER-KARMAN) ihre Stabilititsgrenze erreicht und daB der in der ur-
spriinglichen Achsenrichtung ausgeiibte Widerstand bei zunehmender Scheitel-
ausbiegung y, (d.i. die Ausbiegung der Gleichgewichtsfigur in Stabmitte)

/73 W ,\@:_zze_a_f‘?/m’
2500 \v\’\\ 3 \\\ b p:ﬂ
AN R
\ EANY

2000 <
\ % 3 g:\\x
\"‘\6‘ %,
N 7] \ g

1500 x Q \\(.3‘3
\\700 \\\\\ )
T, T~

o \@\§\
W i
500
P
0 0.z 04 0.6 08 70 Yo
Fig. 2. '

sehr stark abfillt; beispielsweise ergibt sich im Gleichgewichtsfalle fiir
% — 0,2, 0,4, 0,6, 0,8 und 1,0 der Reihe nach 7—“{ — 1830, 1420, 1150, 960
und 810 kg/cm?. Um die durch die Ausbiegung bedingte Verkiirzung A’ der
Stabsehne bestimmen zu konnen, miissen wir die der Druckkraft X und der
Scheitelausbiegung y, eindeutig zugeordnete ,,Gleichgewichtsfigur‘ (Biege-

2
linie) y = F (x) bestimmen %) und 4’ aus der Beziehung 4" = 1 - { (Z%—i—) -dx
durch Quadratur ermitteln¢). Mit Hilfe dieser Werte A’ kénnen wir den

funktionalen Zusammenhang, der im Falle 7 = 60 zwischen der gegen-

%) Vgl. diesbeziigl. die Abhandlung d. Verf. in den ,Sitzungsber. d. Ak. d. Wiss.
in, Wien*, Il a, 1928, S. 469.

6) Begniigt man sich hier mit einer Niherungslésung, dann kann man die Gleich-
gewichtsfiguren durch Sinushalbwellen der Linge v und der Scheitelausbiegung y, er-

. , . o (An\? 72 . | 2PV PP
setzen und findet dann 4" = % - |, dr 'dxzﬂ-y(ﬂ oder wegen 4 = " -1/12 = 60
auch A" = 0’]225 - ¥,2; die so erhaltenen Niaherungswerte sind grundséitzlich zu gro8,
doch betrigt der Fehler, wie ein Vergleich mit den genauen Lésungen zeigte, nicht mehr
als etwa 8,5 0)p.
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seitigen Anniherung der Stabenden 4, und dem Stabwiderstand X besteht,
durch die in Figur 3 a gezeichnete Kurve % = ¢, (ﬁ) darstellen. Wachst
die mittlere Druckspannung E vzn Null bis zur Proportlonahtatsgrenze
op = 1900 kg/cm2 an, dann steigt ~, von Nullels zum Wert 2P E E = 0,0149
- an; erreicht F— den Wert der Knickspannung —= F = 2521 kg/cm2, dann ergibt

v

51ch aus der zugrundeliegenden Spannungs-Dehnungslinie % = 0,0251 und

der Stab beginnt sich auszubiegen, so daB von nun an die Werte Z/]Zi um die

Betriage % vermehrt werden. Da jedoch mit dieser Ausbiegung ein starker

_X_ a.
bh
thent ), 2.521 !’E A=60
2.5
h
2.0 A -

/
'\
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10 |1 —
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0
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Fig. 3.

Abfall der zum Gleichgewicht erforderlichen Belastung X einsetzt, erfahrt
die Stabachse eine dem Entlastungsgesetze gehorchende geringe Verlinge-

on der gestrichelt gezeichneten Ent-

h
lastungsgeraden auf, sind uns aber bewuBt, daB dieser Vorgang nicht voll-
kommen exakt ist, da die in der Stabachse gelegenen Stabfasern nicht nur

durch die mittlere Druckspannung ;_g sondern auch durch die mit der Aus-

biegung zunehmende Biegespannung (die Biegespannungs-Nullinie liegt nicht
im Querschnittsschwerpunkt) beeinfluBt werden; dieser Vernachlissigung
diirfte die in Figur 3 a gefundene geringfiigige Abnahme der Abszissenwerte
bei Beginn des Ausknickens zuzuschreiben sein.
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Wichst nun die Knotenlast P unseres Modellfachwerkes Figur 1a an,
bis die Vertikale die Knickgrenze X, iiberschreitet, dann tritt (sofern das
Strebenpaar weder ausknickt noch den Hookg’schen Bereich verldBit) der in
Figur 3b dargestellte Fall ein. Der Schnittpunkt I der Geraden G mit der
aus Figur 3a iibernommenen Kurve 4, = ¢ (X) legt den Gleichgewichts-
zustand fest und wir erkennen, daB die Strebenkrifte S= P — X nunmehr
wesentlich gréBer als bei Verwendung einer Vertikalen aus HookEg’schem
Idealmaterial (Figur 1c¢) erhalten werden. Wenn wir daher die Streben
bloB so bemessen wiirden, daB ihre Knickkraft S, nur wenig groBer als
P — X, ist (was im Falle Figur 1c als ausreichend festgestellt wurde), dann
wiirde der in Figur 3 c skizzierte Fall ;1 zur Geltung kommen: Die Verti-
kale wiirde wieder unter der bis auf P, anwachsenden Knotenlast ausknicken,
den geschilderten starken Abfall des Widerstandes zeigen und dadurch dem
stiittzenden Grundsystem eine erhebliche Mehrbelastung zuweisen. Das
Strebenpaar wiirde sich aber dieser Mehrbelastung nicht gewachsen zeigen
und vor Erreichen des Gleichgewichtszustandes selbst ausknicken, worauf
der Zusammenbruch des Tragwerks (da der Ordinatenunterschied der Kur-
ven ¢ (X) und f (X )stark zunimmt) mit wachsender Beschleunigung erfolgt.
Werden die beiden Streben biegesteifer ausgebildet, so daB ihre Knicklast
S; eine starke Erhohung erfihrt, dann kann die Tragfahigkeit des Systems
bei unveranderter Vertikalen auf einen Wert P, gesteigert werden (Fall 2
in Figur 3c). Die Streben vermégen hier die groBe Mehrbelastung, die nach
dem Ausknicken der iiberzdhligen Vertikalen entsteht, aufzunehmen und einen
Gleichgewichtszustand gerade noch zuzulassen. Wir erkennen jedoch, daf3
dieser Grenzwert P, erheblich kleiner ist als der Wert X, + S, den wir im
Fall Figur 1d bei Voraussetzung eines Hookg’schen Idealmaterials erhalten
haben.

Zur ziffernmiaBigen Festlegung des Einflusses, den das geschilderte Ver-
halten gedriickter Baustahlstibe auf das Tragvermogen statisch unbestimmter
Fachwerke nehmen kann, denken wir uns die zentrisch gedriickten Stibe un-
seres Fachwerkmodells Figur 1a aus dem oben geschilderten Baustahl aus-
gefithrt. Die Stablingen seien v bezw.s = 2v, die Stabquerschnitte F,=0&-%
bezw. F,. Im Sinne der bestehenden Vorschriften miissen wir die Elasti-
zitatsgleichung aufstellen und daraus die Stabkrafte

X:__fL und S = P—X:———i——
= F F,
berechnen; die Normalspannung in der Vertikalen betragt dann X = _ 4P
Fv F:? + 4. Fv

und ist allgemein viermal so groB als die Strebenspannung S/F,. Werden
nun dic Stibe so ausgebildet, daB ihre Schlankheitsgrade hinsichtlich Knickung
in der Fachwerksebene z. B. J,=A,=60 betragen, dann bildet die fiir die

Vertikale geltende Knickspannung ?‘ = 2521 kg/cm?® die maBgebende Grund-
14

lage bei der Bemessung auf ,zuldssige Inanspruchnahme‘, wihrend die
Festigkeit der beiden geringer belasteten Streben unausgeniitzt bleibt. Ist
v der geforderte Knicksicherheitsgrad, dann ist die ,zuldssige‘ Stabkraft

1 s
Xt = % X und daher die ,,zuldssige‘* Knotenlast P,,, = %51}2 . (1 -+ 41; > - F,.

Die GroBen v»- P,,, die wir rein formell als , Tragfiahigkeiten‘‘ des auf zu-



102 v Ernst Chwalla

lissige Inanspruchnahme bemessenen Fachwerkmodells bezeichnen konnen,
sind in der nachfolgenden Tabelle fiir die drei Fille g = 0,5, 1,0 und 2,0

v

zusammengestellt worden; sie sind an den angegebenen ENGESSER-KARMAN-
schen chkspannungswert gebunden, im iibrigen aber von der amtlichen
Vorschrift unabhingig. Die Gro8e » - P,,; bleibt unverindert in Geltung, auch
wenn wir die Streben bei Wahrung des Fliachenverhiltnisses ;5 etwas

v
schlanker ausfiihren, da die Knickspannung der Vertikalen nach wie vor fiir
die Bemessung maBgebend ist.

Wenn wir nun, unabhingig von der eben dargelegten Bemessung auf
»zuldssige Inanspruchnahme‘, die oberste Grenze des Tragver-
moégens P, bestimmen wollen, dann haben wir an die in Figur 3¢ ge-
schilderten Fille anzukniipfen und vorerst die Kurve %ﬁ = ¢ (%) fiir die

14
Vertikale darzustellen; diese Kurve ist in Figur 4 gestrichelt gezeichnet

F, Xk+Sk Pax Pmax‘V'qul

S
No. | Ay | As 7:7 Ve Py L | Xp+ Sk 100 - pmax v P,
1] 60 | 60 | 05 |2836-F,|2922.F,|3782.F, 29,4 % 3,0 %
2| 60 | 60 | 1,0 |3151 -F,|3501.F, | 5042 . F, 44,1 % 11,1 9%
3 | 60 60 | 2,0 |3782.F, 6022.F,|7563.F, 25,6 % 59,2 %
4 | 60 120 | 05 [2836.F,|2922.F,|3279.F, 12,2 % 3,0 %
51| 60 | 120 | 1,0 [3151.F,[3322.F, 4037 .F, 21,5 % 5,4 %
6 || 60 | 120 | 20 |3782.F, 4325.F,|5553.F, 28,4 % 14,4 %

und stimmt mit Riicksicht auf unsere Voraussetzungen mit der Kurve Figur 3 a
iiberein. Die Gerade G, die die Funktion 45— = f ( ) im Hookg’schen Be-

reich unterhalb der Knickgrenze festlegt, verlaBt die Ordinatenachse unter
dem Winkel a = arctg C, wobei die Federkonstante des stiitzenden Grund-

systems mit Riicksicht auf s = 2v = 2V12-%4-4, = 34,70.% die GroBe

C = 2s = 0,0000314 - i 1 besitzt. Im Falle Nr. 1 is’cf‘.i = 0,5 gewéihlt
EF; Fs Fy v (X

worden. Wenn wir fiir verschiedene Werte P die Kurve f, <7) zeichnen,
P v

finden wir, daB —1’;"1—’“ = 2022 kg/cm? die groBte, ein Gleichgewicht zu-
lassende Knotenbelastung festlegt. Die zugeordnete Grenzlage der Kurve

I (é) ist in Figur 4 eingetragen und durch die beigeschriebene Nummer 1
e . 5 F 4 2s
gekennzeichnet worden ; bis zur Stelle F = op- F = = 050 kg/cms, T

= 0,0596 verlduft sie geradlinig, verliBt dann den HookEe’schen Bereich und
erreicht an der Stelle ;k = 2521 1? = 1261 kg/cm?, %‘—: 0,1004 die Knick-
grenze, wie in der Figur durch den nach oben (Richtung der abnehmenden
Strebenwiderstéinde) weisenden Pfeil angedeutet wurde. Werden die Streben

bei Wahrung des Flichenverhiltnisses ;‘s schlanker, z. B. mit 4, = 120 aus-
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gebildet, dann liegt die Knickspannung der Strebe %"1 = 1516 kg/cm? im
N

Hooke’schen Gebiet und wird an der Stelle Vi 0,0476 erreicht; die oberste

Grenzlage der Kurve f, <~;§—) ist jedoch die gleiche wie frither, so da P,,,

= 2922.F, nach wie vor die Tragfahigkeit begrenzt (Fall Nr. 4). Auch im
Fall Nr. 5 wird das Tragvermogen schon im Augenblick des Ausknickens der
Vertikale erschopft, da auch hier das stiitzende Grundsystem die entstehende
Mehrbelastung nicht aufzunehmen vermag; fiir die Grenzlast wurde hier
P = 3322 F, gefunden.

oae N2l A, =60 A5=50,§=o,5
X 2 » L |
£, | 3 " 2
4 » 720 0%

g 5 » » 7

4325 & ” 2

4000
6

N
I
~N
Y

\'

0.05 010 A 075
h
Fig. 4.

In den drei bisher geschilderten Féllen Nr. 1, 4 und 5 wird die Trag-
fahigkeit des Fachwerks durch den Knickwiderstand der Vertikalen fest-
gelegt, der auch bei der Bemessung auf ,,zulidssige Inanspruchnahme‘ maB-
gebend war. Die Grenzlast P,,, stimmt daher in diesen Fillen praktisch 7)
mit der RechnungsgréBe v- P,,, iiberein und die Bemessung statisch unbe-
stimmter Fachwerke auf zuldssige Inanspruchnahme braucht nicht als un-
wirtschaftlich verworfen zu werden. Hingegen wire die Voraussetzung von
Stiben aus Hooke’schem Idealmaterial (also die Voraussetzung eines funk-
tionalen Zusammenhanges zwischen Verformung und Widerstand, wie er
dhnlich auch im Falle des Zuges oder der Biegung fiir Stibe aus ideal-
plastischem Material erhalten wird) vollkommen unzulédssig, denn dann wére

7) Der geringe Unterschied, der in der Tabelle zwischen den beiden Werten be-
steht, ist darauf zuriickzufithren, daB die gedrungene Vertikale vor dem Ausknicken
schon eine plastische Verkiirzung erfihrt und daher einen etwas kleineren Belastungs-
anteil erhalt, als aus der Elastizititsgleichung erhalten wird.



104 Ernst Chwalla

nach Figur 1d einfach P,,’ = X, - S, anzusetzen und wir wiirden in den
Fiallen Nr. 1, 4, 5 der Reihe nach Werte erhalten, die um 29,4, 12,2 und 21,5 %
groBer als P,,, sind (vgl. die Tabelle).

In den Fallen Nr. 2, 3 und 6 erweisen sich die Streben als ausreichend
widerstandsfahig, um einen Gleichgewichtszustand nach erfolgtem Aus-
knicken der Vertikalen zuzulassen. Die Tragfahigkeit des Fachwerkes wird
hier erst in dem Augenblick erschopft, in dem das Strebenpaar an die Knick-
grenze gelangt; sie kann erheblich groBer als die RechnungsgréBe »- P,
sein, so daB die Vorschreibung ,,zuldssiger Inanspruchnahmen‘‘ auf ungewollt

1K
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TR} 72
M | I
IR & 72

Fig. 5.

hohe Sicherheitsgrade (unwirtschaftliche Abmessungen) fiihrt. Deutlich tritt
F;

dies im Fall Nr. 3 (4, = 4, = 00, Fs- = 2,0) zu Tage, fiir den die oberste
Grenzlage der Kurve f, (Ff)«*i) durch den Ordinatenabschnitt P, = 6022.F,
festgelegt wird. Diese Kurve, die an der Stelle ff == EES op = 3800 kg/cms,

= 0,0596 den Hooke’schen Bereich verlaBt, erreicht die Knickgrenze an
jener Stelle % = 2521 ;5 = 5042 kg/cm?, % = 0,1004, an der sie die ge-
strichelte Kurve (die hier die Ordinate X = 080 - F, besitzt) trifft. Wenn
daher die Knotenlast von Null bis auf den Grenzwert P,,. = 980 -F, -+
5042. F, = 6022 - F, ansteigt, knickt vorerst die Vertikale geringfiigig aus,
die Streben werden dadurch stark iiberlastet und gelangen in dem Augen-
blick, in welchem ein Gleichgewichtszustand ausgebildet werden konnte,
selbst an die Knickgrenze, so daB das Tragwerk mit wachsender Beschleu-
nigung zusammenbricht. Der Wert P, ist um 59,2 o groBer als die Rech-
nungsgroBe v . P,,, die sich ergibt, wenn wir das Fachwerk auf ,zuldssige
Inanspruchnahme‘* dimensionieren. Andererseits wiirden wir, wenn wir das
Fachwerk so wie ein System mit Stiben aus Hookg’schem Idealmaterial be-
messen wiirden, nach Figur 1d den Wert P,/ = X, -+ Sz = 7503 F,, d.i.
um 25,6 9% mehr als P,,, erhalten.
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AbschlieBend kénnen wir feststellen, daB bei der Ermittlung der Trag-
fahigkeit P,,. eines einfach statisch unbestimmten Stahlfachwerkes mit ge-
driickten Stédben je nach der Widerstandsfihigkeit des den iiberlasteten Druck-
stab stiitzenden Grundsystems zwei Fille 1 und 2 (Figur 3 c) unterschieden
werden miissen. Im Fall 1 (relativ schwaches Grundsystem) liefert die Be-
messung des untersuchten Fachwerkes auf ,zuldssige Inanspruchnahme‘
praktisch dieselben Abimessungen bezw. Sicherheitsgrade wie die unmittel-
bare Bezugnahme auf die Grenze des Tragvermogens; hingegen fiihrt im
Fall 2 (relativ widerstandsfihiges Grundsystem) die Zugrundelegung ,,zu-
lassiger* Spannungen auf groBere Grade der Bestandsicherheit, als bei
statisch bestimmten Systemen gefordert werden. Die Voraussetzung eines
Hooke’schen Idealmaterials fiir die iiberlasteten Druckstibe (also die Ver-
wendung von Widerstandskurven, die dhnlich verlaufen wie die von Zug-
oder Biegungsstiben aus ideal-plastischem Material) erscheint unzulissig,
da dadurch sowohl im Fall 1 wie auch im Fall 2 das Tragvermégen des
Systems erheblich iiberschiatzt werden kann. Sind die. untersuchten Stiabe
nicht genau zentrisch gedriickt und wird der EinfluB der Exzentrizitit nicht
voll in Rechnung gestellt, dann kommen die geschilderten Verhiltnisse in
noch ausgeprigterem MaBe zur Geltung.

Versuche iiber das T ragverhalten einfach statisch unbestimmter Fachwerke
mit fiberlasteten Druckstiben.

Zur Uberpriiffung der geschilderten theoretischen Ergebnisse wurden
vom Verfasser Versuche mit einfach statisch unbestimmten Systemen durch-
gefithrts). .Um in Ubereinstimmung mit den Voraussetzungen der Theorie
ein elastisches, zahlenmiaBig genau erfaBbares Verhalten des statisch be-
stimmten Grundsystems und eine gelenkige Lagerung des iiberzidhligen
Druckstabes zu erzielen, wurde die Fachwerkskonstruktion des ,,stiitzenden
Grundsystems durch einen kraftigen Stahlbiigel ersetzt. (Der Biigel ist in
Figur 5a in der Ansicht und im Grundrif§ dargestellt und besteht aus wasser-
gehirtetem Federstahl ,,Poldi T6H - Extra® mit rund 10000 kg/cm® Pro-
portionalitidtsgrenze.) Die Eichung des Biigels erfolgte mit derselben MeB-
einrichtung, die bei den Hauptversuchen Verwendung fand, und ergab im ge-
wihlten Nutzbereich (fiir gegenseitige Anndherungen der Lagerpfannen bis
zu 7,5 mm) ein lineares Forminderungsgesetz mit der Federkonstanten

= 0,205 cm/t. Die Druckstibe hatten rechteckigen Querschnitt 11,9/
19,0 mm und erhielten gehirtete Schneidenkoérper, die mit Hilfe eines Keil-
paares gleichmiBig an die Lagerpfannen des Biigels angedriickt werden
konnten. In Figur 5 c ist ein ,zentrischer‘‘ und ein ,exzentrischer’* Druckstab
dargestellt. Die Scheidenentfernung betrug 227 mm, so daB fiir den Schlank-

227
3,44
aus derselben Stange; der statische Zugversuch lieferte fiir das Stabmaterial
eine Streckgrenze of = 2,36 t/cm?, die Zugfestigkeit op = 4,02 t/cm?, die
Bruchdehnung d8,, = 33 9% und die Einschniirung v = 67 9. Das aus dem

heitsgrad 4 = = 06,0 gefunden wird. Alle Versuchsstibe stammten

8) Die Versuche wurden im Laboratorium fiir Elastizitits- und Festigkeitslehre der
Deutschen Technischen Hochschule in Briinn durchgefithrt. Fiir die freundliche Uber-
lassung des Laboratoriums bin ich Herrn Prof. Dr. GirTLER und fiir die Unterstiitzung
bei der Herstellung der Probestibe Herrn Prof. Dr. KotuNny zu Dank- verpflichtet und
ebenso danke ich meinen Mitarbeitern, den Herren Dr. WEeINHOLD, Dr. ScHEINOST und

. JoscHT.
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Biigel mit dem eingebauten iiberzihligen Druckstab bestehende statisch un-
bestimmte System wurde der in kleinen Stufen gesteigerten Druckbelastung
P ausgesetzt und hiebei die seitliche Ausbiegung y, in Stabmitte und die
gegenseitige Annidherung 4 der Druckplatten?) gemessen. Auf Grund des
FEichungsergebnisses konnte dann fiir jede Laststufe der vom Biigel iiber-
nommene Lastanteil P — X und daraus die Stabkraft X berechnet werden ).
Die auf diese Weise gewonnenen Kurven, die das Tragverhalten des unter-
suchten statisch unbestimmten Systems festlegen und der theoretischen
Figur 3b entsprechen, sind in Fig. 6 und 7 wiedergegeben.

Figur 6 bezieht sich auf zwei Versuche mit iiberzdhligen Stiben, deren
Druckkraft mit einem Hebelarm von ungefihr 0,5 mm angreift. Der Verlauf
der Kurve 4, = ¢ (X) ist in 'seinen kennzeichnenden Eigenschaften der
gleiche, den wir in Figur 3 a theoretisch abgeleitet haben. Die kritischen Zu-
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stinde des statisch unbestimmten Systems werden unter den Lasten P,
= 4,80 bzw. 4,50 t erreicht und die Belastungsanteile des Biigels betragen
hiebei 0,840 bzw. 0,688 t, so daB fiir die kritische Druckkraft des iiber-
zdhligen Stabes X;, = 3,960 bzw. 3,812 t gefunden wird; diesen Wericn
X, entsprechen (vgl. die theoretisch strenge Losung fiir den exzentrisch ge-

driickten Baustahlstab unter FuBnote 4) die ExzentrizititsmaBe % = 26] 7

und daher die ,rechnungsmaBigen‘ Hebelarme p = 0,45 bLzw.

1
bzw. —2—1‘,4‘
0,56 mm. Wir erkennen, daB der Widerstand des iiberzidhligen Stabes im

kritischen Zustand sehr stark abfillt und daBl demgemal die Verformung 4

9) Diese Werte 4 sind mit Riicksicht auf die Zusammenpressung der Unterlags-
platten u. a. etwas groBer als die reinen Sehnenverkiirzungen des ausgebogenen Druck-
stabes, was bei der Beurteilung der Abszissenwerte in Fig. 6, 7 zu beachten ist.

10) Es sei erwédhnt, dafl die Kurven X = F (y,), die sich auf Grund der Messungs-
ergebnisse punktweise zeichnen lieBen, eine sehr gute Ubereinstimmung mit den vom
Verfasser theoretisch ermittelten Kurven (vgl. unter FuBnote 4) zeigten.
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des Systems zunimmt, bis bei 4 = 7,88 bzw. 7,57 mm ein neuer Gleich-
gewichtszustand ausgebildet wird. Der Lastanteil des Biigels ist hier auf
3,85 bzw. 3,60 t, d.i. gegeniiber dem kritischen Zustand auf das 4,58- bzw.
5,35-fache gestiegen und nur der elastostatischen Hochwertigkeit des hier
verwendeten ,,stiitzenden Grundsystems‘ ist es zu danken, daB diese Gleich-
gewichtszustinde noch ausgebildet werden konnten.

Figur 7 bezieht sich auf zwei Versuche mit iiberzidhligen Stiben, deren

Druckkraft mit dem ExzentrizititsmaB —% = % angreift (Stabausbildung

nach Figur 5d). Die kritische Last des statisch unbestimmten Systems wird
hier bei P,,,, = 3,20 bzw. 3,29 t erreicht und der Belastungsanteil des Biigels
betrigt hiebei 0,510 bzw. 0,598 t, so daB} sich fiir die kritische Druckkraft
des Stabes X,, = 2,600 bzw. 2,602 t ergibt; wenn wir X,, mit Hilfe der
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theoretisch ermittelten Tabellen fiir beiderseitig gelenkig gelagerte Baustahl-
stibe (vgl. unter FuBnote 4) bestimmen, dann erhalten wir genau denselben
Wert. Der achsiale Widerstand fillt auch hier nach Erreichen des kritischen
Zustandes stark ab, so daB die Verformung A des statisch unbestimmten
Systems stark zunimmt und erst bei 4 = 4,08 bzw. 4,49 mm ein neuer Gleich-
gewichtszustand erreicht wird. Das stiitzende Grundsystem wird auch hier
stark iiberlastet, da die Biigelkraft im neuen Zustand 1,99 bzw. 2,19 t, d.i.
das 3,90- bzw. 3,66-fache des Wertes im kritischen Zustand betrigt.

Wir konnen somit feststellen, daBl das gefundene theoretische Ergebnis
durch die Versuchsergebnisse voll bestitigt wird. Der starke Widerstands-
abfall, den gedriickte Baustahlstibe mach Erreichen des ,,Knickzustandes‘¢
zeigen, hat eine Mehrbelastung des stiitzenden Grundsystems zur Folge, die
ein Vielfaches des im Augenblick der Knickung des iiberzihligen Stabes
iibernommenen Lastanteils betragen kann. Am stirksten kommt diese Mehr-
belastung bei zentrisch und nahezu zentrisch gedriickten Stiben und zwar,
wie aus dem Verlauf der Kurven Figur 2 leicht zu schlieBen ist, bei Schlank-
heitsgraden von etwa 1= 40 bis 100 zur Geltung.
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B. Das Tragverhalten einer iiber drei Felder durchlaufenden Stiitze
bei exzentrischer Druckbelastung.

Wir haben im Abschnitt A gezeigt, daB die Tragfihigkeit statisch un-
bestimmter Fachwerke in groBem MaBe vom Verhalten der gedriickten
Stibe beeinfluBt werden kann und wollen nunmehr das Tragverhalten eines
statisch unbestimmten Stabwerkes bei Auftreten von Druckbelastung in
Untersuchung ziehen. Als Beispiel wahlen wir eine iiber drei gleiche Felder
durchlaufende Stiitze aus Baustahl, die im Mittelfelde durch eine exzentrisch
angreifende Druckkraft belastet wird (Figur 8a). Der Stabquerschnitt sei
ein Rechteck F =5 -/ und die Hebelarme p der Druckkraft P =g, - F seien
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beiderseits gleich groB; der Baustahl moge der gleiche sein, den wir im Ab-
schnitt A zugrunde legten (Proportionalititsgrenze op = 1900 kg/cms,
ep = 0,869/, Elastizititsmodul £ = 2,210 000 kg/cm?, FlieBbereich of
2700 kg/cm? = const. von e = 2,5 bis ¢’ = 6,09/, Zugfestigkeit op
4200 kg/cm?).

Der Stab wird sich unter der Druckkraft P nach der in Figur 8b ge-
zeichneten symmetrischen Kurve verbiegen und es werden iiber den beiden
Mittelstiitzen gleichgroBe Biegemomente It entstehen, die wir als statisch
iiberzdhlig ansehen wollen. Zur Bestimmung dieser Momente schalten wir
itber den Mittelstiitzen reibungsfreie Gelenke ein, lassen I als dufleres
Doppelmoment wirken und stellen die Bedingung auf, daB die Endver-
drehungen tgr der an der Gelenkstelle zusammenstoBenden beiden Stab-
teile gleiche GroBe besitzen miissen. Solange der HookE’sche Bereich nicht

I
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‘verlassen wird, werden die Stibe in den beiden Seitenfeldern nach kubischen

Parabeln verbogen und die Endverdrehung betrigt tgr = %j , welche
Beziehung nach Emfuhrung des Stabtrigheitsmomentes J = 9
8 L s .
_ .= . T . . d
der Form tg=e E on b angeschrleben werden kann.  Wir
2
m > blz - op oder bjif) > 316,7 kg/cm?, dann wird der Hooke’sche Bereich

verlassen und wir miissen den funktionalen Zusammenhang zwischen tgz
und M auf folgende Weise ermitteln: Wir bestimmen vorerst auf Grund der
vorgegebenen Spannungs-Dehnungslinie (die wir den Biegezug- und Biege-
druckspannungen zugrunde legen) und des rechteckigen Stabquerschnittes
F = b-h den Zusammenhang zwischen dem resultierenden Spannungs-

moment M und der ortlichen Achsenkriimmung i3 in Form der Kurve
h M

o 7 (blﬂ
wobei die Punkte P, F, F/ und G der Reihe nach jenen Normalspannungs-
- verteilungen zugeordnet sind, in denen die Randspannungen die Pro-
portionalititsgrenze, die FlieBgrenze, den Beginn der Verfestigung und die
GroBle ¢ = 44000 kg/cm? erreichen. Wirkt nun auf den Stab das End-

moment I ein, dann kénnen wir fir den Gleichgewichtsfall die lineare Ver-

>11). In Figur 9 a ist die so erhaltene Kurve dargestellt worden,

teilung der GroBe ———

angeben (Figur 9b) und jedem Wert aus Figur 9a

M M
bh* bh? _
einen Wert " zuordnen. Da mit Riicksicht auf die Kleinheit der entstehenden

2
Stabausbiegungen der linearisierte Ansatz %)- n —— Cflxi;
darf, konnen wir nach dem Satz von MoHRr die Verteilung —/Z— als Belastung

verwendet werden

auffassen und die /-fache Endverdrehung tgr als Stutzkraft unter dieser
gedachten Belastung ermitteln (Figur 9b). Auf diese Weise erhalten wir

L M M
tgzin der Form tgr = k& - 50 bt und finden z. B. fiir T 31(),7, 454,3,

604,5, 696,6 und 794,7 der Reihe nach £ = 3,62, 3,70, 4,18, 6,65 und
12,73 mal 10-¢.

Im Mittelfeld wirkt auf den Stab auBer dem Endmoment 9 noch die
exzentrische Druckkraft P ein. Da wir die Untersuchung im weiteren auf
einzelne Laststufen P = const. beziehen, diirfen wir I = P - p’ setzen, wo-
bei der gedachte Hebelarm p’ dem Angriffshebel p entgegenwirkt und der
entlastenden Wirkung des Stabes im Seitenfeld Rechnung trigt. Die re-
sultierende Belastung des Mittelfeldes besteht dann aus einer Druckkraft
P=o,-F, die mit dem Hebelarm a=p — p’ exzentrisch angreift und eine
Gleichgewichtsfigur nach Art der Figur 8c erzeugt. Der innerhalb der
Wendepunkte gelegene Ast dieser Figur ist offenbar identisch mit der Biege-

11) Bezughch der Ermittlung dieses Zusammenhanges siehe unter FuBnote 5. Es
erscheint empfehlenswert die Kurve Fig. 9a mit der Kurve zu vergleichen, die bei
Voraussetzung eines idealplastischen Werkstoffes erhalten wird und den unter Fu83-
note 1 erwihnten theoretischen Untersuchungen im Fall der Biegung zugrunde liegt. Wir
erkennen, dafl die Kurventangente an keiner Stelle parallel zur Ordinatenachse verlauft,
daB also auch bei beschrinkter Verformung sog. ,,Plastizititsgelenke‘ mit Riicksicht auf
die starke Verfestigung nicht zur Ausbildung gelangen.
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linie, die ein beiderseits gelenkig gelagerter, zentrisch gedriickter Stab der
Linge L, unter der Druckkraft P = o,- F ausbildet und als ,,Grundkurve*
y = v (x) bezeichnet werden moge. (Beziiglich der Bestimmung dieser
Grundkurven vgl. unter FuBnote 5.) Wir legen das Koordinatenkreuz mit
der x-Achse in die Grundkurvensehne und mit dem Ursprung an das eine
Grundkurvenende, fassen die auBerhalb der Wendepunkte liegenden Aste
als polarsymmetrische Fortsetzungen dieser Grundkurve auf und kénnen fest-
stellen, daB die fiir die Stelle x = — £~/2i°, y = — a gefundenen Achsen-

verdrehung e [ mit Riicksicht auf unsere Formidnderungsbedingung
mit der Endverdr—éhung tgt iibereinstimmen muB. Nach Emfuhrung von
M = P-p' = bh-o,.(p— a) 1dBt sich diese Bedingung auch in der Form

a _p 1 2h dy |

h ™~ h  keo, L dx\ —
Ermittlung der Glelchgew1chtszustéynde fiir zugrunde gelegte Laststufen

schreiben und erméglicht so eine bequeme

= 1—7% Wir gehen hiebei zweckmiBig von einem gewaihlten Wert y, aus,
bestimmen den genauen Verlauf und die Linge L, der Grundkurve, zeichnen
diese Grundkurve einschlieBlich ihrer polarsymmetrischen Fortsetzungen und
suchen jene GroBe L auf, fiir die unsere Formanderungsbedingung befriedigt
wird. Diese ,,Gleichgewichtslinge L* legt die Feldweite fest, die die drei-
feldrige Stiitze besitzen muB, damit bei Einhaltung des Wertes y, ein Gleich-
gewichtszustand unter der gegebenen Druckbelastung ausgebildet werden
kann; die hiebei entstehende Biegelinie dhnelt der Kurve Figur 8 b und zeigt
in Stabmitte eine seitliche Ausbiegung von der GroBe y,=y,+p —p=
Vo — a.

Die Durchfithrung dieses Losungsverfahrens sei an einem Zahlenbei-

Oy

spiel gezeigt, fiir das wir 5[7)1 = 1500 kg/cmz, Z = 0,20, % = 0,30 wahlen.
Die Grundkurve fiir den prismatischen Stab aus dem geschilderten Baustahl

ist fiir den Fall o, = 1500 kg/cm? Jo 0,30 in Figur 8 d einschlieﬁlich ihrer

polarsymmetrischen Fortsetzung im Koordinatensystem dargestellt

x
h’ /z
worden und da fiir jede Stelle - " die Linge der vom Scheitelpunkt aus ge-
messenen Sehne 2L/z und auch die GroBe ?(g bekannt ist, konnen wir fiir jede

d 1 2h dy . A
b ke L dx bestimmen und die Kurve
% = f, (%) zeichnen (Figur 8d). Der HookEe’sche Bereich wird im Seiten-

M _ 3167 -6 a _r
= — 0,011 betrigt und demgeméiB smd die Ordmaten dieser Kurve rechts

Stelle % die HilfsgroBe

feld verlassen, wenn p’ =

von der Stelle % = — 0,011 mit Verwendung des Hooke’schen Wertes

== % und links von dieser Stelle mit Hilfe eines nach Figur 9 ermittelten
groBeren Wertes £ zu berechnen. Die Kurve f, (%) ermoglicht uns, unmittel-

bar jenen Punkt des Grundkurvenzuges anzugeben, fiir den die Forménde-
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rungsbedingung % == %—-——% = 0,2 — %befriedigt wird; es ist dies der

Punkt A mit den Koordinaten \;C; = — 4,48, % = %— = — 0,155 und der zu-
geordneten HilfsgroBe % = 0,355. Der Ordinatenunterschied des Scheitels
und des Punktes A besitzt die GroBe iéfz = QL% + 4,48 = 15,76, so daB die
Gleichgewichtslinge L = 31,52-4 und der Schlankheitsgrad lz% Y12
= 109,0 betrdgt. Wir konnen somit feststellen, daB die untersuchte drei-
feldrige Stiitze, sofern sie die Feldweite L = 31,52/ besitzt, unter der
exzentrischen Druckbelastung P=1500-&4-4, p=0,2. /4 eine Gleichgewichts-
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figur nach Art der Figur 8 b ausbildet, deren Wendepunkte in der Entfernung
4,48 - 1 von den Mittelstiitzen gelegen sind und die in Stabmitte die seit-
liche Ausbiegung y, = 0,30-%4 - 0,155- /2 = 0,455. 4 aufweist. Das Stiitzen-
moment betragt in diesem Zustand I = bh -0, (p —a) = 532. b .42 und die
groBte Randspannung im Seitenfeld liegt (vgl. Figur 9 a) noch unterhalb der
FlieBgrenze.

Die systematische Bestimmung der Schlankheitsgrade 1 = L/i, die zur
Ausbildung von Gleichgewichtszustanden der untersuchten dreifeldrigen
Stiitze notwendig sind, wird in Figur 10 vorgefiihrt.. Auch dieses Graphikon
bezieht sich auf Stibe, deren Querschnitt ein Rechteck F = & - % ist und deren
Baustahl dem geschilderten Forminderungsgesetz gehorcht; die Laststufe
ist durch die mittlere Druckspannung o, = —11; = 1500 kg/cm? festgelegt und
als Angriffsexzentrizitit werden verschiedene Werte p/# in Rechnung gestellt.
Wir haben vorerst die Schar der Grundkurven, die unter der Druckkraft
P = 1500-F bei verschiedenen Werten der Scheitelausbiegung y,/4 aus-
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gebildet werden, genau zu bestimmen und ferner auch die HilfsgroBe ,k“

fiir verschiedene Werte nach dem ge;s‘childértern Verfahren festzulegen;

bh?
fir den Hooke’schen Bereich ergab sich £ = 3,62.10—¢. Um das Auf-
treten sehr kleiner Dezimalwerte zu vermeiden, wollen wir unsere Form-

6.
anderungsbedingung beiderseits mit }36; multiplizieren, also in der Form

1004 (p_a)_ 100 26 & T
3,62 -(77——7 = 362.1500 ~ L  dx oder kurz n = schreiben.
Die Funktion %: 184,17-»2; : % = £ (%) 1Bt sich, dhnlich wie in
Figur 8 d gezeigt wurde, fiir verschiedene Parameter %‘) aus den Grundkurven

bestimmen (in Figur 10 wird sie durch die dick gezeichneten Kurven wieder-

Fig. 10.

gegeben, die fiir %0 = 0,20, 0,30, 0,40 und 0,45 dgrgestellt wurden). Auch

N g . p__a _p MW e

konnen wir fiir verschiedene Werte 3 DT h T 1500 - b A die Hilfs
Js 6. !

grofBe 0y _ 10°-% p berechnen und, da fiir die Losung y =4 gilt,

hTO362 R 5 h Tk
gleichfalls als Funktion 723 = fi (72—> darstellen (in Figur 10 wird diese

Funktion durch die diinn ausgezogenen Kurven wiedergegeben, die fiir die
ExzentrizititsmaBe % = 0, 0,2 und 0,4 gezeichnet wurden). Auf diesen
Kurven finden wir die Punkte H# und F, die jenen Zustinden zugeordnet
sind, in denen im Seitenfeld die Proportionalititsgrenze bzw. die FlieBgrenze
erreicht wird; links vom Punkt F nehmen die Beiwerte , . stark zu und
daher steigen die Kurven hier steil an. Die Schnittpunkte der beiden Kurven
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1 (iv> und f, (%) befriedigen die Forminderungsbedingung; damit wir
an den Abszissenorten % = % dieser Schnittpunkte unmittelbar die zuge-

L .
ordnete GroBe L/h abmessen und daraus die gesuchte Schlankheit 1= - p Y12

berechnen kénnen, wurde mit Hilfe der Grundkurvenschar auch die Funktion

L A »

= /s (Z\) graphisch festgelegt (gestrichelte Kurven in Figur 10, gezeichnet
. Jo

fiir die Parameter i 0,20, 0,30, 0,40 und 0,45). Wir gewinnen auf diese
L, ,, | p
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Fig. 11.

Weise fiir jedes gewdihlte ExzentrizititsmaB p/4 eine Serie zusammen-
gehoriger Wertepaare 4, ~J;7° und konnen daher die Kurven 1 = f, (%) punkt-
weise bestimmen. In Figur 11 ist das so erhaltene ,,Diagramm der Gleich-
%: 0, 0,1, 0,2, 0,3, 0,4 und
0,5 dargestellt worden; die Abszissen beziehen sich hiebei, wie nochmals er-
wihnt sei, auf die Scheitelausbiegungen der Grundkurve und fiihren erst in
der Form y, = y,— a auf die effektiven seitlichen Ausbiegungen in Stab-
mitte.

gewichtszustinde‘* fiir die ExzentrizitatsmaBe

Um in Figur 11 die gréBte im Mittelfeld auftretende Stabspannung
leicht abschidtzen zu konnen, wurde die Grenzgerade ,,/7¢, das Quetschinter-
vall ,,Qu‘ und das Streckintervall ,,S¢* eingezeichnet. Alle Diagrammpunkte
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links von ,,H* gehoren Gleichgewichtszustinden an, in denen im Mittelfeld
die Proportionalititsgrenze noch nicht erreicht ist. Fallt die Abszisse eines
Diagrammpunktes in das Intervall ,S#‘, dann liegt die groBite (am Aufen-
rand des Stabscheitels auftretende) Zugspannung im Streckbereich of =
2700 kg/cm?, wihrend die gleichzeitig auftretende groBte Randpressung
(da das Quetschintervall schon verlassen wurde) dem Verfestigungsbereiche
angehort. Um auch die groBte im Seitenfeld auftretende Randspannung
bequem abschitzen zu kénnen, wurden die Grenzlinien ,,Gp‘ und ,,Gr* ge-
strichelt eingetragen. Alle Kurvenpunkte links auBerhalb von Gy gehoren
Gleichgewichtszustinden an, in denen im Seitenfeld der Hookg’sche Bereich
nicht verlassen wird (M < 316,7-bA2); alle Kurvenpunkte rechts auBlerhalb
von Gr hingegen sind Zustinden zugeordnet, in denen 9 > 604,5-bA ist
und daher die Randspannung im Seitenfeld die FlieBgrenze o = 2700 kg/cm?
erreicht hat.

n% = 0%
zweigt von der Ordinatenachse (die einen Ast dieser Kurve bildet) mit waag-
rechter Tangente ab. Die Ordinate 2, des Verzweigungspunktes stellt
die Gleichgewichtsschlankheit fiir eine infinitesimale Ausbiegung (,,Knick-
schlankheit“) vor und wird nach den Lehren der Stabilititstheorie aus
der ,Knickbedingung‘ gewonnen. Wenn wir uns auf die maBgebenden
symmetrischen Biegelinienformen beschranken, lautet diese Knickbedingung

g-L 3-8-E-] . B-L L, 1] P
cos ~5 + PI Sin—5— = 0, wobei f = T bedeutet und 7" den

ENGESSER-KARMAN’schen Knickmodul vorstellt. In unserem Falle ist —ﬁ— = 1500

kg/cmz, somit 7 = E, und wir erhalten als kleinste Knickwurzel - L = 4,35
_E
1500

Die Kurve fiir den Sonderfall des zentrischen Kraftangriffes

und daraus 1, = 4,35 -

der Kurve ,,—% = (%,

Betrachten wir das gefundene Diagramm der Gleichgewichtszustinde
Figur 11, dann sehen wir, daB die Kurven fiir exzentrische Lastangriffe a u s-
geprigte Maxima aufweisen. Die diesen Maxima zugeordneten Ordi-
naten max A = 1, (,kritische Schlankheitsgrade‘‘) stellen die gr6Bten Schlank-
heitsgrade der dreifeldrigen Stiitze vor, die noch die Ausbildung eines Gleich-
gewichtszustandes unter der gegebenen Belastung zulassen; wiére die
Schlankheit groBer als 4, dann wiirde der Stab die ge-
gebene Last nicht zu tragen vermodgen und sich immer mehr
ausbiegen, bis er eine duBere Stiitzung findet oder eine Gefiigetrennung er-
fihrt. So kénnen wir z. B. aussagen, daB die Stiitze mit der Feldschlankheit

é — 101,0 zusammenbricht, wenn die mit p = 0,3 -  exzentrisch angreifende
Druckkraft die GroBe P = 1500 F erreicht, da die Wertegruppe g:z 1500,
71,]7 = 0,3, 2 = 101,0 in Figur 11 einem kritischen Gleichgewichtszustand an-

gehort12). Aus der Lage des Kurvenpunktes gegeniiber den Intervallen ,,Qu**

= 167,0 als Ordinate des Abzweigungspunktes

12) Die Losung ist exakt und zur Begriindung dieser Exaktheit erscheint noch die
folgende Bemerkung geboten: Wichst P von Null bis zum kritischen Wert an, dann
dndert sich der Biegelinienverlauf und die Wendepunkte werden sich innerhalb eines
bestimmten Bereiches verschieben. Es existiert daher in der Umgebung der Wendepunkte
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und ,,S¢“ sowie der Grenzkurve ,,Gr konnen wir hier den SchluBl ziehen,
daB im kritischen Zustand (d.i. im Augenblick des Zusammenbruches) die
groBte Pressung des Stabes im Mittelfeld innerhalb des Quetschbereiches
und die groBte Zugspannung unter der FlieBgrenze gelegen ist und daB auch
die groBte Randspannung im Seitenfeld die FlieBgrenze noch nicht er-
reicht hat.

In gleicher Weise vermégen wir aus Figur 11 auch zu entnehmen, daB
die untersuchte dreifeldrige Stiitze zusammenbricht, wenn die Feldschlank-

heit TL = 133,8 betrigt und die mit dem Hebelarm p = 0,1 -/ angreifende

Druckkraft die GroBe P = P,, = 1500 F erreicht. Dieses Ergebnis ist des-
halb von besonderem Interesse, weil hier der Zusammenbruch des
statisch unbestimmten Systems schon eingeleitet wird,
‘bevor noch im Seitenfelde der HookEeE’sche Bereich ver-
lassen wird und die groBte Pressung im Mittelfelde ganz an die Quesch-
grenze gelangt. Es erscheint daher in dieser Beziehung bei der Beur-
teilung des Tragvermogens statisch unbestimmter Stabwerke mit gedriickten
Gliedern einige Vorsicht am Platze 3). Den genauen Wert der im kritischen
Zustand entstehenden GroBtspannung im Seitenfeld konnen wir mit Hilfe

der Figur 10 leicht ermitteln, da sich hier fiir % = 0,1, %0» = 0,203 die Ab-

= — 0,077 ergibt und damit M = P-(p —a) = 265,5- bA2 und

a
h
Omax = %72? = 1593 kg/cm? berechnet werden kann. Die im kritischen Zu-

szisse

stand auftretende seitliche Ausbiegung in Stabmitte betrigt y,=y,—a =
0,280- % und fiir die Entfernung der Wendepunkte der Biegelinie von den
Mittelstiitzen finden wir 0,102- L, so daB der Biegelinienverlauf im Augen-
blick des Zusammenbruches der Figur 8b dhnelt. Wiirden wir auf die ent-
lastende Wirkung der Stibe in den beiden Seitenfeldern verzichten und das
statisch bestimmte Grundsystem (mit Gelenken iiber den Mittelstiitzen)
ausfithren, dann wire die Grenzlast des Systems mit der kritischen Druck-
kraft des Mittelstabes identisch und wiirde P,, = 850 F betragen (vgl. die
unter FuBinote 4 genannte Abhandlung, in der sich eine Tabelle der kritischen
Spannungen von exzentrisch gedriickten, beiderseits gelenkig gelagerten
Stiben aus dem hier zugrunde gelegten Baustahl befindet). Wir ersehen
daraus, daB die Tragfihigkeit im untersuchten Beispiel durch die Wahl der
statisch unbestimmten Anordnung (d.h. durch die biegesteife Verbindung
ein Bereich, innerhalb dessen das Vorzeichen der Achsenkrimmung
wihrend der Laststeigerung geidndert wird und daher im allgemeinen das lineare E n t-
lastungsgesetz im Spannungsbilde zur Geltung kommen kann. Im untersuchten
Fall ist eine derartige (an 'sich nicht bedeutungsvolle) Beeinflussung des der Rechnung
zugrunde liegenden Forminderungsgesetzes ausgeschlossen, da die mittlere Druck-
spannung nur bis zum kritischen ‘Wert 1500 kg/cm? anwichst und die iiberlagerten
Biegespannungen in der Nihe der Wendepunkte sehr klein sind.

18) In diesem Zusammenhang sei auch auf das Verhalten schlanker Stahlbogentriger
mit geringer Pfeilhéhe hingewiesen. Die theoretischen Untersuchungen des Verfassers
haben hier ergebeu, daf§ fiir den Nachweis der ,,Knicksicherheit* nicht die Vollbelastung
sondern die halbseitige Belastung maBgebend ist, da dann die Stiitzlinie von der Bogen-
achse stark abweicht, also eine stark exzentrische Druckbelastung des Stabes eintritt. Bef
itblicher Bemessungsweise (Nachweis der ,,zuldssigen Inanspruchnahme‘ im Querschnitt

des Viertelspunktes) kann der Sicherheitsgrad gegen diese Art des Zusammenbruches
bis auf etwa ,61 heruntersinken.
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mit den Seitenfeldern) von P, = 850-F auf 1500-F, d.i. um 77 9% ge-
steigert wird.

C. Das Tragverhalten eines einfach statisch unbestimmten Fach-
werks bei wiederholter Uberlastung.

Waihrend wir in den beiden fritheren Abschnitten den EinfluB gedriickter
Stiabe klarzulegen versuchten und hiebei ein allmahliches Anwachsen der Be-
lastung bis zur Erschopfung des TragvermoOgens voraussetzten, wollen wir
nunmehr einen statisch iiberzdhligen Zugstab untersuchen, der einer
wiederholten Uberlastung ausgesetzt ist. Wir beziehen uns wieder auf
unser Fachwerkmodell Figur 1a und legen den Gleichgewichtszustand in
der gleichen iibersichtlichen Weise fest, wie im Abschnitt A geschildert

x{ X |
2 ) 4
St : g St I.-
P P
Xi L N
9 -
X A A
I\&- I
Xt c
I ..
sL. & Ay
¢ G
P A
P
Xm I"II
I/'
II,
X - 7B
N+ ”"INE 1/ ¢
n+1
Fig. 12.

wurde (Figur 12a). Vom stiitzenden Grundsystem, das von den beiden
Streben gebildet wird, verlangen wir die Befolgung des Hookg’schen Ge-
setzes, so daB wir die Funktion 4; = f (X) wieder durch eine Gerade ,G*
darstellen konnen; ‘der funktionale Zusammenhang 4, = ¢ (X( zwischen
der Lingeninderung und der Achsialkraft des untersuchten, iiberlasteten
Stabes ist hingegen in der Form einer Kurve gegeben, die affin verwandt
ist mit der Spannungs-Dehnungslinie des Baustahls und deren Schnittpunkt I
mit der Geraden ,,G* den Gleichgewichtszustand unter der Knotenzugkraft P
bestimmt. Nimmt nun P ab, dann wird der elastische Forminderungsanteil
der iiberlasteten Vertikalen wieder abgebaut und die Kurve ¢ (X) be-
schreibt die Entlastungsgerade. Die Stabkraft X sinkt hiebei bis auf
Null und wichst hierauf als Druckkraft an, bis ein Gleichgewichtszustand
des unbelasteten Systems erreicht wird. Die Gleichgewichtsbedingung

lautet fiir diesen Selbstspannungszustand S = — X und liefert die Beziehung
A; = ——Ezi‘; X = —C-X, diein Figur 12 a durch die Gerade G’ dargestellt

wird. Der Schnittpunkt dieser Geraden (die durch den Ursprung geht und
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parallel zu ,,G‘ verlauft) mit der Kurve ¢ (X) legt den Selbstspannungs-
zustand Il fest, der nach Entfernung von P ausgebildet wird; die Vertikale
besitz{ hier die Druckkraft X, die Strebe die Zugkraft S;; = — X, und der
Lastknoten erreicht nicht mehr die urspriingliche Lage sondern zeigt die
bleibende Verschiebung A;. Waichst die Last nunmehr zum zweiten Mal
von Null auf den fritheren Endwert P an, dann steigt die Kurve ¢ (X) wieder
bis zur Geraden G an und legt hier den neuen Gleichgewichtszustand III
fest u.s. w.; wir sehen, so lange die obere Lastgrenze P unveridndert bleibt,
miissen die Punkte I, III, V, .. (Gleichgewichtszustinde .unter P) auf der Ge-
raden G und die Punkte II, IV, VI, .. (Selbstspannungszustinde nach Ent-
fernen von P) auf der Geraden G’ gelegen sein.

Da die Achsialspannung in der plastisch gedehnten Vertikalen beim
Ubergang in den Selbstspannungszustand das Vorzeichen wechselt, wird der
Verlauf des Kurvenzuges ¢ (X) durch jenen Komplex von Erscheinungen be-
" einfluBt, der unter dem Namen ,,Bauschingereffekt‘‘ bekannt ist. Im Rahmen
dieses Effektes werden die konventionellen Grenzen, vor allem die Elasti-
zitatsgrenze, entsprechend ihrer Abstufung und je nach der GréBe der vor-
her aufgetretenen plastischen Verformung verindertt). Der EinfluBl des zeit-
lichen Ablaufes der Belastungen kann durch die beiden Grenzfille Fig. 12 b
und ¢ zur Darstellung gebracht werden. Im ersten dieser Grenzfille, der
durch die Einschaltung ausreichend groBer Ruhepausen zwischen den Last-
wechseln gekennzeichnet ist, erfihrt die Elastizititsgrenze im Zuge der Alte-
rung eine Hebung bis zum vorher erreichten Punkt I, so daBl bei der zweiten
und jeder weitern Belastung derselbe Ast [—II der Kurve ¢ (X) durch-
laufen wird und der Formidnderungszustand ein stationirer ist. Im Grenz-
fall unmittelbar aufeinander folgender Lastwechsel erscheint hingegen die
Elastizititsgrenze fiir die jeweils folgende Beanspruchung des entgegen-
gesetzten Vorzeichens merkbar gesenkt, so daf die Kurve ¢ (X) eine offene
Schleife bildet, deren Spitzen I, III, V, ... bzw. I, IV, VI, ... die Gleich-
gewichtszustinde nach der Belastung bzw. Entlastung festlegen. Diese Ein-
zwingung des Schleifenzuges in das Geradenpaar G, G’ ist durch das Uber-
maf an kinematischer Bindung des Systems bedingt und daher typisch fiir
statisch unbestimmte Tragwerke; sie bewirkt bei zunehmender plastischer
Verformung eine fortschreitende Abnahme der Stabkraft X (also eine fort-
schreitende Entlastung des itberzahligen Stabes im iiberlasteten System),
die allerdings mit einer Zunahme der entgegengesetzt gerichteten Stabkraft
im Selbstspannungszustand verkniipft ist. Je steifer das stiitzende Grund-
system ist, je kleiner also der Neigungswinkel a des Geradenpaares G, G’
1st, umso ausgepragter tritt dieser Entlastungsprozefl in Erscheinung. Durch
die Abwirtsfithrung der Schleife werden die durch die Belastungen neu hin-
zukommenden Dehnungsanteile allmahlich verkleinert und jene des Selbst-
spannungszustandes immer mehr vergroBert, so daB nach einer ausreichenden
Zahl von Wechseln beide Anteile iibereinstimmen werden. Die Schleife ist
dann in sich geschlossen, der Formanderungszustand wird stationidr. Die lot-
rechten Senkungen A des Lastknotens pendeln dann zwischen den Werten
4, und 4, , , hin und her, es besteht zwar keine Proportionalitit, jedoch voll-
kommene Elastizitit. Erfihrt die Elastizititsgrenze des Baustahls im Zuge

14) Vgl. dazu L. BauscHINGER, Ziviling. 1881 und Mitt. Mech. Techn. Laborat.
Miinchen 1886; G. Masing und W. MaukscH, Wiss. Ver. Siemens Konzern, 1925/26;
G. Sachs und H. Snoj, Z. f. Physik, 1927; W. Kuntzg, Z.d. V. d. Ing., 1928, S. 1488;
W. Kuntze und G. Sachs, Mitt. d. deutschen Mat.-Priifungsanst., Sonderheft XIV, 1930.
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der Belastungswiederholung eine fortschreitende Hebung, dann nimmt die
Breite der Schleifen ab und es kann zur ,,vollstindigen Konvergenz‘‘ kommen,
bei der der Schleifenzug in einer einzigen Geraden # —> n -}- 1 zusammenfillt.
_ Die Frage, ob das Erreichen eines stationdren Forminderungszustandes
durch SchlieBen der Hysteresisschleife auch vom Standpunkt der Dauer-
festigkeit der Riickfithrung in den elastischen Bereich gleichkommt,
scheint noch nicht endgiiltig geklirt zu sein. Wiirde der iiberlastete Stab
einem statisch bestimmten System angehoéren, dann wiirde die Stab-
spannung bei jedem Lastwechsel zwischen der unteren Grenze o, = 0 und
einer oberen Spannungsgrenze o, schwanken und daher einer Zeitfestigkeit
vom Typus der ,Ursprungsfestigkeit’‘ unterliegen. Ist der wiederholt ge-
reckte Stab ein iiberzihliger Stab efnes statisch unbestimmten Sy-
stems, dann tritt die geschilderte Abwartsfithrung der beiden Spannungs-
grenzen o, und o, ein; die Spannungsdifferenz o, — o, bleibt hiebei ange-
nahert die gleiche, hingegen nimmt das arithmetische Mittel 1 (o, + 0,), die
»statische Vorspannung*‘, immer mehr ab, so daB sich die Beanspruchungs-
weise immer mehr der ,schwingenden‘‘ nidhert. Da nun der doppelte Wert der
Schwingungsfestigkeit (also die ganze Spannungsdifferenz o, — 0,) fiir den
Baustahl im allgemeinen groBer 13) ist als die Ursprungsfestigkeit, wirkt sich
der geschilderte EntlastungsprozeB auch vom Standpunkt der Dauerfestigkeit
giinstig aus; allerdings darf nicht iibersehen werden, dafl die vorangegangene
Uberlastung des Stabes die Dauerfestigkeit herabzusetzen vermag.

Versuche iiber das Tragverhalten einfach statisch unbestimmter Fachwerke
mit wiederholt iiberlasteten Zugstiben.

Bei den Versuchen mit wiederholt {iberlasteten, statisch iiberzahligen
Zugstaben fand ebenso wie bei den im Abschnitt A geschilderten Druck-
versuchen der in Figur 5 a gezeichnete Stahlbiigel Verwendung, der die Fach-
werkskonstruktion des ,stiitzenden Grundsystems‘‘ vertritt und ein elasti-
sches, ziffernmaBig genau festlegbares Verhalten dieses Grundsystems ge-
wihrleistet sowie eine gelenkige Lagerung des untersuchten Stabes ermég-
licht. Die Eichung des Biigels zeigte, daB innerhalb des Nutzbereiches (Ver-
groBerungen der Lagerentfernung bis zu 7,5 mm) das Hooke’sche Gesetz
befolgt wird und die Federkonstante, wenn die Messung mit derselben Mef3-
einrichtung wie bei den Hauptversuchen erfolgt, C = 0,197 cm/t betriagt 7).
Die nach Figur 5b ausgebildeten Versuchsstibe wurden mit ihren verstirkten
Enden (Querschnitt 20/20 gegeniiber einem Kreisquerschnitt mit d = 16 mm,
F = 2,01 cm? innerhalb der MeBstrecke) in die Bei8keile der Maschine ein-
gespannt, nachdem die gehirteten, beiderseits angeordneten Schneidenkérper
mit Hilfe eines Keilpaares gleichmiaBig an die Lagerpfannen des Biigels an-
gedriickt wurden. Alle Versuchsstibe stammten aus derselben Stange; der
statische Zugversuch ergab fiir das Stabmaterial eine obere und untere Streck-
grenze o, = 2,42 bzw. op, = 2,36 t/cm2, eine Zugfestigkeit op = 4,02 t/cm2,
die Bruchdehnung d,, = 33 9% und die Einschniirung v = 67 9.

Die Messung der Dehnungen A4, erfolgte iiber eine MeBstrecke von
150 mm. Da aus diesen Messungsergebnissen auf die gesamte Lingenande-

15) Vgl. O. Grar, Die Dauerfestigkeit der Werkstoffe, Berlin 1929; K. SCHAECHTERLE,
Z. ,Die Bautechnik‘ 1932, S. 592; A. Tanum und W. BuchHmann, Dauerfestigkeit und
Konstruktion, Berlin 1932; P. LUDWIK u. J. KRYSTOF, 7.d. V.d. Ing 1933, S. 629.

16) Dieser Wert ist um 0,008 cm/t kleiner als der bei den Druckversuchen in Rech-
nung gestellte, da bei der hier gewidhlten MeBeinrichtung die Einpressungen der Unter-
lagsplatten etc. im Ablesungsergebnis nicht enthalten sind.
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rung des Stabes zwischen den beiden Schneidenkdrpern geschlossen werden
muBte, wurden die Ergebnisse des statischen Zugversuches verwendet, um
die Dehnungen der beiden Stabenden (vom Ende der MeBstrecke bis zum
Schneidenkorper) allgemein als Bruchteil 29 der MeBstrecken-Dehnung aus-
zudriicken "), Mit Hilfe des so gewonnenen Graphikons konnte zu jeder Ab-
lesung 4, unmittelbar die zwischen den Schneiden auftretende Gesamt-

dehnung (1 + TSO) -4, angegeben werden und mit Hilfe des Ergebnisses

der Biigeleichung lieB sich dann auch der Lastanteil (P — X) des Biigels
und die Kraft X im iiberzdhligen Stab genau festlegen. Die auf diese Art

X /oa‘g,‘« ‘

Fig. 13.

punktweise bestimmten Kurven sind in Fig. 13, 14 und 15 fiir drei Versuche
wiedergegeben worden. Die Darstellungsweise ist die gleiche wie im theo-
retischen Schaubild Figur 12 und jeder Laststufe P entspricht eine Gerade G,
wahrend den Selbstspannungszustinden die Gerade G’ zugeordnet ist.

Im Rahmen des ersten Versuches (Figur 13) wurde die Belastung des
statisch unbestimmten Systems vorerst auf P = 5,55 t, d.i. bis zum Erreichen
der oberen Streckgrenze im Stabe gesteigert und hierauf wieder abgebaut;
im Zuge der neuen Belastung konnte die ,obere‘ Streckgrenze mit Riicksicht
auf ihre Labilitat nicht mehr erreicht werden®). Die Last wurde nunmehr
der Reihe nach auf P = 5,70, 6,00, 7,00, 8,15 und 9,10 t erhoht. Die oberen
Aste der Kurve 4 = ¢ (X) beschreiben hiebei die Forminderungslinie des

statischen Zugversuches und die Spannungen % = —2% t/cm? des Stabes

gelangen tief in den Verfestigungsbereich. Die Schleifenbreite nimmt nach
jeder Laststeigerung zu und da der Bauschingereffekt bei den abwirts und

17} Der Korrekturbeiwert ,&2¢ schwankt nach Beginn des FlieBens in der MeBstrecke
zwiischen 8,5 unid 11 0/o; innerhalb des elastischen Bereiches, der auch bei den Ent-
lastungen zur Geltung kommt, betrigt er 22,6 oj.

18) Vgl. dazu die Diskussion in der Z. V.d. 1., 1928, S. 1859 und K. MEMMLER und
K. Laute, Mitteilungen d. d. Materialpriifungsanstalten, Sonderheft XV, 1931, S. 60.
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aufwirts fithrenden Schleifendsten angenédhert im gleichen MaBle zur Geltung
kommt, wird der Zuwachs an bleibender Dehnung unter der vorher schon
erreichten Laststufe nur sehr klein. Nach Ausbildung des Selbstspannungs-
zustandes XII wurde das System durch 21 Tage unbelastet gelassen. Die
Gesamtdehnung Ay, des Stabes nahm wiahrend dieser Ruhepause (unter Be-
riicksichtigung der Temperaturwirkung) auf den Wert 4y, ab und da auch
die Elastizititsgrenze des Stabmaterials im Zuge der Alterung eine Hebung
erfuhr, ergab sich bei der neuerlichen Belastung mit P = 0,1 t ein Gleich-
gewichtszustand XIII, dem ein kleinerer Dehnungswert als dem vorher aus-
gebildeten Gleichgewichtszustand XI zugeordnet ist. Die Gesamtdehriung
A xr konnte hier auch nach mehreren Lastwechseln nicht erreicht werden.

Beim 2. Versuch (Figur 14) wurde die Belastung des statisch unbe-
stimmten Systems in einem Zuge bis auf P = 8,0 t gesteigert, so daB der

[ Fig. 14.

iiberzidhlige Stab eine starke plastische Dehnung erfihrt. Hierauf wurde ent-
lastet und nun sechsmal dieser Lastwechsel vollzogen. Wir sehen, daB die
bleibenden Dehnungen nur geringfiigig zunehmen, da der Bauschingereffekt
bei der Be- und Entlastung nahezu in gleichem MaBe zur Geltung kommt.
Die in der Mitte (bei P = 4,0 t) gemessene Schleifenbreite betrug bei diesen
sechs Lastwechseln der Reihe nach 0,1777, 0,1176, 0,1070, 0,1010, 0,0973
und 0,1218 mm; die Konvergenz wird durch das letzte Messungsergebnis
gestort. Die Belastung wurde dann auf P = 9,1 t erhdht und hier ein Last-
wechsel durchgefiihrt, durch den die bleibende Dehnung gleichfalls nur ge-
ringfiigig vermehrt wurde.

Wihrend die Zeit fiir die Durchfithrung eines Lastwechsels bei den ersten
beiden Versuchen mit Riicksicht auf die vielen erforderlichen Ablesungen
3 big 5 Minuten betrug, wurde beim 3. Versuch (Figur 15) die Versuchs-
geschwindigkeit nach Moglichkeit erhoht, um eine Anniherung an Uber-
lastungen dynamischer Natur zu erzielen. Es wurde daher die Dehnungs-
messung nur an den Schleifenspitzen und in der Schleifenmitte durchgefiihrt,
wodurch die Versuchsgeschwindigkeit auf rund 30 Sekunden pro Lastwechsel
gesteigert werden konnte. Fiir die Laststufe wurde P = 6,5 t gewihlt, so
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daB der iiberzihlige Stab an das Ende des FlieBbereiches gelangt. Die
Schleifenbreite nahm bei den zwdlf in rascher Folge durchgefiihrten Last-
wechseln im allgemeinen ab (sie betrug der Reihe nach 0,0725, 0,0575, 0,0534,
0,0495, 0,0490, 0,0534, 0,0435, 0,0448, 0,0454, 0, 0447 o, 0450 und O 0508
mm), doch wird auch hier die Konvergenz gestort Nach Erhohung der Last
auf P = O t und zwei weiteren Lastwechseln wurde der Selbstspannungs-
zustand XXX erreicht. Nun sollte festgestellt werden, wie sich das System
bei wiederholter Einwirkung kleinerer Lasten verhialt und es wurden da-
her zwolf Lastwechsel mit P =4,0 t durchgefiihrt, fiir das sich nach der iib-
lichen Berechnung (d. h. aus der Elastizitatsgleichung fiir den Anfangszustand)

angenahert *;Sf: op ergeben wiirde. Wie wir aus Figur 15 entnehmen,

pendelt die Stabkraft X bei diesen Lastwechseln zwischen den Grenzen
X = —2,94 und + 0,97 t hin und her, der Stab wird also durch die Fin-

X

Fig. 15.

wirkung der vorhandenen groBen Restspannungen nunmehr vornehmlich g e-
driickt. Die einzelnen Schleifen fallen hier mit groBer Anndherung in einer
Geraden zusammen, der Formidnderungszustand ist praktisch stationir (die
bleibenden Dehnungen nahmen bei diesen zwolf Wechseln sogar um 0,015
mm ab). Die starke Uberlastung des Systems hat somit auBler einer grof8en
bleibenden Verformung auch die Verwandlung des Zugstabes in einen vor-
\Vlegend gedriickten Stab zur Folge und diese Anderung der Beanspruchungs-
weise wird ebenso wie die vorangegangene Uberlastung des Stabes von Ein-
fluB auf die Dauerfestigkeit sein.

Zusammenfassung.

Im Abschnitt A wird der EinfluB, den das Verhalten gedruckter und bis
iiber die Knickgrenze belasteter Baustahlstibe auf das Tragverhalten eines
einfach statisch unbestimmten Fachwerks nimmt, theoretisch untersucht und
das gefundene Ergebnis durch sorgfaltig durchgefiihrte Versuche bestitigt.
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Wird bei einem gedriickten Baustahlstab iiblichen Schlankheitsgrades der
Knickzustand erreicht, dann sinkt der vom Stab ausgeiibte achsiale Wider-
stand im Zuge der eintretenden Ausbiegung stark herunter (Figur 2) und
die Kurve, die den Zusammenhang zwischen diesem Widerstand und der
gegenseitigen Annidherung der beiden Stabenden festlegt, zeigt den in
Figur 3a gezeichneten Verlauf. Wenn nun der Stab einem statisch unbe-
stimmten Fachwerk als statisch iiberzihliger Stab angehort und durch eine
Uberlastung des Systems an die Knickgrenze gelangt, bewirkt dieser Wider-
standsabfall eine starke Mehrbelastung des ,,Grundsystems‘‘, das den iiber-
zahligen Stab stiitzt. Ist das Grundsystem einer derartigen Mehrbelastung
nicht gewachsen, dann ist das Tragvermoégen des statisch unbestimmten Fach-
werks in dem Augenblick erschopft, in dem der {iberzdhlige Stab den Knick-
zustand erreicht. Ist hingegen das stiitzende Grundsystem so kraftig aus-
gefithrt, dal es die groBc Mehrbelastung {ibernehmen kann, dann wird ein
neuer Gleichgewichtszustand ausgebildet und das Fachwerk ist einer weiteren
Belastungssteigerung bis zur Traggrenze des ,stiitzenden Grundsystems*
fahig; die Bemessung auf ,,zulidssige Inanspruchnahme** fiithrt in derartigen
Fallen auf eine groBere Bestandsicherheit, als fiir statisch bestimmte Systeme
gefordert wird. Die theoretisch erhaltenen Ergebnisse wurden durch Ver-
suche, bei deren Durchfithrung die Fachwerkskonstruktion des ,,stiitzenden
Grundsystems‘‘ durch einen geeichten Stahlbiigel (Figur 5a) ersetzt wurde,
voll bestatigt (Fig. 6 und 7).

Der Abschnitt B enthilt eine theoretisch exakte Untersuchung einer iiber
drei gleiche Felder durchlaufenden Stiitze aus Baustahl, in deren Mittelfeld
eine Druckkraft exzentrisch angreift (Figur 8a). Der Baustahl ist hiebei
durch seine Formianderungskurve gegeben und fiir den Stabquerschnitt wird
ein Rechteck F = & -7 vorausgesetzt. Als Beispiel wird in Figur 11 der
Verlauf jener Schlankheitsgrade L/i dargestellt, die die Stiitze besitzen muB,
wenn sie die Druckkraft P = 1500- F kg bei verschiedenen Werten der an-
wachsenden Ausbiegung im Gleichgewichte halten soll. Die Kurven weisen
ausgepragte Maxima auf, die den ,kritischen‘ Gleichgewichtszustinden un-
mittelbar vor dem Zusammenbruch zugeordnet sind. Es zeigt sich, daB der
Zusammenbruch dieses statisch unbestimmten Tragwerks grundsatzlich schon
einsetzen kann, bevor noch die gro8te Spannung im Seitenfeld an die Pro-
portionalititsgrenze gelangt und die groBte Pressung im Mittelfeld die
Quetschgrenze erreicht.

Im Abschnitt C wird das Tragverhalten eines einfach statisch unbe-
stimmten Fachwerks bei wiederholter Uberlastung eines iiberzihligen Zug-
stabes theoretisch und experimentell untersucht. Bei rasch aufeinander fol-
genden Lastwechseln findet, wie schon GrRUNING festgestellt hat, im Zuge
des Anwachsens der bleibenden Dehnung eine fortschreitende Entlastung
des iiberlasteten Stabes statt. Diese Entlastung, mit der ein Ansteigen der
im Stabe auftretenden Restspannungen verkniipft ist, wird in der Regel noch
vor Erreichen des ,elastischen‘“ Bereiches beendet, da sich durch SchlieBen
der Hysteresisschleife ein stationdrer Forminderungszustand ausbildet.
Durch die in den Selbstspannungszustinden auftretenden groBen Rest-
spannungen wird die Beanspruchungsweise des Stabes verandert und der
Mittelwert der Spannungsgrenzen herabgesetzt. Dem giinstigen EinfluB, den
diese Verminderung der ,statischen Vorspannung‘ auf die weitere Dauer-
festigkeit des Stabes ausiibt, steht die ungiinstige Beeinflussung durch die
vorangegangene Uberlastung entgegen.
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Résumé.

Dans la partie A de la présente étude, 'auteur étudie théoriquement
Vinfluence qu’exerce le comportement de barres en acier de construction
soumises a une compression et chargées jusqu’au-dessus de la limite de flam-
bage sur la capacité de charge d’une charpente en treillis simplement sta-
tiquement indéterminée. Ses recherches sont d’ailleurs confirmées par des
essais extrémement poussées. Lorsque dans une barre en acier de construc-
tion, présentant un degré de finesse courant et soumise a une compressmn
l’etat de flambage se trouve atteint, la résistance axiale exercée par cette
barre diminue considérablement au fur et 2 mesure de son fléchissement
(figure 2) et la courbe qui traduit la relation entre cette résistance et I'im-
portance du rapprochement entre les deux extrémités de la barre presente
P’allure qu’indique la figure 3 a.

Si la barre considérée appartient 2 une charpente en treillis statiquement
indéterminée, a titre d’élément statiquement surabondant et si cette barre
se trouve amenée a 1’état de flambage par suite d’une surcharge de ce sys-
téeme, la chute de résistance qui en résulte intervient alors sous la méme
forme qu’une forte surcharge du systeme qui soutient cette barre. Si ce
systeme n’est pas lui-méme en mesure de subir une telle surcharge, il en
résulte une chute immédiate de la capacité de charge du systéeme statiquement
indéterminé, au moment méme ol la barre surabondante atteint I’état de
flambage. Sl par contre, le systeme de base sur lequel s’appuie la barre est
assez robuste pour supporter cette forte augmentatlon de charge, on arrive
a un nouvel état d’équilibre et la charpente elle-méme est susceptile de se
préter a une nouvelle augmentation de la charge jusqu’a ce que 'on ait
atteint la limite de capacité du systéme de base sur lequel s’appuie la barre
considérée. La détermination des contraintes admissibles conduit, en pareil
cas, a2 un degré de sécurité effectif plus élevé que ne ’exigent les systémes
stathuement déterminés.

Les résultats déterminés par des voies théoriques ont été entierement
confirmés par des essais (figures 6 et 7), pour ’exécution desquels on a
remplacé la construction en treillis pour le systéme de base servant d’appui
par un €étrier métallique dont on connaissait les caractéristiques de résistance
(figure 5).

La partie B expose les résultats d’une étude théorique rigoureuse por-
tant sur une poutre d’appui continue, intéressant trois panneaux ou travées
égales, la travée médiane étant soumise a un effort de compression excentré
(figure 8a). L’acier de construction employé est caractérisé par son dia-
gramme de déformation et on admet que la section de la barre est un rect-
angle de section F =204 -/. A titre d’exemple, on a représenté sur la figure 11
les degrés divers d’élancement L/ que doit posséder I’élément pour pouvoir
équilibrer 'effort de compression P = 1500 F kg pour différentes valeurs
croissantes du fléchissement. Ces courbes accusent des maxima tres marqués,
auxquels correspondent les états d’équilibre ,,critiques‘‘ qui précedent immé-
diatement la rupture. On constate que, en principe, la rupture de ce systeme
statiquement indéterminé peut se produire avant méme que la contrainte
maxima sur le panneau latéral ait atteint la limite de proportlonnahte et
que la compression la plus forte dans le panneau médian ait atteint la limite
de compression.

Dans la partie C, "auteur étudie théoriquement et expérimentalement
le comportement d’un systéme une fois statiquement indéterminé sous 1’in-
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fluence d’une surcharge répétée appliquée a une barre tendue surabondante.
Lorsque les alternances de la charge se produisent a une cadence rapide,
et ainsi que GRUNING 1’a déja montré, il se produit une décharge progressive
de la barre surchargée au fur et 3 mesure de ’apparition de ’allongement
permanent. Cette décharge, qui s’accompagne d’une augmentation de I’im-
portance des contraintes rémanentes dans la barre, prend fin, en regle gé-
nérale, avant méme que l’on arrive a la zone elastxque car par suite de la
fermeture de la boucle hystérétique, il prend naissance un état de déformation
-stationnaire. Le réginre de contrainte de la barre se trouve modifié par les
contraintes rémanentes importantes et la valeur moyenne des limites des
efforts admissibles se trouve réduite. L’influence défavorable de la sur-
charge se trouve opposée a l’influence favorable que cette réduction de
-,contrainte statique préliminaire‘‘ exerce sur la résistance ultérieure de la
barre a la fatigue. ‘

Summary.

In section A, a theoretical investigation is made on the influence of the
behaviour of structural steel members, which are under compression and
loaded up to and over the buckling limit, on the carrying capacity of a simply
statically indeterminate lattice-work; the result obtained is confirmed by care-
fully conducted tests. When a structural steel member of the usual degree
of slenderness is under compression and reaches the buckling limit, the axial
resistance exerted by the member falls greatly in consequence of the bending
(fig. 2), and the curve determining the connection between this resistance
and the mutual approach of the two ends of the member, runs as indicated
in fig. 3a. If now the member forms part of a statically indeterminate
lattice-work as a statically superfluous member, and reaches the buckling limit
owing to an overloading of the system, this reductlon in resistance causes
a considerably increased loading of the ”main system‘‘ by which the super-
fluous member is supported. If the main system ist not capable of withstanding
such an increased loading, the carrying capacity of the statically indeter-
minate framework is exhausted at the moment when the superfluous mem-
ber reaches the buckling stage. On the other hand, if the supporting main
system is made so strong that it can stand the increased loading, a new con-
dition of equilibrium will then be formed and the framework is capable of
standing a further increase in load up to the carrying limit of the ”support-
ing main system‘‘; in such cases, choosing the dimensions in accordaice
with ”admissible stressing‘‘ leads to a greater certainty of stability than
is required for statically determinate systems. The results obtained theo-
retically were fully confirmed by tests (figs. 6 and 7). When carrying out these
tests the framework structure of the ”supporting main system‘‘ was renla-
ced by a calibrated steel yoke (fig. 5a).

Section B contains a theoretically accurate investigation of a structural
steel member, passing through three equal bays and eccentrically loaded by
pressure applied in the middle bay (fig.8a). The structural steel is defined
by its tension-extension diagram, and for a cross-section of the meinber
a rectangle F=05-h is assumed. As an example, in fig. 11 the run of
the curve of the degree of slenderness L// is shown which the member
must have if it is to keep the pressure force P =1500 F kg in equilibrium
for various values of the increasing bending. The curves show pronounced
maxima, which are associated with the ”critical‘‘ state of equilibrium imme-
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diately before collapse. It is seen that the collapse of this statically inde-
terminate supporting structure may in principle start before the greatest
stress in the side bay has reached the limit of proportlonahty and before
the greatest pressure in the middle bay comes to the squeezing limit.

In section C, the behaviour of a simply statically indeterminate frame
work with repeated overloading of a superfluous tension member is investi-
gated theoretically and experimentally. 'When the changes in load occur
rapidly after each other, a progressive reduction in tension in the overloaded
member takes place in connection with the increase of the permanent elon-
"gation, as has already been determined by. GRONING. This reduction in tension,
with which an increase of the residual stresses occurring in the member is
connected, has as a rule already terminated before the elastic zone is reached,
since a permanent condition of change of shape is formed by closing the
hysteresis loop. Through the great residual stresses occurring in the self-
stressing stages, the manner in which the member is stressed is changed,
and the average value of the stress limits is reduced. This reduction of the
”static pre-stressing‘‘ of the member has a favourable effect on its sub-
sequent fatigue strength, but against that has to be set the unfavourable
effect of the previous overloading.
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