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TABLES POUR LE CALCUL DES ARCS HYPERSTATIQUES
EN BETON ARME A FIBRE MOYENNE PARABOLIQUE.

TAFELN ZUR BERECHNUNG STATISCH UNBESTIMMTER EISEN-
BETONBOGEN MIT PARABELFORMIGER MITTELLINIE.

TABLES FOR THE ANALYSIS OF STATICALLY OVERDETERMINED
REINFORCED CONCRETE ARCHES WITH MEDIAN PARABOLIC FIBRE.

M. CHALOQOS, Paris.

" Divers auteurs ont, depuis longtemps, cherché a simplifier le calcul des
arcs a deux articulations et celui des arcs encastrés en établissant soit des
tables, soit des abaques.

En France, la circulaire ministérielle de 1906 sur ’emploi du Béton
armé a recommandé I’emploi des tables de Bresse pour le calcul des poussées
des arcs homogenes a 2 articulations et celles de Mr. PiGeauDp pour le calcul
des poussées des arcs encastrés. Plus récemment, Mr. MESNAGER a construit
des abaques pour le calcul des arcs paraboliques encastrés de surbaissement
1/, dont la section réduite croit de 1 a 1,5 de la clé aux naissances.

Malheureusement, les hypothéses relatives a la variation des sections ne
s’appliquent pas toujours trés bien aux vofites en béton armé et conduisent
souvent a des sections surabondantes sur la majeure partie du développement
de P’arc, alourdissant inutilement 1"ouvrage.

Pour une bonne utilisation des matériaux, il y a, semble-t-il, intérét a
faire travailler le béton a un taux voisin du taux limite, dans le plus grand
nombre possible de sections, ce qui implique certaines lois de variation des
moments d’inertie réduits et des sections réduites.

Ces lois ne sont d’ailleurs pas indépendantes. Pour le cas le plus courant
de profils rectangulaires de largeur constante, elles devront étre telles que
si le moment d’inertie réduit d’un profil est 2 fois le moment d’inertie de

clef, sa section sera sensiblement } % fois la section de clé, puisque abstrac-
tion faite des aciers longitudinaux dont il y a généralement intérét a diminuer
le pourcentage, le moment d’inertie varie comme le cube de la section.

D’autre part, en ce qui concerne les arcs a tablier supérieur et a tympans
¢vidés, dans lesquels les efforts maxima se produisent vers les reins, les lois
de variation devront étre déterminées, de maniére que la section diminue
aussi peu que possible entre la clé et les reins, puis décroisse rapidement vers
les articulations, jusqu’a une valeur égale au ?/, environ de celle de la section
de clé, les articulations ne supportant qu'un effort normal.

Onr a été ainsi amené a étudier les arcs a 2 articulations a moment

d’inertie réduit et a section réduite décroissant respectivement de la clé aux
naissances suivant les lois
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I clé Sclé

= ——— —_— 1)
| r(li'st)COS” , [1¢(1_i,3)m5] COS o
(m désignant le parametre 3{% de la figure ci-contre et le premier systeme de

signe correspondant aux valeurs > 0 de m, le second aux valeurs < 0).

Pour les arcs encastrés, il est au contraire indiqué de prendre une loi
de variation du moment d’inertie réduit de progression plus reguli¢re et,
pour des arcs a tablier supérieur et a tympans évidés, de fixer a 5 environ
le rapport £ des moments d’inertie réduits des naissances et de clé?).,

ly y

6 " o Ool% Yo =5
a |F F
/%_ \r | |

Fig. 1. Fig. 2.

On vérifie en effet que:
19 Les moments fléchissants aux naissances et a la clé diis a une charge
permanente uniforme et aux variations linéaires de I’arc sont dans le rapport

Skr2 soit pour £ > 2 une valeur absolue de "ordre de 3.

2k--3
20 Les moments fléchissants maxima aux naissances et a la clé diis a une
surcharge uniforme répartie sur une longueur variable de la corde de 1’arc
sont dans un rapport du méme ordre de grandeur.
3¢ Les efforts normaux varient peu.
Par suite, et en raison de 'importance prépondérante de I’effet des mo-
ments dans les taux de fatigue, il faut, pour obtenir des taux de travail sen-

. P \ ; . fos T Mh
siblement équivalents a la clé et aux naissances, réaliser 1’égalité des e

. . . M? .
ou ce qui revient au méme des o c’est-a-dire que le rapport des moments

d’inertie de naissance et de clé devra étre voisin de V37 soit environ 5.
Ces considérations nous ont conduit a étudier les arcs encastrés a moment

1) On vérifie que 1’on a bien pour les différentes valeurs de m:

m ‘ I S

ol 7cé | S clé
Iclé 1024 Sclé 1024  Sclé Sclé /1024 Sclé

1 R S S i & ——— — = .

Js cos « 1026|cos @ 1024,4  cos « 0,9996 peu différent de cos « ]/1026 cos « 0,2904
Iclé 32 |Sclé 32 Sclé Sclé /32  Sclé

1 L 2s . — . 2y == = ’

ls cosa 34 |cosa 3244  cosw 0,986 ? ” cos « V 34 coSs @ 0,88
Iclé 1024 Sclé 1024  Sclé ‘ Sclé 2/1024  Sclé

3 - —  —_— = , e —_— = a

I cos« 1510 cos « 1131,4 cos« 0,905 ” ” cose ) 1510 cos« 0,88

1 I clé L Scle_ 1 7:Scle_0,695
cosue 3 |cosa i/é cos «

%) Pour des arcs a tympans pleins et chargés aux reins il faudrait augmenter %
jusqu’a 10 environ.
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d’inertie réduit et A section réduite croissant respectivement de la clé aux
naissances suivant les lois ’
- Idé . S clé 5)

“_(1_%__

1 2)
35— In COS o
V5
(m et a ayant la méme signification que précédemment).

Dans les deux cas envisagés, la forme algébrique des lois de variation
rend possible le calcul littéral complet et on a pu ainsi déterminer tous les
éléments permettant le tracé immédiat des lignes d’influence de la poussée et
du moment fléchissant ainsi que les effets d’une variation linéaire de P’arc et
d’une surcharge uniformément répartie sur tout ou partie de la corde*).

= ({~i 2)c05a
5 m

I. Arc parabolique a deux articulations, a moment d'inertie
réduit et a section réduite décroissant respectivement de la
clé aux naissances suivant les lois:

(1 £2m®)cos a [1= (- i/?) m®] cos «

I/

Soit « la demi-portée, f la fleche, m le parametre '—a{" w le moment

fléchissant que produirait le systéme de charges dans la section de méme
abscisse G d’une poutre droite de portée 2a posée sur appuis simples; on a:
Equation de la fibre moyenne y = f (1 —m?).
Moment fléchissant dans la section G, (X, yo).
M, = u, — Q,, (Q étant la poussée).

Effort normal dans la section G, (x,y,): En valeur approchée

Q 1

- avec COS ayg — - ’*’*_—fg-'___;z“ e
1/, 4
‘/1 + PR mo

3) On vérifie que ’on a bien pour les différentes valeurs de m:

m I S
0 I clé S clé y —
1, :o(:i'%) ig’z izzggz CSO ?: 1,025 peu différent de CSOSZ} %=§)zlé.1,m_s
A e UL I (G R
| 1 | s ys S im
4) Un certain nombre de ces éléments ont été calculés par notre collaborateur M.

BiLLioN, Ingénieur des Travaux Publics de I’Etat, qui a également établi des formules
générales pour les arcs paraboliques encastrés a section réduite constante et a moment
d’inertie réduit variable applicables aux arcs a section évidée.

~ La méthode de calcul employée est empruntée au Cours de Résistance des Maté-
riaux de M. P’Inspecteur Général PiGEAUD.
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Effort tranchant dans la section G, (xoy0): To = a;‘f;"cos oy — Qsin «.

D’autre part, si on considere les formules générales de déformation (¢
désignant les variables courantes, et d o I’élément d’arc) et si on admet que
Pon a: (/. et S, désignant respectivement le moment d’inertie et la section
de clé)

] S
ur l= a5 5cosa S=i oo o
pour m <0 (1 — 2mP) cos a [1_{_(1__%/3)”15] cosa
_ I, S.
et I= - 5 5= '
pour m >0 (1+2m") CoSs « [1_(1-—{/5) m?] cos a
" do
1o =
JUUEI : éeri
On a: i = "3'2d0+-f<d5)2 Ja au peut s’écrire
) EI do) ES
i do
) El 1
N Y A |5
JUET _},;ﬁdﬂwﬁbi
1 {;,Zdﬂ
ETl

Le second facteur est le terme de Bresse que nous désignerons par p,
et il vient tous calculs faits dans le cas de m <0 pour une charge unité:
0= a5 —Tm’+12m" 421 m* — 126 m* 4 110
TV T 17
le terme de Bresse y ayant pour valeur:
1

2| a 2_f V 1 a? at 4f2

a?

y:

1+ 3 -
RNy (. rayon de giration
30 de la section de clé)
Dans le cas de m >0 on trouverait des formules symétriques donnant
la méme valeur de Q. pour des valeurs opposées de m.
Pour une variation linéaire de I’arc provoquant par exemple un allonge-
ment 7 par unité de longueur on a:

M= —0Qy,
N = 4+ Qcos «,
1 30
= FEl.7v.—
@ AN AT

Lignes d’influence.

‘Une charge isolée P = 1 agissant suivant la verticale x d’abscisse m a
donnera pour la poussée (m <<0) la valeur précédemment trouvée
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0=,.2. 5 —Tm’+12m"+21m* — 126 m* + 110 5)
— 7 F 84 17 :

et la ligne d’influence de Q aura par suite, la forme suivante:

I

9
Q
S
S
J
o

g

Cette méme charge unité produira dans la section située sur la verti-
cale x, d’abscisse m,a le moment:
M= uy — Qo
Or, on a, dans le cas étudié de m <0

pour — 1 <m < my o = Z'(1+m)(1—mo)
et pour  my < m <0 Mo = %’(1 — m) (1 + mo)

En remplacant Q et y, par les valeurs données plus haut on obtient les

équations suivantes:
pour —1 <<m <m,

a 5 (110-126 m*+21 m*+12m" =7 m®) (1 — mj)
M= —1+ - — C —
o (Ltm)(A=my) ~va- o) T |
77‘75“;5’1:“6 maniere plus générale, si on avait
Ie Se
I = K1 = -
(\1 K mﬁ) cos « (1 T ,,‘}LK,*T m5) cos «
.‘/R.
o 1
;T - T T T T T 3 T )
2| a 2f, VK—1/ 1 >  at Vid
rc[fal‘Ctga +7‘%/¥ f2< 2+4f2 16f4L(1+4a2>>]
VK4
Lo —— B 1V E 5
30K
Q — a 30 F (K-1) (Tm®-12m") + 42 Km4—252Km"’+ﬁ2705Kﬂ (—{— pour m <0)
——?’f'504' ' 31 K+ 1 ' — pour m>0

ez 1 60 K
et pour un allongement 7 par unité de longueur: Q = TElf-F-»éTEI—i'—

On retrouve bien pour K =1 le cas du moment d’inertie et de la section reduite
constante et pour K= 1/3 les résultats ci-dessus.
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Valeurs de g

bbbt |

0,005—0,0124 y
0

0,01—0,0235
0

0,015—0,0334
0

m, —
— 09 ~08 —0,7 — 0,6 —05
0 0 0 0 0

0,095—0,0124 y | 0,00—0,0235 » | 0,085-—0,0334 » | 0,08—0,0419 ; | 0,075—0,0491 ;

009 —0,0243 | 0,18 - 0,0460y | 0,17 —0,0651 » | 0,16—0,0817 | 0,15 —0,0958 »

0,085—0,0350 | 0,17—0,0663 y | 0,255—0,0039 » | 0,24—0,1179 | 0,225—0,1382

0,08 —0,0446 7 | 0,16—0,0846 » | 0,24 —0,1198 » | 032--0,1503 7 | 0,30 —0,1762 >

0,075—0,0530 7 | 0,15 0,1005 ¥ | 0,225—0,1424 | 0,30—0,1787 ;' | 0,375 - 0,2004 >

0,07 —0,0601 y | 0,14—0,1139 7 | 0,21  0,1613» | 0,28—0,2024 » | 0,35 — 0,2372 7 |

0,065 —0,0657 y | 0,13—0,1246 7 | 0,195—0,1764 » | 026~ 0,2214 7 | 0,325—0,2595

0,06 - 0,0608 7 | 0,12—0,1323 ¥ | 0,18 —0,1875 ;7 | 0,24—0,2353 7 | 0,30 —0,2757
0.1 | 0,055—0,0723 | 0,11- 0,1370 | 0,165—0,1942 | 0.22 - 0,2436 y | 0,275 0,2855
00 {005 —0,07327 | 0,10—0,1386 7 | 0,15 —0, 964 » | 0,20 —0,2465 7 | 0,25 — 0,2888 -
0,1 | 0,045—0,0723 7 | 0,00—0,1370 7 | 0,135—0,1942 » | 0,18—0,2436 » | 0,225—0,2855 -
0.2 | 0,04 —0,0698 7 | 0,08—0,1323 7 | 0,12 — 0,1875 ;» | 0,16—0,2353 | 0,20 —0,2757 7
0.3 | 0,035—0,0657 ¥ | 0,07—0,1246 y | 0,105—0,1764 y | 0,14—0,2214 ¥ | 0,175—0,2595
0.4 | 0,03 —0,0601 7 | 0,06—0,1139 7 | 0,00 —0,1613 5 | 0,12—0,2024 ;7 | 0,15 —0,2372 -
0.5 | 0,025—0,0530 7 | 0,05— 0,1005 7 | 0.075—0,1424 » | 0,10—0,1787 » | 0,125—0,2004 -
06 | 0,02 —0,0446 7 | 0,04—0,0846 7 | 0,06 —0,1198 | 0,08—0,1503 7 | 0,10 —0,1762 ;"
0,7 | 0,015-0,0350 7 | 0.03—0,0663 » | 0,045 0,0039 » | 0,06—0,1179 » | 0,075—0,1382 >
08 | 001 —0.02437 | 0,02- 0,0460 » | 0,03 — 0,0651 y | 0,04—0,0817 » 0,05 —0,0953 >
0,9
1

0,02—0,0419 y | 0,025—0,0491 >
o 0

0,035—0,0595 y
0

0,04—0,0628 7
0o .

My =—
—04 —03 —0.2 —0, 0,00
—1 0 0 0 0 0
—09 | 0,07—0,0549 | 0,065-—0,0595 y | 0,06—0,0628 » | 0,055 0,0647 7 | 0,05—0,0654 y
—08 | 014-0,1073% | 0,13 —0,1162y | 0,12—0,1226 » | 0,11 —0,1264 7 | 0,10—0,1277 ;
—0.7 | 021015477 | 0,195-0,1676 7 | 0,18—0,1768 » | 0,1650,1824 7 | 0,15—0,1842 ¥
—06 | 028-0,19737 | 026 —0,2138 7 | 0,24—0,2255 | 0,22 —0,2326 ;7 | 0,20—0.2349;
— 05 | 035—0.2345 | 0,325—0,2541 7 | 0,30—0,2680 » | 0,275 - 0,2764 ;7 0,25—0,2792 7
— 0.4 | 0,42 - 0,2657 7 | 0,39 —0,2878 » | 0,36—0,3036 » | 0,33 —0,3131y | 0,30—0,3163 y
—0.3 | 0,39—0,2006 | 0,455 - 0,3149 y | 0,42—0,3322 | 0,385—0,3425 7 | 0,35—0,3460 y
{ —02]036—0,30887 | 0,42 —0,3345 | 0,48 10,3529 | 0,44 -0,3639 ;' | 0,40—0,3676 y
—0,1 | 033—0,31987 | 0,385—0,3464 » | 0,44—0,3655 | 0,495—0,3769 ; | 0,45—0,3807 y
0,00 | 030—0,3235 | 0,35 —0,3504 7 | 0,40 0,3697 » | 0,45 —0,38127 | 0,50—0,3851 7
40,1 | 027—0,3198 7 | 0,315—0,3464 » | 0,36 - 0.3655 » | 0,405—0,3769 7 = 0,45—0.3807 7
402 |024-03088% | 028 - 0,3345y | 0,32—0,3529 » | 0,36 —0,3639 7 | 0,40—0,3676 ;
103 [ 021—0,20067 | 0,245 031497 | 0,28-0,3322 7 | 0,315 -0,3425 7 = 0,35—0,3460 7
+04 | 0,18—0,2657 y | 0,21 —0,2878 7 | 0,24- 0,3036 | 0,27 —0,3131 ¥ | 0,30—0,3163 »
+05 | 0,15—0,2345 7 | 0,175—0,2541 7 | 0,20—0.2680 » | 0,225-0,2764 7 = 0,25—0,2792
+06 | 012—01973 | 0,14 —0,2138 7 | 0,16—0,2255 7 | 0,18 —0,2326 7 | 0,20 - 0,2349 y
+0.7 | 0,00—0,1547 7 | 0,105—0,1676 ¥ | 0,12—0,1768 » | 0,135 -0,1824 » | 0,15—0,1842 ;
+ 08 | 0,06—0,1073 7 | 0,07 —0,1162 | 0,08—0,1226 | 0,09 —0,1264 7 | 0,10—0,1277
+ 0,9 | 0,03--0,0549 » 0,045 0,0647 | 0,05—0,0054 ;
+1 0 :
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pour my,<m <0 o
— ym2+21 mi+12m*~-1m®) (1 —m?2
i M:‘;—(1~nz)(1+mo)*ya-854(“0 126 m ’ m17 m"—Tm?®) (1—mj)

Ces équations permettent de calculer les ordonnées des lignes d’influence

de 2 en fonction de y. Les valeurs de ces ordonnées sont portées au tableau
a

ci-apres:

Pour les valeurs de y voisines de 1, les lignes d’influence présenteront
une ou deux zones négatives suivant la section cnvisagée. Leur forme géné-
‘rale est celle des figures suivantes:

3E J<mp<O

ty »7

(Pour - Far -For O0<mo < /- f—;; onsuratt /3 forme
symeétrique par rapport 3 /oxe des y).
hatte man dre zur yAxe symmetr. Form).

the curve becones symmetrica! /o
the yaxis /.

6’ \/ Ao [7] \/62 X

Fig, 4.

Y -l<mp <;—754,—-/

(Pour - Fin - For 1 -‘%j—, < mo </ on aurait /2 forme
symélrique pan rapport 3 faxe des y ).
hétte man dre zur yAxe symmetr. Form).
the curve becornes symmetrieal fo

the y axss).
Gy Ao \0\/62 X
Fig. 5.

Pour m, > 0 on trouverait pour les lignes d’influence des courbes sym¢-
triques par rapport a ’axe des y.

Ejfet d’une surcharge uniforme o par unité de longueur répartie sur la corde

de larc.
W q? , , . N .
On trouve encore M = 5 (1 —m®) (1 —y) maximum a la clé et -
nul pour y =1 |
Q= yrw 2?

Effet d’une surcharge p par unité de longueur répartie sur une partie de la
corde de Parc.

Le moment > 0 maximum s’obtiendra en chargeant ’arc sur le troncon
qui correspond aux ordonnées >0 de la ligne d’influence de la section. On
trouve ainsi pour les différentes valeurs de y, en intégrant I’expression de M
entre les limites de charge qui correspondent aux valeurs nulles de cette ex-
pression, les moments et poussées correspondantes ci-apres:
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. Valeurs de y
° 1 0,98 | 0,95 0,20
. i - 7r’v ‘4—7 e —————
Limites de charge |-1 a4 -0305-1 a -0,202/ -1 a -0,273 /-1 a -0,2364
0.9 Mm >0 0,0264 pa2 0,0270 p a® 0,02781 pa2 0,02927 pa?
— Y a? a?
0,1369 0,1385 p—- 0,1404 p & 0,1449 p—
o ”f 7y "' i
Limites de charge |[-1 a2 -0,271|{-1 a -0,256|-1 a -0,235/ -1 a -0,194
08 Mm>0 0,0458 pa2 0,0469 p a2 0,04854 pa2 0,05158 pa‘“’
2
0,1484 0,1507 0,1533 p ¢ 0,1587
Q /Jf pf Py | ,,f
Limites de charge| -1 24 -0231|-1 4 -0217/-1 4 -0,193/-1 2 -0,149
07 I Mm>0 0,0583 pa? 0,0601 pa2 0,06264 pagi 0,06736 pa2
Y a2 . a®
0,1628 p— 0,1644 0,1679 p--  0,1738
|e & & 77 7y
Limites de charge [-1 4 -0,185/-1 a -0,168/ -1 a -0,144 -1 a -0,008
—06 Mm >0 00646/)(12 00672/}:12‘ 0,07058 pagf 007710pa2
’ 01797 p% | 0,1819 01852 p=| 01012
Q p° I = ¥ P f | p° f
Limites de charge|-1 a -0,132{-1 a -0,116|-1 ~0,088 | ~1 a -0,038
05 Mm>0 00654pa~ 00684pa2 0073 paz‘ 00816pa2
0,1992 0,2012 ]* 0,2054 ‘ 0,2119
Q p” 2 P /Jf e f
Limites de charge|{-1 a -0,072|~1 a -0,053|-1 a -0,023 } -1 a+0,03
—04)Mm>0 00611/)(12 ()0650pa2 0,07009 pa2 008123pa2
0,2220 0,2247 0,2297 [ 0,2353 J —
Q ,,f pf ,,f P
Limites de charge |-1 a —0002!~1 a+0018/-1 af+0,051 -1 a +0,112
_03)Mm>0 00526pa-; 00576pa~ 006463pa2 007676/)03
0,2491 p — 0,2512 0,2558 0,2640
Q Pt i pf ,,f ,,f
Limites de charge | -0,743 4 +0, 082 1 -0,7952+0,105 | -1++2+0,144 -1 a +0,21
— 02 Mm>0 0,0421 pa2 0,0474 pa‘“’ 0,05527 pa2 0,07047 pa2
b {
0,2600 p? 0.2706 & 0,2898 0,2966
Q ) f | Py pf | ﬂf
Limites de charge | -0,490 2 +0,186 | ~0,529 a +0,21 | -0,593 & +0,254 | -0,71 4 +0,331
_g1lMm>0 00346pa2} 00391pa~ 0,060 pa2 008054/]a"
0,2422 0,2570 p— 0,2795 0,3109
Q p% f /Jf ,,f pf
Limites de charge | -0,3152+0,315 -0,346 a +0,346 | -0,397 a +0,397 | -0,49 a +0,49
000) Mm >0 00318pa'~’i 00371/1(12 00449/)(12 006066pa3
0,2336 p—- 0,2490 0,2733 0,3093
Q P ' pf pj 5 7

En retranchant pour chaque section, et chaque valeur de y, les chiffres
précédents, respectivement du moment et de la poussée diis a la surcharge
totale, on obtient de méme le tableau ci-apreés des moments <0 maxima et
des poussées correspondantes.
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Dans ce tableau comme dans le précédent, les valeurs de M,, et de Q
qui correspondent aux valeurs intermédiaires de y s’obtiendront par inter-
polation linéaire.

” . Valeurs de y
° 1 | 0,98 | 0,95 | 0,90
I
Mm <0 —00264pa2' —00251/)(2 ——002306/)(1‘“’ ——001977pa .
—09 { Q 03631pf 0,3515 7 0,3346 pf 03051 p% 7
Mm <0 | —0,0458 pa® | — 0,0433 pa2 —0,03954 pa? | — 0,03358 pa2
—_ 2 2
08 { Q 0,3516;;5} 0,3393 p % ; 0,3217 pﬁf 02013 p % -
Mm <0 — 0,0583 paz [ —-O()550pa2 —004989/)a2 |- 004186pa9
— 07 { Q 03372,;? | O3255pf 03071 p f 0,2762 pf
|
Mm <0 --0,0646 p(z2 | — 0,0608 pa2 — 0,05458 pa2 | —0,0451 pa2
_— 2
061 0 0,3203 p ¢ H " 03081 p 2 = 0,2808 »% i ; 0,2588 p%.-——
‘ a
Mm <0 | —0,0654 paz | — 0,0600 pa2 — 0,05425 pa2 —0,0441 pa®
— 2 . 2
0> { Q 0,3008 pf; . 0,2888 pff 0,2696 1 7 0,2381 p"7
T
Mm <0 — 0,0611 pa: . —0,0566 pa? | — 0,04009 pa"’ —0,03923 pa“
—_— - ! 2
041 0 0,2780/)% 02653 p ‘} 0,2453 p f 02147 p& ~
Mm <0 | —0,0526 pa? : — 0,0485 pa2 - 0,04188 pa2 — 0,03126 p a®
—03 { 0 0,2509,1»"7“ | 0,2388 p 2 > 02192 p& = 0,1860 p[}
Mm <0 | —0,0421 pa- | - 0,0378 pa® | —0,03127 pa2 — 0,02247 pa?
_ | 2 2
021 o 0,2400 p & 7 02104 /ch]l? 0,1852 p% 7 0,1534 p“?
Mm <0 | —0,0346 pa2 | —0,0202 paz —0,03525 pa2 — 0,03104 pa®
2
011 o 0,2578 p & f 0,2330 p % = 0,1955 p2 7 0,1391 p—t}
{ Mm-<0 — 0,0318 pa” —0,0271 pa? | — 0,0199 pa2 — 0,01066 pa-
0,00 a® a2
’ 0,2664 0,2410 p & 0,2017 p= 0,1407
Q pf P Py p% 7

Pour m, >0 on trouverait les mémes moments maxima positifs et né-
gatifs et les mémes poussées correspondantes en prenant des limites de
charge symétriques par rapport a ’axe des y.

Effet d’une variation linéaire de ’arc.

Pour un raccourcissement z par unité de longueur dii au retrait et a la
température on aura:

1 30 -
Q= —FlLtv-,, -2 .,
' fro17 /
Yo 30
M= —Qy,=FEILt-"°. ,
A Yo ' f? 17}
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Pour un allongement ¢ par unité de longueur on aurait:

1 30
Q=FlLt- .-~ -
’ fAouT 4
— _ Yo 30
M'—'_ - - [C‘/-,_).,,,_;,
Qo El. ¥ f‘ 17

Efforts résultants.

La considération des formules précédentes et des lignes d’influence per-
mettra de déterminer pour chaque section, le moment maximum di a la
charge permanente, aux surcharges réparties, au convoi type¢) a la tempé-
rature et au retrait. On pourra donc évaluer pour chaque section le moment
fléchissant maximum maximorum et l’effort normal correspondant d’oli on
‘déduira par les formules de flexion composée une valeur approchée des taux
de fatigue maxima a craindre 7).

Si P’arc était trés surbaissé, on déterminerait de méme 'effort tranchant
dont il conviendrait de tenir compte, celui-ci prenant une importance relative
appréciable.

II. Arc parabolique encastré a moment d'inertie réduit
et a section réduite croissant respectivement de la clé aux
naissances suivant les lois:

J — I clé g — | S clé

4 9 i :"/f ) —
(1 g m “) COoSs « (1 Y é,;fi 1 mz) Cos «

On rapportera Parc a son axe de symétrie et a 'horizontale passant par
le centre de gravité 0 de la fibre moyenne.

G O a x’

Fig. 6.

Pour déterminer I'équation de la fibre moyenne dans ce systéme on
considérera les axes provisoires 0, x’ 3’ constitués par la verticale de la clé et
la ligne des appuis. « désignant la s portée, f la fleche, m le parametre

%) En raison de la forme de la ligne d’influence, le convoi type pourra donner des
moments maxima supé€rieurs a ceux résultant de la surcharge répartie. On obtiendra
généralement le moment maximum en placant I'essieu le plus lourd dans la section.

7) Théoriquement, les fatigues maxima ne correspondent pas rigoureusement au
moment maximum, mais dans l'impossibilité olt 'on se trouve généralement de tracer
la ligne d’influence des fatigues du fait de I’hétérogéniité de la section, on pourra se
contenter de ce calcul approché. Pour une meilleure approximation, il suffirait d’aug-
menter progressivement la longueur de charge et de calculer la fatigue correspondante
jusqu’a détermination du maximum.
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P ¥ ona pour équation de la fibre moyenne dans le systéme provisoire,
a

y = f(1 —m?). Le moment d’inertie au point G sera par hypothese

= Ie et Pordonnée y, du centre de gravité de la fibre moyenne

(1 — guﬂ) cos «
_sera donnée par 1’équation
+ 1 ' .

V' -ym)adm _ _ 42
“ ., Elcosa 0 ou yi= 55f

L’équation cherchée de la fibre moyenne rapportée a son axe de symétrie
et a ’horizontale passant par O sera

_ #(18 _ )
y=7 (55 ”
Le moment ﬂechlssant M, dans une section G, (x,y,) aura pour valeur:
_ My = uy +A~+Bxy — QYo
(1 désignant le moment fléchissant dans la poutre droite de portée 2a, A4, B,

Q désignant les réactions complémentaires d’appui).
L’effort normal aura pour valeur approchée:

Q 1

Ny, = —" avec COSca, =

Cos «, ‘/’“ 4 f2

L’effort tranchant 7 sera égal a

T, — (dy + B> COoSs «, — Q sin «,

D’autre part, si on considere les formules générales de déformation, on
a dans le systeme d’axes envisagé (,7 désignant les variables courantes, d o

I’élément d’arc): A J do ydo
EI — EI
&tdo jy&dﬂ
b jEl — ) EI
ju';,do‘
(12do ‘(a’& do]_[;_u,afo‘ , _J EI 1

@ l( EJ T a’o) ESI ) EI ou Q_j'l,jf{(_i [(a’g)gdd

ET do! ES

I+- “ vtd o

) EI

(le second facteur étant le terme de Bresse que nous désignerons par y).
Si on tient compte alors, de ce que:

[ 4
do a(l - m*) am
I I
S — S, I,

_ - (r. étant le rayon
(1 \ 5 _ _)) cose ~ (1 —0415m?) cos e de giration de clé)
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do _ar:(1 —0415m%) dm

soit: I
il vient tous calculs faits:
u (1 — flm’) dm
J 5 /
A= " 2
22/15
ym(l — il m‘-’) am
B—__° 5 -
26/75
{,u (—1§ — m{z\ (1— 4 m‘z) dm
Q =y :,7\5§7, / \, . 5 o
o 5. 2584
28875
avec y = S
arctg 2/
, 2 1+Q4E a 0415
‘ 4f* J 273
A R
L s
28875
soit pour ‘; — ; ' ¥y == 7——777—*1 /';—)
141556
+ 72
e Mg - l, ’ T —— 7/71 VR ——
@ 3 L re?
1 17,24 —-
= 7
o1 1
a 4 7= 72
1+ 18—
-t~ Iz
S _ 1 P S
a o 5 S rL‘2
1-+18,79 .
-+ Iz

Pour une variation linéaire de I’arc provoquant par exemple un allonge-
ment ¢ par unité de longueur, on aurait:

M= —Qy,
N = - Q cos «,
1 28875
:"z'EIE'*";)'
_Q " f7 1202

Lignes d’influence.

Une charge isolée P = 1 agissant suivant la verticale x d’abscisse m a
donnera pour '
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a , 13—2m2>
A= — " (1_m)l2—="m
A g —m )( 11
__mQQ—m’) 19—6m*
B B = 4 13
a 35 .. 151 —88m*

Q Q:”/"f'gz“'(l—”ﬁ) 3923 = %)

La ligne d’influence de @ aura par suite la forme suivante:

®,
mt\’;;
M
> oo
WKE ~ g
o S
NS o
»
Ol o
m}‘\fk
WSNE €
R
O XS
S s
Q. -
TSYSEETETS x
Fig. 7.
3) D’une maniére plus générale, si on avait
/. I
=i s=
(1 — m2)cosa 5 \/K~1
K re\l——5——m?)cos «
K

_ 2/ 3(4K+1)

. In COS ., . ., . 7
K étant le rapport — 1. il viendrait: =3 sRKED

et équation de la fibre moyenne rapportée a I’horizontale du centre de gravité de la
fibre moyenne serait
2K+3 m2)

r=rGeKksn

. _a . 6K—(K=1)(14m?)
et on aurait A= 4 (1 —m?) 22KL1)
p—_ m=m?) 10K—3(K-1) 1+ m°
- 4 ' 2(2K+3) -
., a3 8K 8K—1) —2(K-1)(2K+1)(1+m?)
Q=r-fFrypl=m) 1 SKZ+24K+3
avec y = — —
2f
\ VKA 1\ arctg af VE__ 1
rel 1+ — ——
¢ 35 f* S 3 tf?
4VK 25 o QVKEE
1+ ., 8 8K +24K+3

5K 105 2K+ 1)
Et la poussée, résultant d’un allongement 7 par unité de longueur,
. 1 525KQ2K+1)
Q=B SR 20K+ 3)
On retrouve bien pour K = 1 le cas du moment d’inertie et de la section reduits constants
et pour K == 5 les résultats ci-dessus.
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Cette méme charge unité produira dans la section située sur la verticale x,
d’abscisse m,a le moment:

M=o+ A+ Bxo — Qo .
Soit, pour — 1 << m < mo _
a(]—mg)(13ﬁ_217gf) _amom(1-m®) (19-6m?)

A "
M = 5(1 +m)(1~ln0)—'

44 52
_ .35 22 (15188 m®) (13 _ 2)
7a35 (1=m) 323 (55 s,

et pour sm <m <1
a(l-m*)(13-2m* amym(1-m®) (196 m®)
44 52
» (151 —88/;12)(13 ’ )
EA I Sl A A it 2
) 53 o

' a
M= 2(1-m)(1+mo) —
35
7351 55 "
Ces équations permettent de calculer les ordonnées des lignes d’in-
fluence de % en fonction de y. Les valeurs de ces ordonnées sont portées
au tableau ci-apres.

Pour les valeurs de y voisines de 1, les lignes d’influence présenteront
une ou deux zones négatives suivant la section envisagée.
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Leur forme générale est celle des figures suivantes:

/

4

G, o b 4
7 Mo = =7 Gz
Four Mo =1 onaurait I3 forme symelrigque par
rapport 3 /axe des y
bar v holte man dlie zur ydxe symmeln. form.
forn v }he curve becomes symmetrical Fo
the yaxrs.

Yy

Mo vorsin de =7

/]\ Gz x
G; Ao Four My vorsin de 7 onsurait I3 forme symélrigue
par rappor/ 3 /sxe des y.

U

ﬂ\ Mo nahe ber-05

G Ao & *
Fur Mynahe ber Q5 hétte man die zur

Y Axe symmelrische Form.

lry

\Faﬁ/Vo =0 (my<o)

For My =0 but >0
the curve becomes symmetrical fo the yaxis.

Fig. 8.
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Valeurs de /aw

un 9) =
m s
0,00 | - —0,2 | — 0,4
| . 1

-1 0 | 0 0
— 0,9 | +0,00086—0,00229 y | +0,00156—0,00191 = -+0,00226—0,00074 y
—0,8 | +0,00410—0,00981 y | +0,00731 ~0,00815 y | +-0,01052—0,00317 »
—0,7 | +0,01068—0,02252 y | +0,01863—0,01871 | --0,02658 —0,00728 »
—0,6 | +0,02138—0,03912 » | +0,03651—0,03250 y | +0,05164—0,01264 »
—0,5 | +0,03692—0,05807 » | +0,06168—0,04825 y | +0,08644—0,01876 ;-
— 0,4 | +0,05794 —0,07731 » | +0,09463—0,06423 » | +-0,13131—0,02498 ;
--0,3 | +0,08486—0,00483 = 0,13548—0,07878 | --0,08610—0,03064
—0,2 | +0,11812—0,10880 7 | --0,18427—0,00068 y | --0,05041—0,03515 y
— 0,1 | +0,15796—0,11775 7 | +0,14075--0,00783 » | -+-0,02354—0,03804 y

0,00 | -+0,20456—0,12085 7 | +0,10456—0,10040 y | --0,00456—0,03904 »
+0,1 | +0,15796—0,11775 7 | +0,07517—0,00783 y | —0,00762—0,03804 »
+0,2 | +0,11812-0,10880 » | +-0,05197—0,00068 | —0,01417—0,03515 ;'
+0,3 | +0,08486—0,09483 y | --0,03424—0,07878 ¥ | —0,01638—0,03064 »
10,4 | +0,05794—0,07731 y | +0,02125—0,06423 » | —0,01543 —0,02498 »
+05 | +0,03692—0,05807 y = -+0,01216—0,04825 » | —0,01260—0,01876 ;
+0,6 | +0,02138—0,03912 7 | +0,00625—0,03250 » | —0,00888—0,01264 y
+0,7 | +0,01068—0,02252 7 | +0,00273—0,01871 7 | —0,00522—0,00728 y
+ 08 | +0,00410—0,00981 » | -}-0,00089—0,00815 » | —0,00232—0,00317 y
4-0,9 | +0,00086—0,00229 7 | 4-0,00016—0,00191 ; | --0,00054— 0,00074 ;
+1 0 0 0

my % =
m
— 0,6 — 0,8 —1

— 1 0 | 0 0
— 0,9 | +40,00297+0,00120 » | +0,00367-+0,00392 » | — 0,095634-0,00741 »
— 0,8 | +0,013724-0,00513 »  +0,01693+0,01675 . | —0.17986-0,03169
— 0,7 | +0,03452+40,01178 y | —0,05753+0,03847 | —0,24958+-0,07277 y
— 0,6 | +0,06676-+0,02046 ;7 | —0,1181140,06680 y | —0,30298-0,12638
— 0,5 | 40,011204-0,03038 ; | —0,16404+4-0,09917 ;- | — 0,33928-1-0,18762
— 0,4 | —0,03200+0,04044 ; | —0,19532+-0,13203 y | —0,35863+0,24978 y
— 0,3 | —0,063290-+-0,04960 y | — 0,21267+0.16194 ;- | —0,36205+0,30637 ¥
— 0,2 | —0,083444-0,05691 y | —0,21730-+0,18579 ;» | — 0,35115-0,35150
— 0,1 | —0,09368+0,06159 y | —0,21089+0,20109 y | —0,32810+0,38044

0,00 | —0,09544+40,06342 » | —0,19544+40,20638 ;» | -—0,29544-0,39045
+ 0,1 | —0,09040 +0,06159 ;» | —0,17319+0,20109 = | —0,25598-0,38044 ¥
+ 0,2 | —0,08032+0,05691 ;» | —0,14646-4-0,18579 y | —0,21261-4-0,35150
+ 0,3 | —0,06599-+0,04960 | —0,11761+0,16194 » | —0,16823-0,30637
+ 0,4 | —0,052124-0,04044 y | —0,08880+0,13203 y | —0,125464-0,24978
+ 0,5 | —0,03736+0,03038 y { —0,06212-+0, 109917 v | —0,08688-+0,18762 ;
+ 0,6 | —0,02400-+0,02046 ; | —0,0391340, 106680 y | —0,0542640,12638
+ 0,7 | —0,01316-4-0,01148 ; - —0,021 114-0,03847 y | —0,02906--0,07277 ;
-+ 0,8 | —0,00552+0,00513 y | —0,00873-4+0.01675 ;7 | —0,011944-0,03169 ¥
i (1),9 —0,00125+4-0,00120 | —0,00195-+0,00392 y | —0,00265+-0,00741

0 0 ' 0

Pour m, > 0 on trouverait pour les lignes d’influences des courbes syme-
trlques par rapport a I’axe des y.

9) Les sections de clé et des naissances étant toujours les plus fatiguées on n’a
considéré que les sections intermédiaires: 0,2, 0,4, 0,6 et 0,8.
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Effet d’une surcharge uniforme o par unité de longueur répartie sur la corde

On trouve:

de lParc.
M o w a? (13
2 \hH
S _q? 10)
Q = D’wﬁ

pour y =1

-2 w-,710)(1 — y) maximum a la clé et nul

Effet d’une surcharge p par unité de longueur répartie sur une partie de la
corde de larc.
Le moment > 0 maximum s’obtiendra en chargeant ’arc sur le troncon
qui correspond aux ordonnées >0 de la ligne d’influence de la section.
Orn trouve ainsi pour les différentes valeurs de y, en intégrant ’expres-
sion de M entre les limites de charge qui correspondent aux valeurs nulles
de cette expression, les moments et poussées correspondantes ci-apres 't).

‘Moments > 0.
m, i 7 T |
1 0,96 0,94 1 0,90

Limites de charge| — 0,206 a + 1{—0,174 a +1|-—0,156 a +1{-—-0,131 a -1
1 Mm>0 0,0906 pt22 0,0801 pa~ 0,0751 pa2 0,06645 pa2

0,3496 0,3233 0,3104 0,2844
Q /’ f ’7 f p b p f
Limites de charge [-14-0,74261-0,55 4+1|-12-0,744e1-0,034+1/-14 - 0. 744610 0074+1]-1a-0,747e1 0,052 2 +1
_08 Mm >0 0,0283 pa2 00238/}&2 0,0218 pa~ 0,0184 pa?
) a?
0,2836 0,2519 0,2371 0,2061 p —
Q pf pf pf P
Limites de charge| —1 a —0367|—1 a —0374|—1 a —0377|—1 a —0,384
~06 Mm>0 00204/,1az2 0,02 p a2 00198pa2 0,0188 pa2

) a2
0,083 0,0775p -~ 0,0746 0,0691 p —
Q /J f # f /J f p S
Limites de charge| —1 a -—0,152|—1 a —0,148|—1 a —0,145|—1 a — 0,142
_04‘Mm>0 00308pa- 00314pa2 00316/)a2 00316pa2
0,1738 0,1682 0,1662 p — 0,1608 p —
Q P f Py f p f & f
Limites de charge | — 0,695 2 4- 0,013 | — 0,72 a 4 0,026 | — 0,75 a - 0,032 | — 0,796 4 + 0,048
~0.2 Mm>0 0,0243 pa2 00263Spa2 0,0273 pa2 0,0289 pa2
0,2467 0,2455 0,2453 p— 0,2445 p —
Q /Jf pf pf pf
Limites de charge | — 0,242 a4 4 0,242 | — 0,269 a4 + 0,269 | — 0,274 a + 0,274 | — 0,297 a + 0,297
0.00 Mm >0 0,0177 pa2 0,02 pa- 0,0209 pa— 0,0234 pa*
0,2346 0,246 p % 0,2471 0,2535 p L.
Q /Jf pf pf 2535
10) D’une maniére plus generale, on trouverait
_ e 2K43 a
M = 9 (5(2K+1) m ) — ) etQ_ulzf

‘indépendant de K et de méme forme que pour les arcs articulés.

1) Les sections de clé et de naissances étant toujours les plus fatiguées on s’est
contenté des sections intermédiaires:

— 0,8,

— 0,6, -

—0,4 et — 0,2.
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En retranchant pour chaque section et chaque valeur de y, les chiffres
précédents, respectivement du moment et de la poussée diis a la surcharge
totale, on obtient de méme le tableau ci-apres des moments < 0 maxima et
des poussées correspondantes.

Moments < 0.
ny 7
1 | 0,96 0,04 0,90
{ Mm <0 | —0,0006 pa2 —0,0054 pa? | — 0,0080 pa? —0,1046 pa?
—1 a* a’ a’
0,1504 0,1567 p — 0,1596 p - 0,1656 p —
Q ,,f pf /Jf pf
{ Mm<0 | —0,0283 pa~ —0,0319 pa? | — 0,0339 pa2 —0,0386 p a?
— 0,8 a? a?
’ 0,2164 0,2281 p—- 0,2329 0,2439 p =
Q /Jf 2281 p p% 7 Ps
{ Mm <0 —00204paz —00225pa2 —00235pa2 ~002496pa2
—0,6
’ 0,417 0,4025 0,3954 s 0,3809
Q /Jf pf P /Jf
{ Mm <0 — 0,0308 pa2 — 0,0229 pa2 — 0,0293 p a® — 0,02776 p a®
—04 a? a?
' 0,3262 s 0,3118 0,3038 p —- 0,2892
@ Pz Py 77 Py
{ Mm <0 —00243pa2 —00224pa2 —00214pa2 —00191pa2
0,2
3 0,2533 0,2345 0,2247 g 0,2055 s
Q ,,f /Jf / 7 / I;
{ Mm <0 -00177pa- —00153pa2 ——-00138pa2 ——001157pa2
0,00
' 0,2654 0,234 0,2229 o2 0,1965 "
Q pe 7 ,,f / 7 P

Dans ce tableau, comme dans les précédents, les valeurs de M,, et de
@ qui correspondent aux valeurs intermédiaires de y s’obtiendront par inter-
polation linéaire.

Pour m,> 0 on trouverait les mémes moments maxima >0 et <0 et
les mémes poussées correspondantes en prenant des limites de charge symé-
triques par rapport a ’axe des y.

Effet d’une variation linéaire de larc.

Pour un raccourcissement ¢ par unité de longueur dit au retrait et a la
température, on aura

Q= v Es k2T
M=—Qy =yrEL- flg : 27%775-})0
Pour un allongement ¢ par unité de longueur on aurait
Q= yrEl. f]'Z . 218289725
Mo —n = e L B
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Efjforts résultants: La considération des formules précédentes et des
lignes d’influence permettra de déterminer pour chaque section, le moment
maximum dit a la charge permanente, aux surcharges réparties, au convoi-
type12), a la température et au retrait. On pourra donc évaluer pour chaque
section le moment fléchissant maximum maximorum et ’effort normal cor-
respondant d’ott on déduira par les formules de flexion composée une valeur
approchée des taux de fatigue maxima a craindre 12),

Si 'arc était tres surbaissé, on déterminerait de méme ’effort tranchant,
dont il conviendrait de tenir compte, celui-ci prenant une importance relative
appréciable.

Résumé.

Pour obtenir une utilisation rationnelle des matériaux, il y a intérét,
dans les arcs en béton armé, a faire travailler le beton a un taux voisin du
taux limite dans le plus grand nombre possible de sections.

Cette condition implique certaines lois de variation des moments d’inertie
réduits et des sections réduites de 'arc.

I1 y a, d’autre part, intérét, au point de vue de la rapidité et méme de
I"exactitude des calculs, a envisager des lois algébriques de variation des
sections permettant un calcul littéral complet, et la détermination préalable
des éléments nécessaires au tracé immédiat des lignes d’influence de la
poussée et du moment fléchissant, ainsi qu’a la détermination des effets
d’une variation linéaire de I’arc et d’une surcharge uniformément répartie
sur tout ou partie de la corde.

C’est en se basant sur ces principes que Pauteur a étudié:

d’une part,

les arcs paraboliques a 2 articulations a moments d’inertie et a sections
réduites décroissant respectivement de la clé aux naissances suivant les lois:

I clé S clé

1 = g o L _
d’autre part,

les arcs paraboliques encastrés a moments d’inertie réduits et a sections
réduites croissant respectivement de la clé aux naissances suivant les lois

J— 41 cé S — _ S clé
(1__?/722)(:050: 1—-1/53-:1 me | cos e
1/5

[/ moment d’inertie courant de Parc,
S section courante de [’arc,

m désignant le parametre 2 des figures du texte,
a

a DP’angle de la tangente, a la fibre moyenne avec I’horizontale,
et les coefficients numériques ‘de ces formules correspondant particuliére-
ment au cas d’ouvrages a tympans évidés.
Dans chacun de ces cas, "auteur a donné:
19 la valeur du terme correctif y de BRESSE,

12) Mémes observations que pour les arcs a deux articulations.



68 » M. Chalos

20 1a ligne d’influence de la poussée et du moment fléchissant en fonction
de la portée, de la fleche et de ce terme correctif,

30 Deffet d’une surcharge uniforme @ par unité¢ de longueur répartie sur
la corde de l'arc,’

40 Jeffet d’une surcharge p par unité de longueur, répartie sur une partie
de la corde de Tarc,

50 D’effet d’une variation linéaire de ’arc.

Les tables et formules incluses dans le texte dont les différents élé-
ments littéraux sont définis par les figures, permettent d’obtenir aussi ra-
pidement que pour une poutre simplement posée, les efforts maximums a
craindre dans chaque section, des arcs a 2 articulations ou encastrés, dont
les sections varient suivant les lois adoptées.

Zusammenfassung.

Um eine rationelle Ausniitzung der Baustoffe zu erreichen, ist es notig,
fiir Bogen in Eisenbeton den Beton in moglichst vielen Querschnitten bis
nahe an die zulissige Grenze zu beanspruchen.

Diese Bedingung verlangt die Einfithrung gewisser Gesetze iiber die
Verinderlichkeit der reduzierten Trigheitsmomente und Querschnittsflachen
des Bogens.

Anderseits liegt ein Interesse vor, mit Riicksicht auf die Kiirze und Ge-
nauigkeit der Berechnung, fiir die Verdnderlichkeit der Querschnitte ein al-
gebraisches Gesetz vorzusehen, das eine vollstindige Buchstabenrechnung,
eine vorgangige Bestimmung der fiir das unmittelbare Aufzeichnen der Ein-
fluBlinien fiir den Horizontalschub und fiir das Biegungsmoment erforder-
lichen Grundlagen, wie auch die Bestimmung der Einfliisse einer linearen
Veranderlichkeit des Bogens gestattet, der mit einer gleichmiBig verteilten
Last auf die ganze Sehne oder nur auf einen Teil derselben wirkend, be-
lastet ist.

Auf Grund dieser Prinzipien hat der Autor untersucht:

einesteils

die Zweigelenkbogen mit parabolischer Axe und reduzierten Trigheits-
momenten und Querschnittsflichen, die vom Scheitel gegen die Kampfer
hin nach den Gesetzen zunehmen:

] — IScheltel . Sscheitel
F (1 - y3)m®] cos

anderseits:

die eingespannten Bogen mit parabolischer Axe und reduzierten Triag-
heitsmomenten und Querschnittsflichen, die vom Scheitel gegen die Kampfer
hin nach den Gesetzen zunehmen:

Ischeitel S — Sscheitel
T 14 ) cosa N V5 —1
(1~—7—5~m~>COSa 1V a?””]cosa
’ V

I Tragheitsmoment des Bogens an beliebiger Stelle,
S Querschnittsflache des Bogens an beliebiger Stelle,

m bezeichnet den parameter ; der Textfiguren,

a den Winkel der Tangente an die Bogenaxe gegeniiber der Horizontalen,
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und die numerischen Koeffizienten dieser Formeln entsprechen dem Sonder-
fall einer Briicke mit durchbrochenem Wandaufbau.

Fiir jeden dieser Fille hat der Autor gegeben:
1. den Wert des Korrekturgliedes y von Bresse.
- 2. die EinfluBlinie fiir den Horizontalschub und fiir das Biegungsmoment
in Funktion der Stiitzweite, der Pfeilhohe und dieses Korrekturgliedes.
3. den EinfluB einer gleichmiBig verteilten Auflast @ pro Lingeneinheit,
auf der Sehne des Bogens verteilt.
4. den EinfluB einer Verkehrslast p. pro L'aingeneinheit verteilt auf einen
‘Teil der Bogensehne.
- 5. den EinfluB einer linearen Veridnderung des Bogens.

Die im Text eingefiigten Tabellen und Formeln, deren verschiedene
BuchstabengroBen durch die Figuren erlautert sind, erlauben die Bestim-
mung der zu befiirchtenden maximalen Beanspruchungen in jedem Quer-
schnitt der Zweigelenkbogen oder der emgespannten Bogen, deren Quer—
schnitte nach den angenommenen Gesetzen variieren, ebenso rasch wie fiir
einen einfachen Balken.

Summary.

In order to obtain rational utilization of the building material, it is ne-
cessary in the case of reinforced concrete arches to have the concrete stressed
to its permissible limit in as many cross-sections as possible.

This condition demands the introduction of certain laws concerning the
variation of the reduced moments of inertia and cross-sectional areas of
the arch.

Orn the other hand, in order to make the calculation short and accurate,
it is of interest to obtaln an algebraic law for the variation of the cross-
sections, which will allow of: (a) making a complete algebraic calculation;
" (b) determining temporarily the necessary fundamental data for directly
drawing the influence lines for the horizontal shear and for the bending mo-
ments; and also (c) determining the effects of a linear variation of the
arch loaded with a uniformly distributed load acting on the whole chord or
only on part of it. '

Adopting this principle as basis, the author has investigated:
on the one hand

two-hinged parabolic arches with reduced moments of inertia and cross-
" sectional areas, which increase, in accordance with the laws, from the crown
towards the imposts:

1 I lcrown Scrown

N F (1—V3) m?] cos a

(1 £ 2mP)cosa S 1

on the other hand:
fixed parabolic arches with reduced moments of inertia and cross-sec-

tional areas, which increase, in accordance with the laws, from the crown
towards the imposts:

1 o 41‘“0“,“ S _ - Scrown
(1 — 5 m‘ﬁ) COS « l _ l/_‘i 7 2] CoS «

V5
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I — moment of inertia of the arch at any point,
S = cross-sectional area of the arch at any point,

m == the parameter %» of the figures in the text,

a = angle of inclination to the horizontal of the tangent to the arch centre

line

whilst the numerical coefficients of these formulae correspond to the special
case of a bridge with openings in the sides.

1.
2.
3.
4.

5.

For each of these cases the author has given:

the value of the correcting factor y of Bresse.

the influence line for the horizontal shear and for the bending moment
as a function of the distance between supports, rise of arch, and this
correcting factor.

the influence of a uniformly distributed dead load » per unit of length,
distributed on ‘the chord of the arch.

the influence of a live load p per unit of length, distributed on a part of
the chord of the arch. ;

the influence of a linear variation of the arch.

The tables and formulae given in the text, — the different sizes of the

letters in them are explained by the figures, — allow to determine the
maximum stressing to be feared in each cross-section of two-hinged arches
or in fexed arches whose cross-sections vary according to the assumed laws
as quickly as in the case of a simple beam:.
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