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STRESSES IN ECCENTRICALLY LOADED STEEL

COLUMNS

CONTRAINTES DANS LES COLONNES EN ACIER SOLLICITEES

PAR DES CHARGES EXCENTRIQUES

SPANNUNGEN IN EXZENTRISCH BEANSPRUCHTEN STAHLSÄULEN

D. H. YOUNG,
Instructor of Engineering Mechanics, Ann Arbor (Mich.).

1. Iniroducxion.
A slender column, of homogeneous material, perfectly straight and free

from initial stresses, subjected to axially applied compressive forces, would
not deflect sidewise until the critical value of the load P as given by Euler's

Formulae, was reached. Actually, columns as found in Engineering structures

are not such ideal columns. Particularly, they do not come under the

p 4- iE»
Fig. 1.

heading of "slender" and second the load will not be applied without some

eccentricity. As a result of these imperfections the column deflects before
the critical value of the load is reached, and the stress for any value of the

load is not only a function of the load but also of the deflection of the

column.
The true behaviour of such a column will depend upon such indeterminate

factors as initial curvature, initial stresses, non-homogenity of material and

eccentricity of load. It may be assumed that such a column can be closely

approximated by a so called "ideal column", having its load applied with
some definite eccentricity (e) the effect of which will be the same as the

indeterminate factors mentioned above. Such a column is shown in Fig. 1.

An analysis of this case leads to the well known Formula,

^4(i+lse4ff) (1)

For pin ended columns the value of the eccentricity-ratio W J is selected to

take care of such imperfections as accidental eccentricity, initial curvature,
non-homogenity, etc.

There is, however, no reason why it may not include any known
eccentricity of load, or bending moments, such as occur at the ends of compression
members in all types of rigid frame construction. It is at once recognized
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that such moments may not necessarily be equal at the two ends of the column.
Possible types of such secondary moments which occur in rigid frame
construction are shown in Fig. 2 (a) and (b).
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As a matter of fact, Equation (1) represents only a special case of eccen-
tric loading, where the end moments are equal and produce the same sign of
bending. It is proposed here to develop the more general case, and to present
curves for various combinations of loading.

2. General Case.
The general case of a column with unequal eccentricities at the two ends

will now be considered. It is assumed that the plane of loading is one of
Mo-M,
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Fig. 3.

the principal planes of the cross-section of the column1). Such a column is
shown in Fig. 3. M0 is the n u m e r i c a 11 y 1 a r g e r of two unequal end
moments. The bending moment at any section (Fig. 3) will be;

Mx Py + M0
M0—M,

l (2)

dx2

The equation of the elastic line then is,

-Py — M0 +
The general Solution of this equation will be

y C, cos qx -\- C2 sin qx

where q yP/EI and C. and C2 are constants of integration.
x) The possibility of buckling in the plane perpendicular to the plane of loading

is not considered.

M0 — M:
l

M0 M0x Mtx
~P~~~~Pl PT
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To satisfy end conditions we have,

509

and

Then:

C,

c,

M,

M0

my -p-cosqx

P sin ql

Mxs\nqx M0sinqx

M0
P tan ql

M0 M0x
P + PIPsinql Ptanql

Taking the first derivative of this with respect to .* gives,

dx
,<iMo Isin qx 4- q Ml cos qx q M0 cos qx +

MtX' PI

M0 Mt
i p -»*- psmql Ptanql ' PI PI

and from this equation the slope at the left end of the column will be,

(4dy\
dxlx=0 P sin ql

gM0 m0

Ptanql + PI
M,
PI

(3)

(4)
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In order to find the maximum stress in the column, attention must be
directed to the position of maximum bending moment. Referring to Fig. 4
which represents the beding moment diagram for three different values of
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the load P designated by Pu P2, and Ps; Pt being the smallest, and A, the
greatest value, it is seen that so long as the slope at the left end of that

part of the moment diagram due to Py, is less than the slope ———- of that

part of the diagram due to M0 and Mu M0 will be the maximum ordinate in
the diagram. This condition is represented by Fig. 4 (a). On the other hand

when the load has some value Ps for which the slope at the left end, A,I -—=—
1

\axt x—ü

is greater than the slope ———- then the maximum ordinate will occur at

some point C, (Fig. 4 c) namely where the slope P3 (-j-J -^~,—-¦ Ob-

viously there will be some value of the load P2 where the slope at the left end,

^M-t") will just equal the slope —^—f (Fig. 4b). This value P2, then,
\dx/x=o l

marks a certain value of the load, below which the maximum bending moment
will always occur at the left end and have a value simply of M0, and above
which the maximum bending moment will occur at some point in the column
and have a value greater than M0.

The calculation of maximum stress will consist of two steps. First to
find the value of this load P2 and second, to find the value of x at which this
greater maximum bending moment oceurs, and evaluate this maximum from
equation (2).

To find the value of the load (P2) the following equation must be satisfied.

.dy\ _M0—M11
dxJx~o l

Substituting the value of (—-) from equation (5) gives
\ttX j x o

p\ qMx qM0 M0 M _ M0 Ml
iPsinql Ptanql^ PI Pl\ l /'

which reduces to,
Mt
-r4 cos ql.
M0

Remembering that Mx Pex, M0 Pe0, q =V P/EI, and calling the ratio
e0/e1 a, the load at which the maximum bending moment first becomes

larger than M0 will be, from the preeeeding equation,

(cos-1 a)2EIWmm^Sgm (6)

and the corresponding average load will be

I-\ __
(cos"1 a)2E

A\\ - (l\rf M
If the load is larger than P2, the maximum bending moment oceurs at a

point (Fig. 4 c) where
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| (dy\ I M0-M1
Kdx) l

Using equation (4) we find,
T qMü qMtcosqx qM0cosqx M0 M,~\ M0 M,

P — —rr- sin qx f ' } - :2—Fr, f h -pr,- — ni ~i F ¦
L P v Psmql Ptanql PI Pll l l

which reduces to,

tan qx — esc ql— cot ql (8)
eo

This equation gives the value of x for maximum bending moment for all
values of the load greater than P2. Placing the expression for (y) from
equation (3) in the general expression for bending moment, (equation 2)
gives

Mx P sin qx + e0 cos qx (9)
Asiny/ tan ql)

To make this a maximum the expression for x from equation 8 will be used

giving,

Mmax /%b Va2 — 2«cos(/-VP/£7)-r-l"- esc (/ VP/£7> (10)

This holds true for all values of the load greater than P2.

It will be seen that if a is made equal to unity, which would be the
case shown in Fig. 1, equation (10) will reduce to the well known equation,

M/nox^ PeSftc(^i P\El).

Using for the numerical maximum of stress the known equation,

I l^imax
Gmax — ~a rA ' S

we find for values of the load less than P2, in which case Mmax M0)

p
A

mmmm <">

while for values greater than P2) in which case Mmax is given by Equation (10)

[l + -y
l/«2 — 2«cos(y fPfÄß) + 1 • escmiPjAEj] (12)

These last two equations give the relation between maximum stress,
average unit load, and the dimensions of the column, for all possible values
of the load, while equation 7 gives the particular value of the load P2, which
marks the point of transition between the two equations. In other words,
equation (7) gives the only value of the load for which both equations (11)
and (12) give the same stress.

In order to make these three equations applicable for design purposes
a factor of safety will be applied to them. This factor will be based on the

yield point stress of the material, on the basis that when any part of the
column has reached this yield point stress the column will suffer some
permanent deformation and therefore be damaged.
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It will be noted that equation (12) does not represent a straight line
relationship between load and maximum stress. Hence the factor of safety
will be incorporated directly into these equations, by setting amax ayD and
ad the same time replacing P by nP. Equations (11), (12) and (7) then
become:

(13)
A n + ne0\k

P
_ 5ä °yP

(14)
A n + (ne0lk)ia2—2«cos [(///-)inp\AE]-\-\ [csc((//r)V «p/i4f)]

p2 _ (cos-1«)2 e m
A ~ n(l\rf

K '
Equation (13) or (14) will now give a value of the load such that n times
this load will always exactly produce a maximum fibre stress equal to the
yield point stress of the material.

From these equations the safe load can be determined, for any given

column and given value of a =—. The Solution of these equations however

must be made of a cut and try method. In the case of equation (13) such a

Fig. 5.

Solution presents no difficulty, but in the case of equation (14) some further
explanation of a method of Solution is necessary. The problem is further
complicated by the fact that at the beginning it is not known whether
equation (13) or equation (14) is going to apply.

In order to simplify equation (14) let the quantity,

[(///-) iTP\ÄE\ cp,

and let the quantity,

y a2 — 2a cos cp + 1 y>.

Equation (14) then becomes

P Ow

A «4- (ne0jk)(ip esc 9?)'
(16)

From equations (13) and (16) guided by equation (15) curves may be
P

plotted showing the relation between allowable average compressive load—
l eand the slenderness-ratio — of the column for any ratio a from — 1 to + 1,
r

which are the limits of its Variation.
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Since, however, in equation (16) the quantity xp has both a and cp in-
volved in it, some preliminary evaluation of this quantity for any given value
of a is necessary in order to make the Solution of equation (16) possible. If
attention is directed to the quantity xp Va2 — 2 a cos cp + 1, it is seen to
represent the third side of a triangle when two sides and the included angle
are known. This is shown in Fig. 5. In this case the two sides are pure
numbers, a and 1, and the included angle is cp. Referring to Fig. 5 it is seen
that for any given value of a, xp varies from 1 — a when cp 0, to 1 -f- a when
cp n. For any given value of a, then xp may be evaluated for several values
of cp and then a curve plotted showing values of the quantity (xp esc cp) in
equation (16), against values of cp, (note that cp like is a function of the
load P). Such curves have been plotted for values of a ranging by .25 inter-
vals from — 1 to + 1- (See Fig. 6.)

Equation (15) may be expressed as -j-^nP2/AE cos^a 932 from

which it is seen that equation (16) does not hold for values of cp less than
cos-1 a.

folues &¥• esc pfor various Values efOL in the general fauotion:
Valeurs deff• esc Qpourdifferentes Volturs ot dans l'Eguotion generale:
Werte von p'-esefifür verschiedene ßVerrea. in der oigemetnen Gleichung:
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2 X
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Fig. 6.

By the use of the curves in Fig. 6, equation (16) may be readily solved.
Now with equations (13) and (16), separated by equation (15), curveps

showing average allowable load — j against slenderness ratio (—J have

been plotted for each of the values of a given in Fig. 6, with the idea that
results may be interpolated from these sets for any value of a. These curves
are shown in Figures 7 to 15.

A study of these curves (particularly the position of the curve given by
equation (15)) will show clearly how as a decreases from +1 to — 1 the

ränge of — in which the allowable average compressive load is a straight

horizontal line, independent of the deflection of the column, increases until
when a — 1, the column behaves exactly like an axially loaded one, (i. e.

Equation (15) eoineides with the Euler curve).
The moments at the ends of members in rigid frame construction, arising

from the rigidity of the joints will generally be such as to make the —r- ratio
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Design curves of fibre stress for ratios of

Fig. 7-15:
Graphiques des efforts d e bordure pour des rapports

\= 0.1 ä 1.0 (Eq. 16); degre de securite par

rapport ä la limite d'ecoulement du materiau

(u 2800 kg/cm2) n 2.5; « — variant entre\ yp Ol £Q

+1.0 et — 1.0. Ordonnees en livres par pouce carre.

Graphische Tabellen der Randspannungen für

Werte % von 0.1 bis 1.0 (siehe Gl. 16); Sicher-
k

heitsgrad gegen Erreichen der Streckgrenze (ayP

2800 kg/cm2) n 2.5; « —für +1.0bis —1.0.
Co

Ordinaten in Pfund je Quardratzoll.

0.1 to 1.0 (Eq. 16); degree of security

against reaching of yield point stress (^=40.000 lbs./sq. in.) n 2.5; « -^-varying

from + 1.0 to — 1.0. Ordinates in lbs/sq. in.

lie between 0 and 1 (i. e. the secondary stress will usually be less than 100<>/o

of the primary stress). For this reason the curves (Figs. 7 to 15) have been

plotted for— ratios from 0 to 1, going by yioth intervals.

Notations used.
P a compressive load on the column
A the cross-sectional area of the column
E — modulus of elasticity of the material

moment of inertia of the cross-section of the column
length of the column

/
/
— average compressive load on the column

S section modulus of the cross-section of the column

r radius of gyration of the cross-section

q itr
l

V PI El a funktion of the load P

slenderness-ratio of the column

M bending moment
e eccentricity of the load P

S
k -T- core distance of the cross section

A
a fibre stress
n a factor of safety

Signes utilises
P charge de la colonne
A section de la colonne
E module d'elasticite de la

colonne
/ moment d'inertie dela colonne
/ longueur de la colonne
P pression speeifique de la
Ä colonne
.S moment de resistance de la

colonne
r rayon d'inertie de la colonne

Angewandte Bezeichnungen.
Druckkraft der Säule
Fläche der Säule
Elastizitätsmodul der Säule

Trägheitsmoment der Säule
Säulenlänge

spez. Pressung der Säule

Widerstandsmoment der Säule

Trägheitsradius der Säule
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q \PIEI= fonction de la force P Funktion der Kraft P

— degre d'elancement Schlankheitsgrad der Säule

A4 moment de flexion Biegungsmoment
e excentricite de P Exzentrizität von P
S

k -r diametre du noyau central Kernweite des Querschnitts

a contrainte Spannung
n coefficient de securite Sicherheitsfaktor

Summary.
By use of the curves (Figures 7—15) compression members in rigid

frame construction may be designed with a definite factor of safety, based
on the yield-point load, once the secondary moments originating from the
rigidity of the joints are known.

The cut and try method of Solution can be performed very rapidly by
use of the curves. As will be seen, these curves have been drawn for a structural

steel (oyp 40 000 lbs. per sq. in.) and a factor of safety n 2.5 which
puts them on about the same basis with Standard American specifications for
column formulae.

No attempt has been made here to consider such important problems,
as buckling beyond the yield point, eccentricity of load not in a principal
plane, and transverse loads.

Resume.
A l'aide des courbes des figures 7—15 il est possible de determiner les

dimensions des elements comprimes excentriquement tel que, par exemple,
les montants des cadres de stabilite, dans lesquels leur assemblage rigide
avec les poutres transversales et les entretoises de contreventement donne
naissance ä des moments flechissants differents aux deux extremites des
montants. Le coefficient de securite est determine par rapport ä la limite
d'ecoulement du materiau.

La determination des tensions ä l'aide des graphiques se fait tres rapidement.

Les courbes ont ete calculees pour de l'acier de construction (limite
d'ecoulement ayp 2800 kg/cm2), en tenant compte d'un coefficient de
securite n 2.5, ce qui correspond ä peu pres aux prescriptions gouverne-
mentales des Etats Unis.

Plusieurs problemes importants n'ont pas encore ete pris en consideration,

soit: Flambage au-dessus de la limite d'ecoulement, forces agissant
en dehors du plan principal (c'est-ä-dire agissant dans les trois dimensions),
forces de cisaillement.

Zusammenfassung.
Mittels der Kurven (Fig. 7—15) können Druckglieder in steifen

Rahmenkonstruktionen mit einem festen Sicherheitsfaktor, der sich auf die
Fließgrenze stützt, berechnet werden, sobald die Biegungsmomente, die von der
Steifigkeit der Knoten herrühren, bekannt sind.
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Die Lösung mittels Versuchsrechnung erfolgt sehr rasch unter Zuhilfenahme

der Kurven. Diese Kurven wurden gezeichnet für Baustahl (ayp

2800 kg/cm2) mit einem Sicherheitsfaktor n 2,5, was ungefähr den
amerikanischen Vorschriften entspricht.

Verschiedene wichtige Probleme sind bis anhin noch nicht in Betracht

gezogen worden: Knicken jenseits der Fließgrenze, excentrischer Lastangriff
außerhalb der Hauptebene, Querkräfte.
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