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STRESSES IN ECCENTRICALLY LOADED STEEL
COLUMNS

CONTRAINTES DANS LES COLONNES EN ACIER SOLLICITEES
PAR DES CHARGES EXCENTRIQUES

SPANNUNGEN IN EXZENTRISCH BEANSPRUCHTEN STAHLSAULEN

[NV OUIN G
Instructor of Engineering Mechanics, Ann Arbor (Mich.).

1. Introduction.

A slender column, of hemogeneous material, perfectly straight and free
from initial stresses, subjected to axially applied compressive forces, would
not deflect sidewise until the critical value of the load P as given by Euler’s
Formulae, was reached. Actually, columns as found in Engineering struc-
tures are not such ideal columns. Particularly, they do not come under the
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heading of “slender”” and second the load will not be applied without some
eccentricity. As a result of these imperfections the column deflects before
the critical value of the load is reached, and the stress for any value of the
load is not only a function of the load but also of the deflection of the
column.

The true behaviour of such a column will depend upon such indeterminate
factors as initial curvature, initial stresses, non-homogenity of material and
eccentricity of load. It may be assumed that such a column can be closely
approximated by a so called “‘ideal column”, having its load applied with
some definite eccentricity (¢) the effect of which will be the same as the
indeterminate factors mentioned above. Such a column is shown in Fig. 1.
An analysis of this case leads to the well known Formula,

R e e
e L
Omax — A (1—*' b SEG 5 ‘P/E[) (])

For pin ended columns the value of the eccentricity-ratio (2) is selected to

take care of such imperfections as accidental eccentricity, initial curvature,
non-homogenity, etc.

There is, however, no reason why it may not include any known eccen-
tricity of load, or bending moments, such as occur at the ends of compression
members in all types of rigid frame construction. It is at once recognized
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that such moments may not necessarily be equal at the two ends of the column

Possible types of such secondary moments which occur in rigid frame con-
struction are shown in Fig. 2 («) and ().
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Fig. 2.

As a matter of fact, Equation (1) represents only a special case of eccen-
tric loading, where the end moments are equal and produce the same sign of
bending. It is proposed here to develop the more general case, and to present

curves for various combinations of loading.
2. General Case.

The general case of a column with unequal eccentricities at the two ends
will now be considered. It is assumed that the plane of loading is one of

Eig=3:
the principal planes of the cross-section of the column ')

. Such a column is
shown in Fig. 3. M, is the numerically larger of two unequal end
moments. The bending moment at any section (Fig. 3) will be;

Me = Py + M, — (MU TMI) X,

(2)
The equation of the elastic line then is,
El dxy = —Py—M,+ (MO"‘[_%—) x.

The general solution of this equation will be

A M M M
Wit Glcosipe = Gilsinipy 0 1

PR DT DY
where ¢ = {P/El and C, and C, are constants of integration.

lj The possibility of buckling in the plane perpendicular to the plane of loading
is not considered.
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To satisfy end conditions we have,

G :A;U
and
s G M,
' = Psingl  Plangl
Then:

Taking the first derivative of this with respect to x gives,
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and from this equation the slope at the left end of the column will be,
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Fig. 4.

In order to find the maximum stress in the column, attention must be
directed to the position of maximum bending moment. Referring to Fig. 4
which represents the beding moment diagram for three different values of
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the load P designated by P,, P,, and P,; P, being the smallest, and P; the
greatest value, it is seen that so long as the slope at the left end of that

part of the moment diagram due to Py, is less than the slope b 7M1 of that

part of the diagram due to M, and M,, M, will be the maximum ordinate in :
the diagram. This condition is represented by Fig. 4 (¢). On the other hand

when the load has some value P; for which the slope at the left end, Ps(%)
x=0

o— M,

is greater than the slope = then the maximum ordinate will occur at

some point C, (Fig. 4 c¢) namely where the slope P (Z%) — M‘);Ml. Ob-
viously there will be some value of the load P, where the slope at the left end,

2 (dy) o will just equal the slope Mo_l s (Fig. 4b). This value P, then,

dx
marks a certain value of the load, below which the maximum bending moment
will always occur at the left end and have a value simply of M,, and above
which the maximum bending moment will occur at some point in the column
and have a value greater than M,.

The calculation of maximum stress will consist of two steps. First to
find the value of this load P, and second, to find the value of x at which this
greater maximum bending moment occurs, and evaluate this maximum from
equation (2).

To find the value of the load (P,) the following equation must be satis-

fied.
r(g)_= et
gl A
Substituting the value of ({%) from equation (5) gives
e —I10
[ LRI %_@]z%_&
Psingl  Ptangl ' Pl Pl Al

which reduces to,

A—/I‘—cos [
M

Remembering that M, = Pe,, M, = Pe,, q — 1V PJEI, and calling the ratio
e,/e;, = a, the load at which the maximum bending moment first becomes
larger than M, will be, from the preceeding equation,

(cospia)=E]L
Tepe e Sabanl dee e
2 /2 (6)
and the corresponding average load will be
R (cosgto) R
AT @y M

If the load is larger than P,, the maximum bending moment occurs at a
point (Fig. 4 ¢) where
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P (d:V) — Mo—M,
dx /
Using equation (4) we find,
o g Cos i g hicos g M[};MJ] _ Mo My
Pl B gl Ptan g/ RIEEe Pl s

which reduces to,

€

tan gx = -* csc gl — cot g/ (8)
0

This equation gives the value of x for maximum bending moment for all

values of the load greater than P,. Placing the expression for (y) from

equation (3) in the general expression for bending moment, (equation 2)

gives

=5 Bl ia it ? ]
U [( sing/  tan ql) SR )

To make this a maximum the expression for x from equation 8 will be used
giving,

Myae = Pey V a2 —2acos (i- Y PJEI) +1-csc (Y PJET) (10)
. This holds true for all values of the load greater than P..

It will be seen that if « is made equal to unity, which would be the
case shown in Fig. 1, equation (10) will reduce to the well known equation,

My, = Pe sec (é V PIEI \,

Using for the numerical maximum of stress the known equation,
P VM{H(I.\’

Omax — A <+ S
we find for values of the load less than P,, in which case M, = M,,
=71+ 2]
Omax — ;4 14+ !; (11)

while for values greater than P,, in which case M, is given by Equation (10)

G j l] i 20 Vae = 9zcos (lr VYJ/AAE)+ 1 .csc( f V"['J/_A'E)] (12)

These last two equations give the relation between maximum stress,
averagc unit load, and the dimensions of the column, for all possible values
of the load, while equation 7 gives the particular value of the load P,, which
marks the point of transition between the two equations. In other words,
equation (7) gives the only value of the load for which both equations (11)
and (12) give the same stress.

In order to make these three equations applicable for design purposes
a factor of safety will be applied to them. This factor will be based on the
yield point stress of the material, on the basis that when any part of the
column has reached this yield point stress the column will suffer some per-
manent deformation and therefore be damaged.
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It will be noted that equation (12) does not represent a straight line
relationship between load and maximum stress. Hence the factor of safety
will be incorporated directly into these equations, by setting ¢,... = 0y, and
ad the same time replacing P by n P. Equations (11), (12) and (7) then
become:

P O
e o (&)
P = ———— r,yip,;i,, == (]4)
A n + (neyk) Vet 9acos (2| np|AE] +1 [esc ((Z]7)V np| AE)]
& — (COS_IE)EE | (15)

2 ()2

Equation (13) or (14) will now give a value of the load such that » times
this load will always exactly produce a maximum fibre stress equal to the
yield point stress of the material.

From these equations the safe load can be determined, for any given
column and given vaiue of « — 2—0. The solution of these equations however
1
must be made of a cut and try method. In the case of equation (13) such a
|-—a i ( —ﬁ

_______ |
~
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Fig. 5.

solution presents no difficulty, but in the case of equation (14) some further
explanation of a method of solution is necessary. The problem is further
complicated by the fact that at the beginning it is not known whether
equation (13) or equation (14) is going to apply.

In order to simplify equation (14) let the quantity,
[V nPIAE] = ¢,
and let the quantity,

Ve2—2acosp+ 1 = w.
Equation (14) then becomes
i T
A n+ (neg|k) (v csc @) (16)
From equations (13) and (16) guided by equation (15) curves may be

plotted showing the relation between allowable average compressive 1oad—z

and the slenderness-ratio é of the column for any ratio a from — 1 to |- 1,

which are the limits of its variation.
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Since, however, in equation (16) the quantity y has both a and ¢ in-
volved in it, some preliminary evaluation of this quantity for any given value
of « is necessary in order to make the solution of equation (10) possible. If

attention is directed to the quantity ¢ — Ya® — 2a cos ¢ | 1, it is seen to
represent the third side of a triangle when two sides and the included angle
are known. This is shown in Fig. 5. In this case the two sides are pure
numbers, a and 1, and the included angle is ¢. Referring to Fig. 5 it is seen
that for any given value of a, y varies from 1 —a when ¢ = 0,t0 1 +a when
@ — . For any given value of a, then i may be evaluated for several values
of ¢ and then a curve plotted showing values of the quantity (y csc @) in
equation (16), against values of ¢, (note that ¢ like (g) is a function of the
load P). Such curves have been plotted for values of a ranging by .25 inter-
vals from — 1 to -+ 1. (See Fig. 6.)

Equation (15) may be expressed as _; \//TPQ,/'AE': cos—la = ¢, from

which it is seen that equation (16) does not hold for values of ¢ less than
COSpta.

Werle von §-cscg fur verschiedene Werlea. in der algermeinen Gleichung:

Gom _:ZP_
e freseo)
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Volues of f/-esc g for various Valves of o in the generol Eguation:
Valeurs def-csc p pour différentes Valeurs & dons 1'Equ ation génerale:

Volves — Valeurs —Werle §.csc ¢

——
0 ¢ 8 10 16
Folves of ¢ in Rodions — Valeurs de () en Longueur dArc — Werte ¢ in Bogenmass
Fig. 6.

By the use of the curves in Fig. 6, equation (16) may be readily solved.
Now with equations (13) and ‘(16), separated by equation (15), curves
showing average allowable load —;4—) against slenderness ratio (é) have
been plotted for each of the values of a given in Fig. 6, with the idea that
results may be interpolated from these sets for any value of a. These curves
are shown in Figures 7 to 15.

A study of these curves (particularly the position of the curve given by
equation (15)) will show clearly how as « decreases from -1 to —1 the

et ; ; : :
range of — in which the allowable average compressive load is a straight
=

horizontal line, independent of the deflection of the column, increases until
when @ = — 1, the column behaves exactly like an axially loaded one, (1. e.
Equation (15) coincides with the Euler curve). _

The moments at the ends of members in rigid frame construction, arising

Cy

ratio
k

from the rigidity of the joints will generally be such as to make the
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Fig. 7—15:
Graphiques des efforts de bordure pour des rapports

— P

/’ = 0.1 2 1.0 (Eq. 16); degré de sécurité par

rapport a la limite d’écoulement du materiau

PA
12000

Q P e s
— 2800 kglem®) n=25; a = el variant entre
0
-+ 1.0et — 1.0.Ordonnées en livres par pouce carré.

7.,
8000 ( i

4000

Graphische Tabellen der Randspannungen fiir
Werte Z: von 0.1 bis 1.0 (siehe GI. 16); Sicher-
heitsgrad gegen Erreichen der Streckgrenze (7, =
2800 kgjem?) n —2.5; « = j‘ fiir +1.0 bis —1.0.

Ordinaten in Pfund je Quard(;atzoll.

Design curves of fibre stress for ratios of —i‘: = 0.1 to 1.0 (Eq. 16); degree of security

against reaching of yield point stress (s,, = 40.000 Ibs.[sq. in.) n = 25; a = —?—l—varying

0

from <+ 1.0 to — 1.0. Ordinates in Ibs/sq. in.

lie between 0 and 1 (i. e. the secondary stress will usually be less than 1009
of the primary stress). For this reason the curves (Figs. 7 to 15) have been

plotted for “_ ratios from 0 to 1, going by /,,th intervals.

k
Notations used.
P = a compressive load on the column
A = the cross-sectional area of the column
F = modulus of elasticity of the material
/ — moment of inertia of the cross-section of the column
[ = length of the column
2 2
W AvemaEe compressive load on the column
S — section modulus of the cross-section of the column
r = radius of gyration of the cross-section
q 1/ P|El = a funktion of the load P
i — slenderness-ratio of the column
M = bending moment
e = eccentricity of the load P
= g — core distance of the cross section
o = fibre stress
n = a factor of safety
Signes utilisés — Angewandte Bezeichnungen.
P — charge de la colonne Druckkraft der Saule
A = section de la colonne Flache der Sdule
FE = module d’élasticité de la Elastizititsmodul der Sdule
colonne
I = moment d’inertie dela colonne Trigheitsmoment der Siule
[ = longueur de la colonne Siulenlange

P __ pression spécifique de la

A~ colonne

S — moment de résistance de la Widerstandsmoment der Saule
colonne

r = rayon d’inertie de la colonne Trigheitsradius der Sédule

spez. Pressung der Saule
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(= VP/El: fonction de la force P Funktion der Kraft P
{ 2l :
= degré d’élancement Schlankheitsgrad der Saule
M = moment de flexion Biegungsmoment
e = excentricité de P Exzentrizitit von P
k=% = diametre du noyau central Kernweite des Querschnitts
¢ = contrainte Spannung
n = coefficient de sécurité Sicherheitsfaktor
Summary.

By use of the curves (Figures 7—15) compression members in rigid
frame construction may be designed with a definite factor of safety, based
on the yield-point load, once the secondary moments originating from the
rigidity of the joints are known.

The cut and try method of solution can be performed very rapidly by
" use of the curves. As will be seen, these curves have been drawn for a struc-
tural steel (¢,, — 40 000 Ibs. per sq. in.) and a factor of safety » = 2.5 which
puts them on about the same basis with standard American specifications for
column formulae.

No attempt has been made here to consider such important problems,
as buckling beyond the yield point, eccentricity of load not in a principal
plane, and transverse loads.

Résumeé.

A Vaide des courbes des figures 7—15 il est possible de déterminer les
dimensions des éléments comprimés excentriquement tel que, par exemple,
les montants des cadres de stabilité, dans lesquels leur assemblage rigide
avec les poutres transversales et les entretoises de contreventement donne
naissance a des moments fléchissants différents aux deux extrémités des
montants. Le coefficient de sécurité est déterminé par rapport a la limite
d’écoulement du materiau.

La détermination des tensions a l’aide des graphiques se fait tres rapide-
ment. Les courbes ont été calculées pour de l'acier de construction (limite
d’écoulement ¢,, — 2800 kg/cm?), en tenant compte d’un coefficient de sé-
curité # = 2.5, ce qui correspond a peu pres aux prescriptions gouverne-
mentales des Etats Unis.

Plusieurs probléemes importants n’ont pas encore été pris en considé-
ration, soit: Flambage au-dessus de la limite d’écoulement, forces agissant
en dehors du plan principal (c’est-a-dire agissant dans les trois dimensions),
forces de cisaillement.

Zusammenfassung.

Mittels der Kurven (Fig. 7—15) konnen Druckglieder in steifen Rahmen-
konstruktionen mit einem festen Sicherheitsfaktor, der sich auf die FlieB-
grenze stiitzt, berechnet werden, sobald die Biegungsmomente, die von der
Steifigkeit der Knoten herrithren, bekannt sind.
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Die Losung mittels Versuchsrechnung erfolgt sehr rasch unter Zuhilfe-
nahme der Kurven. Diese Kurven wurden gezeichnet fiir Baustahl (o,, =
2800 kg/cm?) mit einem Sicherheitsfaktor n = 2,5, was ungefahr den ameri-
kanischen Vorschriften entspricht.

Verschiedene wichtige Probleme sind bis anhin noch nicht in Betracht
gezogen worden: Knicken jenseits der FlieBgrenze, excentrischer Lastangriff
auBerhalb der Hauptebene, Querkrafte.
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