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CALCUL ELEMENTAIRE RIGOUREUX DES PLAQUES
RECTANGULAIRES

STRENGE, ELEMENTARE BERECHNUNG RECHTECKIGER PLATTEN
RIGOROUS ELEMENTARY CALCULATION OF RECTANGULAR SLABS

Dr. h. c. M. MESNAGER,
Membre de UInstitut de France, Professeur a ’Ecole Nationale des Ponts et Chaussées et
au Conservatoire National des Arts et Métiers.

En béton armé on utilise fréquemment des hourdis portés sur deux cours
de poutres rectangulaires. On détermine en général leurs fatigues au moyen
des formules des plaques minces rectangulaires appuy¢es sur un contour in-
déformable. Les moments subis par celles-ci malheureusement, soit qu’elles
soient encastrées sur le contour, soit qu’elles soient articulées sur ce contour,
ne peuvent s’exprimer que par des séries. La théorie de ces plaques présente
par conséquent des difficultés qui rebutent beaucoup d’ingénieurs et de plus
elle repose sur une base fausse, que le contour est indéformable.

On peut donc penser qu’il vaudrait beaucoup mieux rechercher des for-
mules basées sur la déformation du contour et le raccordement des plaques
et des poutres qui les supportent. On serait plus pres de la réalité et ’on
peut arriver & des expressions d’un nombre fini de termes beaucoup plus
maniables.

Je suppose connues les formules fondamentales suivantes des plaques
en fonction de leurs déplacements verticaux, comptés positifs vers le haut.

Moment par unité de longueur d'une section perpendiculaire
4 la direction d’un des cdtés o x, compté positif dans le sens ordinaire de la
résistance des matériaux, c’est a dire tendant a produire une concavité vers
le haut

JE (32w ‘a‘-’w)
1 — 52 §x2+ajf2 (1)

I moment d’inertie par unité de longueur de la section, 7 coefficient de POISSON.

Momentde torsionparunité delongueur d’'une section per-
pendiculaire & o x ou oy, compté positif quand sur la face positive, c’est a
dire limitant le corps du c6té des x ou des y croissants, il tend a produire
une rotation dans le sens positif des x z ou z y, sens du dévissage avec le sens
ordinaire des axes.

W=

o Blar W
 14naxy @)
Effort tranchant par unité de longueur d’une section per-

pendiculaire a o x, dans le sens ordinaire de la résistance des matériaux, c’est
a dire vers le haut du coté de Porigine,

E
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en posant { = °

Charge par unite de surface, dirigée vers le ‘bas,

= 15891
e— —1—7__77)__,J-'w, (4)
/
et =0 o o'
en posant VA e ) [ ¢ 208
L ax4_+"2 axiop? - oyt

Reaction surila face negativescestiasdite coferdesliorioime
perpendiculaire a o x, comptée vers le haut.

BT [@_311 i 8 W]
”"( ENTEY l a "-_J 8x3+(2 'J)axa _)- (5)
Réaction aux angles '
JE T RERTY

1— 752 0x9y

Si 'on suppose la plaque isotrope uniformément chargée de o, les
poutres supportant la plaque continues aux appuis, la plaque continue au
dessus des poutres et les fleches de celles-ci proportionnelles a leur longueur
(ce qui est l'ordinaire), on reconnait facilement que toutes les conditions
sont remplies par la formule ci-dessous et comme les problemes d’élasticité
n’ont qu’'une solution, c’est la solution du probleme.

Plaque uniformément chargée de &, encastrée sur son contour
formé de poutres encastrées.

V o (1—1y2) a®b? [,\'3(.\‘—(1)'-’ v (x—0b)*
N e SN L5 = :

Sl e et 12
SAET LBl e i e ) @
est I’équation de la plaque rectangulaire encastrée, placée comme P'indique
la figure: b 4
2| ¢

b

g aQ A

Big 5k
Il est facile de vérifier que toutes les conditions sont remplies.
I La charge est uniforme, puisque la charge est définie par
des dérivées quatriemes. Elles sont ici des constantes puisque la fonction w

est du quatrieme degré. En remplacant dans la formule (4) w par sa valeur,
on trouve w — — (.

: cw
20 Les tangentes sont horizontales au contour. En effet —— est la dérivée
oX
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d’une fonction de la forme
w= Ax?(x—a)?

dont les racines ¥ — 0 et x — « sont doubles, donc la dérivée est nulle
pour ces racines. On le voit presque aussi vite par dérivation directe.

39 Les moments de torsion sont nuls puisqu’il n’y a pas de terme en
S,

40 En remplacant w, tiré de (7) dans I'expression de la rcaction OB,
on obtient pour x = 0

(ol T b*>
Fx =— SRS Tl (8)
2 (e A b' ]v" s

La réaction totale sur le coté x — 0 est

e (_719 a b
R-\' T 5 a’® Al bf;’ Rx b.‘s
~ L R T B (g)
R W ) v a
V=it Ty TN B 9 )
VR

Les réactions par unité de longueur des cotés sont entre elles comme les
carrés des longueurs des cotés, les réactions totales des cotés sont proportion-
nelles aux cubes des longueurs de ceux-ci.

50 Déformation des poutres d’appui.
Poutre o x. Elle supporte par unité de longueur

0 4] ‘Ii:i l-,)

2 {;,;’. = [/.:%

Or I’équation d’une poutre encastrée de longueur «, chargée de p par unité
de longueur est

e
Iy

W= — 2411[5—1 A )
Remplacons p par la valeur de ry, / par /, moment d’inertie de la poutre
placée sous le coté «, il vient
W= —

R @ obe _
D 2l )2
BEL 46" O o
Ecrivons que la poutre a mémes déplacements que la plaque pour y = 0
I’identification donne
I a’ /i b? It i
= i T D et — =1
2 2(1—n?) 6%’ g 2(1 —1?) a® Iy (5} (11)
Les moments d’inertie des poutres doivent étre proportionnels a la cinquieme
puissance des longueurs des poutres.

6> Fléeches des poutres. Les fleches des poutres sont données
par I’équation (10) en y faisant x — ,[; En remplacant /, par la valeur (11)

et en changeant le signe, puisque la fleche doit étre comptée positive vers le
bas, il vient

1) Cette équation est analogue a celle de Grastor, ,Elastizitit und Festigkeit‘‘, page
359, Porigine est a 'angle au lieu d’étre au centre. Voir aussi Eopy, The theorie of the
flexure — Rogers — Mineapolis P. 2L
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wo(1—1n?) a*bd? wo (1 —n?%) .a®b* i a :
e L, =2 an)
384 E1 a*+0 384 E] a*+0b i b
Les fleches sont proportionnelles aux longueurs des poutres.
Toutes les conditions posées sont remplies, la solution convient donc.
Je vais maintenant examiner les propriétés de cette plaque et ensuite les

comparer a d’autres résultats connus.

Moments.

Calculons les dérivées secondes qui entrent dans (1)
W Ol P b 2 ey Hoa
gde 24EI  a®+6° a®
a“)W_ = (50(1—);,?) ad b3 12y2__12byj__2_-é:3
dx? 24E1  a®+ b3 7

%
Portons dans (1)
il [2&2_12x(a—x)

e 24 ad+ b3 as

s ng-:_ 1?5(1;——}1)] (12)

: 3 1 a
Moments au centre. Dans ’équation (12) faisons x — - nous
2 )

obtenons

Mg a® bt —2b2—|—12y(b——y)]
D ,
le maximum a lieu au milieu, car alors y (b — y), qui est positif, est maximum.
Le maximum est

(i3 o (B

SV peieps 6+ na) (13)

7 €tant toujours inférieur a 1, on voit que le moment le plus grand a lieu sur
la coupure faite parallelement au plus grand c6té. C’est un fait bien connu
et presque ¢vident.

Miomie it s*d “encasitrie mien v Surleicote v — 0N 2)Fdonne

Mo —

Lty o [g 120‘“’—12y(bv—y)]
M.\'-— 24 a3+b3 a+7f b‘d
On trouve des valeurs égales et de méme signe pour y = i + u.
5 : b 2
Le minimum de la valeur absolue a lieu pour y = L c’est le moment
d’encastrement au milieu du c6té
g @y ras b2 n
‘ e o 2ol
: 9 o &

Aux angles on a

o ad b

= e
g ! 12 & +5°

(6 + na) (15)

Fig. 2.
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La courbe représentative des moments ¢tant une parabole du second
degré, en voit facilement que la valeur moyenne s’obtient en supprimant
lefterine ‘en 1.

Fleche par rapport aux angles.
Cette fleche s’obtient en faisant x = ; = —g dans la formule (7) et

en changeant le signe de I’expression d’aprés la définition de la fleche

b e :
B ovr arp {10

Comparaison avec les formules de la plaque rectangulaire
encastrée sur un contour rigide.

Faisons cette comparaison pour le cas de la plaque carrée d’apres les
formules de M. le Docteur-Ingénieur Hencky de Darmstadt pour la plaque
rectangulaire encastrée sur un contour indéformable. (Editeur Oldenbourg,
Berlin 1913, p. 53.) Il faut diviser par quatre les coefficients donnés par lui
parce qu’il appelle les cotés 2a et 24, tandisque je les ai appelés « et 4. En
outre il a pris » = 0,3. Dans ces conditions, pour ¢ = b, n= 0,3 on obtiemnt.

Moment aucentre

M= 22 2 = Goa*- 00271
d’apres la formule (13) ci-dessus
M= 9%92 — doa - 0,023

d’apres le calcul de M. HENCKY.

La différence n’est pas surprenante, étant donnée la différence de rigidité
du contour qui diminue certainement les moments au centre.

Moments d’encastrement au milieu du cote.

Mo o B 085 SR e 01T diapies (14)
12 2
M, = — da’ .(%05 — — dya?-0,0512 d’aprés M. HENCKY.

La différence est beaucoup plus grande, parce que ce moment est produit
au point méme soulevé par le contour rigide. Le moment est presque triple
(0,01 77 < 2,9 — 0;0512).

Réactions au milieu du coté.

o @ 2 o 2
Y= ‘%,, = ,a- 0,25, dapres (8) re — @50 0,88,
La réaction est plus que triplée a cause du soulévement du centre (0,257 < 3bd
= 0,88).

Il ‘est assez intéressant de constater qu’une semblable plaque est assi-
milable & une série de poutres de largeur 1 juxtaposées, de hauteur égale a
I’épaisseur de la plaque, portant, celles qui sont dans le sens o x, la fraction
bﬁ

(1 T '42) Zey

PN de la charge
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et celles qui sont dans le sens o y la fraction

: @5 ;
(1—1?) PRI de la charge.

En effet I'équation (7) est ainsi décomposée en deux systemes de poutres.
La somme des deux fractions donne (1 —2). C’est un facteur de réduction
de la charge qui tient a la liaison de ces poutres les unes aux autres.

Dans le cas oit # — 0 on est ramené a partager simplement la charge
entre ces deux systemes de poutres. C’est une idée qui n’est pas neuve, de
SAINT VENANT (traduction de I’Elasticité de Clebsch, Dunod 1883, p. 752 en
ote) rappelle qu’elle a été employée par Mariorte. 1l ajoute ,Quoique
I'assimilation d’une plaque a deux systémes croisés de regles jointives mangue
d’exactitude, on comprend que la conclusion puisse étre juste. On peut en-
core dire, on coupe la plaque par deux systémes de plans verticaux espacés
de l'unité supposée infiniment petite, les uns paralléles & ox, les autres
parallcles & oy. En supposant I'un des systémes de coupure supprimé on
a un des systemes de regles, en supposant lautre supprimé on a Pautre. Le
facteur 1 —® tient compte des réactions de 'un des systemes sur l'autre
quand on supprime toutes les coupures.

On peut remarquer que la forme de la plaque déformée peut-étre en-
gendrée par le glissement de la poutre parallele 2 o x, déformée suivant
I’équation

% E . b:)‘ ] x2 (X 2l a)z
= | o (1— )[13 73 SAE]
le long d’une poutre paralléle 2 o y déformée suivant 1’équation

@ 1yiQ=a)

W e (Wl e

Cette manicre d’envisager les plaques est rigoureuse, si elles peuvent
glisser sur le contour, constitué par des poutres rectangulaires dont le moment
d’inertie est défini par (11). Elle a I'avantage d’étre tout a fait élémentaire.

Mais il ne faut pas se dissimuler que ce n’est pas encore compléetement
la réalité. Car nous avons admis qu’il n’existe que des réactions verticales
(pas de cisaillement) au raccordement de la plaque et de la poutre. Ceci
coustitue une différence notable entre le calcul et la construction usuelle en
béton armé ou en métal, mais il ne faut pas perdre de vue qu’il en est de
méme dans tous les travaux faits sur les plaques reposant sur un contour
indéformable. Je ne parle pas des différences dues A ce que la plaque n’est
pas infiniment mince.

Le probleme de la liaison complete ne parait pas insoluble, c’est ana-
logue a peu pres a celui que M. ToURNAYRE a abordé dans les Annales des
Ponts et Chaussées, 1932, I, mais il semble alors indispensable d’employer
des développements en série. La simplicité de la solution, que j’avais re-
cherchée, disparait.

On peut pour la plaque posée sans frottement sur des poutres, posées

sur leurs appuis, en supposant 5 — 0, arriver de méme, en utilisant
o  a*h® [x(a—x)(x2 —ax—a?) _l_y(y—b)(yz—bx—b?)]
= e S e
24E7T a’ 4 p3 L o7 b?

[1 est ici nécessaire de faire 5y == 0 pour que le moment puisse étre nuil
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au contour: car autrement le moment pour x - 0 dépend de nf(y). On ne
se débarrasse des termes en y qu’en faisant 5 = 0.

Résumé.

Les moments subis par des plaques minces rectangulaires appuyées sur
un contour indéformable — soit qu’elles soient encastrées, soit qu’elles solent
articulées sur ce contour — ne peuvent s’exprimer que par des séries. En
réalité, ce contour indéformable n’existe guere, les plaques étant d’ordinaire
assemblées sur des poutres ¢lastiques.

Dans ce cas — plague uniformément chargée encastrée sur un contour
formé de poutres encastrées — on peut arriver a des expressions comportant
un nombre fini de termes et beaucoup plus maniables. Aprées avoir mentionné
les formules fondamentales des plaques, 'auteur traite en détail cette solution
particuliere.

Une comparaison avec les formules de la plaque carrée encastrée sur un
contour rigide donne les résultats suivants. Les moments au centre de la
plaque sont un peu plus grands pour le cas envisagé, tandis que les moments
ot les réactions au milieu du coté sont bien moindres que dans le cas du
contour rigide (environ le tiers).

Une plaque semblable est assimilable a une série de poutres, celles qui
sont supposées dans le sens ox (voir fig. 1) supportant la fraction

bb‘
s
( @ =0
de la charge et celles qui sont dans le sens oy supportant la fraction
: n:i
[ 1
S ooy

de la charge.
Le facteur (1 —y?) constitue un coefficient de réduction de la charge,
tenant compte de la liaison des poutres les unes aux autres.

Zusammenfassung.

Dic Berechnung von diinnen rechteckigen Platten, die auf einer starren
Unterlage entweder frei aufliegen oder in ihr eingespannt sind, fithrt zu
kompliziertca Rethenausdriicken. In Wirklichkeit ist diese starre Unterlage
selten vorhanden, da die Platte meist auf elastischen Balken aufruht.

Fiir diesen Fall — gleichmiBig belastete Platte, die an ihren Randern
mit eingespannten Balken biegungssteif verbunden ist — kommt man auf ein-
fache, geschlossene Ausdriicke. Der Verfasser weist kurz auf die grund-
legenden Formeln der Plattentheorie hin und behandelt dann ausfiithrlich diese
spezielle Losung.

Ein Vergleich mit den Formeln fiir die quadratische, steif eingespannte
Platte ergibt folgende Ergebnisse. Die Momente in der Mitte der Platte sind
im betrachteten Falle etwas groBer, dagegen die Momente und Auflager-
Lrifte in Seitenmitte bedeutend kleiner als bei der steif eingespannten Platte
(ca. v derselben).

Eine solche Platte entspricht einem Balkenrost, der in der Richtung ox
(siehe Fig. 1) den Anteil
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: b:?

Il =

U=l s
der Last und in der Richtung oy den Anteil
2 ai;

G G

der Last aufnimmt.

(1 —2) ist ein Reduktionsfaktor, herrithrend von der gegenseitigen Be-
einflussung der Balken.

Summary.

The calculation of thin rectangular plates, either lying free on a rigid
base or held firmly in it, leads to complicated mathematical series. In reality
this rigid base rarely exists, since the plates are generally lying on elastic
beams.

For this case — a uniformly loaded plate firmly held at its edges with
beams which themselves are fixed at the ends but otherwise elastic — simple
expressions without series are obtained. The author refers briefly to the basic
formulae of the theory of plates and then deals in detail with this special
solution,

A comparison with the formulae for a square firmly held plate gives the
following results. In the case under consideration the moments in the middle
of the plate are somewhat greater; on the other hand the moments and sup-
porting forces at the middle of the sides are considerably smaller than in the
case of firmly held plates (only about I5rd).

Such a plate corresponds to a number of beams lying alongside each
other and taking a component of the load in the ox direction (seebioiail)

N
1 — »* TR T
( )’ )a.) __i__ b-;
and in the oy direction the component
1 — n?)—, aa—-—.
( 77 )as 4_ b.%

(1 —2?) is a reduction factor, arising from the action of the beams on
each other.
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