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CALCUL ßLEMENTAIRE RIGOUREUX DES PLAQUES

RECTANGULAIRES

STRENGE, ELEMENTARE BERECHNUNG RECHTECKIGER PLATTEN

RIGOROUS ELEMENTARY CALCULATION OF RECTANGULAR SLABS

Dr. h. c. M. MESNAGER,
Membre de l'Institut de France, Professeur ä I'Ecole Nationale des Ponts et GhaussSes et

au Conservatoire National des Arts et Metiers.

En beton arme on utilise frequemment des hourdis portes sur deux cours
de poutres rectangulaires. On determine en general leurs fatigues au moyen
des formules des plaques minces rectangulaires appuyees sur un contour in-
deformable. Les moments subis par celles-ci malheureusement, soit qu'elles
soient encastrees sur le contour, soit qu'elles soient articulees sur ce contour,
ne peuvent s'exprimer que par des series. La theorie de ces plaques presente

par consequent des difficultes qui rebutent beaucoup d'ingenieurs et de plus
eile repose sur une base fausse, que le contour est indeformable.

On peut donc penser qu'il vaudrait beaucoup mieux rechercher des

formules basees sur la deformation du contour et le raccordement^ des plaques
et des poutres qui les supportent. On serait plus pres de la realite et l'on
peut arriver ä des expressions d'un nombre fini de termes beaucoup plus
maniables.

Je suppose connues les formules fondamentales suivantes des plaques
en fonction de leurs deplacements verticaux, comptes positifs vers le haut.

Moment par unite de longueur d'une section perpendiculaire
ä la direction d'un des cotes o x, compte positif dans le sens ordinaire de la
resistance des materiaux, c'est ä dire tendant ä produire une concavite vers
le haut

EI (d2w d2w\ ,s

I moment d'inertie par unite de longueur de la section, r\ coefficient de Poisson.

Momentdetorsionparunitedelongueur d'une section
perpendiculaire a ox ou oy, compte positif quand sur la face positive, c'est ä

dire limitant le corps du cote des x ou des y croissants, il tend ä produire
une rotation dans le sens positif des xzouzy, sens du devissage avec le sens

ordinaire des axes.

f~JjL2i. (2)
\ + i)dxdy

Effort tranchant par unite de longueur d'une section
perpendiculaire k o x, dans le sens ordinaire de la resistance des materiaux, c'est
ä dire vers le haut du cote de Forigine,
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1 EI d
Au - —5 — A w

\ — r}2dx
(3)

en posant A
12 32O 0

dx2 dy2

(4)

Charge par unite de surface, dirigee vers le bas,

EI
10 - -: A^W

\-r\2
34 3* 3*

en posant A2 AA —- 4- 2 —r,—s H r..

Reaction sur la face negative, c'est ä dire cote de Forigine,
perpendiculaire a. o x, comptee vers le haut.

Reaction aux angles
EI d2w

^dxdy

(5)

(6)

Si Fon suppose la plaque isotrope uniformement chargee de w0, les
poutres supportant la plaque continues aux appuis, la plaque continue au
dessus des poutres et les fleches de celles-ci proportionnelles ä leur longueur
(ce qui est Fordinaire), on reconnait facilement que toutes les conditions
sont remplies par la formule ci-dessous et comme les problemes d'elasticite
n'ont qu'une Solution, c'est la Solution du probleme.

Plaque uniformement chargee de <ö, encastree sur son contour
forme de poutres encastrees.

Je dis que

c5o(l — I2) a3^3

24 EI a3 + bl
x2(x — a)2 y2(x — b)2

aB bs ') (7)

est l'equation de la plaque rectangulaire encastree, placee comme Findique
la figure: /

o a a
Fig. 5.

II est facile de verifier que toutes les conditions sont remplies.
1° La charge est uniforme, puisque la charge est definie par

des derivees quatriemes. Elles sont ici des constantes puisque la fonction w
est du quatrieme degre. En remplacant dans la formule (4) w par sa valeur,
on trouve c5.== — w0.

2° Les tangentes sont horizontales au contour. En effet — est la derivee
dx
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d'une fonction de la forme
w Ax2 (x — fl)2

dont les racines x 0 et x a sont doubles, donc la derivee est nulle

pour ces racines. On le voit presque aussi vite par derivation directe.

3° Les moments de torsion sont nuls puisqu'il n'y a pas de terme en

xm yh.
4° En remplacant w, tire de (7) dans Fexpression de la reaction (5),

on obtient pour x 0

cuQ ab3 rx _
b'1

r^~YWTK' %=•;-&;¦ (8)

La reaction totale sur le cote x 0 est

2 a3 + b3' RxRx — A3

Ry

(9)
d^ aib Ry a

2 a3 + b3'

Les reactions par unite de longueur des cotes sont entre elles comme les

carres des longueurs des cotes, les reactions totales des cotes sont proportion-
nelles aux cubes des longueurs de ceux-ci.

5° Deformation des poutres d'appui.
Poutre o x. Elle supporte par unite de longueur

<j"'o_ fl3*
'•>' "

2 fl*-r*3"

Or l'equation d'une poutre encastree de longueur a, chargee de p par unite
de longueur est

" -2Wi^-a?
Remplacons p par la valeur de rv, I par la moment d'inertie de la poutre
placee sous le cote a, il vient

w - ,_
" riX-(x — ay (10)

48 EIa a3-\-b3

Ecrivons que la poutre a memes deplacements que la plaque pour y 0

Fidentification donne

I a3 J_ *i 0M?L (ii)a~ 2(\-r,2)b2' "~ 2(1-t/2) fl2' h~~ & Il
Les moments d'inertie des poutres doivent etre proportionnels ä la cinquieme
puissance des longueurs des poutres.

6° Fleches des poutres. Les fleches des poutres sont donnees

par l'equation (10) en y faisant x —-. En remplacant Ia par la valeur (11)

et en changeant le signe, puisque la fleche doit etre comptee positive vers le

bas, il vient

Cette equation est analogue ä celle de Grashof, „Elastizität und Festigkeit", page
359, l'origine est ä l'angle au lieu d'etre au centre. Voir aussi Eddy, The theorie of the
flexure — Rogers — Mineapo'.is P. 21.
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f _ ^o(1 — ^?2) ^b3 S(l-^2) a3bi fa_ a_
Ja 384EI as + b3' ß 384EI a3 + b3' fb"b [U'

Les fleches sont proportionnelles aux longueurs des poutres.
Toutes les conditions posees sont remplies, la Solution convient donc.

Je vais maintenant examiner les proprietes de cette plaque et ensuite les
comparer ä d'autres resultats connus.

Moments.
Calculons les derivees secondes qui entrent dans (1)

a2iv
_ to0(l — V2) a3b3 \2x2 — \2ax-\-2a2

dx2 24 £7 as + b3 a3

3/V I c5>e(l — rj2) a3b3 \2y*— \2by+ 2b2
dx2 24 EI a3 + b3 b3

Portons dans (1)

c50 a3b3 r2fl2-12*(fl-*) 2b2-\2y(b—y)\

Moments au centre. Dans l'equation (12) faisons x =—, nous

obtenons

tö0 a3b3 \\ —2b2 + \2y(b-y)-]Mx
24 fl8 + b wm

le maximum alieu au milieu, car alors y (b — y), qui est positif, est maximum.
Le maximum est

7] etant toujours inferieur ä 1, on voit que le moment le plus grand a lieu sur
la coupure faite parallelement au plus grand cote. C'est un fait bien connu
et presque evident.

Moments d'encastrement. Sur le cote x 0, (12) donne

co0 a3b3 \2 2b2-\2y(b-y)]

On trouve des valeurs egales et de meme signe pour y — --[- u.

j 2 '
Le minimum de la valeur absolue a lieu pour y - c'est le moment

d'encastrement au milieu du cote

(S0 a2 b2
~X2 a3-\-b3 \" 2mmmmmmmsm!: m

Aux angles on a

* -ta-?T> + "'> <'5>

Fig-
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La courbe repräsentative des moments etant une parabole du second

degre, en voit facilement que la valeur moyenne s'obtient en supprimant
le terme en tj.

Fleche par rapport aux angles.

Cette fleche s'obtient en faisant x -|-, y — dans la formule (7) et

en changeant le signe de Fexpression d'apres la definition de la fleche

/= ^O-1?') fb\(a + b) 06)J 384EI a3 + bsK '

Comparaison avec les formules de la plaque reciangulaire
encastree sur un contour rigide.

Faisons cette comparaison pour le cas de la plaque carree d'apres les

formules de M. le Docteur-Ingenieur Hencky de Darmstadt pour la plaque
rectangulaire encastree sur un contour indeformable. (Editeur Oldenbourg,
Berlin 1913, p. 53.) II faut diviser par quatre les coefficients donnes par lui
parce qu'il appelle les cotes 2fl et 2b, tandisque je les ai appeles fl et b. En

outre il a pris v\ 0,3. Dans ces conditions, pour a b,r\ 0,3 on obtient.

Moment au centre
% w^_ L3 _ ß 8I

QQ271
24 2

d'apres la formule (13) ci-dessus

Mx w0 fl2 ^jP^? 6J0 a2 ¦ 0,023

d'apres le calcul de M. Hencky.
La difference n'est pas surprenante, etant donnee la difference de rigidite

du contour qui diminue certainement les moments au centre.

Moments d'encastrement au milieu du cote.

Mx —
tg°a' ^- — w0 ß2 • 0,0177 d'apres (14),

Mx — cöa2^°5 — jf|a2 - 0,0512 d'apres M. Hencky.

La difference est beaucoup plus grande, parce que ce moment est produit
au point meme souleve par le contour rigide. Le moment est presque triple
(0,0177 X 2,9 0,0512).

Reactions au milieu du cote.

_ ^o± _ £~o _ 0 25: d'apres (8) rx w0 a 0,88.
4

La reaction est plus que triplee ä cause du soulevement du centre (0,25 X 3,54

0,88).
II est assez interessant de constater qu'une semblable plaque est assi-

milable ä une serie de poutres de largeur 1 juxtaposees, de hauteur egale ä

l'epaisseur de la plaque, portant, celles qui sont dans le sens o x, la fraction

(1 — t)2)
^ de la charge
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et Celles qui sont dans le sens o y la fraction

(1 — r,2) ,„ de la charge.v ' ' a3 + b3

En effet l'equation (7) est ainsi decomposee en deux systemes de poutres.
La somme des deux fractions donne (1 —if). C'est un facteur de reduction
de la charge qui tient ä la liaison de ces poutres les unes aux autres.

Dans le cas oü »; 0 on est ramene ä partager simplement la charge
entre ces deux systemes de poutres. C'est une idee qui n'est pas n'euve, de
Saint Venant (traduction de FElasticite de Clebsch, Dunod 1883, p. 752 en
note) rappelle qu'elle a ete employee par Mariotte. II ajoute „Quoique
Fassimilation d'une plaque ä deux systemes croises de regles jointives manque
d'exactitude, on comprend que la conclusion puisse etre juste". On peut
encore dire, on coupe la plaque par deux systemes de plans verticaux espaces
de l'unite supposee infiniment petite, les uns paralleles ä o x, les autres
paralleles ä oy. En supposant Fun des systemes de coupure supprime on
a un des systemes de regles, en supposant l'autre supprime on a l'autre. Le
facteur 1—if tient compte des reactions de Fun des systemes sur l'autre
quand on supprime toutes les coupures.

On peut remarquer que la forme de la plaque deformee peut-etre en-
gendree par le glissement de la poutre parallele ä o x, deformee suivant
l'equation

r ~ /, s>\
b3 1 x2(x — ä)2

W W0 (1 V -5 Z
J —L ov ' 'as + bsi 24EI

le long d'une poutre parallele ä o y deformee Suivant l'equation

h«-<¦>?£*]*& •fl)2

+ b3i 24 EI
Cette maniere d'envisager les plaques est rigoureuse, si elles peuvent

glisser sur le contour, constitue par des poutres rectangulaires dont le moment
d'inertie est defini par (11). Elle a Favantage d'etre tout ä fait elementaire.

Mais il ne faut pas se dissimilier que ce n'est pas encore completement
la realite. Car nous avons admis qu'il n'existe que des reactions verticales
(pas de cisaillement) au raccordement de la plaque et de la poutre. Ceci
constitue une difference notable entre le calcul et la construction usuelle en
beton arme ou en metal, mais il ne faut pas perdre de vue qu'il en est de
meme dans tous les travaux faits sur les plaques reposant sur un contour
indeformable. Je ne parle pas des differences dues ä ce que la plaque n'est
pas infiniment mince.

Le probleme de la liaison complete ne parait pas insoluble, c'est
analogue ä peu pres ä celui que M. Tournayre a aborde dans les Annales des
Ponts et Chaussees, 1932, I, mais il semble alors indispensable d'employer
des developpements en serie. La simplicite de la Solution, que j'avais re-
cherchee, disparait.

On peut pour la plaque posee sans frottement sur des poutres, posees
sur leurs appuis, en supposant jj 0, arriver de meme, en utilisant

»_ a3b3 \x(a — x)(x2-ax—a2) y(y — b)(y2 — bx — b2)'
24EI a3 + b3l a3 ~f" b3

11 est ici necessaire de faire j; ==:0 pour que le moment puisse etre nül
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au contour; car autrement le moment pour x 0 depend de rrf (y). On ne

se debarrasse des termes en y qu'en faisant v\ =- 0.

Resume.
Les moments subis par des plaques minces rectangulaires appuyees sur

un contour indeformable — soit qu'elles soient encastrees, soit qu'elles soient

articulees sur ce contour — ne peuvent s'exprimer que par des series. En

realite, ce contour indeformable n'existe guere, les plaques etant d ordinaire
assemblees sur des poutres elastiques.

Dans ce cas — plaque uniformement chargee encastree sur un contour

forme de poutres encastrees — on peut arriver ä des expressions comportant

un nombre fini de termes et beaucoup plus maniables. Apres avoir mentionne

les formules fondamentales des plaques, l'auteur traite en detail cette Solution

particuliere.
Une comparaison avec les formules de la plaque carree encastree sur un

contour rigide donne les resultats suivants. Les moments au centre de la

plaque sont un peu plus grands pour le cas envisage, tandis que les moments

et les reactions au milieu du cote sont bien moindres que dans le cas du

contour rigide (environ le tiers).
Une plaque semblable est assimilable ä une serie de poutres, Celles qui

sont supposees dans le sens ox (voir fig. 1) supportant la fraction

bs

(i-r)T^fF
de la charge et celles qui sont dans le sens oy supportant la fraction

7.; d-^^TT*-
de la charge.

Le facteur (1 — rf) constitue un coefficient de reduction de la charge,

tenant compte de la liaison des poutres les unes aux autres.

Zusammenfassung.
Die Berechnung von dünnen rechteckigen Platten, die auf einer starren

Unterlage entweder frei aufliegen oder in ihr eingespannt sind, führt zu
'

kompilierten Reihenausdrücken. In Wirklichkeit ist diese starre Unterlage
selten vorhanden, da die Platte meist auf elastischen Balken aufruht.

Für diesen Fall — gleichmäßig belastete Platte, die an ihren Rändern

mit eingespannten Balken biegungssteif verbunden ist — kommt man auf

einfache, geschlossene Ausdrücke. Der Verfasser weist kurz auf die

grundlegenden Formeln der Plattentheorie hin und behandelt dann ausführlich diese

spezielle Lösung.
Ein Vergleich mit den Formeln für die quadratische, steif eingespannte

Platte ergibt folgende Ergebnisse. Die Momente in der Mitte der Platte sind

im betrachteten Falle etwas größer, dagegen die Momente und Auflagerkräfte

in Seitenmitte bedeutend kleiner als bei der steif eingespannten Platte

(ca. Va derselben).
Eine solche Platte entspricht einem Balkenrost, der in der Richtung ox

(siehe Fig. 1) den Anteil
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b30-78)-ra3 + b3
der Last und in der Richtung oy den Anteil

(1 - ri2)-^—.
der Last aufnimmt.

(1 — r]2) ist ein Reduktionsfaktor, herrührend von der geg-enseitig-en
Beeinflussung der Balken.

Summary.
The calculation of thin rectangular plates, either lying free on a rigidbase or held firmly in it, leads to complicated mathematical series. In realitythis rigid base rarely exists, since the plates are generally lying; on elasticbeams.
For this case — a uniformly loaded plate firmly held at its edges withbeams which themselves are fixed at the ends but otherwise elastic — simple

expressions without series are obtained. The author refers briefly to the basic
formulae of the theory of plates and then deals in detail with this specialSolution. i

A comparison with the formulae for a square firmly held plate gives the
following results. In the case under consideration the moments in the middleot the plate are somewhat greater; on the other hand the moments and sup-porting forces at the middle of the sides are considerably smaller than in the
case of firmly held plates (only about i/3rd).

Such a plate corresponds to a number of beams lying alongside eachother and taking a component of the load in the ox direction (see fig. 1)

a3 + b3
and in the oy direction the component

(1-8) is a reduction factor, arising from the action of the beams oneach other.

.^.*.:J**S. ¦
'

:. -


	Calcul élémentaire rigoureux des plaques rectangulaires

