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BRUCHMOMENTE DER KREUZWEISE BEWEHRTEN
PLATTEN

LES MOMENTS DE RUPTURE DES DALLES A ARMATURES CROISEES

MOMENTS OF RUPTURE IN CROSS-REINFORCED SLABS

K. W. JOHANSEN,
Ingenieur des Laboratoriums für Baustatik der Technischen Hochschule, Kopenhagen.

Der erste Versuch zur Aufstellung einer rationellen Bruchtheorie für
Eisenbetonplatten wurde von dem dänischen Ingenieur Aaoe Inoerslev
unternommen1), der für frei gestützte und eingespannte viereckige und polygonale
Platten Formeln aufstellte. Er setzte voraus, daß die Platte längs gewisser
gerader Linien — Bruchlinien —, wo die Bewehrung die Fließgrenze
überschritten hat, zerbreche. Das Biegungsmoment könne daher längs dieser Linien
als konstant vorausgesetzt und zugleich als Maximalwert angesehen werden.
Aus dem letzteren Umstand folgerte Inoerslev irrtümlicherweise, daß die
Querkräfte an den Bruchlinien Null würden. Das ist nicht der Fall, aber sie
lassen sich durch die Maximumbedingungen bestimmen, wodurch es möglich
wird, auf Grund dieser plausiblen Voraussetzungen die nachstehende
allgemeine Bruchtheorie aufzustellen.

Folgende Signaturen gelangen zur Anwendung:
Bruchlinie Zwischenstützung
Drehachse ¦ ® Säulen ohne und mit Einspannung in

der Platte
— Freier Rand •j—*- Querkräfte

| Frei gestützter Rand q © Einzelkraft nach oben und nach unten

xxxxxxxxxxx Eingespannter Rand Linienbelastung.

A. Die Bruchlinien.
Im Bruchzustande fließt das Eisen in den Bruchlinien, so daß dort

plastische Formveränderungen auftreten, während die Plattenteile zwischen
den Bruchlinien nur elastische Formveränderungen aufweisen; und da diese
gegenüber den plastischen als verschwindend zu betrachten sind, können die
einzelnen Plattenteile mit guter Annäherung als eben, und deren Schnittlinien,
die Bruchlinien, als Gerade angesehen werden.

Man berücksichtigt also nur die Formänderungen in den Bruchlinien und
nimmt an, daß sie in einer gegenseitigen Drehung zweier benachbarter
Plattenteile bestehen. Diese relative Drehung erhält das gleiche Vorzeichen

i) „Ingeniören" 1921, S. 507.
„The Institution of Structural Engineers' Journal", January 1923.
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wie das entsprechende Moment, ist also positiv, wenn die Platte oben
gedrückt und unten gezogen wird. Die Plattenteile führen Drehungen um
gewisse Achsen aus, deren Lage von den Auflagern abhängt. Da die Plattenteile

eben sind, findet man,

I. die Bruchlinie zwischen zwei Plattenteilen geht
durch den Schnittpunkt ihrer Drehachsen.

Bei einem Plattenteil, der längs der Kante frei gestützt ist, muß die
Drehachse in der Kante liegen, und bei einem Teil, der auf einer Säule
gelagert ist, muß die Achse durch die Säule gehen, kann aber sonst beliebig
liegen. Hiemit und mittels des obenstehenden Satzes kann man sich eine
Vorstellung von dem Aussehen der Bruchfiguren (Fig. 1 und 2) bilden. Sind
die Drehungen Q der Plattenteile gegeben, läßt sich die Bruchfigur
konstruieren. Man denkt sich dann die deformierte Platte mit einer Ebene im
Abstand s von der Ebene der Auflager geschnitten. Die Schnittlinien dieser
Ebene mit den gedrehten Plattenteilen sind Niveaulinien des Polyeders, das

A
» \

> --~ \—^
Fig. 1. Fig. 2.

von der deformierten Platte gebildet wird. Die Niveaulinien liegen im
Abstand s.- © von den Drehachsen und schneiden sich in den Bruchlinien, welche
somit durch den Schnittpunkt der Drehachsen und den Schnittpunkt der
entsprechenden Niveaulinien bestimmt sind (Fig. 3).

Da das Resultat unabhängig von s sein muß, kann man s proportional
einer der Drehungen setzen, und man wird dann finden:

II. dieBruchf igur ist durch die Drehachsen derPlatten-
teile und die Verhältniszahlen der Drehungen
bestimmt.

Ist die Platte in n Teile geteilt, und sind alle Drehachsen bekannt, hängt
die Bruchfigur nur von den n—1 Verhältniszahlen der Drehungen ab.

Wenn eine Bruchlinie (aob in Fig. 4) einen Knick hat, muß dort eine
zweite Bruchlinie (oc) hinzustoßen, und deren Richtung und Drehung wird
als geometrische Differenz zwischen den Drehungen in ao und ob bestimmt.
Je nachdem ob die Bruchlinie an der konvexen oder der konkaven Seite des
Knickes anstößt, erhält ihre Drehung das gleiche oder das entgegengesetzte
Vorzeichen der Drehungen in aob.

Bruchlinien und ihre Drehungen werden nach Fig. 4 „zusammengesetzt"
und „zerlegt".

Da die Bruchmomente nicht von der Größe der Drehungen abhängen,
haben im Folgenden nur die Vorzeichen Bedeutung. Die Bruchlinien werden
nach den Vorzeichen ihrer Drehungen (Momente) positiv oder negativ
genannt.
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B. Die Schnixlkräfie.
1. Gleichbewehrte Platten.

In gleichbewehrten Platten, d. h. in Platten mit gleicher Bewehrung in
zwei zueinander senkrechten Richtungen, ist das Bruchmoment m auf die

Längeneinheit gleich in allen Richtungen. Das Biegungsmoment der Bruch-
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Fig. 3. Fig. 4.

linie su von der Länge a (Fig. 5) ist ma und wird durch die als Vektor
betrachtete Bruchlinien selbst dargestellt. Betrachtet man das Plattenstück B,
so ist der Vektor in Richtung von s nach u gerichtet, indem der positive
Umlaufsinn entgegen dem Uhrzeiger dreht. Außerdem wirken in su ein Drillungs-
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Fig. 6.

moment und eine Querkraft. Diese lassen sich eindeutig durch die Querkräfte
Qa und Q'a in s und u angeben. Werden die entsprechenden Schnittkräfte in
sr und st dargestellt, sieht man, daß in s wirken: auf den Plattenteil A die
Querkraft QA Qb — Qc (positiv nach oben), auf B QB Qc— Qa und auf
C Qc Qa — Qb, woraus sich ergibt:

Qa + Qb-\-Qc 0. (1)
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Diese Kräfte werden im Folgenden als Knotenkräfte bezeichnet, und
ihre Summe ist stets Null, auch wenn mehrere Bruchlinien zum Knotenpunkt
führen.

Da in Wirklichkeit Einzelkräfte und Linienbelastungen nicht vorkommen,
sondern nur Belastungen, die um Punkte und Linien konzentriert sind, ist es
nicht notwendig, in diesen Fällen spezielle Untersuchungen vorzunehmen.
Dasselbe gilt für Auflagerungen auf Säulen und Balken (Mauern).
Nachstehend werden zwar noch immer die theoretischen Ausdrücke: Einzelkraft,
Linienbelastung, Unterstützung in Punkt und Linie angewandt, aber es wird
mit den entsprechenden flächenverteilten Belastungen und Reaktionen
gerechnet.

Weil m ein Maximalwert ist, gilt für die Schnitte, welche nahe der Bruchlinie

liegen, der gleiche Wert des Biegungsmomentes. Dies genügt zur
Bestimmung der Knotenkräfte.

c i

¦ B

13 ¦
c

m \

mib A

Fie. 7.

Iß

C

Fig. 8.

Betrachtet man einen Knotenpunkt mit zwei positiven und einer negativen
Bruchlinie (Fig. 6), so werden durch die Bruchlinien und die benachbarten
Schnitte a' und b' die Dreiecke tss' und rss' ausgeschnitten, welche unter dem
Einfluß der äußeren und inneren Kräfte im Gleichgewicht sein sollen. Weil
in a' und b' dasselbe in gilt wie in a und b, hat die Resultante der Biegungsmomente

in a und a':m-ss' die gleiche Richtung wie das negative Biegungsmoment
tn'-ss' in ss'. In ss' wirken außerdem ein Drillungsmoment dV und

eine Querkraft dQ. Die Momentenbindung um a' für A rss' ergibt, indem die
Beiträge der Belastung und von dQ unendlich klein von höherer Ordnung sind

Qa- ds • sin ß

— dV- sin/S-j- (m-\-m) - ds ¦ cos/?

Qa -j- + (m + tri) cot ß.

In gleicher Weise ergibt sich für A tss'

Qb
—j (m + tri) cot a.

Daraus ergibt sich nun

Qc Qa — Qb

— (m-\- tri) (cot a -\- cot ß). (2 c
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Wird s auf a verschoben, ergibt sich (Fig. 7) durch Momente um b' für
Aus'

n -dV'
Qb--ds~'

und durch Momente um c' für A uss'

Qc — -|- (m -\- tri) cot ß,

woraus
QA Qb — Qc — (m + m')cotß (2a)

und dementsprechend

Qb — (m -\- tri) cot a. (2 b)

Die Ergebnisse erhellen aus Fig. 8.

In einem Knotenpunkt mit Bruchlinien von gleichem Vorzeichen ist
m —tri'', also tn -f- m' 0, und somit ergibt sich

III. In einem Knotenpunkt, in dem alle Bruchlinien das
gl eiche Vor zeich en haben, sind sämtliche Knotenkräfte

gleich Null.
Das gilt auch, wenn mehr als drei Bruchlinien zum Knotenpunkt führen.

Haben die Bruchlinien dagegen verschiedene Vorzeichen, ergibt sich:

IV. In einem Knotenpunkt, in dem nicht alle Bruchlinien
dasselbe Vorzeichen haben, können nur drei von den
Bruchlinien verschiedene Richtungen haben.

Wäre z. B. in Fig. 8 noch eine positive Bruchlinie unter dem Winkel a'
gegen die negative Bruchlinie vorhanden, würde man durch Verschieben von
s auf dieser ermitteln:

Qb — (m-\- tri) cot a,
was nur den gleichen Wert wie oben ergibt, wenn a' a ist.

¦ Bei einem freien oder frei gestützten Rande ist a ~\- ß n, tn 0,
wodurch die Knotenkräfte zahlenmäßig gleich groß werden und gleich

Qu m cot a,
in einem spitzen Winkel nach oben, in einem stumpfen nach unten wirkend
(vergl. Fig. 20, Punkt d').

Für eine positive Bruchlinie erhält man Qu, indem man tn' durch — m
ersetzt (vergl. Fig. 21).

2. Ungleich bewehrte Platten.
Solche Platten sind in zwei zueinander rechtwinkligen Richtungen im

Verhältnis 1: /u bewehrt. Die Bruchmomente der entsprechenden
Schnittrichtungen sind m und jutn. Eine Bruchlinie ab (Fig. 9)x) in beliebiger Richtung

läßt sich fein zickzackförmig in den Schnittrichtungen abgetreppt denken,
entsprechend den Momenten tn und /um. Die ersteren ergeben eine Resul-

1) In den Figuren sind die Bruchlinienrichtungen der Momente m und jum
angegeben.
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tante tn-ae, die letzteren ptn-eb. Wird 0/ |it--e£ gesetzt, ergibt sich m-af
als Bruchmoment für ab.

Man wird finden, daß ein Teil des Drillungsmomentes in ab vom
Bruchmoment gebildet wird. Der restierende Teil und die Querkraft bestimmen
wie vorher die zwei Querkräfte in den Endpunkten der Bruchlinie. Das
Biegungsmoment in ab wird

m • ae - cos v -\- (i m - eb • sin v m • ab • cos2 v -f- (i tn • ab • sin2 v

also pro Längeneinheit

mb m - cos2 v-\-y. m • sm2 v. (3)

Der Beitrag des Bruchmomentes zum Drillungsmoment wird

md (1 — (¦')m • sin v cos v > (^)

positiv normal nach innen gerechnet.
Aus (3) und (4) ist zu ersehen, daß mb und md sich aus m und pm durch

den LAND'schen oder MoHR'schen Kreis bestimmen lassen.

mmm -1
I mm _——ha1 _^ 1

_j
_|Aü :_ ?_

Fig. 9.

Für die Bruchlinie abcd, deren Momente alle das gleiche Vorzeichen
haben, setzt sich die Resultante der Bruchmomente m-ah zusammen aus m-ag
und pm • gd m- gh.

In gleicher Weise wie bei gleich bewehrten Platten ergeben sich die
Knotenkräfte (vergl. Fig. 8)

Qa — — (mb-{¦ m'b) cot ß-\-(tnd-{-m'a), (5a)

Qb =— (mb-{-m'b) cot a —(md-\-md), (5b)

Qc (mb + m'b) (cot a + cot ß), (5 c)

wo m'b und m'd die Komposanten des Bruchmomentes der negativen Bruchlinie

sind, mb und md die Komposanten eines positiven Bruchmomentes
derselben Linie.

Für einen freien oder frei gestützten Rand ergibt sich

Qr. mb- cot a -f- md, (5 r)

wo mb und md die Komposanten des Bruchmomentes eines Schnittes in Richtung

des Randes sind.
Die Sätze III und IV behalten ihre Gültigkeit auch für ungleich bewehrte

Platten.

C. Die Gleichgewichlsbedingungen. Die Arbeiisgleichung.
Unter Einwirkung der Belastung, der Bruchmomente und der Knotenkräfte

sollen die einzelnen Plattenteile im Gleichgewicht sein; das ergibt für
jeden Plattenteil drei Gleichgewichtsgleichungen, z. B. zwei Momentenglei-
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chungen um Achsen in der Ebene der Platte und eine Projektionsgleichung
auf die Normale der Platte. Ist die Platte in n Teile geteilt, erhält man
3« Gleichungen zur Bestimmung der unbekannten Größen. Letztere sind:
das Bruchmoment m, die Auflagerkräfte, die Drehachsen und die n—1
Verhältniszahlen zwischen den Drehungen, die die Bruchfigur bestimmen. Die
Drehungsverhältnisse bilden zusammen mit dem Bruchmoment n Unbekannte.
Bei einem Plattenteil, der längs einer Kante gestützt ist, liegt die Drehachse
in derselben, ist also bekannt, während die Größe und die Lage der Auflagerkraft

unbekannt sind. Bei einem auf einer Säule gestützten Plattenteil muß
die Drehachse durch dieselbe gehen, aber ihre Richtung ist unbekannt; die
Auflagerkraft muß in der Säule liegen, so daß nur deren Wert unbekannt ist.
Bei einem nicht gestützten Plattenteil fällt die Auflagerkraft weg, aber die
Lage der Drehachse ist gänzlich unbekannt, d. h. es ergeben sich hier wie in
den vorhergehenden Fällen zwei Unbekannte. Für alle n Plattenteile ergeben
sich n + 2 n 3 n Unbekannte, gemäß der Anzahl der Gleichungen.

rr>fcotct+cotf3j \c/

i /9

*-A

mmmmm
a' I(m + m'J(cotK+cotft)

SK il
m n n

^

Fig. 10. Fig. 11.

Bei einem gleich bewehrten Plattenteil A, der von der positiven Bruchlinie

abcd begrenzt wird, an welche nur positive Bruchlinien grenzen, welche
bei einem freien oder frei gestützten Rand beginnen und endigen, wird die
Resultante der Biegungsmomente und der Knotenkräfte eine Einzelkraft
m (cot a -f- cot ß) und wirkt wie in Fig. 10 angegeben.

Bei eingespannten Rändern und einer negativen Bruchlinie ae wird die
Resultante (m -f- m') (cota + cot/?) und wirkt wie in Fig. 11 angegeben.
Der Angriffspunkt wird also in beiden Fällen durch Antragen der Randwinkel
a und ß an die Sehne ae konstruiert. Die Richtigkeit hievon ergibt sich, Wenn
man das Moment um die Achsen ae, aa' und ee' aufstellt, wobei zu bedenken
ist, daß nur in a und e Knotenkräfte auftreten, und zwar im Betrag von m cot a
bezw. m cot/? in Fig. 10 und (m -\- m') cota und (m -\- m') cot/? in Fig. 11.

Bisweilen mag es bequem sein, die Arbeitsgleichung zu verwenden. Da
die elastischen Formveränderungen vernachlässigt werden können, kommt
von den inneren Kräften nur die Arbeit der Bruchmomente in Betracht, die
den Drehungen in den Bruchlinien proportional ist. Die Drehung einer Bruchlinie

setzt sich aus den Drehungen der anstoßenden Plattenteile um ihre
Drehungsachsen zusammen, so daß der Beitrag jedes Plattenteils das Produkt
seiner Drehung und die Projektion des Bruchmomentes auf der Drehungsachse

wird. Der Gesamtbeitrag eines Plattenteils besteht folglich aus dem
Produkt der Drehung 0 des Plattenteils mal die Projektion der Resultanten M
seiner Bruchmomente auf die Drehachse, also ist: &• M- cos (0,M)x). Sind

]) Skalares Produkt der Vektoren fe» und M.
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y die den Drehungen © entsprechenden Bewegungen der Angriffspunkte der
Belastung, ergibt sich durch Summation über die ganze Platte die
Arbeitsgleichung

zZPy zZO-Mcos(0,M). (6)

Dieselbe ist der Ausdruck für die Abhängigkeit des Bruchmomentes von
der Bruchfigur.

Das Bruchmoment ist im Vorhergehenden als ein Maximalwert gegenüber
den Momenten in den Schnitten in der Nähe der Bruchlinien aufgefaßt.

Werden diese Schnitte so gelegt, daß eine neue Schnittfigur gebildet wird,
welche die geometrischen Bedingungen erfüllt, sieht man, daß eine kleine
Abänderung der Schnittfigur dasselbe m ergibt, also den Zuwachs dm 0.
Folglich ließe sich m als Maximalwert für sämtliche möglichen Schnittfiguren
auffassen und die Bruchfigur als diejenige Schnittfigur, die m zum Maximum
macht. Durch die Arbeitsgleichung (6) lassen sich dadurch sowohl das
Bruchmoment wie die Bruchfigur bestimmen.

Bei vielen Aufgaben ist eine Mehrzahl von Bruchfiguren möglich, aber
diejenige Figur, die das größte Bruchmoment ergibt, wird erst bei einer
allmählich wachsenden Belastung entstehen, d. h. die Bruchfigur entspricht dem
absoluten Maximum von m.

D. Ecken.
In einer Ecke, gebildet von zwei frei gestützten Rändern, muß die Bruchlinie

zwischen den Plattenteilen A und B in den Eckpunkt h hinauslaufen,
welcher der Schnittpunkt der Drehachsen ist (Fig. 12a). Die Knotenkräfte,
welche für gleichbewehrte Platten QR mcota und Q'R mcot ß werden,
zeigen, daß eine abwärts gerichtete Kraft Q# -j- Q'R in der Ecke auf die Platte
wirkt, d. h. die Ecke muß im Auflager verankert sein. Ist dies nicht der Fall,
wird die Platte sich vom Auflager in der Ecke abheben, indem C um die
Achse ab (Fig. 12 b) wippt, und die Bruchlinie sich spaltet. Wird die
„Wippe" C im Auflager verankert, bildet sich eine negative Bruchlinie ab
(Fig. 12c). Bei einer gewissen oberen Bewehrung in der Ecke fallen a und
b mit h zusammen, so daß das ursprüngliche Bruchbild entsteht (Fig. 12a).
Dies setzt also außer Verankerung auch eine gewisse obere Bewehrung in
der Ecke voraus. Dächte man sich von der Ecke ein kleines Stück
abgeschnitten, würden die Knotenkräfte die Summe Null bekommen, so daß eine
Verankerung nicht notwendig würde, aber trotzdem würde sich eine „Wippe"
bilden, weil diese Bruchfigur das größte Bruchmoment ergibt. Daraus
ersieht man, daß das Erscheinen der „Wippen" nicht so sehr eine Frage der
Verankerung als eine Frage der Form der Platte ist.

Die Bestimmung dieser „Wippen" soll für gleichbewehrte Platten mit
Einzelkraftbelastung durchgeführt werden. Bei gleichmäßig verteilter
Belastung spielen die „Wippen" eine kleinere Rolle, so daß man sich dort mit
einer annähernden Bestimmung begnügen kann.

Fig. 13 zeigt eine unverankerte, gleichbewehrte „Wippe" ahbc, mit einer
Einzelkraft in c belastet. Da die „Wippe" nicht auf den Auflagern ruht, muß
die Resultante der Schnittkräfte gleich der Einzelkraft in c und ihr entgegengesetzt

gerichtet sein. Gemäß dem Vorstehenden müssen die Winkel bei ab
dann gleich den Randwinkeln a und ß sein. Man findet dann

<£ hob <^C hba <£ acb cp n — a — ß,
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d. h. a und b liegen auf einem Kreis, der die Kanten berührt und durch c geht.
Dadurch kann die „Wippe" bestimmt werden, wenn c gegeben ist.

Wenn die „Wippe" ahbc verankert ist, entsteht die negative Bruchlinie ab

mit dem Bruchmoment m' entsprechend der oberen Bewehrung. Die
Resultierende der Schnittkräfte der „Wippe" abc ist bei der negativen Bruchlinie

m' (cota' + cotß') — abwärts wirkend in g — und bei der positiven

aJ

R

*JCJ
ß

S£*
m
Fig. 12, a— d.

Bruchlinie acb m (cota + cot/?) — aufwärts wirkend in d. Aus Fig. 14

ersieht man, daß abe auf einem Kreis liegen, der in a und b ah und bg berührt,
während abf auf einem Kreis liegt, der in a und b ag und bh berührt.

m <L^L

ii£-

Fig. 13. Fig. 14.

Die Resultante der Kräfte in g und d soll gleich der Einzelkraft in c

und ihr entgegengerichtet sein, d.h. g, d und c sollen auf einer Geraden

liegen. Das ist der Fall, wenn das Viereck abfe sich einem Kreis
einbeschreiben läßt (PASCAL'scher Satz), und in diesem Falle müssen die beiden
Kreise zusammenfallen, also a' ß' und g h (Fig. 15). In h wirken

2/re'cota' 2m'tg— abwärts und in d m-(cota -

sich ergebende Resultante muß durch c gehen, d.h.

2rri tg — • ch m - (cot a 4- cot ß)

cot/S) aufwärts. Die

cd.

10
Da 2 tg — ab: hk und cot a -\- cot

m'-ch:hs m~cd:ds oder

m
_

cd ch

m sd ' sh

¦¦ ab:id. und hk: id hs: ds, ergibt sich

dem Doppeltverhältnis (hdsc).
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Wird durch c h'h" _L zur Winkelhalbierenden gezogen, so ergibt sich h'h" || ab.
Werden h, s, d und c von a aus auf h'h" projiziert, wird h in h', d in
d' und c in c abgebildet, während s' ins Unendliche fällt. Bekanntlich
haben die projizierten Punkte das gleiche Doppelverhältnis, also m':m
(h'd's'c) cd':ch\ Den Punkt d' bestimmt man folglich durch Absetzen
von cd' ch': m': m. Da A abf ~ A cd'f bezüglich /, wird der Kreis um A cd'f
den Kreis um A abf in / berühren. Da die Tangenten in c und d' den Rändern
parallel sind, kann der Kreis cfd' konstruiert werden. Der gesuchte Kreis

yd
->.-.
I \ N W

sefc--J-7

8@77T77 tinhuinii""'inij9tnmiltii

SS*!

*>

Fig. 15. Fig. 16.

abfe ist dann durch die Ränder und durch diesen Kreis bestimmt. Wird
cd" ch"-m':m abgetragen, erhält man entsprechend den Kreis ced", der
den gesuchten in e berührt.

Wenn m
m

cos"

sm « • sin v
fällt ab in h.

Mit Einspannung an beiden Rändern erhält man die gleiche Konstruktion
wie in Fig. 13, da die Resultante der Schnittkräfte dieselbe Lage hat wie bei
einfach unterstützten Rändern ohne Verankerung.

Bei gleichmäßig verteilter Belastung betrachte man die symmetrische

„Wippe" abc in der Fig. 16. In h wirken 2 m' cot a' 2m'tg— abwärts, in d

2m-cota aufwärts und im Schwerpunkt t von abc \p:ab--cs abwärts. Das
Moment um t ergibt

CO

2m tg—- • ht 2m cot a • td,

da td ^cs — sd as[^ cot (a w) — tg a], und
ht hs + J es as [cot J co -f- J cot (a — J.w)], ergibt sich

tti'tg^w- [cot J w + J cot (« — J «)] /re cot a [J cot (a — | co) — tg a],
oder

3 (/ra + /ra') tg (a — J w) /b cot a — /re' tg J
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woraus

cot a
m
m

tn „ .„ co
4 + — +3 cot2 —

m 2
m

m
tg- (7 a)

Aus der Projektionsgleichung \p:ab-cs + 2m'tg\co
sich mit diesem Wert von cota

'2tn

Schließlich gibt das Moment um ab sofort

4 + ^ + 3cot2^-2
m 2

1 + tn

es
6(m + m)

2 m cot a ergibt

(7 b)

(7 c)

Wenn ab in h verschwindet (vergl. Fig. 12a), wird hs 0, dies ergibt:

(7d)cot2 —
m 2

Für m' 0 erhält man die nicht verankerte „Wippe", oder was in diesem
Zusammenhang das gleiche bleibt, die verankerte „Wippe" ohne obere
Bewehrung in der Ecke. In der verankerten „Wippe" mit oberer Bewehrung
soll diese Bewehrung natürlich durch die Bruchlinie ab geführt werden, die

SO

Wä—;
i-b

-^

^
¦amcofcc

Fig. 17. Fig. 18.

m' 5= 0 entspricht, da diese Bruchlinie sonst entsteht. Die Formeln für die
eingespannte „Wippe" sind aus den Formeln der nicht verankerten „Wippe"
herzuleiten, dadurch, daß man darin m durch m -\- m' ersetzt.

Da die „Wippen" in den meisten Fällen nahezu symmetrisch sind, lassen
sich Gl. (7) als Näherungsformeln verwenden. Man berechnet dann zunächst
m durch die Bruchfigur entsprechend der Fig. 12 a, und mittels dieses
vorläufigen Wertes wird dann die „Wippe" bestimmt. Aus der neuen Bruchfigur

kann man nunmehr für m einen verbesserten Wert finden, z. B. durch
Anwendung der Arbeitsgleichung.

In einer einspringenden Ecke kann (Fig. 17) eine Bruchlinie nur dann
enden, wenn eine entsprechende Kraft auf die Platte in der Ecke wirkt.
Existiert diese Kraft nicht, oder kann keine Reaktion vom Auflager ausgehen,
muß man annehmen, daß ein kleiner Teil der Platte nahe der Ecke zerstört
wird, wodurch der Knick des Randes aufgehoben wird. Der Randwinkel
und somit die Knotenkraft werden unbestimmt; da aber die Bruchlinie durch
die Ecke geht, erhält man dadurch eine besondere Bedingung für die Bruchfigur,

welche diese Unbestimmtheit aufhebt.
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E. Beispiele.
1. Frei gestützter Plattenstreifen mit Einzelkraft in der

Mitte.
Die Platte wird an der Unterseite rechtwinklig zu den Auflagern und

an der Oberseite parallel zu denselben bewehrt. Letztere Bewehrung ist
p,ma\ so groß wie die erstere. Die Bruchfigur wird in Fig. 18 dargestellt.

Die Kraft P verteilt sich als Pa auf A und PB auf B. Die Knotenkräfte
werden laut (5r) QR mcota. Die Projektionsgleichung für B ergibt

Ps= 2 mcota und das Moment um ab' ergibt Pb •— cota fiml, also

cota YJi- Das Moment um ab für A ergibt PA ml- cota, d. h.

Pa Pb 2 m cot a 2 m l]n, und mit P 2Pa + 2Pb — 8m fix, ergibt sich

m P:8fix.
Diesem entspricht eine Nutzbreite von 21^lx.
Unter Anwendung der Arbeitsgleichung läßt sich die Aufgabe folgendermaßen

lösen: P wird um das Stück d gesenkt. Dadurch drehen sich A um

mcofoL

m

bi rrtcofcx

t-t f<r*ftCOCOCM
rs

s& &"? %

gftSSflWWsfc 5^7?

Fig. 19. Fig. 20.

6:\l, und B um o:^/cota. Die Resultante der Bruchmomente ist bei A
ml cot a, bei B /uml, beide in den entsprechenden Drehachsen ab und ab'
gelegen. Gl. (6) lautet dann:

P. § — i- — mlcotu-4-2- -ytga • \xml,

dies ergibtj m P.-4 (cota -f- jtttga) mit dem Maximum P:8 V^Tfür
cota y,w.

2. Derselbe Plattenstreifen mit Linienbelastung.
Die Bruchfigur in Fig. 19 ergibt für A durch die Momentenbedingung

um ab \ph2 2mhcota. Für B erhält man durch Momente um aa'
\p(l — 2h)hcota p,ml, und durch die Projektionsgleichung \p~(l — 2h)

2m cota. Aus diesen Gleichungen findet man h % l, cota y»/2 [*¦>

m pl-.byj6/u, entsprechend der Nutzbreite 1,84 ifa ¦

3. Eingespannter Plattenstreifen mit Einzelkraft auf dem
freien Rand.

Die Platte wird an der Unterseite parallel zur Einspannung und an der
Oberseite rechtwinklig zur Einspannung bewehrt. Die beiden Bewehrungen
sind gleich stark.
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Die Bruchfigur wird wie in Fig. 20 dargestellt. P verteilt sich auf A
und B als PA bezw. PB- Die Knotenkräfte sind in der Fig. angegeben. Stellt
man die Momente um bb' für A auf, erhält man keinen Beitrag vom
Bruchmoment der positiven Bruchlinie. Man erhält PA- l m- 21 cota, also
PA 2 m cot a. Wird das Moment um die freie Kante für B aufgestellt,
erhält man entsprechend mcota-1 m-lcoty, indem das Bruchmoment der
positiven Bruchlinie keinen Beitrag leistet. Wird das Moment um bc (für B)
genommen, gibt das negative Bruchmoment keinen Beitrag, und man erhält

Pb • l cot a + m cot y • l cot y ml.
Die Projektionsgleichung für B gibt PB m cot a -f m cot y. Man erhält
daraus cot a fi%, a ß y 60 °. m P: 2 fi3, entsprechend der
Nutzbreite 3,5 /.

4. Rechteckige Platte, an drei Seiten frei gestützt, an der
vierten Seitefrei, mitgleichmäßigverteilterBelastung/7

und Linienbelastung p auf dem freien Rand.
Die Bruchfigur in Fig. 21 ergibt durch Moment um cd für A

ma a2 cot2 a-\-— • a2 - cot2 a-\- li mcota - acota,
6 '2

und durch Moment um de für B
2 Lima cota+ 2 xima cota =2-1l<ip-acota-a2 + %p(b-2acota)a2+p(b-2acota)a.

c y-ocofa—i 9

///

<XyAtmco1ot

ß %

\- b
-&

Fig. 21.

Hieraus erhält man

pa2 p \ cot2 a

dies ergibt

_ pa2l
a 6« L

3^b_
4 a

1 +2
pa

Fig. 22.

• tg a — 1 mpa.

tga fii-\-K2+K,
pab -\-2pb

wo

K

8(l/xt-t-K2+K)'
2 a pa-\-3p
3

' b' pa-\-2p'
b

Die Formeln gelten nur, wenn a cota<—. Ist das nicht der Fall,
erhält man ein Stück Bruchlinie von der Mitte der freien Kante parallel zu cd
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und vom Endpunkt dieses Stücks Bruchlinien zu den Ecken d und e. Wenn

p o, werden die Gleichungen in diesem Falle dieselben wie für die
rechteckige Platte mit den Seiten 2 a und b, die auf allen vier Seiten frei gestützt
sind.

5. Rechteckige Platte mit gleichmäßig verteilter
Belastung, ringsum frei gestützt oder eingespannt.

Man sieht sofort, daß die Gleichungen in diesen Fällen dieselben werden

wie die von Inoerslev1). Diese setzen laut (7d) voraus, daß in den Ecken

eine obere Bewehrung gleich der unteren Bewehrung vorhanden ist, was in
der Praxis nicht immer der Fall ist. Es mag daher nützlich sein, den Einfluß
der oberen Bewehrung auf die Tragfähigkeit zu untersuchen, z. B. bei einer

frei gestützten quadratischen Platte (Fig. 22). Hat dieselbe eine obere
Bewehrung entsprechend m' \ m, ergibt sich aus (7a) cota 0,854,.und mit
m pa2: 24 ergibt sich hs 0,048 a, hd 0,068 a, es 0,612 a, ch 0,660 a

und cc' 0,466 a. Das Moment um ki für A ergibt dann

m(\ — 2 • 0,068) ß ~pa -^ — ^--^P- 0,068 a ¦ 0,4662ß2,

woraus m — pa2: 23,5.
Mit m' 0 erhält man cota 0,646, hs 0,108 ~a, hd 0,153 a,

es 0,5 a, ch 0,680 a und cc' 0,43 a. Die Momentengleichung für A

ergibt dann

m(\ - 2 • 0,153) a ^ pa - —- 2 • -£-P • 0,153 a ¦ 0,432 • a2,

oder m pa2:2\,S. Wird mit diesem Wert umgerechnet, erhält man

m pa2: 22.

Aus dem Wert für hd ersieht man, daß die Bewehrung zweckmäßig im
Abstand a: 6 aufgebogen werden kann.

Für die eingespannte Platte erhält man m + m' pa2: 22.

6. Ringsum frei gestützte oder eingespannte, gleich¬
bewehrte Platte mit Einzelkraft.

Man konstruiert zunächst die „Wippen" (Fig. 23) und findet dann durch
die Arbeitsgleichung, indem P um d gesenkt wird

p. d 2 (m + tri) s • -r •

Für die frei gestützte Platte erhält man

||||r
Für die eingespannte Platte erhält man

P (m + tri) S k

i) The Strength of rectangular slabs. - The Institution of Structural Engineers'
Journal, Jan. 1923.
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Ist die Platte frei gestützt mit verankerten Ecken, werden die „Wippen"
nach Fig. 15 konstruiert, und man erhält

^='«S-r + ('M+m')S

wo die erste Summe der Beitrag der Kantenteile, die letzte die der
„Wippen" ist.

Durch diese Formeln erhält man z. B. für eine frei gestützte quadratische
Platte mit Einzelkraft in der Mitte und oberer Bewehrung in den Ecken
entsprechend

m :m= 0 0,5 1

m P: 6,6 7,7 8.
Bei gekrümmter Randlinie (Fig. 24) erhält man für die frei gestützte

Platte

P= tn
ds

h

In diesem Falle kann man ohne Aufstellung von neuen Voraussetzungen
die Verteilung der Auflagerkräfte bestimmen, indem von einem jeden Punkt

t*

ct-i'-—

Fig. 23. Fig. 24.

des Randes eine Bruehlinie nach P führen muß. Das in der Figur
dargestellte kleine Dreieck trägt dP von P, und die Projektionsgleichung wird
dann für eine frei gestützte Platte

q - ds I dP-\- Qu — (QR + dQR) I dP—dQR.
Die Momentengleichung um die Tangente ergibt

m- ds h • dP.
Mit QR — m cot a erhält man dadurch

dP dQR tn dm cot a
ds ds h dsP m

1_ da
h ~*~ sin2 ads
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Der Winkel der Tangente mit der Polarachse ist x, und st-— a x — cp,

sin2 a

also
da
~ds

dx
"ds

dcp
_

1 dcp • sm a 1

ds q rdcp q h

wo q der Krümmungsradius ist, positiv gegen P gerechnet. Wird dies
eingesetzt, erhält man

2m m
h q sm2a

Für eine eingespannte Platte ergibt sich m -f- m' statt m. Eine kreisförmige
Platte mit Radius r und mit einer Einzelkraft im Abstände a vom Zentrum
belastet, erhält bei freier Auflagerung oder Einspannung

m oder m-\-tri P
27t T2

.7. Decke mit Treppenöffnung.
Belastung: 600 kg/m2, die dargestellte Wand 200 kg/m und von der

Treppe 400 kg/m am kurzen Rand der Öffnung.

sm m
'SO a/SO A/SO A/SO A/SO ~/SO ~/SO ^/SO ^.'SO

ISO -/SO ~/So -/SO -./SO ~tSO ~./SOjS^50 jsc
'OO /oo C^foo _/OQ S*oC s—

'SO /so /so /so /so (SO /SOS ^iso ^JSO JA

2A-Q
£S^s!™~g2, _«(&o 9ao *>«> 9«« g°
b IqV
ISO iso rso /so tip. iso /so 'so
i ® ® (l 9 9 ^0 9 ®

D § ggiISO /so ISO ISO /so ISO^-HB IS'

l s

tl
m
ZJ.

Fig. 25.

Bei praktischen Berechnungen vermag man nur ausnahmsweise die
Gleichgewichtsgleichungen zu lösen. Man schätzt daher eine Bruchfigur und
bestimmt für jeden Plattenteil das Bruchmoment m. Weichen diese Werte
von m nicht allzu viel voneinander ab, dann ist die geschätzte Bruchfigur
nicht viel von derjenigen verschieden, welche m zum Maximum macht, wenn
m durch die Arbeitsgleichung bestimmt wird. Ist das Gegenteil aber der Fall,
kann man aus den Abweichungen leicht ersehen, wie die geschätzte Bruchfigur

abgeändert werden muß zwecks besserer Übereinstimmung unter den
Werten der einzelnen Plattenteile für m. Wenn Übereinstimmung einigermaßen

erzielt ist, wird m mittels der Arbeitsgleichung bestimmt. Weil gleichmäßig

verteilte Belastungen sich nicht so bequem behandeln lassen, werden
dieselben durch ein passendes System von Einzelkräften ersetzt.

In dem vorliegenden Falle wird die Platte in Quadrate aufgeteilt, mit
der Seitenlänge 0,5 m und der Linienbelastung in Strecken von 0,5 m. In den
Schwerpunkten dieser Teile wirken die gezeigten Kräfte (Fig. 25). Weil
„starke" Teile der Platte (z. B. Einspannungen und schwach belastete Teile)
die Bruchlinien „abstoßen", und „schwache" Teile (z. B. Löcher und stark
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belastete Teile) die Bruchlinien „anziehen", erhält die Bruchfigur das

dargestellte Aussehen. Die Kräfte an den Bruchlinien werden schätzungsweise
auf die Plattenteile nach den Flächen innerhalb der kleinen Quadrate verteilt.
Die Kraft in a wird z. B. mit 30 kg für A und 60 kg für B und D verteilt.
Die anderen Kräfte in ab und die Kraft in c werden hälftig nach jeder Seite

verteilt. In der Ecke wirkt die unbekannte Knotenkraft Q. Die
Momentengleichungen um die Kanten werden für

A: (m+m)-3,0 (6-150 + 100) 0,25 + (4-150 + 100) 0,75 + (3-150 + 50)-1,25

+ 150-1,75 + 30-2,25 1730kg. m 289 kg.

B: (m+/ra)-5,0 9-150-0,25+7-150-0,75+(2-100+50)-l,0+(5-150+100)-l,25
+ (3-75 + 50 + 60)-l,75-<2-l,5 3023-l,5-Q.

C: («+§/»)• 1,5 (2-150+200) 0,25+ (150+200) 0,75+ (2-1,0 i 388 + Q-

D: /re-4,0 (7-150 + 100)0,25 + (5-150+100)0,75+(3-75 + 50 + 60)-l,25 1343.

m 336 kg.

Aus den Gleichungen für B und C ergibt sich m 262 kg.

Die drei Werte für m zeigen, daß die Bruchfigur zur Bestimmung von
m mit der Arbeitsgleichung brauchbar ist. Wird ab um 1 gesenkt, dann wird
Q um 1,50:1,75 gesenkt, und die Drehungen werden 0A 1:2,25,
0B 1:1,75, 0c 1,50:1,75, und 6D 1:1,25. Werden die aufgeschriebenen

Momentengleichungen mit den Drehungen multipliziert, erhält man
gerade die Beiträge zur Arbeitsgleichung. Man erhält

6m \0m 2,5/« ,cl 4m 1730 3023 _38j^ 1343
+ T^- + T^F- t.5+T^- — ^FVT^""1" 1 7* ^"f"2,25 m 1,75 i| 1,75 1,J^ 1,25 " 2,25 ' 1,75 1,75 ' 1,25

oder
m 285 kg.

Die angegebene Theorie steht mit den Versuchen in schöner
Übereinstimmung, aber dieser Nachweis sowie die Bestimmung der Verteilung der
Auflagerkräfte sind einer späteren Arbeit vorbehalten.

Zusammenfassung.
Es wird vorausgesetzt, daß eine kreuzweise bewehrte Platte längs

gewisser Linien, den Bruchlinien, infolge des Fließens der Bewehrung bricht.
Durch Vernachlässigung der elastischen gegenüber den plastischen
Formänderungen ergeben sich gerade Bruchlinien, die nach den Vorzeichen ihrer
Momente bezeichnet werden. Die möglichen Verbindungen dreier Bruchlinien

sind in Fig. 4 dargestellt.
Das Biegungsmoment längs einer Bruchlinie kann als konstant betrachtet

werden und sein Betrag pro Längeneinheit, das Bruchmoment m, zugleich
als Maximalwert für alle in der Nähe der Bruchlinie liegenden Schnitte. Die
in der Bruchlinie außer dem Biegungsmoment wirkenden Drehmomente und

Querkräfte lassen sich durch Einzelkräfte in den Knoten der Bruchfigur
darstellen. Diese Knotenkräfte, deren Summe immer Null ist, werden durch die

Maximalbedingungen des Bruchmomentes bestimmt; das Ergebnis ist in
Fig. 8 angegeben. Haben die Bruchlinien das gleiche Vorzeichen, also m' m,
so werden die Knotenkräfte gleich Null.
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Die Platte wird durch die Bruchlinien in mehrere Plattenteile zerlegt.
Wenn die Knotenkräfte bestimmt sind, können die Gleichgewichtsbestimmungen

der einzelnen Plattenteile angeschrieben werden, und hieraus
ergeben sich Bruchfigur und Bruchmoment. Es wird gezeigt, daß diese Aufgabe

immer eine Lösung besitzt, die für die praktische Berechnung bequeme
Arbeitsgleichung wird ebenfalls aufgeführt.

Die Untersuchung ergibt das bekannte Abheben der Ecken durch Bildung
der „Wippe" C (Fig. 12b). Werden die Ecken im Auflager verankert, so
bildet sich die negative Bruchlinie ab aus (Fig. 12c), woraus der Einfluß
der oberen Bewehrung der Ecken hervorgeht. Es werden geometrische
Konstruktionen und Formeln der „Wippen" angegeben.

Aus den Beispielen können folgende Ergebnisse hervorgehoben werden:
Ein einfach gestützter Plattenstreifen mit Einzelkraft in der Mitte (Fig. 18),
in der Unterseite rechtwinklig zu den Auflagern und in der Oberseite parallel
zu denselben bewehrt (letztere Bewehrung ist ,i mal so groß wie die erstere),
hat eine Nutzbreite von 2yiimal der Spannweite. Für einen eingespannten
Plattenstreifen mit Einzelkraft auf der Kante (Fig. 20) und bewehrt wie oben
(ii 1), wird die Nutzbreite 3,5 mal der Spannweite. Eine einfach gestützte
quadratische Platte mit gleichmäßig verteilter Belastung und mit einer oberen.
Eckbewehrung von gleicher Stärke wie die der Unterseite hat ein
Bruchmoment pa2: 24, mit der halben Eckbewehrung pa2: 23,5 und ohne Eckbewehrung

pa2: 22. Für eine Einzelkraft in der Mitte bekommt man entsprechend
P: 8, P: 7,7 und P: 6,6.

Resume.
On suppose qu'une plaque avec armature croisee, se rompt suivant cer-

taines lignes dites lignes de fracture, par suite de l'allongement (ecoulement)
de l'armature. En negligeant les deformations elastiques par rapport aux
deformations plastiques, on obtient comme ligne de rupture des droites qui
sont classees d'apres le signe de leur moment. Les relations possibles entre
trois lignes de rupture sont representees sur la figure 4. Le moment de
flexion le long d'une ligne de rupture peut-etre considere comme constant
et sa valeur par unite de longueur, le moment de rupture m, peut-etre con-
sideree comme valeur maxima pour toutes les sections situees dans le
voisinage des lignes de rupture. Les moments de torsion qui, en dehors des
moments de flexion, agissent le long des lignes de rupture, ainsi que les.
forces transversales, sont representes par des forces agissant aux points
d'intersection des lignes de rupture. Ces forces, dont la somme est toujours
nulle, sont determinees par les conditions maxima du moment de rupture;
le resultat est represente dans la figure 8. Si les lignes de rupture ont le
meme signe, c'est-ä-dire si m m', les forces appliquees aux points d'intersection

sont nulles.
La plaque est divisee par les lignes de rupture en plusieurs sections.

Si les forces appliquees aux points d'intersection sont determinees, les
conditions d'equilibre pour les differentes sections de plaque peuvent etre
representees par des equations, et l'on en deduit les diagrammes et les moments
de rupture. II est demontre que ce probleme comporte toujours une Solution.
Les conditions d'egalite de travail, dont on peut se servir pour les calculs
pratiques, sont egalement traitees.
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Les reeherches conduisent au phenomene bien connu du soulevement

des angles avec formation d'une „bascule" C (fig 12b). Si les angles de la

plaque sont encastres, on obtient la ligne de rupture negative ab (fig. 12 c)

d'oü ressort l'influence de l'armature superieure des angles Le memoire

donne les formules et les constructions geometriques de la soi-disant

Des exemples donnes, on peut deduire les resultats suivants: Soit une

nlaaue de grande longueur reposant librement sur des appuis, sur le milieu

de laquelle agit une force (fig. 18), et armee ä sa partie inferieure: perpendi-

culairement ä la ligne des appuis et sur sa face superieure parallelement a

cette ligne (cette derniere armature etant >i fois plus forte que la, premiere).

On trouve, que sa largeur utile est egale ä 2fixio\s sa longueur entre appuis.

Dans le cas d'une plaque encastree (fig. 20) soumise sur son arete a une

force unique et armee de la meme maniere que precedemment (^ ia

largeur utile sera 3,5 fois la longueur entre appuis. Une plaque carree

reposant librement sur ses appuis, soumise ä une charge repartie umformement

et dont l'armature des angles est la meme sur les faces superieure et inferieure

aura un moment de rupture pa2:2\; si l'armature inferieure n est que la meine

de l'armature superieure, on aura pa2:23,5; sans aueune armature des aretes,

pa2: 22. Si la force est appliquee au milieu de la plaque, on aura respective-

ment pour les trois cas P: 8, P: 1,1 et P: 6,6.

Summary.
It is presumed that a cross-reinforced slab breaks along certain lines,

the lines of fracture, in consequence of yielding of the reinforcement By

neglecting the elastic deformations in comparison to the plastic deformations,

straight lines of fracture are obtained having the same signs as the moments

causing them. The possible relations of three lines of fracture are shown in

Ig'
The bending moment along a line of fracture may be considered as

constant and its amount per unit length, the moment of fracture m, at the same

time as a maximum value for all sections in the neighbourhood of the ine of

fracture The twisting moments and transverse forces acting in the line ot

fracture in addition to the bending moment, may be represented by Single

forces at the point where the lines of fracture meet. The forces at that point,
whose sum is always zero, are determined by the maximum conditions of the

moment of fracture; the result is given in fig. 8. If the lines of fracture have

the same sign, i. e. m' m, the forces at the point where they meet will
equal zero. < - ig

The plate will be divided into several parts by the lines of fracture. It
the forces at the point where these lines meet are determined, the conditions

for equilibrium of the separate parts of the plate can be written down and

from this the fracture figure and moment are obtained. It is shown that the

problem always has a Solution; the convenient equation of energy for practical
calculations is also given.

The investigation shows the known nsmg of the corners by formation

of the "see-saw" C (fig. 12b). If the corners are anchored down, the negative

line of fracture ab oceurs (fig. 12 c), from which the influence of the upper
reinforcement of the corners is shown. Geometrie constructions and formulae

for the "see-saws" are given.
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Of the examples, the following results may be particularly noted- A
:simply supported strip of plate with a single force at the middle (fig 18)reinforced on the lower side at rightangles to the supports and on the Upper
side parallel to them (the latter reinforcement being xi times as great as the
former), has an effective width of 2 fix~times the span width. For a firmlyheld strip of plate with a single force at the edge of the opposite side (fig 201and reinforced as above (xi 1), the effective width becomes 3.5 times the
span width. A simply supported square plate with uniformly distributed loadand with the upper reinforcement of the corners equally as strong asthe lower
reinforcement, has the moment at fracture pa2: 24, with half upper reinforce-.ment of the corner pa2: 23.5, and without upper corner reinforcement pa2- 22tor a Single force in the middle, the corresponding values P-8 P-ll andP: 6.6 are obtained. ' ' '
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