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BRUCHMOMENTE DER KREUZWEISE BEWEHRTEN
PLATTEN

LES MOMENTS DE RUPTURE DES DALLES A ARMATURES CROISEES
MOMENTS OF RUPTURE IN CROSS-REINFORCED SLABS

K. W. JOHANSEN,
Ingenieur des Laboratoriums fiir Baustatik der Technischen Hochschule, Kopenhagen.

Der erste Versuch zur Aufstellung einer rationellen Bruchtheorie fiir
Eisenbetonplatten wurde von dem danischen Ingenieur AAGE INGERSLEV unter-
nommen '), der fir frei gestiitzte und eingespannte viereckige und polygonale
Platten Formeln aufstellte. Er setzte voraus, daB die Platte lings gewisser
gerader Linien — Bruchlinien —, wo die Bewehrung die FlieBgrenze tuber-
schritten hat, zerbreche. Das Biegungsmoment konne daher langs dieser Linien
als konstant vorausgesetzt und zugleich als Maximalwert angesehen werden.
Aus dem letzteren Umstand folgerte INGERSLEv irrtiimlicherweise, daB die
Querkrafte an den Bruchlinien Null wiirden. Das ist nicht der Fall, aber sie
lassen sich durch die Maximumbedingungen bestimmen, wodurch es moglich
wird, auf Grund dieser plausiblen Voraussetzungen die nachstehende all-
gemeine Bruchtheorie aufzustellen.

Folgende Signaturen gelangen zur Anwendung:

S — Bruchlinie —-——== Zwischenstiitzung
LR Drehachse @ |m| Sdulen ohne und mit Einspannung in
: der Platte
Freier Rand e
ITTTTTrrrrrrT Frei gestiitzter Rand () @ Einzelkraft nach oben und nach unten
soooaooaxx. Eingespannter Rand ————— Linienbelastung.

A. Die Bruchlinien.

Im Bruchzustande flieBt das Eisen in den Bruchlinien, so dafB dort
plastische Formverinderungen auftreten, wihrend die Plattenteile zwischen
den Bruchlinien nur elastische Formverdnderungen aufweisen; und da diese
gegeniiber den plastischen als verschwindend zu betrachten sind, konnen die
einzelnen Plattenteile mit guter Anndherung als eben, und deren Schnittlinien,
die Bruchlinien, als Gerade angesehen werden.

Man beriicksichtigt also nur die Formidnderungen in den Bruchlinien und
nimmt an, daB sie in einer gegenseitigen Drehung zweier benachbarter
Plattenteile bestehen. Diese relative Drehung erhilt das gleiche Vorzeichen

1) ,Ingeniéren‘‘ 1921, S. 507.
,, The Institution of Structural Engineers’ Journal®, January 1923.
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wie das entsprechende Moment, ist also positiv, wenn die Platte oben ge-
driickt und unten gezogen wird. Die Plattenteile fithren Drehungen um ge-
wisse Achsen aus, deren Lage von den Auflagern abhingt. Da die Platten-
teile eben sind, findet man,

I. die Bruchlinie zwischen zwei Plattenteilen geht
durch den Schnittpunkt ihrer Drehachsen.

Bei einem Plattenteil, der lings der Kante frei gestiitzt ist, muB die
Drehachse in der Kante liegen, und bei einem Teil, der auf einer Siule ge-
lagert ist, muB die Achse durch die Siule gehen, kann aber sonst beliebig
liegen. Hiemit und mittels des obenstehenden Satzes kann man sich eine
Vorstellung von dem Aussehen der Bruchfiguren (Fig. 1 und 2) bilden. Sind
die Drehungen O der Plattenteile gegeben, 1dBt sich die Bruchfigur kon-
struieren. Man denkt sich dann die deformierte Platte mit einer Ebene im
Abstand s von der Ebene der Auflager geschnitten. Die Schnittlinien dieser
Ebene mit den gedrehten Plattenteilen sind Niveaulinien des Polyeders, das

17T, ke B1ogsd”

von der deformierten Platte gebildet wird. Die Niveaulinien liegen im Ab-
stand s ®@ von den Drehachsen und schneiden sich in den Bruchlinien, welche
somit durch den Schnittpunkt der Drehachsen und den Schnittpunkt der ent-
sprechenden Niveaulinien bestimmt sind (Fig. 3).

Da das Resultat unabhidngig von s sein muB, kann man s proportional
einer der Drehungen setzen, und man wird dann finden:

II. dieBruchfigur ist durch dieDrehachsen derPlatten-
teile und die Verhédltniszahlen der Drehungen be-
stimmt.

Ist die Platte in 2 Teile geteilt, und sind alle Drehachsen bekannt, hingt
die Bruchfigur nur von den n—1 Verhiltniszahlen der Drehungen ab.

Wenn eine Bruchlinie (200 in Fig. 4) einen Knick hat, muB dort eine
zweite Bruchlinie (oc) hinzustoBen, und deren Richtung und Drehung wird
als geometrische Differenz zwischen den Drehungen in zo und ob bestimmt.
Je nachdem ob die Bruchlinie an der konvexen oder der konkaven Seite des
Knickes anst6Bt, erhilt ihre Drehung das gleiche oder das entgegengesetzte
Vorzeichen der Drehungen in aob.

Bruchlinien und ihre Drehungen werden nach Fig. 4 ,,zusammengesetzt
und ,,zerlegt‘.

Da die Bruchmomente nicht von der GréBe der Drehungen abhingen,
haben im Folgenden nur die Vorzeichen Bedeutung. Die Bruchlinien werden
nach den Vorzeichen ihrer Drehungen (Momente) positiv oder negativ ge-
nannt.
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B. Die Schnittkrafte.
1. Gleichbewehrte Platten.

In gleichbewehrten Platten, d.h. in Platten mit gleicher Bewehrung in
zwei zueinander senkrechten Richtungen, ist das Bruchmoment m auf die
Lingeneinheit gleich in allen Richtungen. Das Biegungsmoment der Bruch-

Fig. 4.

linie sz von der Linge a (Fig. 5) ist ma und wird durch die als Vektor be-
trachtete Bruchlinien selbst dargestellt. Betrachtet man das Plattenstiick B,
so ist der Vektor in Richtung von s nach « gerichtet, indem der positive Um-
laufsinn entgegen dem Uhrzeiger dreht. AuBerdem wirken in sz ein Drillungs-

moment und eine Querkraft. Diese lassen sich eindeutig durch die Querkrifte
Q, und Q’, in s und « angeben. Werden die entsprechenden Schnittkréfte in
sr und st dargestellt, sieht man, daB in s wirken: auf den Plattenteil A die
Querkraft Q4 = Q, — Q. (positiv nach oben), auf B Qp = Q. — Q, und auf
C Qc = Q,— Qp, woraus sich ergibt:

Q4+ @8+ Qc=0. (1)
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Diese Krifte werden im Folgenden als Knotenkrifte bezeichnet, und
ihre Summe ist stets Null, auch wenn mehrere Bruchlinien zum Knotenpunkt
fithren.

Da in Wirklichkeit Einzelkrifte und Linienbelastungen nicht vorkommen,
sondern nur Belastungen, die um Punkte und Linien konzentriert sind, ist es
nicht notwendig, in diesen Fillen spezielle Untersuchungen vorzunehmen.
Dasselbe gilt fiir Auflagerungen auf Sdulen und Balken (Mauern). Nach-
stehend werden zwar noch immer die theoretischen Ausdriicke : Einzelkraft,
Linienbelastung, Unterstiitzung in Punkt und Linie angewandt, aber es wird
mit den entsprechenden flichenverteilten Belastungen und Reaktionen ge-
rechnet.

Weil m ein Maximalwert ist, gilt fiir die Schnitte, welche nahe der Bruch-
linie liegen, der gleiche Wert des Biegungsmomentes. Dies geniigt zur Be-
stimmung der Knotenkrifte,

(rr24rm' ) cotoc + co?3)

Fig. 7. Fig. 8.

Betrachtet man einen Knotenpunkt mit zwei positiven und einer negativen
Bruchlinie (Fig. 6), so werden durch die Bruchlinien und die benachbarten
Schnitte ¢’ und &’ die Dreiecke #ss’ und rss’ ausgeschnitten, welche unter dem
EinfluB der duBeren und inneren Krifte im Gleichgewicht sein sollen. Weil
in @’ und &’ dasselbe m gilt wie in « und &, hat die Resultante der Biegungs-
momente in ¢ und @’ m-ss’ die gleiche Richtung wie das negative Biegungs-
moment 7’ -ss’ in ss’. In ss” wirken auBerdem ein Drillungsmoment ¢V und
eine Querkraft Q. Die Momentenbindung um &’ fiir 4 rss’ ergibt, indem die
Beitrige der Belastung und von ¢@Q unendlich klein von hoherer Ordnung sind

Qs ds - sin
= dV-sinf + (m~+m') - ds - cosp

d /
(O :d‘ls/—i— (m + m') cot B3.

In gleicher Weise ergibt sich fiir 4 £ss’
av /
Dy — Sh (m—4m') cot «.

Daraus ergibt sich nun
QC = Qa =Er Qb
= (m~+ m') (cot a« - cot p). 2c
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Wird s auf « verschoben, ergibt sich (Fig. 7) durch Momente um &’ fiir
A4 tss’

dv’
Qb =y

ds

und durch Momente um ¢’ fiir 4 uss’
av’ ’
= az ~+ (m—+-m’) cot g,

woraus

Qi= Qs — Q.= — (m+m)cotp (2a)

und dementsprechend

Qe = — (m-}m') cot . (2b)

Die Ergebnisse erhellen aus Fig. 8.
In einem Knotenpunkt mit Bruchlinien von gleichem Vorzeichen ist
m = —m’, also m + m’ = 0, und somit ergibt sich

I[II. In einem Knotenpunkt, in dem alle Bruchlinien das
gleiche Vorzeichen haben, sind simtliche Knoten-
krafte ailied ch N [F]:

Das gilt auch, wenn mehr als drei Bruchlinien zum Knotenpunkt fithren.
Haben die Bruchlinien dagegen verschiedene Vorzeichen, ergibt sich:

IV.In einem Knotenpunkt,indem nicht alle Bruchlinien
dasselbe Vorzeichen haben, konnen nur drei von den
Bruchlinien verschiedene Richtungen haben.

Wire z. B. in Fig. 8 noch eine positive Bruchlinie unter dem Winkel a’
gegen die negative Bruchlinie vorhanden, wiirde man durch Verschieben von
s auf dieser ermitteln:

Qs = — (m—m') cotc,
was nur den gleichen Wert wie oben ergibt, wenn a’ = a ist.

Bei einem freien oder frei gestiitzten Rande ist a 4+ g = @, m = 0, wo-
durch die Knotenkrafte zahlenmaBig gleich groB werden und gleich

Qr = m cot e,

in einem spitzen Winkel nach oben, in einem stumpfen nach unten wirkend
(vergl. Fig. 20, Punkt 4’).

Fiir eine positive Bruchlinie erhdlt man Qg, indem man m’ durch —m
ersetzt (vergliiFig=21):

2 Winelerch bewehrte Platien

Solche Platten sind in zwei zueinander rechtwinkligen Richtungen im
Verhaltnis 1:u bewehrt. Die Bruchmomente der entsprechenden Schnitt-
richtungen sind m und wm. Eine Bruchlinie ¢4 (Fig. 9) ') in beliebiger Rich-
tung laBt sich fein zickzackformig in den Schnittrichtungen abgetreppt denken,
entsprechend den Momenten 7 und wm. Die ersteren ergeben eine Resul-

1) In den Figuren sind die Bruchlinienrichtungen der Momente m und wm an-
gegeben.
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tante m - ae, die letzteren um-eb. Wird ef = u-eb gesetzt, ergibt sich m - af
als Bruchmoment fiir ab.

Man wird finden, daB ein Teil des Drillungsmomentes in b vom Bruch-
moment gebildet wird. Der restierende Teil und die Querkraft bestimmen
wie vorher die zwei Querkrifte in den Endpunkten der Bruchlinie. Das Bie-
gungsmoment in ab wird

m-ae-COSV-um-eb-sinv=m-ab-cos®v—+4 um-ab-sin’v
also pro Langeneinheit
my = m - cos®v -+ wm - sin?y. (3)
Der Beitrag des Bruchmomentes zum Drillungsmoment wird
mg= (1—p)m-.sinvcosv, 4)

positiv normal nach innen gerechnet.
Aus (3) und (4) ist zu ersehen, daB m, und m, sich aus m und wm durch
den Lanp’schen oder MonRr’schen Kreis bestimmen lassen.

Fiir die Bruchlinie abcd, deren Momente alle das gleiche Vorzeichen
haben, setzt sich die Resultante der Bruchmomente #2: a4k zusammen aus m - ag
und S nte o d —nrs o

In gleicher Weise wie bei gleich bewehrten Platten ergeben sich die
Knotenkrifte (vergl. Fig. 8)

Qa = — (mp-+myp) cot B + (ma+ ma), (5a)
Qp = — (mp~+ my) cot @ — (mg+ myg), (5b)
Qc = (ms—+ myp) (cot @ 4 cot p), (5¢)

wo m’, und m’,; die Komposanten des Bruchmomentes der negativen Bruch-
linie sind, m, und m,; die Komposanten eines positiven Bruchmomentes der-
selben Linie.

Fiir einen freien oder frei gestiitzten Rand ergibt sich

Qr = myp - cot a4 myq, (51)

wo my und m, die Komposanten des Bruchmomentes eines Schnittes in Rich-
tung des Randes sind.

Die Sitze III und IV behalten ihre Giiltigkeit auch fiir ungleich bewehrte
Platten.

C. Die Gleichgewichtsbedingungen. Die Arbeitsgleichung.

Unter Einwirkung der Belastung, der Bruchmomente und der Knoten-
krifte sollen die einzelnen Plattenteile im Gleichgewicht sein; das ergibt fiir
jeden Plattenteil drei Gleichgewichtsgleichungen, z. B. zwei Momentenglei-
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chungen um Achsen in der Ebene der Platte und eine Projektionsgleichung
auf die Normale der Platte. Ist die Platte in » Teile geteilt, erhdlt man
3n Gleichungen zur Bestimmung der unbekannten GroB8en. Letztere sind:
das Bruchmoment m, die Auflagerkrifte, die Drehachsen und die 2—1 Ver-
haltniszahlen zwischen den Drehungen, die die Bruchfigur bestimmen. Die
Drehungsverhiltnisse bilden zusammen mit dem Bruchmoment » Unbekannte.
Bei einem Plattenteil, der lings einer Kante gestiitzt ist, liegt die Drehachse
in derselben, ist also bekannt, wihrend die GroBe und die Lage der Auflager-
kraft unbekannt sind. Bei einem auf einer Siule gestiitzten Plattenteil muBl
die Drehachse durch dieselbe gehen, aber ihre Richtung ist unbekannt; die
Auflagerkraft muB in der Siule liegen, so daB nur deren Wert unbekannt ist.
Bei einem nicht gestiitzten Plattenteil fallt die Auflagerkraft weg, aber die
Lage der Drehachse ist ginzlich unbekannt, d. h. es ergeben sich hier wie in
den vorhergehenden Fillen zwei Unbekannte. Fiir alle n Plattenteile ergeben
sich n 4+ 27 = 37 Unbekannte, gemidB der Anzahl der Gleichungen.

Fig. 10. Fig. 11.

Bei einem gleich bewehrten Plattenteil 4, der von der positiven Bruch-
linie abcd begrenzt wird, an welche nur positive Bruchlinien grenzen, welche
bei einem freien oder frei gestiitzten Rand beginnen und endigen, wird die
Resultante der Biegungsmomente und der Knotenkrifte eine Einzelkraft
m (cota 4 cot f) und wirkt wie in Fig. 10 angegeben.

Bei eingespannten Rindern und einer negativen Bruchlinie ae wird die
Resultante (m -+ m’) (cota + cotp) und wirkt wie in Fig. 11 angegeben.
Der Angriffspunkt wird also in beiden Fallen durch Antragen der Randwinkel
a und B an die Sehne ae konstruiert. Die Richtigkeit hievon ergibt sich, wenn
man das Moment um die Achsen ae, aa’ und ee’ aufstellt, wobei zu bedenken
ist, daB nur in ¢ und e Knotenkrifte auftreten, und zwar im Betrag von m cota
bezw. m cot # in Fig. 10 und (m + m’) cota und (m -+ m’) cotf in Fig. 11.

Bisweilen mag es bequem sein, die Arbeitsgleichung zu verwenden. Da
die elastischen Formveranderungen vernachlassigt werden konnen, kommt
von den inneren Kriften nur die Arbeit der Bruchmomente in Betracht, die
den Drehungen in den Bruchlinien proportional ist. Die Drehung einer Bruch-
linie setzt sich aus den Drehungen der anstoBenden Plattenteile um ihre
Drehungsachsen zusammen, so daBl der Beitrag jedes Plattenteils das Produkt
seiner Drehung und die Projektion des Bruchmomentes auf der Drehungs-
achse wird. Der Gesamtbeitrag eines Plattenteils besteht folglich aus dem
Produkt der Drehung © des Plattenteils mal die Projektion der Resultanten 41
seiner Bruchmomente auf die Drehachse, also ist: @ M- cos (0, M) ). Sind

1) Skalares Produkt der Vektoren & und M.
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y die den Drehungen @ entsprechenden Bewegungen der Angriffspunkte der
Belastung, ergibt sich durch Summation iiber die ganze Platte die Arbeits-
gleichung

DIPy =>,0. Mcos (0, M). (6)

Dieselbe ist der Ausdruck fiir die Abhéingigkeit des Bruchmomentes von
der Bruchfigur.

Das Bruchmoment ist im Vorhergehenden als ein Maximalwert gegen-
tiber den Momenten in den Schnitten in der Nihe der Bruchlinien aufgefaBt.
Werden diese Schnitte so gelegt, dall eine neue Schnittfigur gebildet wird,
welche die geometrischen Bedingungen erfiillt, sieht man, daB eine kleine
Abinderung der Schnittfigur dasselbe m ergibt, also den Zuwachs dm = 0.
Folglich lieBe sich m als Maximalwert fiir samtliche moglichen Schnittfiguren
auffassen und die Bruchfigur als diejenige Schnittfigur, die 7, zum Maximum
macht. Durch die Arbeitsgleichung (6) lassen sich dadurch sowohl das Bruch-
moment wie die Bruchfigur bestimmen.

Bei vielen Aufgaben ist eine Mehrzahl von Bruchfiguren moglich, aber
diejenige Figur, die das groBte Bruchmoment ergibt, wird erst bei einer all-
mahlich wachsenden Belastung entstehen, d. h. die Bruchfigur entspricht dem
absoluten Maximum von 7.

D. Ecken.

[1: einer Ecke, gebildet von zwei frei gestiitzten Randern, muf3 die Bruch-
linie zwischen den Plattenteilen 4 und B in den Eckpunkt /% hinauslaufen,
welcher der Schnittpunkt der Drehachsen ist (Fig. 12a). Die Knotenkrafte,
welche fiir gleichbewehrte Platten Qg = m cota und Qg = m cot f werden,
zeigen, daB eine abwarts gerichtete Kraft Qz - @z in der Ecke auf die Platte
wirkt, d. h. die Ecke muB im Auflager verankert sein. Ist dies nicht der Fall,
wird die Platte sich vom Auflager in der Ecke abheben, indem C um die
Achse ab (Fig. 12b) wippt, und die Bruchlinie sich spaltet. Wird die
,,Wippe‘ C im Auflager verankert, bildet sich eine negative Bruchlinie ab
(Fig. 12c). Bei einer gewissen oberen Bewehrung in der Ecke fallen ¢ und
b mit i zusammen, so daB das ursprungliche Bruchbild entsteht (Fig. 12 a).
Dies setzt also auBer Verankerung auch eine gewisse obere Bewehrung in
der Ecke voraus. Dichte man sich von der Ecke ein kleines Stiick abge-
schnitten, wiirden die Knotenkrifte die Summe Null bekommen, so daB eine
Verankerung nicht notwendig wiirde, aber trotzdem wiirde sich eine ,,Wippe
bilden, weil diese Bruchfigur das gréBte Bruchmoment ergibt. Daraus er-
sieht man, daB das Erscheinen der ,,Wippen‘ nicht so sehr eine Frage der
Verankerung als eine Frage der Form der Platte ist.

Die Bestimmung dieser ,,Wippen‘* soll fiir gleichbewehrte Platten mit
Einzelkraftbelastung durchgefithrt werden. Bei gleichmiBig verteilter Be-
lastung spielen die ,,\Wippen‘‘ eine kleinere Rolle, so daB man sich dort mit
einer annahernden Bestimmung begniigen kann.

Fig. 13 zeigt eine unverankerte, gleichbewehrte ,,\Wippe‘‘ a/bc, mit einer
Einzelkraft in ¢ belastet. Da die ,,Wippe‘* nicht auf den Auflagern ruht, muB
die Resultante der Schnittkrifte gleich der Einzelkraft in ¢ und ihr entgegen-
gesetzt gerichtet sein. GemaB dem Vorstehenden miissen die Winkel bei ab
dann gleich den Randwinkeln « und $ sein. Man findet dann

<J hab = <[ hba = < ach = ¢ = n— a— @,
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d.h. « und & liegen auf einem Kreis, der die Kanten beriihrt und durch ¢ geht.
Dadurch kann die ,,Wippe‘* bestimmt werden, wenn ¢ gegeben ist.

Wenn die ,,Wippe‘‘ ahbc verankert ist, entsteht die negative Bruchlinie ab
mit dem Bruchmoment m’ entsprechend der oberen Bewehrung. Die Re-
sultierende der Schnittkrafte der ,,\Wippe‘* abe ist bei der negativen Bruch-
linie m’ (cota’ - cot f’) — abwiirts wirkend in ¢ — und bei der positiven

o=

Bruchlinie acb m (cota - cotf) — aufwirts wirkend in d. Aus Fig. 14 er-
sieht man, daB abe auf einem Kreis liegen, der in ¢ und & a/ und bg beriihrt,
wihrend abf auf einem Kreis liegt, der in « und & «g und b/ beriihrt.

Die Resultante der Krifte in ¢ und & soll gleich der Einzelkraft in ¢
und ihr entgegengerichtet sein, d.h. g, d und ¢ sollen auf einer Geraden
liegen. Das ist der Fall, wenn das Viereck abfe sich einem Kreis einbe-
schreiben 14Bt (Pascal’scher Satz), und in diesem Falle miissen die beiden

Kreise zusammenfallen, also «’ = #’ und ¢ = & (Fig. 15). In % wirken
DL Coluse—a 2 tg%) abwirts und in d m- (cota -} cotf) aufwirts. Die

sich ergebende Resultante muB durch ¢ gehen, d.h.

2m' tg (21 «ch = m- (cota 4 cotf) . cd.

Da 2tg (2) — ab:hk und cota -+ cot B = ab:id und hk:id = hs:ds, ergibt sich
pischsfis — i ed . ds oder

m’ cd ch

el e dem Doppeltverhéltnis (4dsc).
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Wird durch ¢ 2’/ | zur Winkelhalbierenden gezogen, so ergibt sich 2’4’ || ab.
Werden %, s, d und ¢ von a aus auf A’%’’ projiziert, wird % in #’, d in
d’ und ¢ in ¢ abgebildet, wihrend s’ ins Unendliche fillt. Bekanntlich
haben die projizierten Punkte das gleiche Doppelverhiltnis, also m’:m =
(B’d’s’c) = cd’:ch’. Den Punkt @&’ bestimmt man folglich durch Absetzen
von cd’ = ch’:m’: m. Da 4 abf ~ Acd’f beziiglich f, wird der Kreis um 4 cd’f
den Kreis um 4 abf in f berithren. Da die Tangenten in ¢ und @’ den Rindern
parallel sind, kann der Kreis c¢fd’ konstruiert werden. Der gesuchte Kreis

abfe ist dann durch die Ridnder und durch diesen Kreis bestimmt. Wird

cd” = ch”-m’:m abgetragen, erhdlt man entsprechend den Kreis ced’’, der
den gesuchten in e beriihrt.

w
; COS% —
mn

Wenn LS B S
1 Sinu-Sinvy

Mit Einspannung an beiden Rindern erhilt man die gleiche Konstruktion
wie in Fig. 13, da die Resultante der Schnittkrifte dieselbe Lage hat wie bei
einfach unterstiitzten Randern ohne Verankerung.

Bei gleichmiBig verteilter Belastung betrachte man die symmetrische
,Wippe‘ abc in der Fig. 16. In /2 wirken 2 m’ cota’ = 2 m’ tg g abwirts, in d
2m-cota aufwirts und im Schwerpunkt # von abec 1 p:ab-:cs abwirts. Das
Moment um ¢ ergibt

2m'tg§ s ht =2mcote: i,

da td = 5es—sd =as[icot (¢ —Fw)—tgea], und
ht = hs + % cs = as[cot 3 w4+ L cot (e« — L w)], ergibt sich
mig% . [cotf e+ 1cot(ex— % w)] = mcotallcot(ec—%w) —tga],
oder
3(m+m)tg(«— % w) =mcote—m'tg % o,
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woraus

cota:h/(l—L )(4+f+3 cot? 2)—2— ’”’} o (7a)

n 2

Aus der Projektionsgleichung i p-ab-cs + 2m’tgiw = 2mcota ergibt
sich mit diesem Wert von cota

/zsrl/z”fhzu +3c0t?-—2]ﬁm} (7b)

SchlieBlich gibt das Moment um ab sofort

‘ 6m—}—m) (7¢)

Wenn ab in & verschwindet (vergl. Flg. 12.a), witd /s — 0, diesergibt:

m w
— cot? Td

m

Fiir m’ = 0 erhilt man die nicht verankerte ,,Wippe‘‘, oder was in diesem
Zusammenhang das gleiche bleibt, die verankerte ,,Wippe‘ ohne obere Be-
wehrung in der Ecke. In der verankerten ,Wippe‘‘ mit oberer Bewehrung
soll diese Bewehrung natiirlich durch die Bruchlinie ab gefiihrt werden, die

Fig. 18.

m’ = 0 entspricht, da diese Bruchlinie sonst entsteht. Die Formeln fiir die
eingespannte ,,Wippe‘* sind aus den Formeln der nicht verankerten ,,Wippe‘
herzuleiten, dadurch, daB man darin m durch m | m’ ersetzt.

Da die ,,Wippen‘‘ in den meisten Fillen nahezu symmetrisch sind, lassen
sich Gl. (7) als Niaherungsformeln verwenden. Man berechnet dann zunéchst
m durch die Bruchfigur entsprechend der Fig. 12 a, und mittels dieses vor-
laufigen Wertes wird dann die ,,Wippe‘ bestimmt. Aus der neuen Bruch-
figur kann man nunmehr fiir m einen verbesserten Wert finden, z. B. durch
Anwendung der Arbeitsgleichung.

In einer einspringenden Ecke kann (Fig. 17) eine Bruchlinie nur dann
enden, wenn eine entsprechende Kraft auf die Platte in der Ecke wirkt.
Existiert diese Kraft nicht, oder kann keine Reaktion vom Auflager ausgehen,
muB man annehmen, daB ein kleiner Teil der Platte nahe der Ecke zerstort
wird, wodurch der Knick des Randes aufgehoben wird. Der Randwinkel
und somit die Knotenkraft werden unbestimmt; da aber die Bruchlinie durch
die Ecke geht, erhalt man dadurch eine besondere Bedingung fiir die Bruch-
figur, welche diese Unbestimmtheit aufhebt.
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E. Beispiele.

PR reifoes Firtzt e P latt tienis t redfe himit E in'zelilera it Simedich
Mitte.

Die Platte wird an der Unterseite rechtwinklig zu den Auflagern und
an der Oberseite parallel zu denselben bewehrt. Letztere Bewehrung ist
wmal so groB wie die erstere. Die Bruchfigur wird in Fig. 18 dargestellt.

Die Kraft P verteilt sich als P4 auf A und Pg auf B. Die Knotenkrafte
werden laut (5r) Qr = mcota. Die Projektionsgleichung fiir B ergibt

Pp= 2mcota und das Moment um ab’ ergibt Pg- é cota = uml, also

colla— 1/‘74. Das Moment um ab fiir A ergibt Py . é — il col o da!
Py=Pg=2mcote =2mVu,und mit P= 2P, +2P; = 8m Y u, ergibt sich
m=P:8Vpu.

Diesem entspricht eine Nutzbreite von 27V u.
Unter Anwendung der Arbeitsgleichung 148t sich die Aufgabe folgender-
maBen lésen: P wird um das Stiick § gesenkt. Dadurch drehen sich 4. .um

______ Wm i
a mcota == a’
# J < = ' ’
\:\ A 5 // a r+}t?;0ffﬁ-|?-/cafai T ‘d+
A = ‘? A ;' }
Evv—
£ | 3 \ﬁ 3 = S
Al B R j $
+ Ej;_rrT s > E
) e s b b7 .""’
Fig. 19. Fig. 20.

d:3/, und B um d:%/cota. Die Resultante der Bruchmomente ist bei A
ml cota, bei B uml, beide in den entsprechenden Drehachsen ab und ab’ ge-
legen. Gl. (6) lautet dann:

P-d:2-¥mlcota—{—2-¥

dies ergibt: m — P:4 (cota 4 wtga) mit dem Maximum P:8 V u fiir
cota— Vv

toga - umi,

2. Dersielbe Plattenstreifen mit Linienbelastung,

Die Bruchfigur in Fig. 19 ergibt fir 4 durch die Momentenbedingung
um ab iph? = 2mhcota. Fiir B erhidlt man durch Momente um aa’
3P ({—2N)hcota = uml, und durch die Projektionsgleichung 1 p ({ — 2 %)
— 2mcota. Aus diesen Gleichungen findet man # — 15 £, cota = V3/, u,
m = pl: 671 6u, entsprechend der Nutzbreite 1,84 /{u.

3. Eingespannter Plattenstreifen'mit Einzelkraftaufdem
freien Rand:
Die Platte wird an der Unterseite parallel zur Einspannung und an der

Oberseite rechtwinklig zur Einspannung bewehrt. Die beiden Bewehrungen
sind gleich stark.
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Die Bruchfigur wird wie in Fig. 20 dargestellt. P verteilt sich auf 4
und B als P4 bezw. Pp. Die Knotenkrifte sind in der Fig. angegeben. Stellt
man die Momente um 60’ fiirr A auf, erhialt man keinen Beitrag vom Bruch-
moment der positiven Bruchlinie. Man erhilt Py- [ — m-:2l[cota, also
Pag = 2mcota. Wird das Moment um die freie Kante fiir B aufgestellt, er-
hdlt man entsprechend m cota:/ = m-lcoty, indem das Bruchmoment der
positiven Bruchlinie keinen Beitrag leistet. Wird das Moment um &¢ (fiir B)
genommen, gibt das negative Bruchmoment keinen Beitrag, und man erhalt

Pg-lcote+ mcoty-[lcoty = mi.

Die Projektionsgleichung firr B gibt Pg = mcota - mcoty. Man erhilt

daraus cota =V 15, a = f = y = 60°. m = P:2V 3, entsprechend der Nutz-
breitesd Ny

deRcehteckige Plattean drei Seiten frcisesitiitzttan des
vierten Seitefrei,mitgleichmdBigverteilter Belastung p
und Linienbelastung p auf dem freien Rand.

Die Bruchfigur in Fig. 21 ergibt durch Moment um c¢d fiir 4
ma — /6] - a-a’cot?a-} /2] ra* - cot*a -+ umcote-acote,
und durch Moment um de fir B
2umacota+2umacote =2."gp.acota-a*+ip(b-2acote)a®+p(b-2acota)a.

_ Clocolx— g ;
1 o wmcota 2
1
4

5 4 B
| 2
2
—;—+E 7
/u b 7
dp b “

Fig. 21.

Hieraus erhalt man

= 22 7). Cof“f____u_/m?[é 2 /3). B _ﬁ]
% 1+3pa 1—ucot?a  6uld a ]+2/J(Z Bealal

dies ergibt
tge=Yu+ K>+ K,

n — ——p_(g_l—g,/}b
8(Vu+K*+K)’
2 e
S ST

Die Formeln gelten nur, wenn a cota < g Ist das nicht der Fall, er-

WO

=

halt man ein Stiick Bruchlinie von der Mitte der freien Kante parallel zu cd
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und vom Endpunkt dieses Stiicks Bruchlinien zu den Ecken d und e. Wenn
7 = 0, werden die Gleichungen in diesem Falle dieselben wie fiir die recht-
eckige Platte mit den Seiten 2« und b, die auf allen vier Seiten frei gestiitzt
sind.

5 Rechteckige Platte mit gleichmidBig verteilter Be-
lastung, ringsum frei gestintzt oder eingespannt.

Man sieht sofort, daB die Gleichungen in diesen Fillen dieselben werden
wie die von INGERSLEV!). Diese setzen laut (7 d) voraus, daB in den Ecken
eine obere Bewehrung gleich der unteren Bewehrung vorhanden ist, was in
der Praxis nicht immer der Fall ist. Es mag daher niitzlich sein, den EinfluB
der oberen Bewehrung auf die Tragfihigkeit zu untersuchen, z. B. bei einer
frei gestiitzten quadratischen Platte (Fig. 22). Hat dieselbe eine obere Be-
wehrung entsprechend m’ = % m, ergibt sich aus (7 a) cota = 0,854, und mit
m = pa2: 24 ergibt sich s = 0,048 a, id = 0,008 4, cs = 0,612 a, ch = 0,060 a
und c¢’ = 0,466 a. Das Moment um /i fiir A ergibt dann

1 a® 1

m(l—2:0068)a = —pa-——2-=p- 0068204065,

woraus m — pat: 23,5,

Mit m’ — O erhilt man cota = 0,646, s = 0,108 «, hd = 0,153 g,
¢s = 0,5 a, ch = 0,680 a und ¢’ = 0,43 a. Die Momentengleichung fiir A
ergibt dann

mi—2-0153)a= L pa-G—2. p-0153a-043% 0%
oder m — pa®:21,5. Wird mit diesem Wert umgerechnet, erhialt man

i —pa22
Aus dem Wert fiir #d ersieht man, daB die Bewehrung zweckmiBig im
Abstand a: 6 aufgebogen werden kann.

Fiir die eingespannte Platte erhidlt man m - m’ = pa*: 22.

6. Ringsum frei gestiitzte oder eingespannte, gleich-
bewehrte Platte mit Einzelkraft.

Man konstruiert zunichst die ,,Wippen* (Fig. 23) und findet dann durch
die Arbeitsgleichung, indem P um ¢ gesenkt wird

P.Jd= Z(m-{-m')s-—i—-
Fiir die frei gestiitzte Platte erhilt man
s
P Zf
Fiir die eingespannte Platte erhilt man

P=(m+m)>] 782—

1) The Strength of rectangular slabs. — The Institution of Structural Engineers’
Journal, Jan. 1923.
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[st die Platte frei gestiitzt mit verankerten Ecken, werden die ,,Wippen**
nach Fig. 15 konstruiert, und man erhalt

P—= mZ%—{—(uz-{—m’)Zi—,

wo die erste Summe der Beitrag der Kantenteile, die letzte die der
,Wippen‘ ist.

Durch diese Formeln erhalt man z. B. fiir eine frei gestiitzte quadratische
Platte mit Einzelkraft in der Mitte und oberer Bewehrung in den Ecken ent-
sprechend

e = 0 0,5 1
=206 75 8.
Bei gekriimmter Randlinie (Fig. 24) erhalt man fiir die frei gestiitzte
Platte
b d
ds ds S
= mj\'h *l—' ”zj‘ 'i;—'—”lZ*E-.

In diesem Falle kann man ohne Aufstellung von neuen Voraussetzungen
die Verteilung der Auflagerkrifte bestimmen, indem von einem jeden Punkt

Fig. 23. Fig. 24.

des Randes eine Bruchlinie nach P fithren muB. Das in der Figur dar-
gestellte kleine Dreieck trigt dP von P, und die Projektionsgleichung wird
dann fiir eine frei gestiitzte Platte
g-ds =dP—+4 Qr— (Qr+dQr) = dP—dQr.
Die Momentengleichung um die Tangente ergibt
M= ds = h-dP.

Mit Qg = m cota erhalt man dadurch
dPdQp - m i dmeoto (l_ da )
s e e Sl
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Der Winkel der Tangente mit der Polarachse ist 7z, und # —a =1 — ¢,
also
dossiids i d ot | Fd g eisinie: SR ST

a5 s Ao e h

wo o der Kriitmmungsradius ist, positiv gegen P gerechnet. Wird dies ein-
gesetzt, erhalt man

o m m

e osin’a’

Fiir eine eingespannte Platte ergibt sich m |- m’ statt m. Eine kreisformige
Platte mit Radius » und mit einer Einzelkraft im Abstande ¢ vom Zentrum
belastet, erhilt bei freier Auflagerung oder Einspannung

i o
m oder m+m = —1/1 —
27T T

7. Derc ke miti i repple nof fniinig:

Belastung: 600 kg/m?2, die dargestellte Wand 200 kg/m und von der
Treppe 400 kg/m am kurzen Rand der Offnung.

r
i/
—-Pﬁf-_—m,:m fa Qso [a;g’rﬁé\_
N
E /50 s/50 @,50 @ /50 ® 150 ® /50 ® 150 e/50 e/.fﬂ Z
"
.t o g %0 50 /50 150 /50 IS0 oI5 150,/ /50 150
RN ® ® ® ® ® ® 8%? o & ®
£ C B o0 /oo C_Hoo _/loo /o0
50 /50 150 /s50 S0 o 150 v/; ¥ o
® e”’ 7% & & “° & 8”9 7% 'K o
Qo i3] Y
B Q < S
2 2
| o0 (-1} /50 9/50 -éﬂ, . Jso eya ® /50 0/5() @{50 X -a
I b S @ I h)
1
150 150 /50 /50 . / 7 7
2 e o e d e @ 2ol Pt
| 9 g_ll
! 150 N
50 /50 150 /50 /: /50
I @ ® @ S ® ® @ 22 @ @ 5
N L _____ 7 \' 77 777 777 777 T;
— /o t 40

Fig. 25.

Bei praktischen Berechnungen vermag man nur ausnahmsweise die
Gleichgewichtsgleichungen zu l6sen. Man schitzt daher eine Bruchfigur und
bestimmt fiir jeden Plattenteil das Bruchmoment 7. Weichen diese Werte
von m nicht allzu viel voneinander ab, dann ist die geschitzte Bruchfigur
nicht viel von derjenigen verschieden, welche 7 zum Maximum macht, wenn
m durch die Arbeitsgleichung bestimmt wird. Ist das Gegenteil aber der Fall,
kann man aus den Abweichungen leicht ersehen, wie die geschitzte Bruch-
figur abgeidndert werden muBl zwecks besserer Ubereinstimmung unter den
Werten der einzelnen Plattenteile fiir m. Wenn Ubereinstimmung einiger-
mafBen erzielt ist, wird m mittels der Arbeitsgleichung bestimmt. Weil gleich-
mafig verteilte Belastungen sich nicht so bequem behandeln lassen, werden
dieselben durch ein passendes System von Einzelkriften ersetzt,

In dem vorliegenden Falle wird die Platte in Quadrate aufgeteilt, mit
der Seitenldnge 0,5 m und der Linienbelastung in Strecken von 0,5 m. In den
Schwerpunkten dieser Teile wirken die gezeigten Krifte (Fig. 25). Weil
,starke‘ Teile der Platte (z. B. Einspannungen und schwach belastete Teile)
die Bruchlinien ,abstoBen‘‘, und ,schwache‘ Teile (z. B. Locher und stark
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belastete Teile) die Bruchlinien ,,anziehen, erhilt die Bruchfigur das dar-
gestellte Aussehen. Die Krifte an den Bruchlinien werden schitzungsweise
auf die Plattenteile nach den Flichen innerhalb der kleinen Quadrate verteilt.
Die Kraft in a wird z. B. mit 30 kg fiir 4 und 60 kg fir B und D verteilt.
Die anderen Krifte in ab und die Kraft in ¢ werden hilftig nach jeder Seite
verteilt. In der Ecke wirkt die unbekannte Knotenkraft @. Die Momenten-
gleichungen um die Kanten werden fiir

A: (m+m)-3,0=(6-150+100) 0,25 + (4-150 + 100) 0,75 + (3- 150 + 50)- 1,25
+150-1,75 +30-2,25 = 1730 kg. m = 280 kg.

B: (m+m)-50=9-150-0,25+7-150:0,75+(2" 100+50)-1,0+(5-150+100)- 1,25
+(3-75+50+60):1,75 - Q-1,5 = 3023 —1,5- Q.

C: (m+%m)-15 = (2-150+200) 0,25 + (150+200) 0,75 + @+ 1,0 = 388 + Q-

D: m-40=(7-150+100)0,25+(5-150+100) 0,75+(3- 75+ 50+ 60) - 1,25 = 1343.
12— 1386 e,

Aus den Gleichungen fiir B und C ergibt sich m — 262 kg.

Die drei Werte fiir m zeigen, daB die Bruchfigur zur Bestimmung von
m mit der Arbeitsgleichung brauchbar ist. Wird ab um 1 gesenkt, dann wird
Q um 1,50:1,75 gesenkt, und die Drehungen werden O, = 1:2,25,
Op = 1:1,75, O¢c = 1,50:1,75, und @p = 1:1,25. Werden die aufgeschrie-
benen Momentengleichungen mit den Drehungen multipliziert, erhdlt man ge-
rade die Beitrige zur Arbeitsgleichung. Man erhilt

6 m 10im~ . 2.5m 4m 1730 , 3023
2,25 s 1,75 i 1,75 15 [ 250905 T 1,75 - 1,75

oder

388 1343
1,5 —£' 1’25 ]

m —:286 kg

Die angegebene Theorie steht mit den Versuchen in schéner Uberein-
stimmung, aber dieser Nachweis sowie die Bestimmung der Verteilung der
Auflagerkrifte sind einer spiteren Arbeit vorbehalten.

Zusammenfassung.

Es wird vorausgesetzt, daB eine kreuzweise bewehrte Platte langs ge-
wisser Linien, den Bruchlinien, infolge des FlieBens der Bewehrung bricht.
Durch Vernachlissigung der elastischen gegeniiber den plastischen Form-
inderungen ergeben sich gerade Bruchlinien, die nach den Vorzeichen ihrer
Momente bezeichnet werden. Die moglichen Verbindungen dreier Bruch-
linien sind in Fig. 4 dargestellt.

Das Biegungsmoment ldngs einer Bruchlinie kann als konstant betrachtet
werden und sein Betrag pro Lingeneinheit, das Bruchmoment n, zugleich
als Maximalwert fiir alle in der Nihe der Bruchlinie liegenden Schnitte. Die
in der Bruchlinie auBer dem Biegungsmoment wirkenden Drehmomente und
Querkrifte lassen sich durch Einzelkrifte in den Knoten der Bruchfigur dar-
stellen. Diese Knotenkrifte, deren Summe immer Null ist, werden durch die
Maximalbedingungen des Bruchmomentes bestimmt; das Ergebnis ist in
Fig. 8 angegeben. Haben die Bruchlinien das gleiche Vorzeichen, also m’ = m,
so werden die Knotenkrifte gleich Nuli.
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Die Platte wird durch die Bruchlinien in mehrere Plattenteile zerlegt.
Wenn die Knotenkridfte bestimmt sind, konnen die Gleichgewichtsbestim-
mungen der einzelnen Plattenteile angeschrieben werden, und hieraus er-
geben sich Bruchfigur und Bruchmoment. Es wird gezeigt, daB diese Auf-
gabe immer eine Losung besitzt, die fiir die praktische Berechnung bequeme
Arbeitsgleichung wird ebenfalls aufgefiihrt.

Die Untersuchung ergibt das bekannte Abheben der Ecken durch Bildung
der ,,Wippe‘“ C (Fig. 12b). Werden die Ecken im Auflager verankert, so
bildet sich die negative Bruchlinie @4 aus (Fig. 12c¢), woraus der EinfluB
der oberen Bewehrung der Ecken hervorgeht. Es werden geometrische Kon-
struktionen und Formeln der ,,Wippen‘* angegeben.

Aus den Beispielen konnen folgende Ergebnisse hervorgehoben werden:
Ein einfach gestiitzter Plattenstreifen mit Einzelkraft in der Mitte (Fig. 18),
in der Unterseite rechtwinklig zu den Auflagern und in der Oberseite parallel
zu denselben bewehrt (letztere Bewehrung ist ¢ mal so grof wie die erstere),

hat eine Nutzbreite von 21« mal der Spannweite. Fiir einen eingespannten
Plattenstreifen mit Einzelkraft auf der Kante (Fig. 20) und bewehrt wie oben
(v« = 1), wird die Nutzbreite 3,5 mal der Spannweite. Eine einfach gestiitzte
quadratische Platte mit gleichmiBig verteilter Belastung und mit einer oberen
Eckbewehrung von gleicher Stirke wie die der Unterseite hat ein Bruch-
moment pa®: 24, mit der halben Eckbewehrung pa?: 23,5 und ohne Eckbeweh-
rung pa?:22. Fur eine Einzelkraft in der Mitte bekommt man entsprechend
B8 Pl T unde R 6,0;

Résumé.

On suppose qu’une plaque avec armature croisée, se rompt suivant cer-
taines lignes dites lignes de fracture, par suite de ’allongement (écoulement)
de Parmature. En négligeant les déformations élastiques par rapport aux
déformations plastiques, on obtient comme ligne de rupture des droites qui
sont classées d’apres le signe de leur moment. Les relations possibles entre
trois lignes de rupture sont représentées sur la figure 4. Le moment de
flexion le long d’une ligne de rupture peut-&tre considéré comme constant
et sa valeur par unité de longueur, le moment de rupture 7, peut-étre con-
sidérée comme valeur maxima pour toutes les sections situées dans le
voisinage des lignes de rupture. Les moments de torsion qui, en dehors des
moments de flexion, agissent le long des lignes de rupture, ainsi que les
forces transversales, sont représentés par des forces agissant aux points
d’intersection des lignes de rupture. Ces forces, dont la somme est toujours
nulle, sont déterminées par les conditions maxima du moment de rupture;
le résultat est représenté dans la figure 8. Si les lignes de rupture ont le
méme signe, c’est-a-dire si m = m’, les forces appliquées aux points d’inter-
section sont nulles. :

La plaque est divisée par les lignes de rupture en plusieurs sections.
Si les forces appliquées aux points d’intersection sont déterminées, les con-
ditions d’équilibre pour les différentes sections de plaque peuvent étre re-
présentées par des équations, et 'on en déduit les diagrammes et les moments
de rupture. Il est démontré que ce probléeme comporte toujours une solution.
Les conditions d’égalité de travail, dont on peut se servir pour les calculs
pratiques, sont également traitées.
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Les recherches conduisent au phénoméne bien connu du soulevement
des angles avec formation d’une ,Jbascule’ C (fig. 12b). Si les angles de la
plaque sont encastrés, on obtient la ligne de rupture négative ab (fig. 12 ¢)

‘ol ressort U'influence de Parmature supérieure des angles. Le mémoire
donne les formules et les constructions géométriques de la soi - disant

sbascule.

Des exemples donnés, on peut déduire les résultats suivants: Soit une
plaque de grande longueur reposant librement sur des appuis, sur le milieu
de laquelle agit une force (fig. 18), et armée 2 sa partie inférieure perpendi-
culairement a la ligne des appuis et sur sa face supérieure parallelement a
cette ligne (cette dernitre armature étant w fois plus forte que la premicre).

On trouve, que sa largeur utile est égale a 2 Y fois sa longueur entre appuis.
Dans le cas d’une plaque encastrée (fig. 20) soumise sur son aréte a une
force unique et armée de la méme maniere que précédemment (u = 1), la
largeur utile sera 3,5 fois la longueur entre appuis. Une plaque carrée re-
posant librement sur ses appuis, soumise a une charge répartie uniformément
ot dont Parmature des angles est la méme sur les faces supérieure et inférieure
aura un moment de rupture pa?: 24; si armature inférieure n’est que la moiti€
de I’armature supérieure, on aura pa*: 23,5; sans aucune armature des arétes,
paz:22. Sila force est appliquée au milieu de la plaque, on aura respective-
ment pour les trois cas .8, P et P 6,60

Summary.

It is presumed that a cross-reinforced slab breaks along certain lines,
the lines of fracture, in consequence of yielding of the reinforcement. By
neglecting the elastic deformations in comparison to the plastic deformations,
straight lines of fracture are obtained having the same signs as the moments
causing them. The possible relations of three lines of fracture are shown in
fig. 4.

The bending moment along a line of fracture may be considered as con-
stant and its amount per unit length, the moment of fracture m, at the same
time as a maximum value for all sections in the neighbourhood of the line of
fracture. The twisting moments and transverse forces acting in the line of
fracture in addition to the bending moment, may be represented by single
forces at the point where the lines of fracture meet. The forces at that point,
whose sum is always zero, are determined by the maximum conditions of the
moment of fracture; the result is given in fig. 8. If the lines of fracture have
the same sign, i.e. m’ = m, the forces at the point where they meet will
equal zero.

The plate will be divided into several parts by the lines of fracture. If
the forces at the point where these lines meet are determined, the conditions
for equilibrium of the separate parts of the plate can be written down, and
from this the fracture figure and moment are obtained. It is shown that the
problem always has a solution; the convenient equation of energy for practical
calculations is also given.

The investigation shows the known rising of the corners by formation
of the “see-saw’’ C (fig. 12b). If the corners are anchored down, the negative
line of fracture ab occurs (fig. 12 c), from which the influence of the upper
reinforcement of the corners is shown. Geometric constructions and formulae
for the ‘““see-saws’ are given.
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Of the examples, the following results may be particularly noted: A
simply supported strip of plate with a single force at the middle (fig. 18),
reinforced on the lower side at rightangles to the supports and on the upper
side parallel to them (the latter reinforcement being u times as great as the

former), has an effective width of 2 Yu times the span width. For a firmly
held strip of plate with a single force at the edge of the opposite side (fig. 20)
and reinforced as above (u = 1), the effective width becomes 3.5 times the
span width. A simply supported square plate with uniformly distributed load,
and with the upper reinforcement of the corners equally as strong as the lower
reinforcement, has the moment at fracture pa®: 24, with half upper reinforce-
ment of the corner pa2: 23.5, and without upper corner reinforcement pa2: 22,
For a single force in the middle, the corresponding values P:8, P:7.7 and
P: 6.6 are obtained.
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