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BERECHNUNG ZENTRISCH UND EXZENTRISCH
GEDRUCKTER SÄULEN

CALCUL DES COLONNES SOLLICITEES PAR UNE CHARGE AXIALE
OU EXCENTRIQUE

THE CALCULATION OF CENTRALLY AND ECCENTRICALLY
LOADED COLUMNS

P. M. FRANDSEN,
Professor an der Technischen Hochschule, Kopenhagen.

A. Euler-Engesser'sche Säulenformel.
Engesser l) hat bekanntlich gezeigt, daß die Tragfähigkeit P einer

zentrisch beanspruchten Säule mit konstantem Querschnitt F, Trägheitsmoment /
und freien Länge / immer durch

ix2 EI

angegeben werden kann.
Wenn das Säulenmaterial vollständig elastisch ist, bedeutet E in der

pFormel (1) die einer Säulenbruchspannung von a — entsprechende Tan-.

gentenneigung (Elastizitätsmodul) -j- im Spannungsdiagramme (für einen

Druckversuch) des Materials a f (e). Speziell für Materialien, die dem
HooKE'schen Gesetze a Ee gehorchen, gilt, daß E für alle Werte von a
konstant ist, und (1) wird dann zur EuLER'schen Formel.

B. Engesser-Kärmän'sche Säulenformel.
Ist das Säulen material unvollständig elastisch, muß, wie

auch Engesser nachwies, für E in Formel (1) eingesetzt werden2):

^Ay + fi), (2)

P
wo Et die der Säulenbruchspannung a -=r entsprechende Tangentenneigung

da r;

—— ist (von dem Spannungsdiagramme (für Druck) a f (e^) für die t o -

tale Deformation des Materials deriviert), während E2 die derselben Span-

i) Zeitschrift d. hannov. Arch.- u. Ing.-Vereins, 1889, Bd. 35, Seite 455.
2) Schweizerische Bauzeitung 1895, Bd. 26, Seite 24. Zeitschrift d. Ver. deutscher

Ing., 1898, Seite 927.
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nung entsprechende Tangentenneigung ——ist (von dem Spannungs diagramme
Ct Ca

o f (g2) für die elastische Deformation abgeleitet).
IL und /2 sind die Trägheitsmomente der (wegen einleitender

Ausbiegung der Säule) mehrbelasteten, beziehungsweise entlasteten Teile des
Querschnitts in Bezug auf die Trennungslinie der beiden Querschnittsteile,

p
längs welcher Linie die Mittelspannung a unverändert bleibt.

Die Formel (2) in Verbindung mit (1) ist auch von Karman3)
angegeben, der auch die Richtigkeit der Formel durch Versuche mit
Stahlsäulen rechteckigen Querschnitts nachgewiesen hat. In dieser Gestalt eignen
sich die Formeln nicht unmittelbar für die praktische Anwendung. Engesser
und andere*) haben versucht, diesem Mangel abzuhelfen, indem sie E
empirisch durch Säulenversuche bestimmten.

Bequemer setzt man in Gleichung (2) als Annäherung E2 Ex,
wodurch (2) E Ei ergibt, und folglich Gleichung (1)

R ^! (3)

worin also Et aus dem Spannungsdiagramme (für Druck) für die totale
Deformation des Säulenmaterials hergeleitet wird.

Da f2>f1 ist, wird (3) kleinere (rechnerische) Werte für die
Tragfähigkeit als (1) in Verbindung mit (2) ergeben, stimmt aber gut überein
mit Karman's Versuchsresultaten (für Stahlsäulen) bis zur Fließgrenze hinauf.

Nur für Spannungen zwischen der Fließgrenze und der Bruchgrenze
müssen die genaueren Formeln angewendet werden. Da dieses Gebiet durchaus

keine praktische Bedeutung hat, bildet Gleichung (3) eine gute Grundlage

für praktische Säulenformeln.

C. Empirische Säulenformeln.
Durch Division durch die Querschnittsfläche F der Säule in der Formel

(3) erhält man für die Bruchspannung a der Säule

worin l der Trägheitshalbmesser des Querschnitts ist.

Die Steifigkeitszahl (-t-i ist also gleich der Subtangente e' im

Spannungsdiagramm o — f (ei) des Materials gemessen. Speziell für ein Hooke-
sches Gebiet a E1-b1 ist die Subtangente gleich der Dehnung d£

Um rechnerische Ausdrücke der Säulenbruchspannung a aus Gleichung (4)
zu erhalten, ist für jedes Material ein vom Spannungsdiagramm der totalen
Deformation abgeleiteter Ausdruck für die Tangentenneigung E1 als Funktion
von a erforderlich.

Speziell für Eisenbeton hat W. Ritter6) schon längst einen bequemen
Ausdruck für Et angegeben.

s) Th. v. Karman: Untersuchungen über Knickfestigkeit (Dissert. 1908). Auch
in Mitteilungen über Forschungsarbeiten aus dem Gebiete des Ingenieurwesens, Heft
81. 1910.

*) Wansleben, Eisenbau, 1919, S. 52.
6) Schweizerische Bauzeitung, 1899, Bd. 33, S. 60.
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Als Verallgemeinerung hiervon läßt sich Ex für Materialien, deren
Spannungsdiagramme anfangs, von Null an, dem Hooke'schen Gesetze gehorchen
und nachher von der Proportionalitätsgrenze (aP, eP) aus krummlinig
verlaufen bis zur Bruchgrenze (etwa wie Holz) oder Fließgrenze (etwa wie
Baustahl, Flußstahl), folgendermaßen ausdrücken6)

El EP CB~\- <5>
o + cpop

L-B t—j\ + cp

Im Hooke'schen Gebiete ist cp 0 und Ex EP konstant.
Im krummlinigen Gebiete setzt man 0<<j?<oo.
o CB entspricht einem Punkte, in dem E1 0 ist.
Mit aP 0 gilt Formel (5) auch für Spannungsdiagramme, welche von

Null aus krummlinig verlaufen. Speziell mit cp oo und aP 0 stimmt (5)
mit dem Ritter'schen Ausdruck überein.

Als allgemeine Formel für die Säulenbruchspannung a ergibt sich dann

aus (4)

a-aP E1[(^) -eP]

oder mit Einführung von Ex aus (5)
~b -

'A-cpaPo~oP=EP CBff+ffy(J(x)2-

op j /n A8
Setzt man hierin eP -=- und oe £>l-r-1

ergibt sich nach einigen Rechnungen6):

Oe — o cp o — aP

a — aP 1 + <P Cb — o'

Aus Formel (6) gehen zwei besonders einfache Hauptformen der
Formeln für zentral beanspruchte Säulen hervor, nämlich:

mit cp 0 der EuLER'sche Ausdruck

(6)

und mit cp co

CB

7t2 EP

l_

i i

oP2 II

für o <C(>p (^)

a 1 /% / l,',.9 für o>oP, (8)
1

CB — 2aP( l\2
TC2Ep \ i

beide in üblicher Weise als Funktionen der Schlankheit — geschrieben7).

6) P. M. Frandsen, Centralt belastede Söjler, Teknisk Forenings Tidsskrift, Köben-
havn (Kopenhagen) 1920, Seite 139—151.

7) Vergl. Formeln von H. Kreüoer. Teknisk Tidsskrift 1915. Afd. f. väg-och vatten-
byggnadskonst Hafte 9.
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Für ideale Säulen aus Materialien, die teilweise dem Hooke-
schen Gesetze gehorchen, braucht man (7) bei o<CoP und (8) bei a^>aP.
Der Übergangspunkt a op zwischen den Gültigkeitsgebieten der zwei
genannten Formeln soll gerade die Proportionalitätsgrenze des Materials sein.
Dies bestätigt sich schön durch die oben erwähnten Versuche Karman's mit
Säulen aus Martinstahl. Bei diesen Säulenversuchen gelang esj die Zen-
trierungsverhältnisse sehr gut in Übereinstimmung mit denen der idealen
Säule zu bringen. Für Säulen aus Materialien, deren Spannungsdiagramme
von Null an krummlinig sind, ist op 0 zu setzen, und Formel (8) gilt dann
für alle Werte von er.

Cb in Formel (8) ist die Druckfließgrenze o> bei Baustahl (Flußstahl,
Flußeisen), die Druckbruchgrenze aB bei Holz und auch die Druckbruchgrenze

oder vielleicht eine etwas höhere Zahl bei Gußeisen, Eisenbeton und
dergl.

Für praktische Säulen, wo die Zentrierung des Drucks, ebenso
die Elastizität und Homogenität des Materials, sowie die prismatische Form
der Säule unvollkommen sind, liegt der Übergangspunkt a — op
zwischen den Gültigkeitsgebieten der Formel (8) und (7) immer niedriger
als die Proportionalitätsgrenze im Spannungsdiagramm des Materials, und
zwar desto niedriger, je mehr die erwähnten Mängel hervortreten.

Infolge der TETMAjER'schen Säulenversuche, deren Unvollkommenheiten
als annehmbarer Ausdruck für die Mängel praktischer Säulen betrachtet
werden können, kann gesetzt werden:

Baustahl (Flußstahl, Flußeisen) <?p % Cb J or
Holz (Kiefer) op \ Cb £ oB
Gußeisen u. dergl. o> 0.

Mit diesen Werten erhält man eine Reihe bekannter Säulenformeln durch
Einsetzen in (8):

Stahlsäulen:
a — aF\\ 4fZ2EP'

also die JoHNSON-OsTENFELD'sche Parabelformel, brauchbar für o>|of, für
o<i°> durch die EuLER'sche Formel (7) ersetzt.

Holzsäulen:
| ob l l^

mMBpXi
i oB l l

3 Tt2 Ep \ l
brauchbar für o>%ob, und für ö-<|cfß durch die EuLER'sche Formel (7);
ersetzt.

Gußeisensäulen u. a.:

ff
ob

Ob llV'
TT2 Ep\i)

1 +
also die Formeln von Grashof, Winkler, Rankine und Ritter, brauchbar für
alle Werte von o.
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Eine kleine, von A. Ostenfeld ausgeführte Versuchsreihe (siehe
Danmarks naturvidenskabelige Samfunds Skrifter, Serie A, Nr. 16, 1928) scheint
mir in diesem Zusammenhang von Interesse zu sein, weil die Druckfließgrenzen

der Säulen einzeln angegeben sind.
Die Versuche behandelten vier Stahl-Säulen mit besonderer Profilform

(schiefes Kreuz), die aus zwei Winkeleisen 100 X 100 X 10 mm mittels
Querverbindungen zusammengesetzt waren. Material St. 37; Zugbruchgrenze
3760—4025 kg/cm2 und Zugfließgrenze 2505—2805 kg/cm2.

Die Meßresultate sind unten wiedergegeben.

Säule F. / l P
P

a E
Cb oF

Nr.
cma cm

i
t kg/cma kg/cm a

1. 2-19,56 257 69 86,2 2203 2920
2. 2-19,70 257 69 87,4 2218 2905
3. 2-19,13 398,6 107 60,8 1589 2955
4. 2 19,66 398,6 104 67,0 1704 3325

P sind die gemessenen Bruchlasten der Säulen, Cb op die gemessenen
Druckfließgrenzen. Die Probestücke waren unbeschnittene Winkeleisenstücke
von 15 cm Länge.

Bei Anwendung der Formel (8) auf diese Versuchsresultate muß zuerst
die Größe von op bestimmt werden. Wie oben erwähnt wurde, drückt op die
Güte der Zentrierung und den Vollkommenheitsgrad der Säule (als zentrische
Säule) aus. Mit EP 2,1 • IO6 kg/cm2 ergibt sich für die Säulen 1 bezw. 2,
3 und 4:

Op 0,322 Of, op

Mit der Mittelzahl oP
Übereinstimmung mit den Meßresultaten.

0,341 oF, op — 0,341 oF und oP — 0,326 oF.

\oF erhält man natürlich aus Formel (8) eine gute

Nr. 1 Of

o

2920 kg/cm2, oP £-2920
9732
4412

2920 — 1946

2920

973 kg/cm2 und oE 4412 kg/cm2

2215 kg/cm2 (gemessen 2203 kg/cm2)
1 + 4412

Nr. 2

» 3

„ 4

ct 2207 kg/cm2 (gemessen 2218 kg/cm2)
er 1 1580 | „ 1589 |
ff 1712 „ „ 1704 „

Es scheint also, daß op \of wie aus Tetmajer's Versuchen ein zu hoher
Wert ist für zusammengesetzte Profile.

Daß eine niedrige Lage der Übergangsspannung op in enger Verbindung
mit zentrischen Unvollkommenheiten steht, darauf deutet auch die Verwandtschaft

der Formel (6) mit der Formel für exzentrischen Kraftangriff hin, wie
unten erwiesen wird.

Für exzentrisch beanspruchte Säulen (Exzentrizität /0 in
einer Hauptachse) ergibt sich die größte Druckspannung
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+ ,£ sec fj/I
Druckbruchgrenze (Fließgrenze) mwo k die Kernweite ist und y - =p —= ^ —.Biegungsbruchgrenze sb

Die erste Annäherung hierzu ist bekanntlich

,/o oE
op ff 1

£ fff — ff

hierin cp y ^- und ojk
Umformungen

Setzt man hierin cp y -j- und o-/? Cß(l + cp), erhält man nach einigen

Qe—o _ q> o (Q,
o i \ + cP' cB—o' m

welche Form in (6) enthalten ist.
Formel (6) gilt also auch für exzentrischen Kraftangriff, indem man setzt

op 0, cp y^t-, Cb= R und op Druckbruchgrenze (Fließgrenze) ob

Querschnittsberechnung.
Durch Umschreibung von Gleichung (6) erhält man:

Qe
1 1

Op Cb

ff cp Cb ff

1
_op_ Cb~~\-\-cp Cb

1

'

Cb ff ff

Setzt man hierin
Cb

— i<r und — /C2,
ff

(10)

sowie op
c-B=a' (10 a)

ergibt sich

H- 1) • (*i --D-^a ccKiY. (11)

Wird für eine gegebene Belastung P die Sicherheit n verlangt, ist die
Säulen-Bruchspannung

nPHg
und mittels den Gleichungen (10) erhält man dann:

E=Ki-E0 und I=lK2-I0,
wo

n ¦ P nPl2
F0 Mm und /0 1 -—-Lß n Ep
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Als Relation zwischen Ki und Kz hat man für ähnliche Querschnitte, indem
E2l -j— für solche Querschnitte eine bekannte Größe ist,

E 81 ^=s oder ^B HUI
wo -%!"• w i. indem f. 9

Aus Gleichung (11) ergibt sich dann

oder durch Reduktion

K^il+a2ßTh)Kf~ß(l-2a^Ki'hß^h 0 (lla)

F — K\ F0; r0 — -^—.

Für zentral beanspruchte Säulen sind nur zwei Grenzwerte von cp

von Bedeutung, nämlich cp 0 und <p oo, den Formeln (7) und (8)
entsprechend.

Fall I. cp — 0, EuLER'sche Formel (7).

Kt—K1-ßKi+ß 0 (/<i2-/S)(AT1-l) 0.

Da A't größer als 1 sein muß, kann man schreiben Ki y ß -

Also F F0\ß (EuLER'sche Formel).
F a 11 11. cp co Formel (8)

Kl - (1 + «2/*Ki — /9(1 — 2o) 0

It + Vt+#£$

brauchbar für a2/? < 1. Mit a2ß 1 trifft man die Übergangsstelle zwischen
Fall II, Formel (8) und Fall I, EuLER'sche Formel (7). Beide Formeln
ergeben dann 1

— ^0.
a

a) speziell a \ (JoHNSON-OsTENFELD'sche Formel)
F F0 (\+iß)-

Übergangsstelle zur EuLERformel bei: F 2 F0.

b) speziell a 0 (Rankine, Ritter etc.)

F=F0(%+iJ+J).
Für exzentrisch beanspruchte Säulen ist a 0 (vergl.

Gleichung (9)) und (Ha) reduziert sich somit folgendermaßen
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Kl-Kl-ßKi+ßi^rp 0-

In diesem Falle muß man also eine Gleichung dritten Grades auflösen, um
Ki zu bestimmen.

Der Rechnungsgang gestaltet sich aber sehr einfach.

Man setzt oR aB Druckbruchgrenze (Fließgrenze); berechnet.

C«= indem man die Kernweite k schätzen muß, um cp y + einführen
\+cp' * r k

zu können. Man berechnet
nP CBl2 lFQ tt- und ß — ——- •

und erhält dann nach Bestimmung von K
F Ki- Eo.

Speziell für reine Biegung (P 0, /0 — oo, M0 P • f0) erhält man aus

Cß Oß

E

_ ^ „ nMo
OB-Ki-y-yr,

Obworin y —, Ki 1 und somit
15.B

11-Mr, „.5B —-r^- Biegungsbruchspannung.

Zusammenfassung.
Ausgehend von der Euler-ENOESSER'schen Formel für vollständig elastisches

Säulenmaterial (Gl. 1) und der ENOESSER-KARMAN'schen Formel für
unvollständig elastische Säulen (Gl. 1 und 2) wird eine Übersicht gegeben
über die sog. empirischen Säulenformeln.

Durch Einführung eines bequemen Ausdrucks (Gl. 5) für die Tangentenneigungen

des Druckspannungsdiagramms als Funktion der Säulenbruchspannung

wird eine für alle Materialien brauchbare Säulenformel (Gl. 6)
aufgestellt.

Von diesem allgemeinen Gesetz werden verschiedene hieher gehörende
Säulenformeln abgeleitet, u. a. die JoHNSON-OsTENFELD'sche Parabelformel,
sowie die Formeln von Grashof, Winkler, Rankine und Ritter. Es wird
gezeigt, daß in Gl. (6) auch die exzentrische Säulenbeanspruchung enthalten ist.

Für alle diese Fälle wird schließlich die Querschnittsbemessung
besprochen.

Resume.
En dehors des formules d'Euler-Enoesser, concernant les poteaux

entierement elastiques et de la formule d'Enoesser-Karman, concernant les
poteaux incompletement elastiques, il est interessant d'etudier egalement les
formules dites „empiriques" permettant le calcul de ces elements.
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Gräce ä l'introduction d'une expression pratique (equation 5) pour le
coefficient angulaire de la tangente au diagramme des compressions,
expression dans laquelle on considere cette pente comme une fonction de la

charge de rupture du poteau, on arrive ä une formule d'application pratique,
quel que soit le materiau utilise (equation 6).

En partant de ce principe general, on peut arriver ä differentes formules
s'appliquant aux poteaux, telles que la formule parabolique de Johnson-
Ostenfeld, ainsi que les formules de Grashof, de Winkler, de Rankine et
de Ritter. L'auteur montre que, dans l'equation (6), intervient egalement
l'excentricite des efforts sur les poteaux.

L'auteur etudie en outre, dans tous ces differents cas, la determination
de la section.

Summary.
Starting from the Euler-Enoesser formula for completely elastic column

material (Eq. 1) and the Enoesser-Karman formula for incompletely elastic
columns (Eq. 1 and 2), a review is obtained of the so-called empirical column
formulae.

By introducing a convenient expression (Eq. 5) for the inclination of the
tangent in the stress-strain-diagram as a function of the breaking stress of
the column, a column formula, which can be used for all materials, is obtained
(Eq. 6).

From this general law, various column formulae belonging to here are
derived, amongst others the Johnson-Ostenfeld parabolic formula, and also
the formulae of Grashof, Winkler, Rankine and Ritter. It is shown, that
the eccentric stressing of the column is also contained in Eq. (6).

Finally, the cross-sectional dimensions for all these cases are discussed.
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