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BERECHNUNG VON PLATTEN MITTELS DIFFERENZEN-
GLEICHUNGEN /)|

CALCUL DES DALLES AU MOYEN D’EQUATIONS AUX DIFFERENCES

THE CALCULATION
OF SLABS BY MEANS OF DIFFERENCE EQUATIONS

P. M. FRANDSEN,
Professor an der Technischen Hochschule, Kopenhagen.

Die fundamentale Differentialgleichung fiir mittelstarke ebene Platten,
die tberall die gleiche Dicke haben, ist schon langst erst von LAGRANGE
(hinterlassene Papiere 1813, jedoch ohne Beweis) und spater (mit vollstin-
diger Begriindung) von Poisson 1829 angegeben worden. Die Unter-
suchungen betreffs Feststellung der Randbedingungen sind gleichfalls be-
endet, was namentlich den Arbeiten Poissons 1829, KircHHOFFs 1850, sowie
betreffend die Wirkung der Torsionsmomente am Plattenrande KeLviN und
Tair 1867 zu verdanken ist.

Die LaGrANGE’sche Gleichung ist 4. Ordnung und ihre ersten Losungen
wurden von Navier 1820 und Poisson 1820 angegeben; seitdem ist die
Literatur iiber dieses Thema sehr stark angewachsen. Obwohl die Platten-
gleichungen in mehreren Beziehungen analog den entsprechenden Glei-
chungen fiir die Momente und Durchbiegungen gerader Balken sind, ver-
mift man immer noch befriedigende Berechnungsmethoden fiir Platten, die
mit den fiir Balken bekannten Methoden gleichgestellt werden koénnten,
welche man durch Anwendung indirekter Belastung aus den Differenzen-
gleichungen ableiten kann. Die Anwendung der Differenzengleichungen fiir
Platteri ist auch, besonders von N. J. NieLsen2) und H. Marcus?) versucht
worden, ohne daB jedoch gesagt werden kann, daB diese Sache voéllig auf-
geklart ist. Vorliegende Abhandlung moge daher -als Versuch betrachtet
werden, das Differenzenproblem der Platten etwas naher klarzulegen.

A. Die Differentialgleichungen der Platten.

Die Schnittkrafte fiir eine ebene horizontale Platte gleicher Dicke 7, auf
die vertikale Krafte (Belastungen und Reaktionen) einwirken, sind im Nor-
malschnitt der Platte nur Biegungs- und Torsionsmomente sowie senkrechte
Schubkrafte.

1) Vorliegende Arbeit wurde am 16. April 1929 in der Dinischen Gesellschaft fiir
Baustatik vorgelesen und nachher in ,Bygningsstatiske Meddelelser, Kébenhavn (Maj)
1929, aufgenommen.

2) N. J. Nietsen: Bestemmelse af Spandinger i Plader ved Anvendelse af Diffe-
rensligninger (Dissert. 1918). Kopenhagen 1920.

8) H. Marcus: Die Theorie elastischer Gewebe und ihre Anwendung auf die Be-
rechnung elastischer Platten. Armierter Beton 1910.
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Abb. 1 zeigt ein infinitesimales Element einer Platte, das einem recht-
winkligen Koordinatensystem zugeordnet ist mit den X- und Y - Achsen in
der Mittelebene cler Platte und der Z-Achse senkrecht dazu. Das Platten-
element ist durch vier Normalschnitte, paarweise parallel zu der XZ- und
YZ-Ebene, abgeschnitten. Die Schnittkrifte sind mit ihren Werten -pro
Langeneinheit der Schnitte angegeben, wobei angenommen ist, daBl die Va-
riation von Schnitt zu Schnitt stetig ist.

Aus der Definition der Schnittkridfte folgt fiir die Torsionsmomente, daB
A

Wenn die gegebene senkrechte Belastung pro Flicheneinheit p ist, er-
halt man mit den in Abb. 1 angegebenen Bezeichnungen und positiven Rich-
tungen fiir die Schnittkrifte folgende Gleichgewichtsgleichungen:
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Fig. 1.

Durch Projektion auf die Z-Achse

aT‘a! dy + — dydx+pdydx

\..

Durch die Momentengleichungen in bezug auf die Kanten des Elements

"g”’“d 0 +3M”dydx»— T
CM“ dx dy +aﬁ‘-’—'d dx — T, dxdy = 0,
hieraus nach Reduktxon
dlxielh
= - —a?y = (1)
A
7. = OM xx L M, ! ]
ox oy 2)
Wity aMxy ! aMy; J
ieton

Die Anderungen der Schnittkrifte verschiedener Normalschnitte durch
denselben Punkt einer Platte erhidlt man mittels des schiefen Schnitts des in
Abb. 2 gezeigten Plattenelements.

Indem nun die Schnittkrifte im schiefen Normalschnitt s (Linge ds) mit
der Normalen n (<L xn = ©) als M,,, M,, und T, bezeichnet werden, erhalt
man die Gleichgewichtsgleichungen:
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Tuds = Tedy + Ty dx,
Mpnds = (Mxxdy + Mycdx) cos © + (Myydx + My dy) sin @,

Mnsds = — (Mxcdy + Myx dx) sin @ -+ (M, dx + M., dy) cos ©
woraus man nach Reduktion findet:
I — Txcos @ -+ T, sin @G, (3)
Mun = Myxcos® @ + My, sin® O - 2 My, sin @ cos 0, | )
Mps = (Myy — M) sin @ cos O + M., (cos® O — sin® 0), J

Aus der Gleichung fur M,, und der entsprechenden fiir das Biegungs-
moment M in einem dazu senkrechten Schnitt (< xs = 90 - @) ergibt sich
durch Addition, daB

Mpn + Mss = My + A/I_Vy, (5)
wodurch angegeben wird, daB die Summe der Biegungsmomente

in zwel zueinander senkrechten Normalschnitten kon-
stantist.

Die Deformation der Mittelflache der Platte besteht darin, daB sie
sie Form einer stetigen schwachgekriimmten Fliache, der Durchbiegungs-
flache annimmt, deren Ordinaten « (positiv mit Z) von der XY-Ebene
aus gemessen als (unendlich) klein im Verhaltnis zur Ausdehnung der Platte

behandelt werden konnen.
Fiir das in Abb. 1 gezeigte Plattenelement werden die Kriimmungen der

: 5 u *u he . ol T
Durchbiegungsflache -— und ~— sowie die Torsion —— direkt aus den
2T dp* ox oy

Schnittkraften abgeleitet durch Superposition der Wirkung der beiden Bie-
gungsmomente M, und M,, fiir sich, und der Wirkung der beiden Torsions-

~momente M,, und M,, fur sich, deren Einzelwirkung mit derjenigen von ge-
bogenen Balken bzw. verdrehten Prismen {ibereinstimmt.

Bezeichnet man die Elastizitatskoeffizienten mit £ und G und das
1

Poisson’sche Verhiltnis mit », erhdlt man, da / — T hs, folgende Einzel-
krimmungen:

.o . Mxx . M.\'X .
von My, fiir sich — £ N der X Z-Ebene und v £ i der Y Z-Ebene,

von M,y fiir sich +» Aél._; in der X Z-Ebene und — Agj; in der Y Z-Ebene.
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Die resultierenden Krummungen sind dann:

EW o E/ (Mn v yJ') un _l = E (MJ,J, = J'Mx_\.).
Von M,, und M,, erhdlt man den Torsionswinkel
(oY) oo 2M,‘§'V A 2(1 + 1') ZMU’ o : M-".V 82[{
J—%Ghﬁ_ E 1n° = El 0 dwdy
%u M\,,
- i g
Fiir die Schnittmomente finden wir danach, indem D — S
ke u %u
My = — D( )
s 3
o°u o u
/VIJ,},-_———D(a “—|—vw), (8)
%y
My = —D(1 “—])'\xﬂ/

Fiir die Schubkrafte erhidlt man schlieBlich durch Gl. (8) eingesetzt in
Gl62)
i i (Q 9”) o
Y‘x = Dcx Qx +ay2 ’ T}’ X D '\y ﬁx_ + ay2 (9)
Durch Einsetzen von 7, und 7, aus (9) in (1) ergibt sich eine partielle
Differentialgleichung fiir die Durchbiegungen der Platte:
d'u 2‘u Q'u
by 2R LR, (10)

ox ox2dy R )

d (a u azu).

also die LAGRANGE’sche (Gleichung.

Fiir Platten kann ebenso wie fiir Balken eine andere Form der Diffe-
rentialgleichung (10) angegeben werden, wodurch sie in zwei partielle Ditfe-
rentialgleichungen 2. Ordnung gespalien wird; dies geschieht durch die Ein-
fithrung des Skalar-Momentes

M 5= My

e (11)
das so bezeichnet wird, weil es infolge (5) dasselbe fiir alle orthogonalen
Normalschnittpaare im selben Punkt ist. Durch Addition der beiden ersten

Gleichungen (8) erhdlt man nun als Differentialgleichung fiir die Durch-
biegungsfliche u:

b=

Ot ol ol
T \2)

Die Differentialgleichung fiir die Skalar-Momentfliche U erhilt man aus
den Gleichungen (1), (12) und (9).

Lt (13)

Die Gleichungen (12) und (13) nennt man die PoissoN’schen Gleichungen. So-
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wohl # wie U sind hiernach als Skalar-Potentiale aufzufassen und ihre Gra-
dienten, die Tangentenwinkel # = grad # und die Schubkrafte 7 = grad U, als
Vektoren mit Achsenkomposanten.

L o
o % ty‘—ay und =1 — T 1Ty, = 5y
Fiir eine beliebige Richtung # erhilt man
__du _ ou ou
Lo el s (xn) + 5 cos (yn), 7 l i
_U_ ey LU J
Tn — T (xn) 4 3 cos (yn).

Der Ausdruck fiir 7', ist auch weiter oben in Gleichung (3) gefunden
worden.

Die Randbedingungen fiir Platten, die auf ebenen polygonalen Rand-
kurven einfach unterstiitzt sind, werden

BlE=— 0 nndie— 0 (15)

Solche Platten sind dann im selben Sinne statisch bestimmt wie einfach
gestiitzte Balken. In diesem Falle kénnen namlich die beiden Poisson-
schen Differentialgleichungen (12) und (13) einzeln fiir sich dadurch gelost
werden, daB man zuerst die Skalarmomentenflache U und danach die Biegungs-
fliche # bestimmt. Bei anderen Randkurven+) als Polygonen sind einfach’
unterstiitzte Platten statisch unbestimmt ebenso wie eingespannte und durch-
laufende Platten sowie Platten mit freien Rindern.

Ein anschauliches Bild von den U- und #-Flachen fiir statisch bestimmte
Platten erhalt man durch die Biegungsflichen fiir eine iiber die Randkurve
der Platte mit konstanter Spannung ausgespannte elastische Haut (Membran),

wenn sie mit p bzw. gpro Flacheneinheit belastet wird. Fiir solche Biegungs-

flachen 5) sind die Biegungsordinaten am Rande namlich null, ebenso wie die
Randwerte von U und « fiir statisch bestimmte Platten, und man sieht leicht,
daB die Differentialgleichungen dieselbe Form wie die Gleichungen (12)
und (13) haben. Die hier erwidhnten Biegungsflachen sind im folgenden
als Zugflichen bezeichnet.

Hilfssatze.

A bezeichne eine stetige Vektorfunktion (Achsenkomposanten A4,, 4,, A4,
in einem rechtwinkeligen Koordinatensystem X, Y, Z).
U bezeichne eine stetige Skalarfunktion.
Die Divergenz eines Vektors A ist ein Skalar und dessen Definition:
i an aA_y aAZ

dived =iy s

4) Bei solchen ist die Randbedingung fiir U, wenn die Kurve mit s, ihre Normale
mit 7 und der Kritmmungsradius mit o bezeichnet wird:
o3y 1 on
a5 T o)

U:MM*DU—A(

8) Vergl. PranptL’s Torsionsspannungsfliche. Phys. Zeitschrift 1903, Bd. 4, und
H. Marcus, a. a. O.
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Der Gradient eines Skalars U ist ein Vektor, den man bezeichnet grad U,
U DU S—U hat

und der die Achsenkomposanten -——, =  —
ol 0z

Die Divergenz eines Gradients grad U ist ein Skalar, der bezeichnet
wird
B e R U
ox® i ay® = 0z*

Das Zeichen 4 nennt man den LapLace’schen Operator.

div grad U = — A

N
// d’ V
g,f_ N
?E 7 2 1l Lig
1
1 X
az
1
Fig. 3.

Fiir einen geschlossenen Raum R mit der Oberfliche O (Normale z), wie
in Abb. 3 gezeigt, kann das Raumintegral von div A

e S s
‘]Rde dR—L(ax o az)dxa’ydz

durch gliedweise Integration in das Oberflichenintegral

j (A« cos (xn) + Ay cos (yn) + Az cos (zn)) dO,

o)
verwandelt werden,
WO A= A, cos (xn) + Ay cos (yn) + Az cos(zn)

die Projektion der Oberflichenwerte von A auf die Oberflichennormale »
bedeutet.
Also

j div'A-dR = | A.-dO. (16)
R Yo
Diese Integralformel nennt man die Gleichung von Gauss.
[st in der Gleichung von Gauss der Vektor A speziell ein Gradient
grad U, so wird

div A = div grad U = AU

oU U U U
d 5 n — C— = e —.
un A - 3 COS (xn) + 5 cos (yn) + 35 CO08 (zn),
sodaB sich fiir die Gleichung von Gauss ergibt:
AU-dR = j L (17)
IR oon
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Ist der Vektor A speziell ein Produkt eines Skalars U und eines Gradients
grad U,, ist die Gleichung von Gauss:

i L ,\’
\ (UAU, + (grad Uy, grad U))-dR = ‘ UCB[J,;‘dO.
. R % O
Nach Vertauschung der hierin enthaltenen U und U, erhdlt man auf die-
selbe Weise
J (ULdU + (grad U, grad U1))-dR = ‘ U1%%J-a’0.
R A

Da das Skalarprodukt
ol all & ol ol 7 ol dlU

(grad Us, grad U) = PR e e = (grad U, grad U,) ist,
erhdlt man durch Subtraktion der beiden letzten Integralformeln:
(WAl — tat)ar = | (022 — 03 g0, (18)
J R Y0 on on
Diese Integralform nennt man die Green’sche Gleichung ¢).
) P

b

Fig. 4.

Sind U und U, Funktionen von zwei unabhidngigen veridnderlichen x
und y (wie bei Platten) innerhalb einer ebenen Fliche f, begrenzt von der
Randkurve s (Normale n), wie in Abb. 4 gezeigt, so wird die GREEN’sche
Gleichung

Wav— viav) g =\ (U7 — U5 ds (19)
g Js ' on on
wo die linke Seite nun ein Flachenintegral ist, das sich auf alle Areal-
elemente der Fliche f bezieht, wihrend die rechte Seite ein Linienintegral ist,
das sich auf alle Elemente der Randkurve s erstreckt.

Die Richtungsderivierte fiir die Randkurvennormale ﬁa und der LAPLACE-
on

sche Operator 4 bezeichnen hier

i u cos (xn) + % cos (yn)
an. % e
Tge ol
o ge ?

6) Dieser Beweis ist im wesentlichen Gans: ,Einfithrung in die Vektoranalysis‘ ent-
nommen. — Die GreeN’sche Gleichung kann fiir Platten auch mittels der Arbeitsgleichung
auf gewo6hnliche Weise erwiesen werden.
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Wenn U und U, Funktionen sind von einer Veranderlichen x (wie bei
geraden Balken) innerhalb einer Strecke A B der X-Achse (vergl. Abb. 5),
so erhilt die Green’sche Gleichung die Form

i 3 )

J (UAU, — Uh4U) dngUcﬂ——Ulij ,

A ZsCor on la
wo die linke Seite ein Linienintegral fiir die Strecke A B ist und die rechte
Seite der Unterschied zwischen den Grenzwerten fiir die eingehenden GroBen
bei B und A, da

B
|
|

(20)

2 d*
e L dx”

Green’sche Funktionen fiur Platten.

Die Green’sche Gleichung (19) kann unmittelbar zur Auflosung der
beiden PoissoN’schen Differentialgleichungen (12) und (13) dienen, die
mittels des LapLace’schen Operator geschrieben lauten:

t

D

Von den beiden Funktionen U und U,, die in der GregeN’schen Glei-
chung auftreten, wird verlangt, daf3 sie stetig innerhalb der Platte sein miissen,

AU = —p und du—=— (21)

ol &
7 B
Fig. 5.

und sonst ganz unabhingig voneinander sind. Um explizite fiir den Funk-
tionswert U/, von U in einem beliebigen Punkt « einen Ausdruck zu erhalten,
wird U, als dazu geeignetes partikuldres Integral der Gleichung AU, = 0
gewihlt. Funktionen dieser Art sind GreeN’sche Funktionen.

Die GreeN’sche Funktion G befriedigt die Gleichung 4 G = 0 in allen

Punkten der Platte (ausgenommen Punkt ¢, wo 4G = — —I—) und hat den

af
Wert null langs der Randkurve s (Normale ») der Platte.
Aus der GreenN’schen Gleichung (19) erhdlt man dann:

Ua(— dlf) i LGA U = [U%g ds.

Fiir eine beliebig unterstiitzte Platte erhdlt man hieraus, wenn U z. B.

das Skalarmoment fiir eine Belastung p bedeutet, und also AU = — p
o= | apar+| u(—39)as (22)
f Jg on
Durch Einsetzen von
U0 = [G-pdf, (23)
2f
erhalt man
Us = Uno+ | (=29} s (24)
g on /

)
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Speziell fiir eine einfach unterstiitzte polygonale Platte, wo U = 0 langs
des Randes, wird

Oz = U0 —" G pidh
=

Analog den entsprechenden Bezeichnungen in der Balkentheorie nennt
man U,,,o das einfache Skalar-Moment im Punkte ¢, und G ist dann
die EinfluBfunktion (= flache) fiir das Skalarmoment7).

Dieselben Betrachtungen kénnen beim Bestimmen der Durchbiegung «,
gemacht werden, nur daB man dann mit gbelastet und #, als Skalar-Momente

fiir diese Belastung bestimmt. Es lohnt sich, in diesem Zusammenhang
zu beachten, daB, weil G eine PoissoN’sche (LarLAce’sche) Gleichung

AG = — k (k = 0, ausgenommen im Punkte ¢, wo £ = a}f) befriedigt und

lings der Stiitzkurve s gleich null ist, ihre Funktionswerte (ebenso wie U
und « fiir statisch bestimmte Platten) als Zugflichenordinaten fiir die Be-

lastung % aufgefaBt werden konnen. Die Kraft 2-df = 1 nennt man die ge-
dachte Belastung.

Bei Platten werden die Funktionswerte von G bekanntlich unendlich groB
rings um den betrachteten Punkt ¢, und, da die Bestimmung von G oft um-
standlich ist und auBerdem nur fiir spezielle Randkurvenformen durchgefiihrt
werden kann, so ist die Funktion G fiir Platten nicht unmittelbar in dieser
Form praktisch anwendbar.

Bei Balken erhilt man dagegen iiberall endliche Ordinaten, da die
Green’sche Funktion hier das bekannte EinfluBdreieck (fiir das einfache
Biegungsmoment) ist mit dem Scheitelpunkt in dem betrachteten Punkt a.

Die Ursache dieses Unterschiedes ist darin zu suchen, daB die beiden
Fille nur scheinbar analog sind. Eine nahere Betrachtung ergibt, daBi der
gedachten Belastung bei Balken (als Plattenstreifen mit zylindrischer De-
formation betrachtet) eine Linienbelastung (und keine Punktbelastung) bei
Platten entspricht. Bei Bestrebungen, die darauf ausgehen, der Berechnung
von Platten dieselbe Form wie bei Balken zu geben, liegt es dann nahe, es
mit solchen GreEEN’schen Funktionen zu versuchen, die durch Zugflichen
fiir Linienbelastungen dargestellt werden konnen.

7) Benutzt man Gl. (24) bei einem geraden wagerechten und einfach unterstiitzten
Balken A B mit der Linge [, auf den eine senkrechte Belastung p sowie die Momente M 4
und Mp an den Enden wirken, so erhilt man mit Hilfe der Gl. (20), da U, hier im
Punkte a gleich dem Biegungsmoment M, ist mit den Abstéinden x und x’ von A bzw. B,
die bekannte Formel:

X 5%
Ma:Ma,O"‘*'MAl"{—MB’Z!
WO Moo — ] G:pdx,

und G die EinfluBfunktion (= linie) fiir das einfache Biegungsmoment M,, o.
Mit einer gedachten indirekten Belastung und Knotenpunkten nur in A, a und B,

erhilt man (wenn P, der Knotenpunktdruck in a ist und also M, = 42 '%t—) die Diffe-

renzform der Momentenformel

P _MA'—MH MH—MB
T X = x S
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GRrReeN’sche Funktionen, die den Linienbelastungen entsprechen, be-
zeichnen wir im folgenden mit F. Abb. 6 zeigt eine Linienbelastung @, pro
Langeneinheit der Kurve (Normale ») fiir eine Zugfliche mit Stiitzkurve s
(Normale n) gleich der Stiitzkurve der Platte.

Die Funktion F hat dann AF = 0 (mit Ausnahme auf o) zu befriedigen,
und sie muB langs s den Wert null haben. Aus Gl. (19) folgt, indem ¢ an dem
in Abb. 6 gezeigten gestrichelten Schnitt ausgeschnitten wirds), der dann

zum Randintegral mitgerechnet wird,

o L ; -

O—JF- AU-df = j Ug[(a[:) = (E) ]dGJrJ Us :Fds— Fﬂ[(a'U) (CLJ> ]d(f
S a T it S ¢ Jao oY /- oV /+

v v n
T 9U) _(%/) o (aF) (9F) e
b U0 (av ST +_0 g Sv/aEE o e
% oF

erhdlt man JF-p = j Us tsdo + J o — ds

i G s
oder j Us s do = j.F-pdf—l— { Us (— %L;) ds. (25)

G f =S

Die Gleichung (25) ist ganz analog (22), aber die linke Seite driickt U,
nicht explizite aus.

Fig. 6.

Als Stiitze fiir die Zugflache der gedachten Belastung ist man nicht aus-
schlieBlich an die Benutzung der Randkurve der Platte gebunden, sondern
man kann zur Aufnahme des senkrechten Stiitzdrucks der Zugflache eine be-
liebige andere geschlossene Kurve's (Normale #), also die Reaktions-
kurve benutzen, die in der XY-Ebene und innerhalb der Randkurve liegt,
wahrend letztere wie zuvor den Horizontalzug der Zugflache aufnimmt.

Da die gedachte Belastung hiermit innerhalb der Reaktionskurve s an-
gebracht werden muB, erhidlt man fiir die Punktbelastung (fiir (Z) bzw. fiir
die Linienbelastung (fiir 7) Formeln ganz wie (22) und 25), deren Integrale
sich jetzt jedoch nur iiber das Gebiet innerhalb der Reaktionskurve s und lings
derselben zu erstrecken haben.

Da die ‘Funktionen G und F nun unabhidngig von der Form der Rand-
kurve der Platte gewidhlt werden konnen, besteht der Vorteil bei Anwendung
solcher inneren Reaktionskurven darin, daB man sie beliebig und so bequem
als moglich fiir die Funktionen G und F wihlen kann.

8) Vergl. Gans, a.a.O.
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B. Die Differenzengleichungen der Platten.
1, Die Reaktionskurve ist ein Kreis.

Ist die Reaktionskurve ein Kreis s mit dem Radius 2 (Fig. 7), so erhilt
man fiir eine Punktbelastung im Zentrum eine GREEN’sche Funktion, die in
polaren Koordinaten (r, @) und mit dem Pol im Angriffspunkt der Kraft, ¢,
geschrieben werden kann:

1k
=3t (202
DaB G — 0 lings s (r — ), sieht man unmittelbar, und daB 4G = 0,

kann man leicht durch Differentiation zeigen. Da ferner ?8; — 2"16)" sieht
l J
man auch, daB die entsprechende gedachte Belastung eine Einzelkraft im

Zentrum ist.
I
|
|
/ a | 3

.
|

x} P s it e

A

ECERACE BNt

Fig. 7.

Fiir eine Platte mit der Belastung p erhdlt man danach mit Hilfe der
Gl. (22) fir das Skalarmoment

27 pA 1 7 2rh 1
U. :j j zﬁlrprdrd@-’(—jo Us(z;ci) ds.

0 Y0
Als bekannte GroBe, wenn die Belastung p gegeben ist, wird hier eingesetzt:

1 27 A 7
Tty @J e
P 5 jo d Ol = prar, (27)

wonach man erhalt
27

1
Ues = Pa+§rjn Usd@
oder

27
P. = Uz — L [ Us do. (28)
27T Jo

Das Linienintegral in (28) gibt den Mittelwert von U langs der Re-
aktionskurve s an, und es kann, falls man es wiinscht, angendhert in eine
Summe von Mittelwerten fiir beliebige Teile derselben aufgelost werden. Die
Formel (28) kann daher zur Aufstellung von Differenzengleichungen fiir die
Mittelwerte von U angewendet werden.
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Fiir Punkte einer Platte, die durch ein Quadratnetz mit der Maschenweite
A bestimmt sind, kann man hiermit verfahren, wie in Abb. 7 fiir den Teil
um den Punkt ¢ herum gezeigt wurde. Indem U,, U,, U; und U, Mittelwerte
von U fiir jeden der Viertelkreise sind, welche die Quadratnetzpunkte 1, 2, 3
und 4 als Mittelpunkte haben, erhdlt man mit Hilfe der Gleichung (28)

P, :Ua—z—i;- S Ui+ Us + Us +U)
oder
fE
e e (20)
Sl

Fiir die Biegungsordinaten « erhialt man eine dhnliche Formel, nur hat

man in der Gleichung (27) % anstatt p einzusetzen ?).

Speziell fiir eine gleichformige Belastung p erhilt man mit Hilfe der
GIS @) AR = piz

X~/ X Xt Al
K
y-r | -
r-j:"" ------ -I, Eaee
_gﬂl Lg%
Y i ; /
! %
R ~
g - & 2
s P s
Fig. 8.

Differenzengleichungen dieser Art, die einer rechteckigen Einteilung der
Platte entsprechen, wiirde man mit Hilfe einer GreeN’schen Funktion G
fiir eine elliptische Reaktionskurve erhalten.

2. Die Reaktionskurve ein Rechteck.

Ist die Reaktionskurve ein Rechteck und geschieht die Linienbelastung
lings eines Kreuzes, dessen Arme 1., /', und A, 2, parallel zu den Seiten des
Rechtecks sind, welches dadurch (wie in Abb. 8 gezeigt) in vier rechteckige
Felder geteilt wird, so konnen als Green’sche Funktion F die Gleichungen
fiir vier hyperbolische Paraboloide mit den Ordinaten Null lings der Re-
aktionskurve und gemeinschaftlichen Ordinaten (die geradlinig verlaufen)
lings des Belastungskreuzes gebraucht werden.

%) Die Gleichung (29) fiir U oder # stimmt mit der Form von Differenzengleichungen
fiur Platten iiberein, die von N. J. NieLsen und H. Marcus (a.a.O.) angegeben sind,
bedeutet aber insofern eine Verbesserung, als der Knotenpunktdruck in GI. (29) genau
definiert ist.
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Die Achsen des Hauptkoordinatensystems (x, y) sind parallel zu den
beiden Seitenpaaren der Reaktionskurve zu legen. Fiir jedes dieser vier hyper-
bolischen Paraboloide F wiihlt man ein dazu paralleles sekundires Koordi-
natensystem (&, n) mit den Anfangspunkten in den vier Ecken des Reaktions-
rechtecks.

In jedem dieser rechteckigen Felder erhilt die Gleichung fiir F dann die
Form:

C -
Lo g
wo F,, der Funktionswert in der Mitte des Kreuzes ist.

Man sieht unmittelbar, daB diese Funktionen die Randbedingung fa—t)
langs der Seiten des Reaktlonsrechtecks und AF — 0 in allen Punkten der
Scheiben befriedigen.

Zur Bezeichnung der beiden Arten von geraden Linien (Systemlinien) in
der Belastungs- und Reaktionskurve verwendet man die Nummerierung ihrer
Schnittpunkte mit den Achsen des Hauptkoordinatensystems, sodaB (wie in
Fig. 8 gezeigt) GroBen, die sich auf eine Linie beziehen, die Nummer der
Linie als Einzelindex, und GroBen, die sich auf einen Punkt beziehen, die
Nummern der beiden einander schneldenden Linien als Doppelindex erhalten;
A, und 4, nennt man die Fachlingen.

Fiir eine Platte mit der Belastung p findet man nun mit Hilfe der
Gleichung (25) fiir die Skalar-Momente

F= Fy+ (30)

7

| 'Uy_l( F(Jr f ){y) d& + \ (jy- ( ny

t/
S
)

1) tl
e
] 1

= Ury (“_ F\y /Tl \)d)} SF [ Ux (Fx_y }«y ) + F:t_y ;l ;) dn
X i Al

prdxdy: e - ; (31)

o5 Ux ( Fcy d'} S ‘ U\.(ny

fal ul 1) :
el

LA} J’ 4,\'
(" i/’ 1 /
S U1\ — F\'y ey d’/
9 Ly Ay
Elo s s St
e e s
Jo /5 Ay Jo Ay 7uy

Durch Division durch F,, auf beiden Seiten des Gleichheitszeichens ergibt
sich fiir die linke Seite
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2 — 2 pdxdy. (32)

)P

Da F — F,, im Punkt (x, y) gleich 1 ist, sieht man, daB P,, den Knoten-

punktdruck im Punkt (x, y) bedeutet, wenn man sich denkt, daB die

Belastung indirekt auf die Platte durch ein einfach unterstiitztes Rostwerk
in jeder Scheibe wirkt.

Fig. 9.

Durch Umordnen der Glieder auf der rechten Seite des Gleichheits-
zeichens in Gl. (31) erhdlt man die Form:

e
e o o
i l’ j)’( Ux-x o U\' S 7% ﬁ” Ux+1) ’]ld']I
by Jy L hox
Y [ny = 5 (33)
(GG U )
)Ux M 0 /.y ;VJ,
sl (_UJ'—.I.U)' U ‘UJ'+1> £ e
hE i Ve

Die auf der rechten Seite des Gleichheitszeichens in GGl. (33) auftretenden
Werte von U gehoren ausschlieBlich zu den Linien des Reaktionsrechtecks
und des Belastungskreuzes (den Systemlinien), und man sieht somit, daBl die
Glieder auf der rechten Seite die Belastungen der auf den genannten Linien

stehenden )—U—Fléchen (nach den Regeln fiir indirekte Belastung wie bei

Balken) verteilt auf die Endpunkte des Belastungskreuzes und dessen Mittel-
punkt bedeuten.

Man kann daher, wie in Abb. 9 gezeigt, die U/-Flachen der Systemlinien
ebenso wie bei Balken in einen niederen trapezoidalen Teil teilen, der nur
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durch die Werte von U in den Systempunkten bestimmt ist, und in einen
oberen Teil (A oder A’), der vom Verlauf der U-Fliche zwischen diesen

Punkten abhiangt.
Als Gleichung fiir die UJ-Werte der Systempunkte ergibt sich hiernach
folgende Form

Gy, y-1 U\'fl,)'—l Ak Cy, y—1 U\', y—1 S Cxyy, y—1 U\‘+1,_y-] + l
— P\‘J’ = %o l a-\'*l,y U\f'*x,y T 8({\:}( U\'Jy + a_\'+1’}r Ut.}_l,.y + I + [A]xy, (34)

Oy 1, y+1 Us-1, y+1 S Uy, y41 Uk, y11 T Cxp1, y41 Usi1, y1

worin
) 7 ey b

;('f }“x /’uv- )‘vll : y V
Oy, y-1 = % (}v - 7 ), Uy yy = % (2 }\.J\, = );\- -+ )by 5o ;\:\ s Cept,p-1 — %(A_\-F}_uy ’
Ay

ik lx) i (/ Lol s il zy)
2 - 4 Ctxy — +Tx'+ };;'{-*}lx +Iy’ f}i‘: Ay'{"z y

o /ISR RS B 1,,;) e ( Ay 7)
O!x+],y—%‘(2“i;—ly+2 l‘;_’g y  Ox_1, y+1 —% 1;‘%‘7; y
/I b Vet /IR b
Uy yy1 — -21— (21}; = )J'J\ + 2 )vy, e )U*E) s Oy, pr1 — %— (—2,;):; = Ay’) ’
I (Ax--l N1 — /fl.\' e Ax e — Axi1 7].v,+1)
)\J}. lx l.x’
i 1 (A.Q_l Mot — Ait Al — Arm 1).{+1)
. [ A n "
un Al =
i l ( Ay é‘J’~-1 Fih AJ’ §_V <5, Ay ‘.Ey — Ay §y+1 )
7, T 5
L (Ay'—i 5a—AS  AE— A ‘;‘:J;-i-l)‘
I %, A

Teilt man die ganze Platte in rechteckige Scheiben durch zwei aufein-
ander senkrechte Systeme von parallelen Linien, die (wie in den Abb. 8 und 9
angedeutet ist) mit Nummern versehen sind, so erhdlt man fiir jeden System-
punkt eine Gleichung wie (34), die aus dieser durch Anderung der Indices
hergeleitet werden kann. Die Gleichung (34) kann dann als Differenzen-
gleichung fiir die Bestimmung der Skalarmomente in den Systempunkten
aufgefaBt werden.

Zur Bestimmung der Durchbiegungen « erhilt man eine dhnliche Diffe-
renzengleichung, wo P, fiir—g- als Belastung bestimmt werden muB.

"Wihlt man speziell alle Fachweiten 2 gleich groB, so sind alle
Werte von a in Gl. (34) gleich eins.

Falls die Fachldngen so klein gewidhlt werden, daB die
U-Fliche zwischen den Systempunkten als (annidhernd) geradlinig ange-
nommen werden kann, so fallt der Beitrag [A]., weg.

Bei groBen Fachlingen kann der Beitrag [A], der A-Flichen
nicht weggelassen werden. In solchen Fillen muB man daher die Form der
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A-Flachen zwischen drei aufeinanderfolgenden Systempunkten schiatzen. Mit
Hilfe der Zugflache, deren Hauptform nicht schwierig zu erfassen ist, kann
eine solche Schitzung insofern Geniige leisten, als schon beim ersten Durch-
rechnen eine befriedigende Annidherung zutage tritt, die gegebenenfalls durch
Umrechnen verbessert werden kann. Als brauchbare Kurven zur Begrenzung
geschatzter A-Flachen konnen in den meisten gewohnlichen Fallen bei stetigen
Belastungen und bei Einzelkraften Parabelbogen bzw. Parabelbogen und ge-
rade Linien vorteilhaft benutzt werden.

Beirechteckigen (nicht allzu linglichen) Platten kann man sich mit
einemeinzigen Systempunkt auf der Platte begniigen, wihrend die
iibrigen auf dem Umkreis liegen. Bei einfach unterstiitzten Platten kommt
man hierdurch zu expliziten Ausdriicken fir ¢/ (und #) in jedem
Punkte der Platte.

v
SVF
( 5 2,
3
r \\
-
) SV
r
r
Fig. 10.

Bei sehr ldanglichen rechteckigen Platten wihlt man einen Sy-
stempunkt fiir die kurze Rechteckseite und auf der langen Seite so viele, daB3
die Fachweiten ungefihr die Hilfte der kurzen Spannweite ausmachen. Bei
einfach unterstiitzten Platten erhdlt man dann eine Reihe CrLAPEYRON’scher
Gleichungen fiir U und auch fiir «.

Speziell fiir zylindrisch deformierte Platten (Balken) werden mit der
Y-Achse als Erzeugerrichtung:

A.\'~| = A.\-_1 = Ax+1 — /4..\:+1 — 0:
A=t 5 Ay O Ay und Ay S5 Ay S Ay

woraus man sieht, daB [A],, = 0. Ferner ist
U\'-],yfi = U\'—1,y = U\'—],y+] =M U\',;f% == va = (Jx,y-H = My,
Usir,y-1 = Uxyr,y = Uxpr,p01 = Miy

Mit Hilfe der Gl. (34) erhidlt man dann fiir die Plattenbreite 1:

1 /ny et M.\‘—l;: M« S M ;;wah_l :

welche als Differenzengleichung des Balkens wohlbekannt ist.
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DaB das Glied [A],, identisch bei Balken und nicht bei Platten ver-
schwindet, ist also der fundamentale Unterschied zwischen den beiden Fallen.

3. Andere Reaktionskurven.

GREEN’sche Funktionen konnen viele andere Formen als die erwiahnten
annehmen.

Bei einfach unterstiitzten polygonalen Platten kann man oft mit Vorteil
GRrEEN’sche Funktionen wihlen, deren Zugflichen durch strahlenférmige
Linienbelastung von einem Punkt zu den Ecken des Randpolygons entstehen
und somit die Form von Pyramidenflichen erhalten. Das Linienintegral auf
der linken Seite in Gl. (25) wird fiir jede Belastungslinie proportional der
Summe ihrer Skalarmomente (da =, konstant ist), und das Randintegral wird
null (da U gleich null ist). Abb. 10 zeigt Beispiele fiir das Zentrum eines
gleichseitigen Dreiecks bzw. eines Quadrats. Da in dieser Figur o=/ ist,
erhalt man:

> 10

"Updr = ( F- pdf. (35)
0 Jf

C. Statisch bestimmte Platten.
Beispiele expliziter Bestimmung von U und u.

1. Auf allen vier Seiten frei aufliegende quadratische
Platte (Seitenldnge /) mit gleichformiger Belastung .

Abb. 11 und 12; Berechnung der Skalarmomente und Durchbiegungen
in verschiedenen Zehntelpunkten.

—m AQ2/ A.=qe/

r Ay=Q3/—~

Ny=Q 7/

Fig. 11.

Indem man die U-Flachen des Belastungskreuzes als Parabeln mit ge-
meinschaftlicher Ordinate U (im Punkte (2,3) schatzt (vergl. Abb. 11), und
die U-Flichen des Randes gleich null sind, erhédlt man aus (32):

Py = 4pl*(0,2:03 +08:03 +0,2:0,7 + 08:0,7) = 4 pl*
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und danach mit Hilfe der Gl. (33):

=L 2——(-1 l'/2.1 . b8 )
4pl e 0,2[{- ,81) (3 2U0,3[+2 3 28U 0,3[.
2 1 e AR :
+(3 5 U0+ 5 - U071

_(o_,z QLT D ot
2 1., desid ]
—|—(3 o U081+ - = U-08/)],
gy ds ol [@( 1) 70( 7) @( _1__)
e U Rl e e
80 ]_.L 5025
il o
U — ﬁﬁ"_p[z_ pl> = 0,0426 p/* im Punkt (2,3).
1975 23,5 ’ ’ \

AsQs/ A =Q5/——=

—Avsas/————A,=Q5/—

Fig. 12.

Fiir den Mittelpunkt (5,5) erhdlt man mit den in Abb. 12 gezeigten para-
bolischen U-Flachen mit gemeinschaftlicher Ordinate U im Punkt (5,5) und

indem Pi,; — 11 plt:

1 1 )(2 1 ] e ot )
_ 2‘_-— ——— _— — . LTy ey e
pl (0,51+0,5l 3 5 U-057+ it U:051[)-4
A58 ( | 1)
U 4—30/)12 = 0,075 p/> im Mittelpunkt (5,5)
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Wenn die Skalarmomente der Platte auf diese Weise Punkt fiir Punkt
berechnet sind, kénnen die Durchbiegungen # auf dieselbe Weise mit Hilfe
der GI. (33) berechnet werden.

Fiir die Durchbiegung « im Mittelpunkt (5,5) der Platte erhilt man (mit
den gefundenen Werten fir U in den Zehntelpunkten) mit Hilfe der Gl. (32):

106
B, — j,z_) -)WJ;U-’ dx dy

s AL

oder durch Auflosen des Integrals in eine Summe:

il

7101201200750 +4:0,07235 +4-0,0640-3 +4:-0,0408-; +4-0,0288-
4 4 3 4 2 4
+4-0,0007 % +8-0,0617 55 + 80,0480 55 +8:0,0278-
+4-0,0547 32 +8-0,04265 3 +8-0,0247 5
+4-0,0331-2-5+8-00102-
+4:0,0112-
Woraus sich ergibt
2
?Eps,a :%'0,11'0,11' 1,35252
und mit Hilfe der GL (33):
g =~ S0l
— 5500135252 = — S U1+
=2 001352”1' 000405725 im Mittelpunkt (5,5).
10 Dii D

pevAnCiEa e n idire 'S eitic n it eivan filfie ofe nidies PliaitE e el cliitc
die Form eines gleichseitigen Dreiecks hat (Seitenldange
s) mit gleichférmiger Belastung p, Abb. 10.

Mit Hilfe der Gl. (35) erhidlt man fiir U im Zentrum des Dreiecks, in-
dem die Scheitelpunktordinate der Zugflachenpyramide F, genannt wird:
RS 2 ==
37, UUrdr = p3%\/3 ’%Fo,

7?,—:2—‘/3,

32_}3 %Ur“pS ‘3 2l

U:ﬁﬁr:' im Zentrum des Dreiecks.

QY= = Q= Oy = Ot —

Q= O N GUW O
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Zusammenfassung.

Die Lacrance’sche Differentialgleichung 4. Ordnung zur Berechnung
der Durchbiegungen u« ebener Platten 148t sich bekanntlich in zwei sog.
PoissoN’sche Gleichungen 2. Grades auflésen (Gl. 12 und 13 oder 21). Von
den hierdurch bestimmten Fliachen der Skalar-Momente U (Gl 11)
und Durchbiegungen « erhdlt man ein anschauliches Bild durch die
Biegefliche einer (iiber die Randkurve der Platte ausgespannten) ent-
sprechend belasteten Membran, hier Zugfliche genannt.

Zur Auflosung der be1den PoissoN’schen Gleichungen (21) kann die
GRreeN’sche Gleichung (19) dienen. Die Green’schen Funktionen sind parti-
kuldre Integrale einer PoissoN’schen Gleichung, die einer gedachten Punkt-
oder Linienbelastung entspricht und lassen sich somit als Zugflichen fiir
diese Belastungen darstellen. Als Stiitzkurve (Reaktionskurve) fiir die Zug-
fliche ist man nicht ausschlieBlich auf die Beniitzung der Randkurve dey
Platte angewiesen.

Im zweiten Teil wird die Anwendung von geeigneten GReEEN’schen Funk-
tionen gezeigt, durch die man entweder explizite Losungen oder Differenzen-
gleichungen erhilt. Beiliufig wird gezeigt, daB man mittels der Zugfliche
einer gedachten Punktbelastung im Zentrum einer kreisformigen Reaktions-
kurve (Abb. 7) die gewdhnliche 5-gliedrige Differenzengleichung von NIELSEN
und Marcus (Gl. 29) erhilt; und zwar mit wohldefiniertem Knotenpunkts-
druck (Gl. 27). Ferner wird gezelgt daB man mittels der Zugflache einer ge-
dachten Linienbelastung lings eines Kreuzes mit einem Rechteck als Re-
aktionskurve (Abb. 8) erst eine Grundgleichung mit lauter Linienintegralen
der U (bezw. u) (Gl. 33) erhilt und daraus schlieBlich eine 9-gliedrige Diffe-
renzengleichung (34) mit genau definiertem Knotenpunktdruck P,, (Gl. 32).
Die Gl. (33) und (34) eignen sich besonders fiir rechteckige Platten. Die
Fachweiten 2 konnen beliebig gewihlt werden. Wahlt man sie klein, kénnen
die Segmentflichen A (bezw. 4’), Abb. 9 und GI. (34), vernachléssigt werden.
Bei rechteckigen (nicht allzu langlichen) Platten kann man sich mit einem
einzigen Systempunkt auf der Platte begniigen. Speziell fiir lings
des Randes frei aufliegende Platten erhilt man hierdurch fiir U (bezw. u)
explizite Ausdriicke. Hierbei miissen die Segmentflichen 4 (A’) ge-
schiatzt werden, was ohne Schwierigkeit mittels der ungefihren Form der
Zugflache der tatsachlichen Belastung geschehen kann.

Weiter wird auch die Anwendung der Zugflachen strahlenféormiger Li-
nienbelastungen erwihnt.

Zum Schlusse wird das Verfahren der expliziten Bestimmung von U
(bezw. #) durch Beispiele erlautert.

Résumeé.

L’équation différentielle du quatriéme ordre de LAGRANGE, pour le calcul
des fléchissements u des dalles planes, peut, ainsi qu’on le sait, étre dé-
composée en deux équations, dites de PoissoN et du deuxieme degré (equatlons
12 et 13, ou 21). On obtient une représentation claire des aires ainsi dé-
termmees (moments scalaires U (équation 11) etfléchissements
u) par Iintermédiaire de la surface fléchie d’'une membrane soumise a une
charge correspondante, membrane dite ,surface tendue‘.

Pour la résolution des deux équations de PoissoN (équations 21), on
peut recourir a ’équation de GrReeN (€équation 19). Les fonctions de GREEN
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constituent des intégrales particulieres d’une équation de PoissoN qui cor-
respond a une charge ponctuelle ou linéaire supposée et peuvent étre con-
sidérées comme représentant les surfaces tendues correspondant a ces
charges. En ce qui concerne les courbes de réaction supposées, on n’est pas
exclusivement limité a l'utilisation des courbes qui en réalité forment les
bords de la dalle.

Dans la deuxieme partie du rapport, "auteur montre comment employer
les fonctions convenablement choisies de GREEN, grace auxquelles on peut
obtenir soit des solutions explicites, soit des équations aux différences. In-
cidemment, il montre comment, a partir de la surface tendue correspondant
a une charge ponctuelle fictive, appliquée au centre d’une courbe de réaction
de forme circulaire (figure 7), on peut obtenir I’équation différentielle ordi-
naire a 5 termes, de NIELSEN et MaRrcus (équation 29), et avec des efforts aux
noeuds nettement définies (équation 27). L’auteur montre en outre que, en
partant de la surface tendue correspondant a une charge linéaire fictive, ré-
partie suivant une croix et admettant un rectangle comme courbe de réaction
(figure 8), on peut tout d’abord obtenir une équation de base, avec intégrales
linéaires, puis une équation différentielle (34) a O termes, avec efforts nette-
ment définis aux noeuds P,, (équation 32). Les équations 33 et 34 s’appli-
quent particulierement aux dalles rectangulaires. Les valeurs des / peuvent
¢tre choisies arbitrairement. Si elles sont faibles, on peut négliger les seg-
ments 4, ou A" (figure O et équation 34). Dans les dalles rectangulaires n’ad-
mettant toutefois pas une trop grande longueur, on peut se contenter de
prendre, sur la dalle, un seul noeud. Lorsqu’il s’agit de dalles reposant libre-
ment sur leurs bords, on obtient ainsi pour J, ou u, des expressions ex-
plicites; les segments A (A’) doivent alors étre estimés, ce qui peut se faire
sans difficulté au moyen de la forme approchée de la surface tendue de la
charge effective,

L’auteur expose ensuite 'emploi des surfaces tendues pour les charges
lin¢aires rayonnantes.

Enfin, il explique la méthode de détermination explicite de U (ou u) au
moyen d’exemples.

Summary.

The Lacrance differential equation of the fourth order for calculating
the bending « of flat plates can, as is known, be resolved into two so-called
Poisson differential equations of the second degree (Eq. 12 and 13 or 21).
Of the surfaces of the scalar moments U (eq. 11) and bendings «
thereby determined, a clear picture, as is known, is obtained by the bending
surface of a correspondingly loaded diaphragm stretched over the edge curve
of the plate, here called tension surface.

For solving the two PoissoN equations (21) the GrReeN equation (19) may
be used. The GreenN functions are particular integrals of a PoissoN equation,
corresponding to a certain ideal loading at a point or line, and can conse-
quently be represented as tension surface for these loads. As supporting
curve (reaction curve) for the tension surface it is not absolutely necessary
to use the edge curve of the plate.

In the second part the application of suitable Green functions is shown,
through which either explicit solutions or difference equations are obtained.
Incidentally it is shown that the usual 5-term difference equation of NIELSEN
and MaRrcus (eq. 29) is obtained by means of the tension surface of a certain
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loading at a point in the centre of a circular reaction curve (fig. 7), with well
defined pressure at the point of intersection (eq. 27). Further it
is shown that, by means of the tension surface of a certain line loading
along a cross with a square reaction curve (fig. 8), a fundamental equation
with line integrals of the U (or ) (eq. 33) is obtained, and finally from
this a 9-term difference equation (34) with precisely defined pressure 7,
(eq. 32) at the points of intersection. Eq. 33 and 34 are particularly suitable
for rectangular plates. The 1 may be chosen as desired. If they are chosen
small, the segment surfaces A4 (or A’) may be neglected (Fig. 9 and Eq. 34).
In rectangular plates (not too long in proportion to their breadth) asingle
system point on the slab will be found sufficient. Especially for plates
supported along the edge, explicitexpressions are thereby obtained
for U (or u). The segment surfaces A (A’) must then be estimated, which
can be done without difficulty by means of the approximate form of the
tension surface of the actual loading.

Further the application of the tension surfaces to radiating line loading
is mentioned.

In conclusion, the method of the explicit determination of U (or ) is
explained by examples.
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