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BERECHNUNG VON PLATTEN MITTELS DIFFERENZEN¬
GLEICHUNGEN )|

CALCUL DES DALLES AU MOYEN D'EQUATIONS AUX DIFFERENCES

THE CALCULATION
OF SLABS BY MEANS OF DIFFERENCE EQUATIONS

P. M. FRANDSEN,
Professor an der Technischen Hochschule, Kopenhagen.

Die fundamentale Differentialgleichung für mittelstarke ebene Platten,
die überall die gleiche Dicke haben, ist schon längst erst von Laoranoe
(hinterlassene Papiere 1813, jedoch ohne Beweis) und später (mit vollständiger

Begründung) von Poisson 1829 angegeben worden. Die
Untersuchungen betreffs Feststellung der Randbedingungen sind gleichfalls
beendet, was namentlich den Arbeiten Poissons 1829, Kirchhoffs 1850, sowie
betreffend die Wirkung der Torsionsmomente am Plattenrande Kelvin und
Tait 1867 zu verdanken ist.

Die LAGRANOE'sche Gleichung ist 4. Ordnung und ihre ersten Lösungen
wurden von Navier 1820 und Poisson 1829 angegeben; seitdem ist die
Literatur über dieses Thema sehr stark angewachsen. Obwohl die
Plattengleichungen in mehreren Beziehungen analog den entsprechenden
Gleichungen für die Momente und Durchbiegungen gerader Balken sind,
vermißt man immer noch befriedigende Berechnungsmethoden für Platten, die
mit den für Balken bekannten Methoden gleichgestellt werden könnten,
welche man durch Anwendung indirekter Belastung aus den Differenzengleichungen

ableiten kann. Die Anwendung der Differenzengleichungen für
Platten ist auch, besonders von N. J. Nielsen2) und H. Marcus3) versucht
worden, ohne daß jedoch gesagt werden kann, daß diese Sache völlig
aufgeklärt ist. Vorliegende Abhandlung möge daher als Versuch betrachtet
werden, das Differenzenproblem der Platten etwas näher klarzulegen.

A. Die Differentialgleichungen der Platten.
Die Schnittkräfte für eine ebene horizontale Platte gleicher Dicke h, auf

die vertikale Kräfte (Belastungen und Reaktionen) einwirken, sind im
Normalschnitt der Platte nur Biegungs- und Torsionsmomente sowie senkrechte
Schubkräfte.

1) Vorliegende Arbeit wurde am 16. April 1929 in der Dänischen Gesellschaft für
Baustatik vorgelesen und nachher in „Bygningsstatiske Meddelelser", Köbenhavn (Maj')
1929, aufgenommen.

2) N. J. Nielsen: Bestemmelse af Spaendinger i Plader ved Anvendelse af Diffe-
rensligninger (Dissert. 1918). Kopenhagen 1920.

3) H. Marcus: Die Theorie elastischer Gewebe und ihre Anwendung, auf die
Berechnung elastischer Platten. Armierter Beton 1919.
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Abb. 1 zeigt ein infinitesimales Element einer Platte, das einem
rechtwinkligen Koordinatensystem zugeordnet ist mit den X- und Y- Achsen in
der Mittelebene der Platte und der Z-Achse senkrecht dazu. Das Plattenelement

ist durch vier Normalschnitte, paarweise parallel zu der XZ- und
FZ-Ebene, abgeschnitten. Die Schnittkräfte sind mit ihren Werten -pro
Längeneinheit der Schnitte angegeben, wobei angenommen ist, daß die
Variation von Schnitt zu Schnitt stetig ist.

Aus der Definition der Schnittkräfte folgt für die Torsionsmomente, daß
Mxy Myx.

Wenn die gegebene senkrechte Belastung pro Flächeneinheit p ist,
erhält man mit den in Abb. 1 angegebenen Bezeichnungen und positiven
Richtungen für die Schnittkräfte folgende Gleichgewichtsgleichungen:

dx X.

¦*£/%,»*. \z
L^_ji'_X h

n. < y& mIT?!' bx

*£<**rx dx

Ät§Bl 'ft, *°E2t
\gm dy

*-rJC<dydu

Fig. 1.

Durch Projektion auf die Z-Achse

dTx
dX ~"~J' '

dy

Durch die Momentengleichungen in bezug auf die Kanten des Elements
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(2)

Die Änderungen der Schnittkräfte verschiedener Normalschnitte durch
denselben Punkt einer Platte erhält man mittels des schiefen Schnitts des in
Abb. 2 gezeigten Plattenelements.

Indem nun die Schnittkräfte im schiefen Normalschnitt s (Länge ds) mit
der Normalen n (<£ xtt @) als Mnn, Mns und Tn bezeichnet werden, erhält
man die Gleichgewichtsgleichungen:
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(3)

(4)

Tnds Txdy-\- Tydx,
Mnn ds (Mxx dy + Myx dx) cos 0 -f- (Myy dx + Mxy dy) sin &,
Mos ds — (Mxx dy + Myx dx) sin 0 -+- (Myy dx -f- yW*y afp) cos ©

woraus man nach Reduktion findet:

Tn Tx cos ® + Ty sin 0,
¦Af™ Mxx cos2 0 + Afyj. sin* 0 + 2 Mxy sin © cos 0,
j|f„ 1 Oiij, — Mxx) sin 0 cos 0 + Mxy (cos2 0 — sin2 0).

Aus der Gleichung für Mnn und der entsprechenden für das Biegungsmoment

Mss in einem dazu senkrechten Schnitt (<£ xs 90 -f- 0) ergibt sich
durch Addition, daß

Man + Afss Mxx 1 Myy, (5)

wodurch angegeben wird, daß die Summe der Biegungsmomente
in zwei zueinander senkrechten Normalschnitten
konstant ist.

dx
e^z twty,

ty.ti

d*

Fig. 2.

Die Deformation der Mittelfläche der Platte besteht darin, daß sie
sie Form einer stetigen schwachgekrümmten Fläche, der Durchbiegungsfläche

annimmt, deren Ordinaten u (positiv mit Z) von der XY-Ebene
aus gemessen als (unendlich) klein im Verhältnis zur Ausdehnung der Platte
behandelt werden können.

Für das in Abb. 1 gezeigte Plattenelement werden die Krümmungen der
r)2 U direkt aus den

d iL d ItDurchbiegungsfläche -—; und SI sowie die Torsion
dx2 iy dxdy

Schnittkräften abgeleitet durch Superposition der Wirkung der beiden
Biegungsmomente Mxx und Myy für sich, und der Wirkung der beiden Torsionsmomente

MXy und Myx für sich, deren Einzelwirkung- mit derjenigen von
gebogenen Balken bzw. verdrehten Prismen übereinstimmt.

Bezeichnet man die Elastizitätskoeffizienten mit E
1

PoissoN'sche Verhältnis mit v

krümmungen:.

von Mxx für sich

erhält man, da /
12

Ä»

und G und das

folgende Einzel-

yylxx ~w r~. i iVIxx
gal in der X Z-Ebene und + "-^rIZl LI

von My« für sich ,Myy
El in der X Z-Ebene und Myy

EI

in der VZ-Ebene,

in der FZ-Ebene.
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Die resultierenden Krümmungen sind dann:

l2ll 1 d2U 1

jp — £y (M*. ~ "^Kw) und dy2==~El (Myy ~ vMx*>- ^
Von yW^y und Myx erhält man den Torsionswinkel

| _ 2 Mg _ 2(1 +") 2 Mxy =h>v)M*y _
^u_

4?GA3~~ f ' W EI ~
^xdy

oder ^ _(1+„Ä I3jc 3j/ EI
EIFür die Schnittmomente finden wir danach, indem D

1-1,2

M™ -D\dx-2 + Vd?

Myy -D^ + Vp\
\dy' dx

Mxy=-D(l-v)£U

(8)

dxdy
Für die Schubkräfte erhält man schließlich durch Gl. (8) eingesetzt in

Gl. (2) i«! Ty^-D^m+py (9)
dx^dx dy 1 dy\dxi dy I

Durch Einsetzen von Tx und Ty aus (9) in (1) ergibt sich eine partielle
Differentialgleichung für die Durchbiegungen der Platte:

diu d*u 34« _ p
1

9^ + 2ä^ä? + 37-D' (10)

also die LAGRANOE'sche Gleichung.
Für Platten kann ebenso wie für Balken eine andere Form der

Differentialgleichung (10) angegeben werden, wodurch sie in zwei partielle
Differentialgleichungen 2. Ordnung gespalten wird; dies geschieht durch die
Einführung des Skalar-Momentes

Mxx + Myy IH

das so bezeichnet wird, weil es infolge (5) dasselbe für alle orthogonalen
Normalschnittpaare im selben Punkt ist. Durch Addition der beiden ersten
Gleichungen (8) erhält man nun als Differentialgleichung für die
Durchbiegungsfläche u:

S +^ -£' <12>
dx dy D

Die Differentialgleichung für die Skalar-Momentfläche U erhält man aus
den Gleichungen (1), (12) und (9).

d2u i d2u y§§
-d^ + w ~p- (13)

Die Gleichungen (12) und (13) nennt man die PoissoN'schen Gleichungen. So-
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wohl u wie U sind hiernach als Skalar-Potentiale aufzufassen und ihre
Gradienten, die Tangentenwinkel t grad u und die Schubkräfte T grad U, als
Vektoren mit Achsenkomposanten.

du du _ dU -. dU
tx z-, ty — und Tx — -T-, Ty —¦dx dy dx dy

Für eine beliebige Richtung n erhält man

du du - du
tn r- -r- COS (Xtl) + — COS (ytl),dtl dx dy

| dU dU ,,dU i
Tn — — — cos (xn) + t— cos (yn).

dn dx dy

(14).

Der Ausdruck für 7",, ist auch weiter oben in Gleichung (3) gefunden
worden.

Die Randbedingungen für Platten, die auf ebenen polygonalen
Randkurven einfach unterstützt sind, werden

U 0 und u — 0. (15)

Solche Platten sind dann im selben Sinne statisch bestimmt wie einfach
gestützte Balken. In diesem Falle können nämlich die beiden Poisson-
schen Differentialgleichungen (12) und (13) einzeln für sich dadurch gelöst
werden, daß man zuerst die Skalarmomentenfläche U und danach die Biegungsfläche

u bestimmt. Bei anderen Randkurven4) als Polygonen sind einfach1
unterstützte Platten statisch unbestimmt ebenso wie eingespannte und
durchlaufende Platten sowie Platten mit freien Rändern.

Ein anschauliches Bild von den U- und «-Flächen für statisch bestimmte
Platten erhält man durch die Biegungsflächen für eine über die Randkurve
der Platte mit konstanter Spannung ausgespannte elastische Haut (Membran),

wenn sie mit p bzw. -=- pro Flächeneinheit belastet wird. Für solche Biegungs-

fl,ächen6) sind die Biegungsordinaten am Rande nämlich null, ebenso wie die
Randwerte von U und u für statisch bestimmte Platten, und man sieht leicht,
daß die Differentialgleichungen dieselbe Form wie die Gleichungen (12)
und (13) haben. Die hier erwähnten Biegungsflächen sind im folgenden
als Zugflächen bezeichnet.

Hilfs sätze.
A bezeichne eine stetige Vektorfunktion (Achsenkomposanten A„ Ay, Az

in einem rechtwinkeligen Koordinatensystem X, Y, Z).
U bezeichne eine stetige Skalarfunktion.
Die Divergenz eines Vektors A ist ein Skalar und dessen Definition:

M dAx | dAy dAz
div A m h t^ + ~^— •

dx dy dz

4) Bei solchen ist die Randbedingung für U, wenn die Kurve mit s, ihre Normale
mit n und der Krümmungsradius mit n bezeichnet wird:

nn v ' \ 9s2 e on]

6) Vergl. Prandtl's Torsionsspannungsfläche. Phys. Zeitschrift 1903, Bd. 4, und
H. Marcus, a. a. O.
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wird

Der Gradient eines Skalars U ist ein Vektor, den man bezeichnet grad LJ,

dU dU dU,
und der die Achsenkomposanten -—, ——, -— hat.

dx dy dz
Die Divergenz eines Gradients grad LJ ist ein Skalar, der bezeichnet

Das Zeichen A nennt man den LAPLACE'schen Operator.

3 <' <?

ria n2 "J

Fig. 3.

Für einen geschlossenen Raum R mit der Oberfläche O (Normale n), wie
in Abb. 3 gezeigt, kann das Raumintegral von div/l

(dAx H dAy_ _,_
dAz
dz(\\vA-dR dx -tt- - ^r±\dxdydz

dy

durch gliedweise Integration in das Oberflächenintegral

(Ax cos Cm) + Ay cos (m) + Az cos (zn)) dO,
Jo

verwandelt werden,

wo An*= Ax cos (xn) -f- Ay cos (yn) + Az cos (z/z)

die Projektion der Oberflächenwerte von A auf die Oberflächennormale n
bedeutet.

Also

'/? J o
(16)

Diese Integralformel nennt man die Gleichung von Gauss.
Ist in der Gleichung von Gauss der Vektor Ä speziell ein Gradient

grad U, so wird
div A div grad U A(J

1 dU dU X dU \ I i du
'

und y4„ — — cos (jcä) + — cos U>«) -+- §fr cos (zn),
dn dx dy dz

sodaß sich für die Gleichung von Gauss ergibt:

3«
rfO. (17)
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Ist der Vektor A speziell ein Produkt eines Skalars U und eines Gradients
grad Ui, ist die Gleichung von Gauss:

f (JUWi + (grad Uu grad U)) ¦dR \ U^ ¦ dO.
jR J0 dn

Nach Vertauschung der hierin enthaltenen U und cA erhält man auf
dieselbe Weise

(UiW-\- (grad U, grad Ui))-dR f Ui^-dO.

Da das Skalarprodukt

/ in ^m dUi du i dUi du dUi du ,TT .,M- +(grad m grad ^^^- -|^^;+ -^ •- (grad U, grad c7t) ist,

erhält man durch Subtraktion der beiden letzten Integralformeln:

f (UAUi - UxAU)dR f (ud~
J D J n \ dn mm,H *0. „« dn)

Diese Integralform nennt man die GREEN'sche Gleichung6).
O <K

(18)

Fig. 4.

Sind U und Ux Funktionen von zwei unabhängigen veränderlichen x
und y (wie bei Platten) innerhalb einer ebenen Fläche /, begrenzt von der
Randkurve s (Normale n), wie in Abb. 4 gezeigt, so wird die GREEN'sche

Gleichung
f (U-lUx - U,AU) df =if\üp^ - Ui |^) ds, (19)
Jf Js\ \dn dnt

wo die linke Seite nun ein Flächenintegral ist, das sich auf alle
Arealelemente der Fläche / bezieht, während die rechte Seite ein Linienintegral ist,
das sich auf alle Elemente der Randkurve s erstreckt.

3
Die Richtungsderivierte für die Randkurvennormale — und der Laplace-

dn
sehe Operator A bezeichnen hier

3 3 3
— — cos (xn) -f ;r- cos (yn),
dn dx dy

A
d* 32

6) Dieser Beweis ist im wesentlichen Gans : „Einführung in die Vektoranalysis"
entnommen. — Die GREEN'sche Gleichung kann für Platten auch mittels der Arbeitsgleichung
auf gewöhnliche Weise erwiesen werden.
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Wenn U und Ui Funktionen sind von einer Veränderlichen x (wie bei
geraden Balken) innerhalb einer Strecke AB der ^Y-Achse (vergl. Abb. 5),
so erhält die GREEN'sche Gleichung die Form

f (UAUx - UiAU) dx
I Ud-!~ -U^)a I dn dn

B

(20)

wo die linke Seite ein Linienintegral für die Strecke AB ist und die rechte
Seite der Unterschied zwischen den Grenzwerten für die eingehenden Größen
bei B und A, da

3 d d2

dn dx dx

Green'sche Funktionen für Platten.
Die GREEN'sche Gleichung (19) kann unmittelbar zur Auflösung der

beiden PoissoN'schen Differentialgleichungen (12) und (13) dienen, die
mittels des LAPLACE'schen Operator geschrieben lauten:

AU—-p und Au —j^- (21)

Von den beiden Funktionen U und Uu die in der GREEN'schen
Gleichung auftreten, wird verlangt, daß sie stetig innerhalb der Platte sein müssen,

>r
TT

Fig. 5.

und sonst ganz unabhängig voneinander sind. Um explizite für den
Funktionswert Ua von LJ in einem beliebigen Punkt a einen Ausdruck zu erhalten,
wird H als dazu geeignetes partikuläres Integral der Gleichung A Ut 0

gewählt. Funktionen dieser Art sind GREEN'sche Funktionen.
Die GREEN'sche Funktion G befriedigt die Gleichung A O 0 in allen

Punkten der Platte (ausgenommen Punkt a, wo AG — —) und hat den
UJ

Wert null längs der Randkurve s (Normale n) der Platte.
Aus der GREEN'schen Gleichung (19) erhält man dann:

u'(-Xdt)v-\?AUdf =["*-£*- |
Für eine beliebig unterstützte Platte erhält man hieraus, wenn U z. B.

das Skalarmoment für eine Belastung p bedeutet, und also AU — p

Ua=--\Q-pdf-\-j u{-~) ds. (22)

/
Durch Einsetzen von

Ua,o ^0-pdf, (23)

erhält man

-|^)fife. (24)
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Speziell für eine einfach unterstützte polygonale Platte, wo (7=0 längs
des Randes, wird

(Ja Ua,o \0-pdf.
v

Analog den entsprechenden Bezeichnungen in der Balkentheorie nennt
man LJa,0 das einfache Skalar-Moment im Punkte a, und G ist dann
die Einflußfunktion fläche) für das Skalarmoment').

Dieselben Betrachtungen können beim Bestimmen der Durchbiegung ua

gemacht werden, nur daß man dann mit—-belastet und ua als Skalar-Momente

für diese Belastung bestimmt. Es lohnt sich, in diesem Zusammenhang
zu beachten, daß, weil G eine PoissoN'sche (LAPLACE'sche) Gleichung!

AO — k (k 0, ausgenommen im Punkte a, wo k befriedigt und
aj

längs der Stützkurve s gleich null ist, ihre Funktionswerte (ebenso wie LJ

und u für statisch bestimmte Platten) als Zugflächenordinaten für die
Belastung k aufgefaßt werden können. Die Kraft k-df 1 nennt man die
gedachte Belastung.

Bei Platten werden die Funktionswerte von G bekanntlich unendlich groß
rings um den betrachteten Punkt a, und, da die Bestimmung von G oft
umständlich ist und außerdem nur für spezielle Randkurvenformen durchgeführt
werden kann, so ist die Funktion G für Platten nicht unmittelbar in dieser
Form praktisch anwendbar.

Bei Balken erhält man dagegen überall endliche Ordinaten, da die
GREEN'sche Funktion hier das bekannte Einflußdreieck (für das einfache

Biegungsmoment) ist mit dem Scheitelpunkt in dem betrachteten Punkt a.

Die Ursache dieses Unterschiedes ist darin zu suchen, daß die beiden
Fälle nur scheinbar analog sind. Eine nähere Betrachtung ergibt, daß der
gedachten Belastung bei Balken (als Plattenstreifen mit zylindrischer
Deformation betrachtet) eine Linienbelastung (und keine Punktbelastung) bei
Platten entspricht. Bei Bestrebungen, die darauf ausgehen, der Berechnung
von Platten dieselbe Form wie bei Balken zu geben, liegt es dann nahe, es

mit solchen GREEN'schen Funktionen zu versuchen, die durch Zugflächen
für Linienbelastungen dargestellt werden können,

7) Benutzt man Gl. (24) bei einem geraden wagerechten und einfach unterstützten
Balken A B mit der Länge /, auf den eine senkrechte Belastung p sowie die Momente M a
und Mb an den Enden wirken, so erhält man mit Hälfe der Gl. (20), da Ua hier im
Punkte a gleich, dem Biegungsmoment Ma ist mit den Abständen x und x' von A bzw. ß,
die bekannte Formel:

wo Ma0 \ O-pdx,

und G die Einflußfunktion linie) für das einfache Biegungsmoment Ma, 0.

Mit einer gedachten indirekten Belastung und Knotenpunkten nur in A, a und B,

erhält man (wenn Pa der Knotenpunktdruick in a ist und also Ma< 0 Pa -A die

Differenzform der Momentenformel
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GREEN'sche Funktionen, die den Linienbelastungen entsprechen,
bezeichnen wir im folgenden mit F. Abb. 6 zeigt eine Linienbelastung na pro
Längeneinheit der Kurve (Normale v) für eine Zugfläche mit Stützkurve s

(Normale n) gleich der Stützkurve der Platte.

Die Funktion F hat dann AF 0 (mit Ausnahme auf a) zu befriedigen,
und sie muß längs s den Wert null haben. Aus Gl. (19) folgt, indem a an dem
in Abb. 6 gezeigten gestrichelten Schnitt ausgeschnitten wird8), der dann
zum Randintegral mitgerechnet wird,

0-\F-AU-df Uo

Da AU=—p,

dF
dv

d_U

\dv

—)
dvl+

do+ ndF' rlUs-^—ds-
i dn

Fa
dU
dv

dU\
dv 1+ do.

dU
dv

0 und
dF
dv

dF
dv

erhält man

oder

F-pdf= UoKodo + Us—ds
dn

U nado F-pdfm Us
dF
dn

ds. (25)

Die Gleichung (25) ist ganz analog (22), aber die linke Seite drückt Ua
nicht explizite aus.

A

X

Fig. 6.

Als Stütze für die Zugfläche der gedachten Belastung ist man nicht
ausschließlich an die Benutzung der Randkurve der Platte gebunden, sondern
man kann zur Aufnahme des senkrechten Stützdrucks der Zugfläche eine
beliebige andere geschlossene Kurve-s (Normale n), also die Reaktionskurve

benutzen, die in der XF-Ebene und innerhalb der Randkurve liegt,
Während letztere wie zuvor den Horizontalzug der Zugfläche aufnimmt.

Da die gedachte Belastung hiermit innerhalb der Reaktionskurve s
angebracht werden muß, erhält man für die Punktbelastung (für G) bzw. für
die Linienbelastung (für F) Formeln ganz wie (22) und 25), deren Integrale
sich jetzt jedoch nur über das Gebiet innerhalb der Reaktionskurve s und längs
derselben zu erstrecken haben.

Da die^Funktionen G und F nun unabhängig von der Form der Randkurve

der Platte gewählt werden können, besteht der Vorteil bei Anwendung
solcher inneren Reaktionskurven darin, daß man sie beliebig und so bequem
als möglich für die Funktionen G und F wählen kann.

8) Vergl. Gans, a. a. O.
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B. Die Differenzengleichungen der Platten.
1. Die Reaktionskurve ist ein Kreis.

Ist die Reaktionskurve ein Kreis s mit dem Radius X (Fig. 7), so erhält

man für eine Punktbelastung im Zentrum eine GREEN'sche Funktion, die in

polaren Koordinaten (r, &) und mit dem Pol im Angriffspunkt der Kraft, a,

geschrieben werden kann:

(26)
1 1

2^ r
Daß G 0 längs s (r 0,

sieht
X), sieht man unmittelbar, und daß AG

kann man leicht durch Differentiation zeigen. Da fernerj—= — 2nr'
man auch, daß die entsprechende gedachte Belastung eine Einzelkraft im

Zentrum ist.
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Fig. 7.

Für eine Platte mit der Belastung p erhält man danach mit Hilfe der
Gl. (22) für das Skalarmoment

^=?s^prdrdQ^y^ds-
Als bekannte Größe, wenn die Belastung p gegeben ist, wird hier eingesetzt:

Pa ~\Td®\\-prdr, (27)

wonach man erhält

oder

Ua Pa +
1 In

Pa I Ua

Usd®

Usd®. (28)

Das Linienintegral in (28) gibt den Mittelwert von U längs der
Reaktionskurve s an, und es kann, falls man es wünscht, angenähert in eine

Summe von Mittelwerten für beliebige Teile derselben aufgelöst werden. Die
Formel (28) kann daher zur Aufstellung von Differenzengleichungen für die

Mittelwerte von U angewendet werden.
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Für Punkte einer Platte, die durch eiu Quadratnetz mit der Maschenweite
X bestimmt sind, kann man hiermit verfahren, wie in Abb. 7 für den Teil
um den Punkt a herum gezeigt wurde. Indem Uu U2, U3 und cV4 Mittelwerte
von U für jeden der Viertelkreise sind, welche die Quadratnetzpunkte 1, 2, 3
und 4 als Mittelpunkte haben, erhält man mit Hilfe der Gleichung (28)

Pa =Ua

oder

^•y(£/i + W-f-C/,+£/4)

U»

(29)— APa + Ui—AUa + Üt.
+ t/4

Für die Biegungsordinaten u erhält man eine ähnliche Formel, nur hat

man in der Gleichung (27) — anstatt p einzusetzen9).

Speziell für eine gleichförmige Belastung p erhält man mit Hilfe der
Gl. (27) 4/>a pXK
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Fig. 8.

Differenzengleichungen dieser Art, die einer rechteckigen Einteilung der
Platte entsprechen, würde man mit Hilfe einer GREEN'schen Funktion G
für eine elliptische Reaktionskurve erhalten.

2. Die Reaktionskurve ein Rechteck.
Ist die Reaktionskurve ein Rechteck und geschieht die Linienbelastung

längs eines Kreuzes, dessen Arme Xx, X'x und Xy, X'y parallel zu den Seiten des
Rechtecks sind, welches dadurch (wie in Abb. 8 gezeigt) in vier rechteckige
Felder geteilt wird, so können als GREEN'sche Funktion F die Gleichungen
für vier hyperbolische Paraboloide mit den Ordinaten Null längs der
Reaktionskurve und gemeinschaftlichen Ordinaten (die geradlinig verlaufen)
längs des Belastungskreuzes gebraucht werden.

9) Die Gleichung (29) für U oder u stimmt mit der Form von Differenzengleichungen
für Platten überein, die von N. J. Nielsen und H. Marcus (a. a. O.) angegeben sind,
bedeutet aber insofern eine Verbesserung, als der Knotenpunktdruck in Gl. (29) genau
definiert ist.
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Die Achsen des Hauptkoordinatensystems (x, y) sind parallel zu den
beiden Seitenpaaren der Reaktionskurve zu legen. Für jedes dieser vier
hyperbolischen Parabolo'ide F wählt man ein dazu paralleles sekundäres
Koordinatensystem (|, rj) mit den Anfangspunkten in den vier Ecken des Reaktionsrechtecks.

In jedem dieser rechteckigen Felder erhält die Gleichung für F dann die
Form:

F=Fxy~T> (3°)

wo Fxy der Funktionswert in der Mitte des Kreuzes ist.
Man sieht unmittelbar, daß diese Funktionen die Randbedingung F 0

längs der Seiten des Reaktionsrechtecks und AF 0 in allen Punkten der
Scheiben befriedigen.

Zur Bezeichnung der beiden Arten von geraden Linien (Systemlinien) in
der Belastungs- und Reaktionskurve verwendet man die Nummerierung ihrer
Schnittpunkte mit den Achsen des Hauptkoordinatensystems, sodaß (wie in
Fig. 8 gezeigt) Größen, die sich auf eine Linie beziehen, die Nummer der
Linie als Einzelindex, und Größen, die sich auf einen Punkt beziehen, die
Nummern der beiden einander schneidenden Linien als Doppelindex erhalten;
Xx und Xy nennt man die Fachlängen.

Für eine Platte mit der Belastung p findet man nun mit Hilfe der
Gleichung (25) für die Skalar-Momente

Fpdxdy
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dr\

JLJL
Xy Kx

+ FXJ
XyXm

Uy \Ff TxT*Fxy^^ &
'"y Ky k

Fxyi±)dVI Uxh
0 x; xx

hl lTb-i
o

FxyfY)dl+\ Uy+1
t-x t-yl Jq
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(31)

Durch Division durch Fxy auf beiden Seiten des Gleichheitszeichens ergibt
sich für die linke Seite
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r F
Fif 'w

pdxdy. (32)

Da F FXy im Punkt (x,y) gleich 1 ist, sieht man, daß Pxy den
Knotenpunktdruck im Punkt (x, y) bedeutet, wenn man sich denkt, daß die
Belastung indirekt auf die Platte durch ein einfach unterstütztes Rostwerk
in jeder Scheibe wirkt.

-Ä

u,4 ,V
iu.

y-/\r?

£»* $*
V.-..V». (4

Fig. 9.

Durch Umordnen der Glieder auf der rechten Seite des Gleichheitszeichens

in Gl. (31) erhält man die Form:

Pxy

m

+

+

1
üXy J„

y(Ux- Ux

Xx J.

lUx- 1 ~ Ux

\ Xx

[Uy- -1 ~ Uy
\ Xy

(Uy- 1 Uy
K

Ux -Ux+1)vdr,| j ^
Ux ~U^)r'dr

X'x )^aV

Uy ~ Uy+A e .t| ib^
Uy _ Uy+i \ t'rft

Xy 1 ' ^

(33)

Die auf der rechten Seite des Gleichheitszeichens in Gl. (33) auftretenden
Werte von U gehören ausschließlich zu den Linien des Reaktionsrechtecks
und des Belastungskreuzes (den Systemlinien), und man sieht somit, daß die
Glieder auf der rechten Seite die Belastungen der auf den genannten Linien

stehenden -t—Flächen (nach den Regeln für indirekte Belastung wie bei

Balken) verteilt auf die Endpunkte des Belastungskreuzes und dessen Mittelpunkt

bedeuten.
Man kann daher, wie in Abb. 9 gezeigt, die cV-Flächen der Systemlinien

ebenso wie bei Balken in einen niederen trapezoidalen Teil teilen, der nur
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durch die Werte von U in den Systempunkten bestimmt ist, und in einen

oberen Teil (A oder A'), der vom Verlauf der (/-Fläche zwischen diesen

Punkten abhängt.
Als Gleichung für die (/-Werte der Systempunkte ergibt sich hiernach

folgende Form

-lUx. +
Px

worin

ix-i,y-i.

CCx-i,y-i Ux-i,y-i + ax,y-l Ux,y-i + ax+i,y-l Vx+i,y-\

<Xx-i,y Ux-i,y —&<*xy Uxy + ax+i,y Ux+i,y +
(Xx-i,y+i Ux-i,y+i T ax,y+l Ux,y+i

+ [A]xy, (34)
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Teilt man die ganze Platte in rechteckige Scheiben durch zwei aufeinander

senkrechte Systeme von parallelen Linien, die (wie in den Abb. 8 und 9

angedeutet ist) mit Nummern versehen sind, so erhält man für jeden Systempunkt

eine Gleichung wie (34), die aus dieser durch Änderung der Indices

hergeleitet werden kann. Die Gleichung (34) kann dann als D i f f e r e n z e n-

g 1 e i c h u n g für die Bestimmung der Skalarmomente in den Systempunkten
aufgefaßt werden.

Zur Bestimmung der Durchbiegungen u erhält man eine ähnliche

Differenzengleichung, wo PXy für— als Belastung bestimmt werden muß.

"Wählt man speziell alle Fachweiten X gleich groß, so sind alle
Werte von a in Gl. (34) gleich eins.

Falls die Fachlängen so klein gewählt werden, daß die
tV-Fläche zwischen den Systempunkten als (annähernd) geradlinig
angenommen werden kann, so fällt der Beitrag [A]xy weg.

Bei großen Fachlängen kann der Beitrag [A]Xy der ^-Flächen
nicht weggelassen werden. In solchen Fällen muß man daher die Form der
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4-Flächen zwischen drei aufeinanderfolgenden Systempunkten schätzen. Mit
Hilfe der Zugfläche, deren Hauptform nicht schwierig zu erfassen ist, kann
eine solche Schätzung insofern Genüge leisten, als schon beim ersten
Durchrechnen eine befriedigende Annäherung zutage tritt, die gegebenenfalls durch
Umrechnen verbessert werden kann. Als brauchbare Kurven zur Begrenzung
geschätzter ,4-Flächen können in den meisten gewöhnlichen Fällen bei stetigen
Belastungen und bei Einzelkräften Parabelbogen bzw. Parabelbogen und
gerade Linien vorteilhaft benutzt werden.

Bei rechteckigen (nicht allzu länglichen) Platten kann man sich mit
einem einzigen Systempunkt auf der Platte begnügen, während die
übrigen auf dem Umkreis liegen. Bei einfach unterstützten Platten kommt
man hierdurch zu expliziten Ausdrücken für U (und u) in jedem
Punkte def Platte.

3itkF

U\

rX V

w^

Fig. 10.

Bei sehr länglichen rechteckigen Platten wählt man einen
Systempunkt für die kurze Rechteckseite und auf der langen Seite so viele, daß
die Fachweiten ungefähr die Hälfte der kurzen Spannweite ausmachen. Bei
einfach unterstützten Platten erhält man dann eine Reihe CLAPEYRON'scher

Gleichungen für U und auch für u.
Speziell für zylindrisch deformierte Platten (Balken) werden mit der

F-Achse als Erzeugerrichtung:

Ax-t Ax-i Ax A'x Ax+i Ax+i 0,

Ay-i ~ Ay ~ Ay+i Und Ay-i ^' Ay <^ Ay+i

woraus man sieht, daß [A]xy 0. Ferner ist

Ux-i,y—i Ux-i,y =z Ux~i,y+i =- Mx-i > Ux,y-i Uxy —_ Ux,y+\ =z Mxi
Ux+i,y-i Ux+i,y — Ux+i,y+i Mx+i •

Mit Hilfe der Gl. (34) erhält man dann für die Plattenbreite 1:

_p _ Mx-i — Mx Mx — Mx+i
Xx Ajj

welche als Differenzengleichung des Balkens wohlbekannt ist.
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Daß das Glied [A]xy identisch bei Balken und nicht bei Platten
verschwindet, ist also der fundamentale Unterschied zwischen den beiden Fällen.

3. Andere Reaktionskurven.
GREEN'sche Funktionen können viele andere Formen als die erwähnten

annehmen.

Bei einfach unterstützten polygonalen Platten kann man oft mit Vorteil
GREEN'sche Funktionen wählen, deren Zugflächen durch strahlenförmige
Linienbelastung von einem Punkt zu den Ecken des Randpolygons entstehen
und somit die Form von Pyramidenflächen erhalten. Das Linienintegral auf
der linken Seite in Gl. (25) wird für jede Belastungslinie proportional der
Summe ihrer Skalarmomente (da na konstant ist), und das Randintegral wird
null (da Us gleich null ist). Abb. 10 zeigt Beispiele für das Zentrum eines
gleichseitigen Dreiecks bzw. eines Quadrats. Da in dieser Figur a r ist,
erhält man:

Urdr F-pdf. (35)

C. Statisch bestimmte Platten.
Beispiele expliziter Bestimmung von U und u.

1. Auf allen vier Seiten frei aufliegende quadratische
Platte (Seitenlänge /) mit gleichförmiger Belastung p.

Abb. 11 und 12; Berechnung der Skalarmomente und Durchbiegungen
in verschiedenen Zehntelpunkten.
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Fig. 11.

Indem man die (/-Flächen des Belastungskreuzes als Parabeln mit
gemeinschaftlicher Ordinate U (im Punkte (2,3) schätzt (vergl. Abb. 11), und
die (7-Flächen des Randes gleich null sind, erhält man aus (32):

P2, s i pl2 (0,2 • 0,3 -f 0,8 • 0,3 + 0,2 • 0,7 + 0,8 • 0,7) \ pl2
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und danach mit Hilfe der Gl. (33):

+ (|-|^0'7^2-3i>-°-7/)]
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Fig. 12.

Für den Mittelpunkt (5,5) erhält man mit den in Abb. 12 gezeigten
parabolischen t7-Flächen mit gemeinschaftlicher Ordinate U im Punkt (5,5) und
indem P6,s % P^'-

U ~pl2 0,075pl2 im Mittelpunkt (5,5).
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Wenn die Skalarmomente der Platte auf diese Weise Punkt für Punkt
berechnet sind, können die Durchbiegungen u auf dieselbe Weise mit Hilfe
der Gl. (33) berechnet werden.

Für die Durchbiegung u im Mittelpunkt (5,5) der Platte erhält man (mit
den gefundenen Werten für U in den Zehntelpunkten) mit Hilfe der Gl. (32) :

fPM=f|u^
oder durch Auflösen des Integrals in eine Summe:

p6i6 ~0,1 /-0,l/(o,0750 +4-0,0723| + 4-0,0640-f + 4-0,0498-| + 4-0,0288-g

+ 4-0,0697-|-g + 8-0,0617-|-g + 8-0,0480-g-g + 8-0,0278-i-|

+ 4-0,0547-|-| + 8-0,0426-|-| + 8-0,0247-|-|

+ 4-0,0331-g-| + 8-0,0192-g-|

+ 4-0,0112-i-i)
Woraus sich ergibt

?P6>6 ^~ 0,1/-0,1/-1,35252

und mit Hilfe der Gl. (33):

— ^ • 0,0135252 — -|- U (l + -^

U Yq- 0,01352^- 0,004057^- im Mittelpunkt (5,5).

2. Auf allen drei Seiten frei aufliegende Platte, welche
die Form eines gleichseitigen Dreiecks hat (Seitenlänge

s) mit gleichförmiger Belastung/?, Abb. 10.

Mit Hilfe der Gl. (35) erhält man für U im Zentrum des Dreiecks,
indem die Scheitelpunktordinate der Zugflächenpyramide F0 genannt wird:

f 2

3n> Urdr p-3^-Y3^F0,
Jo 4

WämSM
r

3-2^f3-i Ur p-3^f3-hF0,

U i pr2 im Zentrum des Dreiecks.
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Zusammenfassung.
Die LAQRANGE'sche Differentialgleichung 4. Ordnung zur Berechnung

der Durchbiegungen u ebener Platten läßt sich bekanntlich in zwei sog.
PoissoN'sche Gleichungen 2. Grades auflösen (Gl. 12 und 13 oder 21). Von
den hierdurch bestimmten Flächen der Skalar-Momente U (Q\. 11)
und Durchbiegungen u erhält man ein anschauliches Bild durch die
Biegefläche einer (über die Randkurve der Platte ausgespannten)
entsprechend belasteten Membran, hier Zugfläche genannt.

Zur Auflösung der beiden PoissoN'schen Gleichungen (21) kann die
GREEN'sche Gleichung (19) dienen. Die GREEN'schen Funktionen sind
partikuläre Integrale einer PoissoN'schen Gleichung, die einer gedachten Punktoder

Linienbelastung entspricht und lassen sich somit als Zugflächen für
diese Belastungen darstellen. Als Stützkurve (Reaktionskurve) für die
Zugfläche ist man nicht ausschließlich auf die Benützung der Randkurve dev
Platte angewiesen.

Im zweiten Teil wird die Anwendung von geeigneten GREEN'schen
Funktionen gezeigt, durch die man entweder explizite Lösungen oder Differenzengleichungen

erhält. Beiläufig wird gezeigt, daß man mittels der Zugfläche
einer gedachten Punktbelastung im Zentrum einer kreisförmigen Reaktionskurve

(Abb. 7) die gewöhnliche 5-gliedrige Differenzengleichung von Nielsen
und Marcus (Gl. 29) erhält; und zwar mit wohldefiniertem Knotenpunktsdruck

(Gl. 27). Ferner wird gezeigt, daß man mittels der Zugfläche einer
gedachten Linienbelastung längs eines Kreuzes mit einem Rechteck als
Reaktionskurve (Abb. 8) erst eine Grundgleichung mit lauter Linienintegralen
der U (bezw. u) (Gl. 33) erhält und daraus schließlich eine 9-gliedrige
Differenzengleichung (34) mit genau definiertem Knotenpunktdruck Pxy (Gl. 32).
Die Gl. (33) und (34) eignen sich besonders für rechteckige Platten. Die
Fachweiten X können beliebig gewählt werden. Wählt man sie klein, können
die Segmentflächen A (bezw. A'), Abb. 9 und Gl. (34), vernachlässigt werden.
Bei rechteckigen (nicht allzu länglichen) Platten kann man sich mit einem
einzigen Systempunkt auf der Platte begnügen. Speziell für längs
des Randes frei aufliegende Platten erhält man hierdurch für U (bezw. u)
explizite Ausdrücke. Hierbei müssen die Segmentflächen A (A')
geschätzt werden, was ohne Schwierigkeit mittels der ungefähren Form der
Zugfläche der tatsächlichen Belastung geschehen kann.

Weiter wird auch die Anwendung der Zugflächen strahlenförmiger
Linienbelastungen erwähnt.

Zum Schlüsse wird das Verfahren der expliziten Bestimmung von U
(bezw. u) durch Beispiele erläutert.

Resume.
L'equation differentielle du quatrieme ordre de Lagrange, pour le calcul

des flechissements u des dalles planes, peut, ainsi qu'on le sait, etre de-

composee en deux equations, dites de Poisson et du deuxieme degre (equations
12 et 13, ou 21). On obtient une representation claire des aires ainsi de-
terminees (moments scalairesf/ (equation 11) et flechissements
u) par l'intermediaire de la surface flechie d'une membrane soumise ä une
charge correspondante, membrane dite „surface tendue".

Pour la resolution des deux equations de Poisson (equations 21), on
peut recourir ä l'equation de Green (equation 19). Les fonctions de Green
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constituent des integrales particulieres d'une equation de Poisson qui
correspond ä une charge ponctuelle ou lineaire supposee et peuvent etre con-
siderees comme representant les surfaces tendues correspondant ä ces
charges. En ce qui concerne les courbes de reaction supposees, on n'est pas
exclusivement limite ä l'utilisation des courbes qui en realite forment les
bords de la dalle.

Dans la deuxieme partie du rapport, l'auteur montre comment employer
les fonctions convenablement choisies de Green, gräce auxquelles on peut
obtenir soit des Solutions explicites, soit des equations aux differences. In-
cidemment, il montre comment, ä partir de la surface tendue correspondant
ä une charge ponctuelle fictive, appliquee au centre d'une courbe de reaction
de forme circulaire (figure 7), on peut obtenir l'equation differentielle
ordinale ä 5 termes, de Nielsen et Marcus (equation 29), et avec des efforts aux
noeuds nettement definies (equation 27). L'auteur montre en outre que, en
partant de la surface tendue correspondant ä une charge lineaire fictive, re-
partie suivant une croix et admettant un rectangle comme courbe de reaction
(figure 8), on peut tout d'abord obtenir une equation de base, avec integrales
lineaires, puis une equation differentielle (34) ä 9 termes, avec efforts nettement

dermis aux noeuds Pxy (equation 32). Les equations 33 et 34 s'appli-
quent particulierement aux dalles rectangulaires. Les valeurs des X peuvent
etre choisies arbitrairement. Si elles sont faibles, on peut negliger les
Segments A, ou A' (figure 9 et equation 34). Dans les dalles rectangulaires n'ad-
mettant toutefois pas une trop grande longueur, on peut se contenter de
prendre, sur la dalle, un seul noeud. Lorsqu'il s'agit de dalles reposant libre-
ment sur leurs bords, on obtient ainsi pour U, ou u, des expressions
explicites; les segments A (A') doivent alors etre estimes, ce qui peut se faire
sans difficulte au moyen de la forme approchee de la surface tendue de la
charge effective.

L'auteur expose ensuite l'emploi des surfaces tendues pour les charges
lineaires rayonnantes.

Enfin, il explique la methode de determination explicite de U (ou u) au
moyen d'exemples.

Summary.
The Lagrange differential equation of the fourth order for calculating

the bending u of flat plates can, as is known, be resolved into two so-called
Poisson differential equations of the second degree (Eq. 12 and 13 or 21).
Of the surfaces of the scalar moments U (eq. 11) and bendings u
thereby determined, a clear picture, as is known, is obtained by the bending
surface of a correspondingly loaded diaphragm stretched over the edge curve
of the plate, here called tension surface.

For solving the two Poisson equations (21) the Green equation (19) may
be used. The Green functions are particular integrals of a Poisson equation,
corresponding to a certain ideal loading at a point or line, and can
consequently be represented as tension surface for these loads. As supporting
curve (reaction curve) for the tension surface it is not absolutely necessary
to use the edge curve of the plate.

In the second part the application of suitable Green functions is shown,
through which either explicit Solutions or difference equations are obtained.
Incidentally it is shown that the usual 5-term difference equation of Nielsen
and Marcus (eq. 29) is obtained by means of the tension surface of a certain
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loading at a point in the centre of a circular reaction curve (fig. 7), with well
defined pressure at the point of intersection (eq. 27). Further it
is shown that, by means of the tension surface of a certain line loading
along a cross with a square reaction curve (fig. 8), a fundamental equation
with line integrals of the U (or u) (eq. 33) is obtained, and finally from
this a 9-term difference equation (34) with precisely defined pressure Pxy

(eq. 32) at the points of intersection. Eq. 33 and 34 are particularly suitable)
for rectangular plates. The X may be chosen as desired. If they are chosen

small, the segment surfaces A (or A') may be neglected (Fig. 9 and Eq. 34).
In rectangular plates (not too long in proportion to their breadth) a single
system point on the slab will be round sufficient. Especially for plates
supported along the edge, explicit expressions are thereby obtained
for U (or u). The segment surfaces A (Ä) must then be estimated, which
can be done without difficulty by means of the approximate form of the
tension surface of the actual loading.

Further the application of the tension surfaces to radiating line loading
is mentioned.

In conclusion, the method of the explicit determination of U (or u) is

explained by examples.
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