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DIE THEORIE DER ZYLINDRISCHEN SCHALENGEWOLBE
SYSTEM ZEISS-DYWIDAG UND IHRE ANWENDUNG

AUF DIE GROSSMARKTHALLE IN BUDAPEST

THEORIE DES VOÜTES MINCES CYLINDRIQUES (SYSTEME ZEISS-

DYWIDAG). APPLICATION A LA CONSTRUCTION DE LA HALLE DU
MARCHE DE BUDAPEST

THE THEORY OF CYUNDRICAL SHELL ARCHES, ZEISS-DYWIDAG
SYSTEM. APPLICATION TO THE LARGE MARKET HALL IN BUDAPEST

Dr. Ing. ULRICH FINSTERWALDER,
Oberingenieur der Dyckerhoff & Widmann A.-Q., Wiesbaden-Biebrich.

In den letzten Jahren sind eine ganze Reihe von Schalenbauten nach dem

System „Zeiß-Dywidag" ausgeführt worden, welche grosses Interesse in der
Öffentlichkeit gefunden haben. Das wissenschaftliche Rüstzeug, das zu diesen

Erfolgen geführt hat, ist der Fachwelt nur z.T. bekanntgegeben worden1).
Die vorliegende Veröffentlichung soll diese Lücke ausfüllen durch eine
gedrängte Besprechung der Theorie der querversteiften Zylinderschale und
ihrer Anwendung auf das z. Zt. kühnste Bauwerk dieser Art, die Großmarkthalle

in Budapest.
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Die Entwickelung2) nahm ihren Ausgang von halbelliptischen Tonnendächern,

deren spezifisches Merkmal in der Überhöhung der Querschnitte
gegenüber der Stützlinie für ständige Lasten besteht (Fig. 1). Die
Überhöhung, gemeinsam mit der Querversteifung durch die Binder, zwingt die

x) Handbuch für Eisenbetonbau XII. Bd., 3. Auflage.
2) Fr. Dischinoer und U. Finsterwalder „Schalenbauweise", Zeitschrift „Der

Bauingenieur" 9. Jahrg., 1928, Heft 44—46; U. Finsterwalder: „Die Schalendächer des
Eltwerkes in Ffm.", Zeitschr. „Beton und Eisen", 1928, Heft 11.
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Schale, ihre Lasten in tangentialer Richtung auf die Binder abzutragen. Im
Gegensatz zu den früher bekannten Tonnengewölben werden die Lasten also
nicht durch Gewölbewirkung auf die Kämpfer, sondern durch Trägerwirkung
auf die Binder getragen, und zwar ausschließlich durch Dehnungsspannungen
in den Flächen unter weitgehender Vermeidung von Biegungswirkungen. Die
Folge davon ist eine Verringerung der notwendigen Schalenstärke bis auf
ein durch die Knickgefahr und durch konstruktive Gesichtspunkte gegebenes
Minimum und die Möglichkeit einer Vergrößerung der Spannweiten, die man
vor ganz kurzer Zeit noch für unmöglich gehalten hätte. Die Entwickelung
ging über zu den Formen, die aus einer flachen Kreiszylinderschale und
beiderseitigen Randträgern zusammengesetzt sind (Fig. 2). In statischer
Hinsicht wurde dabei durch Vergrößerung der Überhöhung ein besseres
wirksames Trägheitsmoment des Schalenträgers, in praktischer Hinsicht eine
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größere Mannigfaltigkeit der Formen und zugleich eine Vereinfachung des
einzelnen Baugliedes, Schale, bezw. Randträger erreicht. Die genaue
rechnerische Behandlung wurde durch diese Vereinfachung erst möglich gemacht.
Heute ist die Kenntnis des Schalenträgers ebenso vollständig wie die eines
normalen Balkens mit rechteckigem Querschnitt.

Für die Berechnung wird die einfachste Form des Schalenträgers, eine
kreiszylindrische Schale vom Öffnungswinkel cak, Krümmungsradius R, Länge
zwischen den Querversteifungen L, konstante Wandstärke d, sowie
Randträger mit konstantem Querschnitt zugrunde gelegt.

Der Spannungszustand in der Schale setzt sich zusammen aus den
Spannungen, die zu dem biegungsfreien Gleichgewicht in den Flächen gehören
(Membranspannungen) und aus den Störungen, welche von den Schalenrändern

ausgehen. Die Störung an den Bindern rührt von ungleichen
Dehnungen von Schale und Binder her und ist auf eine schmale Randzone
beschränkt. Ungleich wichtiger ist die Störung, welche von den Randträgern
ausgeht, da diese weit in die Schale hineingreift und in den meisten Fällen
für die Trägerwirkung des Tonnengewölbes maßgebend ist.

Der Membranspannungszustand wurde im Handbuch für Eisenbeton,
Bd. VI, 4. Aufl., S. 269 u. ff., bereits behandelt. Die Spannungskomponenten
lassen sich aus den Gleichgewichtsbedingungen nach Fig. 3, die Verschie.-
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bungskomponenten nach Fig. 4 b, c und d in einfacher Weise ableiten. Wie
später gezeigt wird, ist es nötig, die Lastverteilung in der X-Richtung durch
eine Fourier'sche Reihe auszudrücken (vgl. Gl. 4). Bei praktischen
Rechnungen herrscht in der X-Richtung meist gleichmäßige Lastverteilung, bei
welcher die Last p 1 t/m, das zugehörige Moment M, bezw. die E • J fache
Durchbiegung ausgedrückt werden durch die Reihen
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Mit diesen Bezeichnungen ist
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Für den Kämpfer co 0

f rf*«i* gR*p cos2 yA + 2^M +
EdomB — gR2p sin q>k cos yA

Man denkt sich nun Schale und Randträger durch einen Schnitt voneinander
getrennt, in welchem jedoch die Membranspannungen übertragen werden,
nämlich ein Gewölbeschub T* und eine Schubkraft S, sodaß sich die Schale
im biegungsfreien Zustande befindet. Wenn diese Randkräfte vom
Randträger aufgenommen werden können, ohne daß eine Klaffung des Schnittes
entsteht, ist der biegungsfreie Zustand der Schale auch wirklich vorhanden.
In allen praktischen Fällen jedoch wird man den Randträger nicht zur
Aufnahme dieser großen Randkräfte konstruieren wollen und können. Vielmehr
wird man bestrebt sein, ihn so schwach wie nur irgend möglich zu
dimensionieren und die Schale selbst zur Übertragung ihres Endschubes auf die
Binder heranziehen. Es entsteht so ein aus Schale und Randbalken zusammengesetzter

Träger, bei welchem letzterer mehr die Rolle eines Zug-, bezw.
Aussteifungsgliedes übernimmt, welches meist nicht einmal in der Lage
ist, ohne Hilfe sein eigenes Gewicht zu übertragen. Es ist klar, daß es dabei
zu einer völligen Umwälzung des Membranspannungszustandes kommen
muß. Das Gleichgewicht ist nicht mehr ohne Biegungsspannungen möglich.
Es hat sich jedoch gezeigt, daß die Biegungsmomente fast ausschließlich in
der Querschnittsrichtung auftreten und durch entsprechende Anordnung der
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Randversteifung niedrig gehalten werden können. Selbst bei den größten
Spannweiten reichen die Mindestwandstärken der Schale aus.

Die Klaffung des statisch bestimmt gemachten Zustandes wird beschrieben

durch die Klaffung in vertikaler und horizontaler Richtung, durch die
Verdrehung der Endtangente der Schale gegenüber dem Randträger und
durch den Unterschied der Längsspannungen. Die Klaffung wird rückgängig
gemacht durch ein an beiden Schnitträndern angebrachtes Gleichgewichtssystem

von Vertikalkräften V, Horizontalkräften H, Schubkräften 5 und
Momenten M2 (Fig. 4a und 5). Der Einfluß dieser Kräfte auf den Randträger
läßt sich mit bekannten Hilfsmitteln untersuchen; dagegen ist deren Einfluß
auf die Schale Gegenstand dieser Arbeit. Der Schlüssel zur Lösung dieses
außerordentlich komplizierten Problems liegt in der Erkenntnis, daß bei
zwängungsfreier Abnahme der Kräfte am Binderrand die Lasten fast
ausschließlich durch tangential an den Binder gerichtete Schubabgaben 5 und
nicht durch normal hierzu gerichtete Querkräfte Nt abgegeben werden. Bei
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dünnen Schalen mit großem Binderabstand ist das unmittelbar einzusehen, da
eine Lastübertragung durch Biegungsmomente zu viel größeren
Deformationen führen würde, als man tatsächlich beobachten kann (man kann sich
davon in einfacher Weise überzeugen, indem man versucht, eine geschlossene
zylindrische Blechdose einzudrücken und zum Vergleich einen ebenen
Blechstreifen gleicher Dicke auf Biegung beansprucht). Eine Bestätigung dieser
Erscheinung bildet das Resultat der Rechnung, da man rückwärts aus den
Deformationen die vernachlässigten Biegungsmomente Mx errechnen und
ihren verschwindend kleinen Anteil an der Lastübertragung nachweisen kann.
Dies trifft auch auf ganz dicke Schalen zu. Die Vernachlässigung der
Biegungsmomente ist ungefähr auf eine Stufe zu stellen, mit der gleichen
Maßnahme bei Berechnung des Membranspannungszustandes einer Kugelschale.

Nach Vernachlässigung der M,, Nx und der Torsionsmomente H gelingt
es, die übrigen fünf Spannungskomponenten Tu T2, S, M2 und N2 von einer
Spannungsfunktion F abzuleiten, in ähnlicher Weise, wie dies für die
Scheibenaufgabe von Airy durchgeführt wurde. Zur Berechnung der fünf
Spannungskomponenten sind vier Gleichgewichtsbedingungen vorhanden; der
5. Zusammenhang muß durch Betrachtung der Formänderung gefunden werden.

Aus der Abb. 6 ergibt sich durch Anschreiben der Gleichgewichtsbedingungen

:
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L2 cxfd2/ d*f—- cos — —— -4 —
c2R3 L \dco2 M dco*

Der Aufbau der Gleichungen legt einen Ansatz der Spannungsfunktiori
nach Art einer Fourier'schen Reihe nahe, deren allgemeines Glied durch

cx
cos — dargestellt wird.

Durch Betrachtung der Formänderungen erhält man den Zusammenhang

zwischen Dehnungen und Verschiebungen
d£

_ dt)
dx ds R

Winkeldrehung in der Fläche
d § dt]

V ~ d~s~T~ d~x

Unter Vernachlässigung der Querkontraktion ist
7\ T* 2S

£l~Fd; S*-E~d'' y - Ed'
Durch Elimination der Dehnungen und Einsetzen der Spannungsfunktion
erhält man die Ausdrücke für die Verschiebungen.

fjz ] i(82F^diF\s

L3 cx(d2f d*f
c3R3 L \dco2 ' dco

2 (dF d3F\ 1 [[(d3F d6 F\ 5
Eär' WKdTo + dlo-3) + w)](olo-3 + d^)dX

cxX L2 Idf d3f\ L* (d3f d6f\~\
— C°S

L [2i2R2[dco^'Jc73)'^~c*R*[dco3~^dcol>)\

d*F 2 fd2F d*F\ 1 [[(d*F d6F\
- ~ dx2dco2 + R2 [dco2 + dco*) + R* J J [dco* + dco*) "*

-Cos^[^/ +2^^^ + -^U^-(^4-^lll L Idco2 ^ c2 R2 \dco2 ^ dco*) ^ c*R* \dco* ^ dco6) I

(5)
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Ferner benötigt man noch die Winkeldrehung der Querschnittstangente:

3-= V d- d5/7 2 (dF B3F d6F\ 1 CC/ci3/^ d5/7 d7M

JRdco3^* c2R3 \dco "*"z rfw« "*" rfco6/ "r c4/?6 \dco3 ^^dco5^ dcoV 1
cos -

Um die Differentialgleichung des Systems zu erhalten, leitet man die zu den
Verschiebungen r\ und f gehörige Krümmungsänderung x ab.

1 /r a2g\ _ 12Vkf2

und setzt die Spannungsfunktion ein

d8 f d6f d*f tf2f
~ + ^Al + 2a) + ^(\ + 2a + a2) + ^2(2a + a2) + 4a2b2f 0 (7)rfw8 dco6 v ' rfw4 v 'da

Abkürzungen i^! a; VT ^- 6. (8)

Die Lösung dieser Differentialgleichung lautet:

f — A M" sin /dw-fß e-A" cos Ki co + /TM'" sin Ki'co + £ e-71'" cos /C/« (9)

/ (a>) ist die Summe zweier gedämpfter Schwingungen, welche vom belasteten
Rand weg abklingen. J1 und J\ bestimmen die Dämpfung, Ki und K\ die
Wellenlänge der Schwingungen. Durch die Konstanten A, B, A' und B' wird

3 5die Anpassung an die Randbedingungen bei co 0 für M2, N2, T2 und —dx
erreicht. Die Werte / und K sind Formgrößen der Schale, welche zu einem
bestimmten Lastglied der Reihe Gl. (1) gehören; sie sind also eine Funktion
von R, L, d und c. Setzt man die Spannungsfunktion Gl. (9) in die
Ausdrücke für die Spannungs- und Verschiebungskomponenten Gl. (4), (5), (6)
ein, so lassen sich diese sämtlich auf die Form bringen

A (ae-ii" sin Ai w + ße^a cos Ki co) -f B(ae^a' sin K\ co -ßeJ^cos Ki <o) +
+ Ä(a e^'" sin Ki co+ ß'e^'ü'cos Ki'co) + B'(a'e^'u sin Ki'co-ße^'a cos K'co) '
Die Werte a, ß, a', ß' werden als Faktoren der Grundschwingungen
bezeichnet.

(Gl. 11 siehe Seite 133.)
Bei der Differentiation von / entstehen Ausdrücke

Jn Jl Jit-i Kl Kn-i! Kn J\ Kn-i + Kl Jn-1 >
1

Jn Jl Jn-l — A.1 Kn-i', Kit Ji Kn-l + Ki Jn-i ¦ I

Wie man aus diesen Gleichungen sieht, lassen sich die Ausdrücke einer aus
dem anderen entwickeln. Für J2 und K2 erhält man die Bestimmungsgleichungen

aus der Differentialgleichung Gl. (7) durch Einsetzen der
Lösung Gl. (9)

Ji-6JlKl+Ki+(^ + 2a)(Jl-ViKl) + (l + 2a + at)(Jl-Kl) + (2a+a2)Ji+4a2b1 0-

4Jl-4J1Ki + (l+2a)(3Jt-Kl) + (\+2a+a2)2j2 + (2a+a2) 0.

(6)
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Faktoren der Schwingungen Faktoren der Schwingungen
e'1" sin Ki "> und e^1™ cos Ki <" e^1'" sin ATi'<» und eJl'a cos ATi'<»

ß a' £
Mr, — 1 0 — 1 0

N2 ~RJi -^ -^-ATi'

T, §|| + *-«* + £¦/•' HE
95
dx -^-(A+ys) -±-(Ki+K,) -^-(A'+As) -^-(a:1'+/c8')

I ÄÄ -ak^™ IgHKä 7^(^t4|
Edv -|(yi+ys)-^(/s+y6) ~(Ki+K)-^2(K,+Ks)BHH |-(Ki'+/ry)-Ji(/&'+/&')

Edl -7i+-| (a+aj -K+ 1 (*,+«;) -yz+l-CA'+y/) - Ki + —(AV + K)a

BBp -^(^+AT6) -^(A'+Ae') -^(Ki'-Ke)

EdR» -/•+-§-(A+2/.+/.) -/Cs + |-(/<:i+2/g+a:6) -y.+-|(yi+2Ae+y6) - Ks+^(Ki+2K+K)

-^(/3+2yB+y,) -l(A3+2^ + /C7) -^(/8+2/6+y) -±-2(K+2K+K)

(11)

Eine explizite Lösung dieses Gleichungspaares gibt es nicht; doch war es
möglich, eine Näherungslösung zu finden, welche bei einigermaßen starker
Dämpfung der Schwingungen sehr genau ist. Sie lautet:

y2 mm yt'=!+z';
r (14)

K2 =-/G' + y-£.+j/fi + a»*» wobei z =-Z'= + j/|-+j/r_ + ,v

Zur Bestimmung der Korrekturen A J2 und A K2 setzt man die Näherungswerte
in die Bestimmungsgleichung Gl. (13) ein und findet die Fehler Z^und

A2. Da die AJ2 und A K2 im Vergleich zu J2 und Ka klein sind, erhält man
durch partielle Differentiation mit kleinen Vereinfachungen die Bestimmungsgleichungen

für A J2 und A K2

AJt(4J\-\2JiK\-6aJ\ + 6aKl+2a2J2) + AK2(-\2JlK^4K\+\2aJiKi-2a2Ki, -Ai\
Aj2(\2J\-\2aJ2 + 2a2-4K$ + AKi(-%J2Ki + 4aK2) -A2

Sind J2 und K2 vorhanden, dann ergibt sich J, und Ki aus:

yi

Ki

ii\z + Jl.
J- 2 '

\lhz h.
2 '

m

Ki

JiZ' Jj
2 "t~ 2

IJiz'
2

(16)
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Für /, wird das negative Vorzeichen gewählt mit Rücksicht darauf, daß nur
ein vom Rand weg abklingender Spannungszustand ins Auge gefaßt werden
sollte. Das positive Vorzeichen von A entspricht einem von der anderen Richtung,

d.h. von einem zweiten Rand herrührenden Spannungszustand, der auf
die Richtung (— co) bezogen genau die gleiche Dämpfung und Wellenlänge
besitzt.

Es sind nunmehr alle Vorbereitungen getroffen, um für einzelne Lastfälle

die Berechnung der Verschiebungsgrößen in Angriff nehmen zu können.
Wie anfangs ausgeführt wurde, handelt es sich bei dem Zusammenhang der
Schale mit einem Randträger um ein vierfach, mit zwei Randträgern um ein
achtfach statisch unbestimmtes System. Eine Vereinfachung auf drei, bezw.
sechs Unbekannte läßt sich erreichen durch Vernachlässigung der Torsionsdrehung

der Randträger gegenüber der Winkeldrehung der Schale. Die
dadurch hervorgerufene Ungenauigkeit ist meistens ganz geringfügig. In dem
anschließend behandelten Beispiel ist für das gleiche angreifende Moment
die Winkeldrehung der Schale hundertmal größer als die Torsionsdrehung
des recht schmalen Randträgers. Die statisch unbestimmten Größen T2, N2,

bezw. V, Fi, sowie — greifen dann nicht mehr zentrisch am Rand, sondern
dx

derart mit einem Moment M2 kombiniert an, daß die Winkeldrehung ü zu
Null wird.

Die Klaffung zwischen Schale und Randträger im statisch bestimmten
Zustande muß zunächst in eine Reihe von cos-Schwingungen zerlegt werden,
bei gleichmäßiger Last nach Gl. (1). Für jedes Reihenglied ist die gesamte

I-M2

-^CAy
Fig. 7.

statisch unbestimmte Rechnung gesondert durchzuführen. Aus den
Ausdrücken für die Spannungs- und Verschiebungsgrößen Gl. (4), (5) und (6)
ist ersichtlich, daß diese sämtlich cos-förmigen Verlauf von gleicher Wellenlänge

haben. Das Gleiche ist für einen Randträger mit konstantem
Trägheitsmoment der Fall. Es läßt sich deshalb für jedes Lastglied die Klaffung
auf ihrer ganzen Länge schließen und der Zusammenhang von Schale und
Randträger mit voller Genauigkeit herstellen. Die Ausdrücke Gl. (10) lauten
in vereinfachter Schreibweise:

A a -f B b + A'a + B'b', wobei j

a a e-fi" sin Ki co+ ßeJi "cos Ki w; b a e-A °> cos Ki | -ß e^ <" sin Ki co\ (n)
a oV»,<a sin Ki co + ß'eK" cos Ki'co; b'— aV',<a cos Ki'co - /SV»'*» sin K'co J

In den Werten a, b, a', b' können die vom zweiten Rand herrührenden Schwingungen

berücksichtigt werden. Es ist zweckmäßig, die statisch unbestimmten
Lastfälle in symmetrische und antisymmetrische zu zerlegen. Hierbei ist in
Bezug auf die Vorzeichen Vorsicht geboten, insofern, als symmetrisch lie-

dS
gende Tu M2, T2 und f gleiche, dagegen symmetrisch liegende A^, —, ?; und
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# entgegengesetzte Vorzeichen besitzen (Fig. 7). Dementsprechend sind die
beiden Randwerte der Grundschwingungen M" sinKiCo u. s. w. für den
symmetrischen Lastfall das erste Mal zu addieren, das andere Mal zu subtrahieren,
im antisymmetrischen Lastfalle umgekehrt.

Die a- und 6-Werte werden für den Rand und für die zu betrachtenden
Zwischenpunkte aufgestellt. Sie können auch für die Werte V, H, öa und dß

zusammengesetzt werden, und zwar für den Kämpferpunkt w
Form

V + A2 sin cpk — A/j, cos cpk

Ef — 7~2 cos cpk — Af2 sin cpk

dA — tj sin cpk -\- t cos cpk

öB + r\ cos cpk + £ sin cpk

Im nächsten Rechnungsgang werden für die sechs Lastfälle (drei
symmetrische, drei antisymmetrische) die Bestimmungsgleichungen für A, B,
Ä, B' aufgelöst.

4
V : Aa + Bb + Aa+Bb — -Tt

0 nach der

(18)

H :

'&$¦

dx'
¦9- :

V :

H :

d_S_

dx'
S- :

Aa + Bb + Äa +B'b' — 0;

Aa + Bb + Äa +B'b' — 0;

Aa + Bb + A'a +B'b' 0;

4
Aa + Bb + A a +Bb =—;Tt

Aa + Bb + A'a +B'b' 0;

Aa + Bb + A'a +B'b' 0;

Aa + Bb + A'a +B'b' — 0;

0; 0;
4

_

7C

0;

0;
4 \

7t

symmetrische
Lastfälle

0; 0;

0; 0;
4

Tt

0;

0;
4

antisymmetrische
Lastfälle.

}
7t

0; 0;

(19)

Zur Erläuterung wird der erste Gleichungssatz besprochen. Auf der linken
Seite stehen als Funktion der unbekannten Konstanten A, B, A', B' die Aus-

3 S
drücke für Vertikalkraft V, Horizontalkraft Ff, Änderung der Schubkraft -—

3 x
und Winkeldrehung #. Da alle Ausdrücke die gleiche Abhängigkeit von x,

cxnämlich cos y- besitzen (s. Gl. (4), (5) und (6)), genügt es, die Werte für

x — 0 anzuschreiben. Auf der rechten Seite steht im ersten Gleichungssatz
4

für V der Wert der angreifenden Vertikalkraft —, während die übrigen

rechten Seiten zu Null werden müssen, da weder eine Horizontalkraft noch
eine Schubkraft angreifen und auch keine Winkeldrehung eintreten soll. Die
Auflösung dieser sechs Sätze von vier Gleichungen gibt sämtliche Konstanten
A, B, aus welchen sich alle Verschiebungsgrößen, nämlich die symmetrischen
Größen, Vertikalverschiebung Sa, Horizontalverschiebung dB, Längsspannung
ao und die entsprechenden antisymmetrischen Größen 'Se, gV, oh bestimmen



136 Ulrioh Finsterwalder

nach der Form Aa + Bb -\- A'a' + B'b'. Es ist zu beachten, daß die
antisymmetrischen Größen für den Punkt co 0 angeschrieben werden.

Die Klaffungen A werden als Differenz der Verschiebungen von Schale
und Randglied gefunden. Nunmehr können die Gleichungen für die Bestimmung

der statisch unbestimmten Größen angeschrieben werden.

Xa Aaa -f" Xß Aba -\- Xd Ada -f- XeAea -f- XeAea -\- XuAha + ^mA 0

Xa Aab -\- Xß ABß -f- Xd Adb 4~ XeAeb + XeAeb + XhAhb -+- Amß 0

Xa Aad -4- Xß Abd -\- Xd Add + XeAEd -+- XfAed -f- XhAHd -f- z(m£> 0

|j^+ Ab^be + Xß4£ + A-£zI££ + XfAfe + ^//4WC -f zW 0

X4 Zf^ + Xß ZfBF -)- XD ADF + *£ ^£F + |JM + ^W 4w -4-AmF=0
XaAah~\- XßAßn-\- XdAdh -\- XeAeh~\- XfAeh-\- XhAhh -+- AmH 0

Die endgültigen Spannungs- und Verschiebungsgrößen setzen sich
zusammen aus dem statisch bestimmten, dem symmetrischen und dem
antisymmetrischen Anteil. Die beiden letzteren werden abgekürzt geschrieben:

(20)

aYA + bYB + d YA- + b' Yß- (21)

(22)

Die Werte a, b, a', b' gehören dem symmetrischen, bezw. dem
antisymmetrischen Lastfall und einer bestimmten Spannungs- oder Verschiebungsgröße,

sowie einem bestimmten Punkt des Gewölbes an. Die F-Werte lauten

im symmetrischen Fall
YA AaXa + AbXb + AdXd
Yß Ba Xa -j- Bb Xb -f- Bd Xd
Ya- A'aXa-\- A'b Xb + A'DXD
Yß> B'a Xa + B'b Xb -4- B'd Xd

im antisymmetrischen Fall
YA AeXe+ AfXf + AH X„
Yß Be Xe + Be Xe -\- Bh Xh
Ya- BHH A'fXf + A'„X„
Yß- BeXe -f- Be Xe -f- Bh Xh

(23)

V./4

w-Ü20

Jnnenfetd ^.
Tra^ee mediane /
Centre Span

Hussenfeld
Travee d Extremife

end Span
I

020 0.20

tt 80 11.80

Fi' 0396m2
Jv. 0.199 m*

Fig. 8.

Fi '0737m'
Jr =04326m1
JH .00023Im"

Die Berechnung eines Gewölbes mit zwei ungleichen Randgliedern ist
hiermit erledigt. Es soll jetzt noch untersucht werden, wie der Einfluß der
Kontinuität aneinandergereihter Bogen verfolgt werden kann. Vorausgeschickt
sei, daß dieser Einfluß meistens sehr klein ist. Das zwischen dem Außen-
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und Innenfeld gelegene erste Randglied wird für den ersten Rechnungsgang
halbiert und in wagerechter Richtung als unverschieblich angesehen. Daß

dies nicht genau richtig ist, ergibt der Vergleich der für dieses Randglied am

Innen- und Außenfeld errechneten Kräfte und Verschiebungen. Es wird ein
*\ C

kleiner Unterschied der Ff, V, ÖA, oD, M„ — festzustellen sein. V, M2 und
<jX

— können ohne weiteres verschieden sein; dagegen bringen Ff, dA und oD

eine Klaffung mit sich. Es muß deshalb ein Spannungszustand der beiden

aneinanderstoßenden Schalen gefunden werden, bei welchem diese Klaffung
aufgehoben wird. Da jeder Spannungszustand der Schale durch vier Rand-

nTffTrrmrmr^^

«_. «._* H 1 _~.„.„
h Jl | h

F
i

Fig. 9.

±

gffgggs^g^^g^g^BgwyH^Tgf^g^!T=7"P

Fig. 10.

Großmarkthalle in Budapest —gLa halle du Grand Marche de Budapest —

Large Market Hall in Budapest.

werte-bestimmt ist, benötigt man noch eine vierte Bedingung, welche durch

$ 0 gegeben ist. Die beiden Randwerte der Schalen mittein sich aus, und
da dies an den Randträgerhälften auch der Fall ist, kann der Randträger für
die Korrekturrechnung außer Ansatz bleiben.

Anwendungsbeispiel: Großmarkihalle Budapest
Eine Anwendung dieser Theorie wird im Folgenden für die Dachkonstruktion

der Großmarkthalle in Budapest gezeigt (Baujahr 1930/31, Bauherr

Stadt Budapest, Architekt Aladar v. Münnich, Konstruktion Dyckerhoff
& Widmann A.-G., Wiesbaden, Ausführung in Licenz durch die Fa. Katona

Szekely & Molnar).
Die Halle ist 234,1 m lang und 48,1 m breit und wird überdeckt

durch 18 Tonnengewölbe mit je 41 m Trägerspannweite und 11,80 m Ge-



138 Ulrich Finsterwalder

wölbebreite. Auf der einen Seite der Halle ist eine Laderampe angeordnet,
welche von einem Schalenkragdach überdeckt wird. Die Anordnung geht aus
den Konstruktionszeichnungen Fig. 9 und 10 hervor. Je drei Tonnen sind
zu einem Bauteil zusammengefaßt und gegen die Nachbarabschnitte durch
Dehnungsfugen abgetrennt. In der Dachfläche werden diese Dehnungsfugen
durch ein schmales Schalengewölbe gebildet, das als Einhangträger sich auf
die beiden Randträger der großen Tonnen mit einer Rutschfläche auflegt.

Erstes Lastglied c + n.
R 10,00 m <pK 35° 27' 3" 0,618734
a 0,06 m sin $ft 0,58000
L 41,00 m cos yK 0,81463

c3-R3Gl. 8: a + 0,58713

R

Gl. 14: MS

Z'

b y 3 • -^ + 288,683

m]/T + l/o$ + fl3/*a 113'02066

13,02066

+ 13,31422

— 12,72710

Die /2-Werte wurden nach Gleichung 15 korrigiert
Allgemein ist/„ ¦=J1.Ja_1 - KvKn_x
nach Ol. 12: Kn =JX • Kn_x + Kx K

1 2 3
Index

4 5 1 6 7

/KIK'

— 3,94189
+ 1,65145
— 1,63215
+ 3,98680

+ 12,8112—28,9983- 13,0198 +72,4791
- 13,2307 + 73,4791

- 13,0141 - 31,5072

5,3886
— 333,5989
+ 5,6843
+ 344,3712

+ 572,163
+ 1306,094

- 1382,217
— 539,403

— 4412,37
1 + 24334,86

— 4203,58 + 9283,03
+ 4406,47+11267,86
— 4630,25 + 25124,97

Tabelle der Werte «, ß und a', ß' der Gleichung 11.

Faktoren der beiden Schwingungen
«^"•sin/dcü und eJlCÜ -cos Ä>

Faktoren der beiden Schwingungen
eA'a ¦ sin HH und eJ<a j «>s Ki'co

1 ß a ß'

M2
N2
T2
dS

ox
T
Ed-n
Ed-Z,
E-d-R-if

— 1,000
+ 0,394189
+ 1,28112

+ 0,329402

— 1,264217
— 1687,8694
+ 12828,0249
— 72061,1

0,000
— 0,165145
— 1,30198

- 0,741306

+ 59,036148
— 3746,5614
+ 11994,2149
-29841,0

— 1,000
+ 0,163215
— 1,32307

0,718469

+ 1,285303
+ 4041,2501

- 12811,6372

- 29167,5

0,000
— 0,398680
— 1,30141

+ 0,275204

- 56,436724
+ 1562,4016
+ 13574,6731
-71670,9
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Grundschwingungen.

Pkt.

,/ia ¦ sin Ki ">

Hauptschwg. Oegenschwg. Lastfall
vom vom i

1. Kämpfer 2. Kämpfer | Symmetrisch|Antisymmetr

0,000
+0,14456
+0,074807

0,026015+0,14456
+0,00689 0,000

+0,00689 +0,00689 —0,00689
+0,026015+0,170575 +0,118545
+0,074807+0,149614 0,000

+0,170575-0,118545
+0,00689 1+0,00689

J,". cos Ki <"

Haupt-
Gegenschwingung Schwingung

+ 1,000
+0,25874
+0,046057
+ 0,001103
- 0,00347

-0,00347
+0,001103
+0,046057
+0,25874
+ 1,000

Lastfall

Symmetrisch Antisymmetr,

+0,99653 +1,00347
+0,259843 +0,257637
+0,092114 0,000
-0,259843-0,257637
+0,99653 -1,00347

Pkt.

eJl'a ¦ sin Ki'co «¦" a • cos Ki co

Hauptschwg. 1 Gegenschwg.
vom vom

1. Kämpfer | 2. Kämpfer

Lastfall

Symmetrisch Antisymmetr. Hauptschwingung Gegenschwingung

Lastfall

Symmetrisch Antisymmetr.

0
l
2
3
4

0,000 -0,1306
+0,56964 -0,11506
+0,23019 +0,23019
-0,11506+0,56964
—0,1306

1

0,000

-0,1306 1 +0,1316
+0,45458 i +0,68470
+0,46038 0,000
+0,45458 —0,68470
—0,1306 -0,1306

+ 1,000
+0,20205
—0,28365
—0,18844
+0,02747

+0,02747
—0,18844
—0,28365
+0,20205
+1,000

+ 1,02747
+0,01361
—0,56730
+0,01361
+ 1,02747

+0,97253
+0,39049

0,000
-0,39049
—0,97253

Symmetrischer Belastungszustand
für co 0° (Kämpfer)

a b a' b'

a.eA"-smKiCo+-
ß-eJl"- cos Kxco

a ¦ eJll° ¦ cos Kico —

ß ¦ eJ** ¦ sin Kiu>
a. eJl'l° ¦ sin Ki'co +

ß". eJl'a- cos Ki'co
a ¦ e^a • cos Ki co —
ß'. eJl'" ¦ sin Ki'co

Mt
N2
T2
dS
dx

1
E d • v
Ed-t,

E-d-R-ft

— 0,006891
— 0,168435
— 1,28863

— 0,74615

+ 58,8226
— 3747,93
+ 12040,98
— 29448,1

— 0,996525
+ 0,3$W21

+ 1,28564

+ 0,32544

— 1,66659
- 1719,54

+ 12700,87
— 72520,1

+ 0,13059
— 0,366414
— 1,16438

+ 0,17382

— 58,1540
+ 2047,27
+ 15620,77
-73511,1

— 1,02747
+ 0,210795
— 1,52936

— 0,73467

— 6,0500
+ 3726,19
-11390,72
— 19006,7

Durch Umwandlung nach Gleichung 18:

V
H

E.d-SA
E-d-8.B

— 0,60816
+ 1,14898
+ 11993,99

+ 3908,60

+ 0,42202
— 1,27729
+ 11358,84

+ 5945,58

— 0,37472
+ 1,16214
+ 11562,00

+ 10708,75

— 1,05690
+ 1,12599
—11450,80
— 3550,10

Gleichungen der A, ß-Werte für die 3 Lastfälle.

A B A' B"
Tt TZ

SS 4

9x-~ n

— 0,60816
+ 1,14898
— 0,74615
— 29448,1

+ 0,42202
1 - 0,37472

— 1,27729 +1,16214
+ 0,32544 +0,17382

- 72520,1 - 73511,1

- 1,05690
+ 1,12599
— 0,73467
119006,7

+ 1,27324
0
0
0

0

+ 1,27324
0
0

0
0

+ 1,27324
0
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Damit errechnen sich:

Ulrich Finsterwalder

für Fall V + —
TZ 7t

SS _ 4

dx n

A
B
Ü
B'

+ 2,55428
— 0,20382
— 0,12070
— 2,71307

+ 0,68028
— 0,61748
+ 0,55221
— 0,83379

— 2,42505
— 0,40287
+ 1,15564
+ 0,82483

Antisymmetrischer Belastungszustand
für co 0° (Kämpfer).

a b a' |
a-e^-sm. Rico + a e^°' ¦ COS KiCO — et'¦eJl'ü>-sin Ki'co+- «'. £-" a. cos Ki'co —
ß-eAa-cosKiCo ß-eAa-sinKiCo ß"-eJl'a-cos Ki co ß'- eJ<a ¦ sin Ki'co

M%
N2
Tt
SS

dx

+ 0,006891
— 0,161855
— 1,31533

— 1,003475
+ 0,393957
+ 1,27660

— 0,13059
— 0,430946
— 1,43844

— 0,97253
+ 0,115635
— 1,11678

— 0,736460 + 0,333366 + 0,376588 — 0,702268

Tx
E-d-r}
E-d-Z,

E-d-RtJ

— 59,2497
— 3745,19
+ 11947,45
— 30233,9

— 0,8618
— 1656,20
+ 12955,18
— 71608,1

— 54,7185
+ 1077,53
+ 11528,58

- 69830,7

+ 8,6206
+ 4356,31
— 14232,55
— 39328,1

Durch Umwandlung nach Gleichung 18:

V
Hmm

E-d-SB

- 0,62898
+ 1,16696
+ 11916,09

+ 3856,71

+ 0,41717
— 1,26965
+ 11530,20

+ 6144,41

- 0,48063
+ 1,42311

+ 8783,86

+ 7549,70

— 0,74053
+ 0,84438
— 14134,32
— 4680,20

Gleichungen der A, Ä-Werte für die 3 Lastfälle.

A B A' B K=+-i
TZ 7t

3S_ 4

Sx iz

— 0,62898
+ 1,16696
— 0,73646
— 30233,9

+ 0,41717 1—0,48063
-1,26965 +1,42311
+ 0,333366 + 0,376588
-71608,1 -69830,7

— 0,74053
+ 0,84438
— 0,702268
— 39328,1

+ 1,27324
0
0
0

0

+ 1,27324
0
0

0
0

+ 1,27324
0

Daraus errechnen sich:

A
B
A'
B'

für Fall V H

+ 5,89925
+ 1,09843

- 0,37640
— 5,86689

+ 2,02405
— 0,089253
+ 0,33370
— 1,98602

es
dx

— 2,93637
— 0,56862
+ 0,99331
+ 1,52904
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Spannungen und Verschiebungen am Tonnenrand (co 0°)
allgemein aus A ¦ a + B ¦ b + A- a' + B- b'.

Symmetrischer Belastungszustand Antisymm irischer Belastungszustand

4 1 4V=+ — H=+—7t 7t

95 _ 4
OX 7 TZ

k= + A
TZ TZ

85_ 4
Sx Tt

Ti + 174,02 + 13,97 — 214,17 + 318,61
1 + 84,62 — 214,16

SA + 0,4598 + 0,1355 - 0,2361 + 1,2905 + 0,4295 — 0,4320
sb + 0,1355 + 0,0624 — 0,0191 + 0,4295 + 0,1510 - 0,1149

Innenfeld.
Formgrößen:

Schale. R 10,00 m
d 0,06 m
L 41,00 m

sin fK= 0,58000
cos <fK 0,81463

Randträger.
F 0,396 ma

Jv 0,199 m*
a 1,54 m

Belastungen:
Schale. 0,065 m3 Beton • 2,4 t/m3 0,156 t/mJ

Eindeckung u. Isolierung 0,025 „
Schnee auf Bogen verteilt 0,072 „

g 0,253 t/m2
Randträger.

Beton 2,45 0,10.2,40 t/m3 0,588 t/m
Gefällbeton 0,078 „

q 0,666 t/m

Für das 1. Lastglied ist in Feldmitte (je 0) bei

p ^t/m
4L*M„

E-f-S 4L*

216,86

36935,7 S„

Verschiebungsgrößen der Schale im statisch bestimmten Zustande. Gl.3:

sma [g-R*-p-cos* 9K+2g-M + ^ • cTj ^ + 0,00253 m

8mB g-Ri-p- sin s»a:cos 9>ic -£—; + 0,0001208 m

<rmD=JR-Tä-g-cos ?K- Mm= — 149,3 t/m3.

Die Verschiebungsgrößen des Randträgers im statisch bestimmten Zustande
werden nach bekannten Regeln berechnet.
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Zusammenstellung der Klaffungen.

Lastfall V Lastfall M
SS

Lastfall &£
9a:

Lastfall tn

Vertikal

-

VerschiebungSa

Schale

Randglied
Klaffung

+ 0,4598

— 0,0885

JAA ~ + 0,5483

+ 0,1355

0

^j4B- +0,1355

— 0,2361

— 0,1362

^D- 0,0999

+ 0,00253

+ 0,12520

JAm- 0,12267

3§
CD
O 41 "tt

O »

Schale

Randglied
Klaffung

+ 0,1355

0

JBA + 0,1355

+ 0,0624

0

JBB + 0,0624

— 0,0191

0

JBD — 0,0191

+ 0,0001208
0

^m + 0,0001208

Längsspannungen ff

Schale

Randglied
Klaffung

+ 2900,3

+ 1679,9

JaA + 1220,4

+ 232,8

0

JaB + 232,8

— 3569,5

+ 3156,4

JaD — 6725,9

149,3

— 2216,9

Aom + 2067,6

Gleichungsansatz,

mi JB.XB 4D-xD — 4m

+ 0,5483
+ 0,1355
+ 1220,4

+ 0,1355
+ 0,0624
+ 232,8

— 0,0999
— 0,0191
— 6725,9

+ 0,12267
— 0,0001208
— 2067,6

Ergebnis: XA + 0,57255 t/m; XB - 1,12940 t/m; ^ + 0,37220 t/ma

Berechnung der K-Werte aus Gleichung 22:

Ya XA-AA + XB-AB + XD-AD
Ya - 0,2084588; Yb + 0,4307366

Ya — 0,262634; Yb' — 0,304684

Die Spannungen lassen sich in der einfachen Form anschreiben. Gl. 21:

Ya-a-\- Yb-b+- Ya- a' + Yb'¦ b'.

Viertelspunkt

Faktoren ab für die Zwischenpunkte.
1. Symmetrischer Lastzustand.
10ff 3 c

o —fi bezw. —

a b d b'

M2
Nt
Tt

— 0,170575
+ 0,004182
— 0,119783

- 0,259843
+ 0,121135
+ 0,554975

— 0,454580
— 0,043928

- 0,619153

— 0,013610
+ 0,336710
+ 0,573588

SS

dx
— 0,151939 + 0,172744 — 0,384472 — 0,468987

7\
Ed-t]
Ed-Z
Ed-R-tJ

+ 15,124486
— 1165,341
+ 5304,753
— 16230,629

— 10,398589
+ 9,278
+ 1287,359
— 15028,105

- • 0,183831
+ 3377,146
— 5639,163
— 47957,757

+ 25,672499
+ 508,292
— 6345,141
+ 37683,448
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a b d V.

M2
Tt
7\
Ed-Z

— 0,149614
+ 0,071742
+ 5,248911
+ 3024,087

- 0,092114
+ 0,312803

- 8,949086
— 612,861

— 0,460380
+ 0,129175
+ 32,608282
— 13599,134

+ 0,567300
+ 1,349721
+ 25,253187
+ 1018,534

Nt\ g-; Ed.r, und Ed-R d- 0.

2. Antisymmetischer Lastzustand.

Viertelspunkt
4

a b a' b'

M2
m
Tt
es
Sx

— 0,118545
+ 0,024327

- 0,183568

— 0,257637
+ 0,130597
+ 0,484407

— 0,684700
- 0,068947

— 1,414094

- 0,390490
+ 0,183380
+ 0,374429

— 0,136435 + 0,212041 — 0,322980 — 0,134558

1
Ed-n
Ed-Z,
Ed-R»

+ 15,060029
- 1261,426

+ 3610,852
— 20045,797

- 7,324149
+ 201,511
+ 1883,120

- 13634,443

-21,157929
+ 1857,634
— 3471,354
—14202,223

+ 39,144123
— 657,050
— 14297,395
+ 32196,285

bei drehen sich die Vorzeichen um.

I h '"¦ I \co=Jf

a I a' <y

n
es
dx

+ 0;043764 + 0,061018 + 0,301312 + 0,096625

- 0,019002 + 0,141253 — 0,486892 + 0,280889

Ed-v
EdR-fr

— 597,640
— 13530,123

+ 405,062
— 2173,205

+ 974,161

+ 27230,768
- 3011,899

+ 49542,572

Mt; Tt; T und Ed-i- 0.

Somit die endgültigen Spannungs- und Verschiebungsgrößen.

Afa

mt/ra
n
t/m

Tt

t/m

es
Sx
t/m»

7\
t/m

V

m m

d-

Kämpfer
Viertelspunkt
Scheitel

-0,1490
+0,0472
—0,0604

+0,2371
—0,0173

0,00

—1,0302
—2,8174
—3,547

-0,8476
—0,5461

0,00

- 4,82
—25,858
—32,18

—0,01441
-0,00707

0

+0,02056
+0,02511
+0,02132

0
0,001568

0

Außenfeld, siehe Systemskizze Fig. 8.

Verschiebungsgrößen der Schale
wie im Innenfeld.

Die Verschiebungsgrößen des Außenrandgliedes 8a und die des Innenrand-

gliedes 82 werden zu symmetrischen (—"JT -) und zu antisymmetrischen *~~ -)
zusammengesetzt, die dann mit den entsprechenden Schalenrandverschiebungen
verglichen werden.



Verschiebungsgrößen der Randglieder (Innen und Außen).

Lastfall

A B D P. E H m

ü
c

iSa
-0,088473
-0,040566

0
0

-0,13625
-0,06022

-0,088473
+0,040566

0
0

— 0,13625 1+ 0,12520
+0,06022 + 0,10622

ertikal- chiebu Si + Sa
Si — Sa

-0,129039
—0,047907

0
0

—0,19647
—0,07603

—0,047907
—0,129039

0
0

-0,07603
—0,19647

+ 0,23142
+ 0,01898

il-

V

ng

vers Sa
Se 1

—0,064520
—0,023954

0
0

-0,09824
-0,03802

—0,023954
0,064520

0
0

—0,03802
—0,09824

+ 0,11571

+ 0,00949

ft
Sa

0
0

0
—7,613961

0
+0,67749

0
0

0
+7,613961

0
—0,67749

0
-12,69261

rizonti chiebu
Si + 8a
Si — Sa

0
0

—7,613961
+7,613961

+0,67749
—0,67749

0
0

+7,613961
- 7,613961

—0,67749
+0,67749

—12,69261
+ 12,69261

> Sb
Se

0
0

—3,806981
+3,806981

+0,33875
—0,33875

0
0

+3,806981
-3,806981

-0,33875
+0,33875

— 6,34631
+ 6,34631

ung

St
Sa

+1679,90
+ 741,46

0
—8355,33

+3156,40
+2135,87

+1679,90
— 741,46

0
+8355,33

+3156,40
—2135,87

— 2216,87
—15781,26

sspann Si + Sa
Si — Sa

+2421,36
+ 938,44

—8355,33
+8355,33

+ 5292,27
+1020,53

+ 938,44
+2421,36

+8355,33
—8355,33

+1020,53
+5292,27

—17998,13
+13564,39

Läng Sd
Sh

+1210,68
+ 469,22

—4177,67
+4177,67

+2646,14
+ 510,27

+ 469,22
+ 1210,68

+4177,67
—4177,67

+ 510,27
+2646,14

— 8999,07
+ 6782,40

Zusammenstellurig der Klaffung en.

A B D
Lastfall

E E H m

Symmetrischer

Lastzustand

Horizontal-

Vertikal¬

verschiebung

Verschiebung

Tonne
Randgld.

Klaffung

+0,45980
—0,06452

+0,52432

+0,13550
0

+0,13550

—0,23610
-0,09824

—0,13786

0
-0,023954

+0,02395

0
0

0

0
—0,03802

+0,03802

+0,00253
+0,11571

—0,11318

Tonne
Randgld.

Klaffung

+0,13550
0

+0,13550

+0,06240
—3,80698

+3,86938

—0,01910
+0,33875

-0,35785

0
0

0

0

+3,80698

—3,80698

0
-0,33875

+0,33875

0
—6,34631

+6,34631

Sc
-1 o.

Tonne
Randgld.

Klaffung

+ 2900,30
+1210,68

+1689,62

+ 232,80
-4177,67

+4410,47

—3569,50
+2646,14

—6215,64

0
+ 469,22

- 469,22

0
+4177,67

—4177,67

0

+ 510,27

— 510,27

- 149,30
-8999,07

+8849,77

Antisymmetrischer

Lastzustand

Horizontal-

Vertikal¬

verschiebung

Verschiebung

Tonne
Randgld.

Klaffung

0
—0,02395

+0,02395

0
0

0

0
-0,03802

+0,03802

+ 1,29050
-0,06452

+ 1,35502

+0,4295
0

+0,42950

- 0,43200
-0,09824

—0,33376

0
+0,00949

-0,00949

Tonne
Randgld.

Klaffung

0
0

0

0

+3,80698

—3,80698

0
—0,33875

+0,33875

+0,4295
0

+0,42950

+0,15100
-3,80698

+3,95798

-0,11490
+0,33875

—0,45365

0
+6,34631

-6,34631

3|

Tonne
Randgld.

Klaffung

0
+ 469,22

- 469,22

0
+4177,67

—4177,67

0

+ 510,27

— 510,27

+5310,17
+1210,68

+4099,49

+1410,33
-4177,67

+5588,00
1

—3577,67
+2646,14

-6223,81

0
+6782,40

—6782,40
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Oleichungsansatz.

Ja-Xa -iß-Xß jd'Xd JE-XE 4F-XF ^h'Xh — 4m

+ 0,52432 + 0,13550 - 0,13786 + 0,02395 0 + 0,03802 + 0,11318
+ 0,13550 + 3,86938 — 0,35785 0 — 3,80698 + 0,33875 — 6,34631

+ 1689,62 — 4410,47 6215,64 — 469,22 — 4177,67 — 510,27 — 8849,77

+ 0,02395 0 + 0,03802 + 1,35502 + 0,42950 — 0,33376 + 0,00949
0 — 3,80698 + 0,33875 + 0,42950 + 3.95798 - 0,45365 + 6,34631

— 469,22 — 4177,67 — 510,27 + 4099,49 + 5588,00 — 6223,81 + 6782,40

Ergebnis: XA
XR
Xr

+ 0,713938 t/m

- 1,342449 t/m

+ 0,506321 t/m2

XE
XF
XH

¦ 0,137855 t/m
0,268489 t/m
0,133708 t/m3

K-Werte
für die symmetrischen Lastfälle:

YA =—0,317490; YB +0,47944;
YA — 0,24236: YB — 0.40001.

für die antisymmetrischen Lastfälle:

YA — + 0,12282; YB — 0,09935;
YA' + 0,00867; YB + 0,07111.

Endgültige Spannungen
nach der Gleichung / Ya - a + Yb - b + Ya' - a' + Yb' - V.

Pkt. M* N2 T2
es
dx 7i V £ fr

mt/m t/m Um t/ma t/m m m

Kämpfer (i) „„,,„_,o> 0 -0,065986 +0,192529 -1,084956 +0,848097 - 4,398112 -0,01415 +0,02036 0

Viertelpunkt

40,022525 -0,064837 -2,899952 +0,557796 -25,286833 -0,00754 +0,01866 -0,00716

Scheitel

-0,112010 +0,008796 -3,765312 -0,000614 -34,934613 -0,00253 +0,01550 +0,001834

SWfT
+0,067861 +0,070747 -2,787340 -0,658178 -35,641687 +0,00273 +0,03121 -0,001575

Kämpfer (a)
O) COJS -0,126490 -0,301593 -0,324428 -1,188587 -19,400652 +0,01452 +0,03196 0

Zur Schließung der Klaffung infolge der ungleichen Horizontalkraft am Innenrand-

glied wird das beschriebene Korrekturverfahren angewendet.

Im Innenfeld — T, ¦ cos fK— Afa ¦ sin fK H + 0,772171

Im Außenfeld

Differenz der //-Kräfte
Im Innenfeld
Im Außenfeld

Differenz der 7\-Kräfte

Im Innenfeld
Im Außenfeld

Differenz der SA -Werte

+ 0,701714

4H= +0,070457.
7Y —4,8200

— 4,3981

^7\= —0,4219

SA +¦ 0,025107

+ 0,024793

JSA= +0,000314.
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Betrachtet wird die vom Kämpfer ausgehende Hauptschwingung.

A B A B 4

H AH
2 + 1,156416 - 1,272269 + 1,291402 .+ 0,983148 - 0,035228

Ti äTi
2

+59,036148 - 1,264217 —56,436724 + 1,285303 — 0,210950

Sa
48A

2 + 11943,8529 + 11429,0582 +10152,1430 —12780,6691 + 19,782

& 0 —29841,0 —72061,1 —71670,9 -29167,5 0

Ergebnis: A —0,008595906
B +0,010868115
A — 0,0055955495
B' — 0,00430685954.

Die endgültigen Werte, nun mit der Korrektur versehen, werden:

I n n e n f e 1 d :

M2

mt/m

N2 T2

t/m t/m
dx 7l

t/m» t/m

V

m m

9

K —0,14244
V* +0,04595
Sch-\—0,06000

+0,19976 1—1,0468361+0,8591 1— 4,60905
—0,01738 -v-2,8232 +0,5535 —25,505

0 —2,5434 0 —31,746

-0,014471+0,0203251 0
-0,00697 +0,02490 +0,001506

0 +0,02101 0

Auß e n f e 1 d.

Mt
mt/m t/m

Sx
t/m t/m» t/m tn m

5-

Ki
%
Seh
%
Ka

-0,072547
+0,025017
-0,111799
+0,066619
-0,126490

+0,22987 i

-0,064395
+0,007889
+0,071112
-0,301593

-1,06832 +0,859597
-2,88935 +0,564406
-3,767088 ;+0,000992
-2,792116 -0,658924
-0,324428 -1,188587

- 4,60905 1-0,014476 \ +0,020325
-25,593033 -0,00756 +0,01906

35,151613 -0,00246 +0,015655
-35,688264 +0,00280 +0,03102
-19,400652+0,01452 1+0,03196

0
-0,00714
+0,001726
-0,001622

0

Innenrandglied
Außenrandglied

Innenfeldseite Außenfeldseite*

V
H
Sa
Sb

— 0,7698954 — 0,8068846
+ 0,7369232 + 0,7369609
+ 0,02495053 + 0,02495053

0,000 0,000

- 0,433855
+ 0,089365
+ 0,034458
+ 0,006709

Zweites Lastglied c — 3 n.
Zusammenstellung der endgültigen Spannungen.

Innenfeld.

M2 Nt
I

as
Sx Ti

K +0,023589 :O,044092t+0,515265 -0,284834 +0,759427 +0,000092 -0,000129 0
V« -0,005408+0,00590 ;+1,00411 -0,11422 +0,6599 -0,000014-0,000314+0,000208
Sek +0,007131 0 +1,104024 0 +0,4616 0 +0,000280 0
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Außenfeld. F

Mt N2 T2
95
Sx Ti r\ s &

Kt
%
Seh
W
Ka

+0,026125
-0,00664
+0,012180
-0,01432
+0,060727

-0,044092
+0,008942
+0,000175
+0,010980
+0,098338

+0,515265
+0,99109
+1,133045
+0,974064
+0,112665

-0,284837
-0,099547
-0,014326
+0,208773
+0,432174

+0,759427
+0,4758
+0,5936
+1.4912
+0,5703

+0,000092
-0,000016
+0,000038
-0,000005
-0,000209

-0,000129
-0,000272
+0,000411
-0,000845

0,00

o
+0,000284
-0,000102
-0,000330

0

Innenrandglied
Außenrandglied

Innenfeldseite Außenfeldseite

V
H
Sa
Sb

+ 0,3307
— 0,3848

&§!¦¦ 0,000159
0

+ 0,3307
— 0,3848
- 0,000159

0

+ 0,145455
— 0,034744
— 0,0001214
— 0,0001704

Besprechung des Resultates.
Die errechneten Spannungen sind in Fig. 11 für ein halbes Innenfeld

und ein Außenfeld auf der abgewickelten Bogenaxe aufgetragen. Der statisjeh
bestimmt gemachte Zustand ist punktiert, die Lastfälle sind gestrichelt, die
resultierenden Werte voll ausgezogen. Beim Gewölbeschub erkennt man, daß
im Scheitel der endgültige Wert größer als der statisch bestimmte Wert ist.
Hieraus geht hervor, daß dort eine erhöhte Tragwirkung vorliegt, dem ejin
Defizit in der Nähe" der Randträger gegenübersteht, da hier der Schub auf
einen geringen Wert abnimmt. Dementsprechend bildet sich, wie man an der
Momentenlinie sieht, in der Scheitelpartie und an den Randträgern ein
Auflager für die gewölbte Platte aus. Die geringe Größe der Biegungsmomehite
von max. 0,10 mt/m erklärt sich daraus, daß für die Biegungswirkung nur
mehr verhältnismäßig kleine Spannweiten zu überbrücken sind, wobei adeh
nur ein Teil der Schalenlast übertragen werden muß, da der andere Teil vqrn
Gewölbeschub getragen wird. Die Abnahme des Gewölbeschubs wird durjdh
die Schubabgaben 5 hervorgerufen, welche die aussteifenden Binder belasten.
Am stärksten ist die Umwälzung des Membranspannungszustandes in den
für die Trägerwirkung maßgebenden 7\-Kräften ersichtlich. Die große
Belastung des Außenträgers drückt sich in einer entsprechenden Verschiebung
des Schwerpunktes der ^-Kräfte aus. Besonders interessant ist die
Darstellung der Längsspannungen, wenn diese über die Querschnittshöhe
abgetragen sind (Fig. 12). Im Innenfeld ist das ebene Spannungsdiagrairim
mit großer Genauigkeit vorhanden; die Abweichung im Außenfeld ist nur
durch die Unsymmetrie der Belastung bedingt. Charakteristisch ist jedoch,
daß das ebene ;Spannungsdiagramm am Ansatz des Randträgers einen Knipk
aufweist. Dieser Knick ist umso ausgesprochener, je stärker der Randträger
belastet' ist-.'-' Es bildet sich ein gekoppeltes Tragsystem aus, bei welchem die
Schalehjist und ein Teil des Randträgers mit sehr günstigem Hebelarm der
inneren Kräfte, jede Überlast dagegen mit geringem Hebelarm getragen wifd,
da im letzteren Falle der Druckgurt nur durch die Kämpferpartie der Tonne
gebildet wird. Man kann hieraus auch ermessen, wie sehr die Form des
Spannungsdiagramms nicht nur von der Ausbildung des Querschnittes,
sondern auch vom Verhältnis von Schadfenlast zur Randträgerlast abhängt.
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Der Knick im Spannungsdiagramm bildete auch den Ausgangspunkt für
die Näherungsberechnung der Schalenträger, welche vom Verfasser schon im
Jahre 1927 durchgeführt wurde. Die statisch unbestimmte Rechnung wurde
in gleicher Weise, wie hier beschrieben, angesetzt, die Verschiebungsgrößen
der Tonne aus dem ebenen Spannungsdiagramm mit einigen Vereinfachungen
formelmäßig- entwickelt. Das Resultat zeigt für den Fall der Budapester

-521.4 t/m

Jnnenfeid
Travee mediane
Centre Span

4l4.lt/rn 55S.95Aussenfeld
Tra/e'e d'Extremiti

End Span

rS4 17l/m 313.SS

Zahlen in t/ma
Chiffres en t/ma
Ciphers in t/ma

Fig. 12.

Längsspannungen über die Querschnittshöhe aufgetragen.
Efforts longitudinaux pour une coupe verticale (t/ma).

Longitudinal Stresses in a Vertical Section (t/m2).

Gewölbe eine ausgezeichnete Übereinstimmung mit den Ergebnissen der

strengen Berechnung. Es muß allerdings bemerkt werden, daß diese
Übereinstimmung nur in den Fällen zu erwarten ist, in welchem die Träger-

2422...m9= *s K->.t>A *¦
K\K

si :>

910 010

11.80SSO

VzTgjlßnfeld
'/2 Travee mediane
V2 Centre Span

Aussenfeld
Travee d'Extremite
End Span

C; BÖ

I!
Fig. 13.

Verschiebungen der Schale infolge des ersten und zweiten Lastgliedes, in mm.
Deformation de la voute coquille par suite du 1er et 2e «Lastglied», en mm.

Deformation of the Shell owed to the ist and 2<* "Lastglied", in mm.

Wirkung der Schale bis zum Scheitel der Tonne reicht. Würde die Trägerlänge

beispielsweise auf \ verkleinert (vgl. 2. Lastglied ^-Spannungen), so

ist dies nicht mehr vollkommen der Fall.
Die Durchbiegung des Innenrandträgers beträgt 24,79 mm, die des

Außenträgers 34,34 mm, bei den Scheiteln 21,29, bezw. 16,07 mm. Der Außen-

randträger biegt sich um 6,5 mm nach innen (Fig. 13). Diese Werte stimmen
mit den Messungen beim Ausrüsten sehr schön überein unter Berücksichtigung

der dort etwas geringeren Schalenlast (Schnee und Eindeckung
fehlten). Die im ersten Augenblick verblüffende Einwärtsbewegung des

Außenträgers hängt mit dessen stärkerer Durchbiegung zusammen und ist
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kinematisch leicht erklärbar; desgleichen die geringere Scheitelsenkung im
Aüßenfeld. Lasten auf der Schale drücken den Außenträger nach außen,
Lasten auf dem Randträger nach innen.

Das hier beschriebene Bauwerk, das in seinen Abmessungen vielfach
über das Bisherige hinausgeht, war nur ausführbar als Endergebnis einer
jahrelangen Beschäftigung mit der Theorie und der praktischen Ausführung
von Kreissegmentschalen im Dachbau. Bei den vielen vorher ausgeführten
Bauwerken wurden ständig die dem Entwurf zugrunde gelegten Annahmen
auf ihre Richtigkeit geprüft. Diese Sorgfalt hat sich gelohnt, insofern, als
kein Rückschlag den Weg zum Erfolg gehemmt hat.

Zusammenfassung.
Die Arbeit handelt von der Theorie der querversteiften Zylinderschalen,

welche in der Praxis unter dem Namen Schalengewölbe System Zeiß-Dywidag
in großem Umfange ausgeführt worden sind. Die typischen Merkmale dieses
neuen Baugliedes sind in Fig. 2 dargestellt. Eine kreiszylindrische Schale
spannt sich über Binder, welche in großen Entfernungen angeordnet sind.
Der Rand längs der Erzeugenden wird durch ein Randglied versteift. Die
Schale wirkt mit dem Randglied zusammen als gemeinsamer, zwischen die
Binder gespannter räumlicher Träger.

Die Theorie fußt auf den Gleichungen der Elastizitäts-Theorie. Durch
geringfügige Vernachlässigungen gelingt es, eine Spannungsfunktion
einzuführen, ähnlich der Airy'schen Spannungsfunktion bei der Scheibenaufgabe.
Statt eines Systems von drei simultanen partiellen Differentialgleichungen
erhält man hierdurch eine einzige partielle Differentialgleichung achter
Ordnung. Diese läßt sich durch Entwickelung der Spannungsfunktion nach einer
Fourier'schen Reihe in eine totale Differentialgleichung umwandeln. Die
Lösung ist eine Summe von zwei gedämpften Schwingungen. Das elastische
Zusammenwirken von Schale und Randträger kann für jedes Reihenglied als
vierfach statisch unbestimmtes System berechnet werden. Man denkt sich
Schale und Randträger durch einen Schnitt voneinander getrennt, in welchem
die zum biegungsfreien Gleichgewicht der Schale gehörenden Randkräfte
wirken. Die statisch unbestimmten Größen, welche die Klaffung dieses
Schnittes schließen müssen, sind ein System von Vertikalkräften, Horizontalkräften

und Momenten, sowie von Schubkräften, welche in Richtung des
Schnittes wirken (vergl. Abb. 5). Wenn die beiden Ränder der Schale sich
beeinflussen, wird das System achtfach statisch unbestimmt. Für die in der
Praxis vorkommenden Verhältnisse der Steifigkeit von Schale und
Randträger kann man durch Vernachlässigung der Torsionsdrehung der
Randträger die statische Unbestimmtheit auf drei, bezw. sechs vermindern.

Die mathematische Lösung ist in eine Form gebracht, mit welcher sich
die praktische Berechnung von Bauaufgaben durchführen läßt. Die Methode
und ihre Ergebnisse sind an dem Beispiel der Schalendächer der Großmarkthalle

Budapest, dem kühnsten bisher bestehenden Schalenbau, erläutert.

Resume.
Le rapport etudie la theorie des voütes cylindriques minces ä renforcement

transversal, qui sont largement employees dans la pratique de la
construction, sous le nom de voütes minces Systeme Zeiss-Dywidag. Les
caracteristiques principales de ce nouveau Systeme de construction sont mises
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en evidence sur la figure 2. Une voüte mince en demi-cintre repose sur des

fermes admettant entre elles un grand ecartement. Le bord de la voüte est

raidi par une poutre de retombee. L'ensemble ainsi constitue se comporte
comme un Systeme pose, dans l'espace, entre les fermes.

La theorie de ce dispositif repose sur les equations de la theorie de

l'elasticite. En admettant quelques simplifications d'importance negligeable,
on peut faire intervenir les efforts sous la forme d'une fonction semblable ä

celle d'Airy pour l'etude des parois minces. Au lieu d'un Systeme de trois
equations differentielles partielles simultanees, on obtient ainsi une seule

equation differentielle partielle du huitieme ordre. Cette equation peut etre
transformee par developpement de la fonction suivant une serie de Fourier
en une equation differentielle totale. La Solution obtenue est la somme de

deux oscillations amorties. Les caracteristiques elastiques de la voüte et de

la poutre de retombee peuvent etre calculees pour chaque terme de la serie,
comme un Systeme quatre fois indetermine statiquement. On suppose la

voüte et la poutre de retombee separees l'une de l'autre par une fente fictive
dans laquelle interviennent les efforts en bordure qui correspondent ä l'equilibre

sans flexion. Les efforts statiquement indetermines dont l'action equi-
vaut ä la fermeture de cette fente fictive constituent un Systeme de forces

verticales, de forces horizontales et de moments, ainsi que d'efforts tranchants,
qui agissent dans la direction de la fente (voir figure 5). Si les deux re-
tombees de la voüte reagissent l'une sur l'autre, le Systeme devient huit fois
statiquement indetermine. Dans les conditions qui se presentent dans la

pratique, pour ces voütes minces avec poutres de retombee, on peut riegliger
les torsions de la poutre de retombee et reduire ainsi l'indetermination statique
aux degres trois ou six.

La Solution mathematique du probleme est presentee sous une forme
qui permet son emploi dans les calculs pratiques. A titre d'exemple des

resultats que permet d'obtenir cette methode de construction,, l'auteur decrit la
couverture en voütes minces de la halle du Grand Marche de Budapest, qui
constitue la plus remarquable illustration pratique de l'emploi des voütes
minces.

Summary.
This work deals with the theory of cylindrical Shells with cross stiffening,

which have been used to a great extent in practice under the name "shell
arch, system Zeiss-Dywidag". The typical features of the new constructional
member are shown in fig. 2. A cylindrical shell spans the space between the

trusses, which are at a great distance apart. The edge along the generating
line is stiffened by an edge member. The shell, along with the stiffening
member, acts as a stereometrical System held between the trusses.

The theory is based on the equations of the theory of elasticity. Slight
simplifications allow a stress function to be introduced, similar to the Airy
stress function in the disk problem. Instead of a system of three simultaneous

partial differential equations, a Single partial differential equation of the

eighth order is thereby obtained. By developing the stress function according
to a Fourier series, this may be changed into a total differential equation.
The Solution is the sum of two damped vibrations. The elastic Cooperation
of shell and edge nember may be calculated for each member of a row as a

four times static indeterminate system. The shell and edge member are
considered as being separated by a cut, in which the forces at the edge act
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that appertain to the equilibrium of the shell without bending. The statically
indeterminate values, which must close the aperture of this cut, are a system
of vertical forces, horizontal forces and moments, as well as of shearing forces,
which act in the direction of the cut (c. f. fig. 5). When the two edges of the
shell influence each other, the system is eight times statically indeterminate.
For the conditions of the stiffness of shell and edge members occurring in
practice, the static indeterminateness may be reduced to three and six times
respectively, by neglecting the torsional twist of the edge members.

The mathematical Solution is brought into a form which may be applied
to the practical calculation of structural problems. The method and its results
are illustrated by the example of the shell roofs of the large market hall in
Budapest, the most daring structure of this type as yet erected.
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