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DIE THEORIE DER ZYLINDRISCHEN SCHALENGEWOLBE
SYSTEM ZEISS-DYWIDAG UND IHRE ANWENDUNG
AUF DIE GROSSMARKTHALLE IN BUDAPEST

THEORIE DES VOUTES MINCES CYLINDRIQUES (SYSTEME ZEISS-
DYWIDAG). APPLICATION A LA CONSTRUCTION DE LA HALLE DU
MARCHE DE BUDAPEST

THE THEORY OF CYLINDRICAL SHELL ARCHES, ZEISS-DYWIDAG
SYSTEM. APPLICATION TO THE LARGE MARKET HALL IN BUDAPEST

Dr. Ing. ULRICH FINSTERWALDER,
Oberingenieur der Dyckerhoff & Widmann A.-G., Wiesbaden-Biebrich.

In den letzten Jahren sind eine ganze Reihe von Schalenbauten nach dem
System ,,ZeiB-Dywidag‘“ ausgefiihrt worden, welche grosses Interesse in der
Offentlichkeit gefunden haben. Das wissenschaftliche Riistzeug, das zu diesen
Erfolgen gefithrt hat, ist der Fachwelt nur z. T. bekanntgegeben worden?).
Die vorliegende Veroffentlichung soll diese Liicke ausfiillen durch eine ge-
dringte Besprechung der Theorie der querversteiften Zylinderschale und
ihrer Anwendung auf das z. Zt. kithnste Bauwerk dieser Art, die GroBmarkt-
halle in Budapest.
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Die Entwickelung?®) nahm ihren Ausgang von halbelliptischen Tonnen-
dichern, deren spezifisches Merkmal in der Uberh6hung der Querschnitte
gegeniiber der Stiitzlinie fiir stindige Lasten besteht (Fig. 1). Die Uber-
héhung, gemeinsam mit der Querversteifung durch die Binder, zwingt die

1) Handbuch fiir Eisenbetonbau XII. Bd., 3. Auflage.

2) Fr. DiscHinGerR und U. FINSTERWALDER ,,Schalenbauweise®, Zeitschrift ,Der Bau-
ingenieur 9. Jahrg., 1928, Heft 44—46; U. FiNnsTERWALDER: ,,Die Schalendacher des
Eltwerkes in Ffm.“, Zeitschr. ,,Beton und Eisen*, 1928, Heft 11.
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Schale, ihre Lasten in tangentialer Richtung auf die Binder abzutragen. Im
Gegensatz zu den frither bekannten Tonnengewdlben werden die Lasten also
nicht durch Gewo6lbewirkung auf die Kampfer, sondern durch Triagerwirkung
auf die Binder getragen, und zwar ausschlieBlich durch Dehnungsspannungen
in den Flachen unter weitgehender Vermeidung von Biegungswirkungen. Die
Folge davon ist eine Verringerung der notwendigen Schalenstirke bis auf
ein durch die Knickgefahr und durch konstruktive Gesichtspunkte gegebenes
Minimum und die Moglichkeit einer VergréBerung der Spannweiten, die man
vor ganz kurzer Zeit noch fiir unméglich gehalten hatte. Die Entwickelung
ging iiber zu den Formen, die aus einer flachen Kreiszylinderschale und
beiderseitigen Randtrigern zusammengesetzt sind (Fig. 2). In statischer
Hinsicht wurde dabei durch Vergr6B8erung der Uberhohung ein besseres wirk-
sames Tragheitsmoment des Schalentrigers, in praktischer Hinsicht eine

Sehalenelement
Flement de Voute
Tt Voult Element

Verschiebungen
Tronslotions
Transposifions

Fig. 3. Fig. 4.

groBere Mannigfaltigkeit der Formen und zugleich eine Vereinfachung des
einzelnen Baugliedes, Schale, bezw. Randtriger erreicht. Die genaue rech-
nerische Behandlung wurde durch diese Vereinfachung erst moglich gemacht,
Heute ist die Kenntnis des Schalentrigers ebenso vollstindig wie die eines
normalen Balkens mit rechteckigem Querschnitt.

Fiir die Berechnung wird die einfachste Form des Schalentrigers, eine
kreiszylindrische Schale vom Offnungswinkel «;, Kriimmungsradius R, Linge
zwischen den Querversteifungen L, konstante Wandstirke d, sowie Rand-
trager mit konstantem Querschnitt zugrunde gelegt.

Der Spannungszustand in der Schale setzt sich zusammen aus den Span-
nungen, die zu dem biegungsfreien Gleichgewicht in den Flichen gehéren
(Membranspannungen) und aus den Stérungen, welche von den Schalen-
randern ausgehen. Die Storung an den Bindern riihrt von ungleichen Deh-
nungen von Schale und Binder her und ist auf eine schmale Randzone be-
schrankt. Ungleich wichtiger ist die Storung, welche von den Randtrigern
ausgeht, da diese weit in die Schale hineingreift und in den meisten Fillen
tir die Tragerwirkung des Tonnengewdolbes maBgebend ist.

Der Membranspannungszustand wurde im Handbuch fiir Eisenbeton,
Bd. VI, 4. Aufl., S. 269 u. ff., bereits behandelt. Die Spannungskomponenten
lassen sich aus den Gleichgewichtsbedingungen nach Fig. 3, die Verschie-
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bungskomponenten nach Fig. 4b, ¢ und d in einfacher Weise ableiten. Wie
spiter gezeigt wird, ist es notig, die Lastverteilung in der X-Richtung durch
eine Fourier’sche Reihe auszudriicken (vgl. Gl. 4). Bei praktischen Rech-
nungen herrscht in der X-Richtung meist gleichmiBige Lastverteilung, bei
welcher die Last p = 1 t/m, das zugehorige Moment M, bezw. die E - J fache
Durchbiegung ausgedriickt werden durch die Reihen

= écosfix——{cos&”ﬁ— 4~cos5mc—— =41
e L 37 o 5 I ' o
Sy 4 (L)QCOS T i(l,)'zcos375x 4 (L)2cos5nx & e
el T T i Lo it = (1)
g ([:)’lcos A 4(£)4cos 37x ¢ 4 (L)‘Lcos Tera i L
7t \7T L 37\ L 57¢ \7e e 384
Mit diesen Bezeichnungen ist
T, = —gR[cos(w—qy)] - p
ds :
5y = 2&lm(e—gg] - p
7T, = —2gR[cos(w—qp)] - M @)
: B
Edy = 2gM sin (0— @) 1 QRgT) Sin (@ — ¢p)
i 5 200
Edl = gR>p cos (w—qx) + 22 M cos (v —q) —{—FCOS((U—(M)
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\ 200
Edon g — 2 PiCOS*® 20M .
a=gRp Pr + g 3)

Edd,p = gR?p sin ¢ COS ¢y

Man denkt sich nun Schale und Randtridger durch einen Schnitt voneinander
getrennt, in welchem jedoch die Membranspannungen iibertragen werden,
nimlich ein Gewolbeschub 7, und eine Schubkraft S, sodafl sich die Schale
im biegungsfreien Zustande befindet. Wenn diese Randkrifte vom Rand-
triger aufgenommen werden konnen, ohne daB eine Klaffung des Schnittes
entsteht, ist der biegungsfreie Zustand der Schale auch wirklich vorhanden.
In allen praktischen Fillen jedoch wird man den Randtriager nicht zur Auf-
nahme dieser groBen Randkrifte konstruieren wollen und kénnen. Vielmehr
wird man bestrebt sein, ihn so schwach wie nur irgend moéglich zu dimen-
sionieren und die Schale selbst zur Ubertragung ihres Endschubes auf die
Binder heranziehen. Es entsteht so ein aus Schale und Randbalken zusammen-
gesetzter Triger, bei welchem letzterer mehr die Rolle eines Zug-, bezw.
Aussteifungsgliedes iibernimmt, welches meist nicht einmal in der Lage
ist, ohne Hilfe sein eigenes Gewicht zu tibertragen. Es ist klar, dafl es dabei
zu einer volligen Umwilzung des Membranspannungszustandes kommen
muB. Das Gleichgewicht ist nicht mehr ohne Biegungsspannungen méglich.
Es hat sich jedoch gezeigt, daB die Biegungsmomente fast ausschlieBlich in
der Querschnittsrichtung auftreten und durch entsprechende Anordnung der
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Randversteifung niedrig gehalten werden konnen. Selbst bei den groBten
Spannweiten reichen die Mindestwandstarken der Schale aus.

Die Klaffung des statisch bestimmt gemachten Zustandes wird beschrie-
ben durch die Klaffung in vertikaler und horizontaler Richtung, durch die
Verdrehung der Endtangente der Schale gegeniiber dem Randtrager und
durch den Unterschied der Langsspannungen. Die Klaffung wird riickgingig
gemacht durch ein an beiden Schnittrindern angebrachtes Gleichgewichts-
system von Vertikalkriaften V, Horizontalkriften £/, Schubkriften S und Mo-
menten M, (Fig. 4a und 5). Der EinfluB dieser Kriafte auf den Randtrager
148t sich mit bekannten Hilfsmitteln untersuchen; dagegen ist deren Einfluf3
auf die Schale Gegenstand dieser Arbeit. Der Schliissel zur Losung dieses
auBerordentlich komplizierten Problems liegt in der Erkenntnis, daB bei
zwingungsfreier Abnahme der Krifte am Binderrand die Lasten fast aus-
schlieBlich durch tangential an den Binder gerichtete Schubabgaben § und
nicht durch normal hierzu gerichtete Querkriafte N, abgegeben werden. Bei

Q ., mince
| {‘ volt=TiE
| \e yay |
\
|
1

| X | Mz ‘
L 4% Vw H
s s ’ ;
ey ! S S |
| :
[ Randglied : U Randglied - Foulre de|Refombee
| i | Brim Reinforcement
Langsschnitt : Querschnitt
Coupe longifud. ~Longifud. Jeclion  Coupe tronsy~Cross Seckion
Eios 5 Fig. 6.
(Mitte zwischen Bindern — Milieu entre deux fermes —

Middle between two Trusses)

diitnnen Schalen mit groBem Binderabstand ist das unmittelbar einzusehen, da
eine Lastiibertragung durch Biegungsmomente zu viel groBeren Defor-
mationen fithren wiirde, als man tatsichlich beobachten kann (man kann sich
davon in einfacher Weise iiberzeugen, indem man versucht, eine geschlossene
zylindrische Blechdose einzudriicken und zum Vergleich einen ebenen Blech-
streifen gleicher Dicke auf Biegung beansprucht). Eine Bestitigung dieser
Erscheinung bildet das Resultat der Rechnung, da man riickwarts aus den
Deformationen die vernachlassigten Biegungsmomente M, errechnen und
ihren verschwindend kleinen Anteil an der Lastiibertragung nachweisen kann.
Dies trifft auch auf ganz dicke Schalen zu. Die Vernachlissigung der Bie-
gungsmomente ist ungefahr auf eine Stufe zu stellen, mit der gleichen MaB-
nahme bei Berechnung des Membranspannungszustandes einer Kugelschale.

Nach Vernachlassigung der M,, N, und der Torsionsmomente / gelingt
es, die iibrigen fiinf Spannungskomponenten 7, 7,, S, M, und N, von einer
Spannungsfunktion F abzuleiten, in dhnlicher Weise, wie dies fiir die Schei-
benaufgabe von Airy durchgefiihrt wurde. Zur Berechnung der fiinf Span-
nungskomponenten sind vier Gleichgewichtsbedingungen vorhanden; der
5. Zusammenhang muB durch Betrachtung der Formanderung gefunden wer-
den. Aus der Abb. 6 ergibt sich durch Anschreiben der Gleichgewichts-
bedingungen:
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Der Aufbau der Gleichungen legt einen Ansatz der Spannungsfunktion
nach Art einer Fourier’schen Reihe nahe, deren allgemeines Glied durch

cos CZ dargestellt wird.

Durch Betrachtung der Formianderungen erhdlt man den Zusammen-
hang zwischen Dehnungen und Verschiebungen

B0 & Gl e 8
S — é?’ &g — ds + ﬁ
Winkeldrehung in der Flache
o0& r;
how 65 0x

Unter Vernachlassigung der Querkontraktion ist
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Durch Elimination der Dehnungen und Einsetzen der Spannungsfunktion
erhidlt man die Ausdriicke fiir die Verschiebungen.
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Ferner bendtigt man noch die Winkeldrehung der Querschnittstangente:

he e 3 0C Lo i 2 ((f_F 2("3F ("5F)+ 1 H‘(“"F Ao ('TF)[/\
R R(u R(,\ w3  R3 \dw dw? ' dwd, R° 03 dw® 0w’ ] ©)
ey L2 (df dé f a’-"’f) L (déf g de)] l
Sk [R dw? +2CER3 a’w+2(lm3 5 dw® s AR \d w? T dw?® +dwT

Um die Differentialgleichung des Systems zu erhalten, leitet man die zu den
Verschiebungen » und ¢ gehorige Kriilmmungsinderung » ab.

15l : g’) 12 M,
3 I PR
R (’+ Jwt) T Ed
und setzt die Spannungsfunktion ein
d® as d i
dcoj;+ f( 2a )+ f(1+2a+a)4— (J}_:(Za+a2)+4a‘-’b"~’f:0 (7)
2 P2 Feliy
Abkiirzungen C;f =t V3 ]; —1/ (8)

Die Losung dieser Differentialgleichung lautet:
f= Ae)®sin K, 0 4 Be/i® cos Ky o + A'e/' sin K,'w + Be/'” cos K,'w (9)

f (w) ist die Summe zweier gedimpfter Schwingungen, welche vom belasteten
Rand weg abklingen. /, und /’; bestimmen die Didmpfung, K, und K’, die
Wellenlinge der Schwingungen. Durch die Konstanten A, B, A’ und B’ wird
die Anpassung an die Randbedingungen bei w — 0 fiir M,, N,, 7, und %
C
erreicht. Die Werte / und K sind FormgroBen der Schale, welche zu einem
bestimmten Lastglied der Reihe Gl. (1) gehoren; sie sind also eine Funktion
von R, L, d und c¢. Setzt man die Spannungsfunktion GI. (9) in die Aus-
dritcke fiir die Spannungs- und Verschiebungskomponenten Gl. (4), (5), (6)

ein, so lassen sich diese sdmtlich auf die Form bringen
A(ae/r?sin Ko+ 8e/1” cos K; w) + B(ae/r?sin Ko - e/ cos K] w) + (10)
+ A'(cd' e/’ sin K w+['e/i” cos K 0) + B'(¢'e/'@ sin K w— B e cos K ')

Die Werte a, g, o, p* werden als Faktoren der Grundschwingungen be-
zeichnet,

(Gl. 11 siehe Seite 133.)
Bei der Differentiation von f entstehen Ausdriicke
Jo =N — K Knys Ko =/ Kooy + K S l (12)
Sl =H I — KKy K= 1K + K o J
Wie man aus diesen Gleichungen sieht, lassen sich die Ausdriicke einer aus
dem anderen entwickeln. Fiir /, und K, erhidlt man die Bestimmungs-

gleichungen aus der leferentlalglexchung Gl (7)) dureh™ Einsetzen = der
Losung Gl. (9)

JE-6 3K+ K+ (142a) (J3-3/, KD +(142a+a) (J3-KD) + (a+a) f+4a2 b = 0;

4/3-4/,K:+(1+2a)(3/3-K)+(1+2a+a®)2/, +(2a+a?) = 0. (13)
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Faktoren der Schwingungen Faktoren der Schwingungen
e/'” sin K, o und /' cos K, el sin K, o und e/’ cos Ko
TS ek N T
M, i | 0 = 0
1 1 1 l 1
N-z T 1 e 1 ST ] ll i e 1’
R o | R K R J r K
0 it el S %
2 R 2 R 2 R 2 + R 2
oS i f 1 - B Lol s
T =B i) = (K +K5) —-,—{.—(/1 +/:) = ﬁ-(Kl +K5')
i iy )
/B i **(/ +_/1 "aR(KQ'*‘Kq) _afR(/Q +/4) _'ﬁ(Kz +K,')
Edn |2¢ 1 2 1'2,+,1,,2,,1,,
i e Jitfs) - az(./3+j5) E (K +£G) - EE(KB'i'Kﬁ)?l_(/l Js) ”'('1—2(/3 +/5) 'E'(Kl +K5') - E(Kg +Ky')
% 2 2 PR SO
Edg _j2+a"(/u+J4) “Kz+'a (K +K,) =/ +>(t (S +J4) - K/ +* -(KY +K4)
1 1 1 S , ,
a2 /a +/s) T (K + KG) 73 ag(/4 ) *(1_2 (K, - Ky)
EdRI =]+ '(21 (i+2/s+]) |- K + 2 (Ki+26G+KG)| - /s +'§ (Lt2t06) [ K +'§‘(K1+2K% +K;)
USRS | G 2Kr )| 2R | - K2k
Eine explizite Losung dieses Gleichungspaares gibt es nicht; doch war es
moglich, eine Niherungslosung zu finden, welche bei einigermaBen starker
Dampfung der Schwingungen sehr genau ist. Sie lautet:
a ’ a ’
b =
: AR _ , — 14)
K =K, :A}—]/ 8+]/64+a2b2 wobel Z =-7 :+ V—+a202
Zur Bestimmung der Korrekturen 4./, und 4K, setzt man die Nidherungs-
werte in die Bestimmungsgleichung Gl. (13) ein und findet die Fehler 4, und
A,. Da die 4/, und 4 K, im Vergleich zu /, und K, klein sind, erhalt man
durch partielle Differentiation mit kleinen Vereinfachungen die Bestimmungs-
gleichungen fiir 4/, und 4K,
AJ=(4J§—12]21(3—60/§+6a/<§+2a%)+JKQ(—12J§KQ+4K“%+12aj=Kr2a*"'Ke):—Al} (15)
Af(12/:-12a ), +2a° -4 K) + AR, (-8, Ky +4aKy) = — 4y

Sind /, und K, vorhanden, dann ergibt sich /, und K, aus:

g e

7 7'2 / // 2777 2
K1:1/] ]“’22*{2; KI:],,.]/../Z___/_
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Fiir /, wird das negative Vorzeichen gewahlt mit Riicksicht darauf, daB nur
ein vom Rand weg abklingender Spannungszustand ins Auge gefaBt werden
sollte. Das positive Vorzeichen von /, entspricht einem von der anderen Rich-
tung, d. h. von einem zweiten Rand herrithrenden Spannungszustand, der auf
die Richtung (— w) bezogen genau die gleiche Ddmpfung und Wellenlinge
besitzt.

Es sind nunmehr alle Vorbereitungen getroffen, um fiir einzelne Last-
fille die Berechnung der Verschiebungsgrofen in Angriff nehmen zu konnen.
Wie anfangs ausgefithrt wurde, handelt es sich bei dem Zusammenhang der
Schale mit einem Randtriger um ein vierfach, mit zwei Randtrigern um ein
achtfach statisch unbestimmtes System. Eine Vereinfachung auf drei, bezw.
sechs Unbekannte 148t sich erreichen durch Vernachlissigung der Torsions-
drehung der Randtriger gegeniiber der Winkeldrehung der Schale. Die da-
durch hervorgerufene Ungenauigkeit ist meistens ganz geringfiigig. In dem
anschlieBend behandelten Beispiel ist fiir das gleiche angreifende Moment
die Winkeldrehung der Schale hundertmal groBer als die Torsionsdrehung
des recht schmalen Randtrigers. Die statisch unbestimmten GréBen 75, N,,

1aS : . :
bezw. V, H, sowie 0 greifen dann nicht mehr zentrisch am Rand, sondern

derart mit einem Moment M, kombiniert an, daBl die Winkeldrehung # zu
Null wird.

Die Klaffung zwischen Schale und Randtriger im statisch bestimmten
Zustande muB zunichst in eine Reihe von cos-Schwingungen zerlegt werden,
bei gleichmiBiger Last nach Gl. (1). Fiir jedes Reihenglied ist die gesamte

Eig i,

statisch unbestimmte Rechnung gesondert durchzufithren. Aus den Aus-
driticken fiir die Spannungs- und VerschiebungsgroBen GI. (4), (5) und (6)
ist ersichtlich, daB diese simtlich cos-formigen Verlauf von gleicher Wellen-
linge haben. Das Gleiche ist fiir einen Randtriger mit konstantem Trag-
heitsmoment der Fall. Es 14Bt sich deshalb fiir jedes Lastglied die Klaffung
auf ihrer ganzen Linge schlieBen und der Zusammenhang von Schale und
Randtriger mit voller Genauigkeit herstellen. Die Ausdriicke Gl. (10) lauten
in vereinfachter Schreibweise:

Aa+ Bb+ A'd + B8, wobei '

a=caeh?sinKow+pfer?cos Kiw; b=oaeh®cos Kjo—fBe/1?sin Ko (17)
d = d'eliosin K w+ e’ cos K'w; b= a'e/i cos K'w— e/’ sin Kj o

In den Werten «, b, @, b’ konnen die vom zweiten Rand herrithrenden Schwin-
gungen beriicksichtigt werden. Es ist zweckmaBig, die statisch unbestimmten

Lastfille in symmetrische und antisymmetrische zu zerlegen. Hierbei ist in
Bezug auf die Vorzeichen Vorsicht geboten, insofern, als symmetrisch lie-

9
gende 7, M,, T, und ¢ gleiche, dagegen symmetrisch liegende N, éf’ 7 und
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o entgegengesetzte Vorzeichen besitzen (Fig. 7). Dementsprechend sind die
beiden Randwerte der Grundschwingungen ¢/1% sin K, u.s. w. fiir den sym-
metrischen Lastfall das erste Mal zu addieren, das andere Mal zu subtrahieren,
im antisymmetrischen Lastfalle umgekehrt.

Die a- und b-Werte werden fiir den Rand und fiir die zu betrachtenden
Zwischenpunkte aufgestellt. Sie kénnen auch fiir die Werte V, H, 64 und dg
zusammengesetzt werden, und zwar fir den Kiampferpunkt @ = 0 nach der
Form

V = ++ T, sin ¢ — N, COS ¢,
= 75 COS @i — Nousinig ‘

2 : Pk \,2 P (18)
da= — 7 sin g + L cos gy J

(SH = + )/ COS q')[,: + C Sin (Pk

Im nichsten Rechnungsgang werden fiir die sechs Lastfille (drei sym-
metrische, drei antisymmetrische) die Bestimmungsgleichungen fiir A, B,
A’, B" aufgelost.

Vo Aa+Bb+A'a'+B'b’_—_vi; (E0:

’ / ’ ] 4 .
H: Aa+Bb+Aa +Bb6 = 0; e 0 symmetrische
: i e Lastfille
(T§ AatrBbo+Aa +Bo = 0: 0 : e
dx 7T
Gl Bb LAe B —0 0Ok

(19)
V Aa+Bb+A’a’+B’b':é, 00
U

LA TR g R e () ir, 0; antisymmetrische

; T - Lastfille.

(7;9 Aa+Bb+Aa +Bb = 0; 0; 4, ekl

(0% 7C

S Al IS i S =g O 0

Zur Erlauterung wird der erste Gleichungssatz besprochen. Auf der linken
Seite stehen als Funktion der unbekannten Konstanten 4, B, A’, B’ die Aus-
driicke fiir Vertikalkraft V, Horizontalkraft //, Anderung der Schubkraft g-é
und Winkeldrehung 9. Da alle Ausdriicke die gleiche Abhangigkeit von x,
namlich cos ch besitzen (s. Gl. (4), (5) und (6)), geniigt es, die Werte fiir
x == 0 anzuschreiben. Auf der rechten Seite steht im ersten Gleichungssatz
fiir V der Wert der angreifenden Vertikalkraft i, wihrend die tbrigen

rechten Seiten zu Null werden miissen, da weder eine Horizontalkraft noch
eine Schubkraft angreifen und auch keine Winkeldrehung eintreten soll. Die
Auflosung dieser sechs Sitze von vier Gleichungen gibt samtliche Konstanten
A, B, aus welchen sich alle VerschiebungsgroBen, namlich die symmetrischen
GroBen, Vertikalverschiebung 04, Horizontalverschiebung d g, Langsspannung
op und die entsprechenden antisymmetrischen GroBen dg, dr oy bestimmen
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nach der Form Aa - Bb + A’a’ -+ B’F’. Es ist zu beachten, daBl die anti-
symmelrischen GroBen fiir den Punkt @ = 0 angeschrieben werden.

Die Klaffungen A werden als Differenz der Verschiebungen von Schale
und Randglied gefunden. Nunmehr kénnen die Gleichungen fiir die Bestim-
mung der statisch unbestimmten Grofien angeschrieben werden.

Xadaa~+ Xgdpas + XpAdpa + Xedea + Xerdrpa + XgApa + dna =
XadAap + Xp Adpp + Xp Apsg + XeAdep + Xedps + Xy dup + dmp =
XaAdap + XpAdpp+ XpApp + Xedep + Xedrp + Xu dup + Amp =
Xadar + XpApe + Xpdpe + Xedee 4+ Xedre + XuAue + Ane =
Xadar + Xp Agr 4 Xp Apr + Xe Aer + Xeder + X Aue -+ Anr = 0
Xadarn+- XA+ Xp Apr + Xe A+ XAy 4+ Xudpn + Aper = 0
Die endgiiltigen Spannungs- und VerschiebungsgroBen setzen sich zu-
sammen aus dem statisch bestimmten, dem symmetrischen und dem anti-
symmetrischen Anteil. Die beiden letzteren werden abgekiirzt geschrieben:
aYa+bVp+dVyt+bVp (21)

Die Werte «, b, a’, 0’ gehdren dem symmetrischen, bezw. dem antisym-
metrischen Lastfall und einer bestimmten Spannungs- oder Verschiebungs-
groBe, sowie einem bestimmten Punkt des Gewoélbes an. Die Y-Werte lauten

SROECORC)

im symmetrischen Fall
Ya= As Xa+ Ap Xpg | Ap Xp
Yp = Ba Xa + B X+ Bp Xp

Vi — AU A5 X E D X, )
Y = Ba Xa + Bs Xs+ Bp Xp
im antisymmetrischen Fall
Yol — Ae X S AN A
Y8 = Be Xe + Br Xp+ By Xu (23)

Yo = Ae Xe+ Ar Xr+ Au Xu
Y = B Xe+ Br XrF + By Xnu

5 i [ : o
(] ]n'nenf_'e/g’ Aussenfeld < S ' i'—i
] lravee medione ; = Travee o Extremile i 3|
| Centre Span %I S| End Spon 7 | s },‘f_‘?
) I A 1 ‘ 1 S
g20' ~— o P zp 7 L 1Sy
-t | JS%\/ +i20 r%d‘\'\/ ng’j’?‘ :
L 11.60 e 17,80 »-l_
Fi:0396m? i -0737 m*
Jv 20199 m* Jv =04326 m*

JH =000237m*

Fig. 8.

Die Berechnung eines Gewodlbes mit zwei ungleichen Randgliedern ist
hiermit erledigt. Es soll jetzt noch untersucht werden, wie der EinfluBl der
Kontinuitat aneinandergereihter Bogen verfolgt werden kann. Vorausgeschickt
sei, daBl dieser EinfluB meistens sehr klein ist. Das zwischen dem AuBen-
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und Innenfeld gelegene erste Randglied wird fiir den ersten Rechnungsgang
halbiert und in wagerechter Richtung als unverschieblich angesehen. DaB
dies nicht genau richtig ist, ergibt der Vergleich der fiir dieses Randglied am
Innen- und AuBenfeld errechneten Krifte und Verschiebungen. Es wird ein

x
kleiner Unterschied der H, V, d4, op, My, 2? festzustellen sein. V, M, und

S
ox
eine Klaffung mit sich. Es muB deshalb ein Spannungszustand der beiden
aneinanderstoBenden Schalen gefunden werden, bei welchem diese Klaffung
aufgehoben wird. Da jeder Spannungszustand der Schale durch vier Rand-

kénnen ohne weiteres verschieden sein; dagegen bringen 1, 04 und op

—
= =

M

e e

N
i e s s |

a

& IR e
’ \ f 4 [ u
l | 2l
Bl e i : i
Sl e B D 0 el e S . i
11 L z)
v i
Fig. 9

| f—

Fig. 10.
GroBmarkthalle in Budapest —FLa halle du Grand Marché de Budapest —
Large Market Hall in Budapest.

werte-bestimmt ist, bendtigt man noch eine vierte Bedingung, welche durch
$ — 0 gegeben ist. Die beiden Randwerte der Schalen mitteln sich aus, und
da dies an den Randtrigerhilften auch der Fall ist, kann der Randtrager fiir
die Korrekturrechnung auBer Ansatz bleiben.

Anwendungsbeispiel: GroBmarkthalle Budapest.

Eine Anwendung dieser Theorie wird im Folgenden fiir die Dachkon-
struktion der GroBmarkthalle in Budapest gezeigt (Baujahr 1930/31, Bau-
herr Stadt Budapest, Architekt Aladar v. MUNNicH, Konstruktion Dyckerhoff
& Widmann A.-G., Wiesbaden, Ausfithrung in Licenz durch die Fa. Katona
Szekely & Molnar).

Die Halle ist 234,1 m lang und 48,1 m breit und wird tberdeckt
durch 18 Tonnengewdlbe mit je 41 m Trigerspannweite und 11,80 m Ge-
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wolbebreite. Auf der einen Seite der Halle ist eine Laderampe angeordnet,
welche von einem Schalenkragdach iiberdeckt wird. Die Anordnung geht aus
den Konstruktionszeichnungen Fig. 9 und 10 hervor. Je drei Tonnen sind
zu einem Bauteil zusammengefaBt und gegen die Nachbarabschnitte durch
Dehnungsfugen abgetrennt. In der Dachfliche werden diese Dehnungsfugen
durch ein schmales Schalengewdlbe gebildet, das als Einhangtriger sich auf
die beiden Randtriger der groBen Tonnen mit einer Rutschfliche auflegt.

Erstes Lastglied ¢ = + =.

R = 10,00 m ¢ = 35°27'3” = 0,618734
a = 0,006 m sin 7x = 0,58000
L =41,00m cos ¢, = 0,81463
2. P2
Gl o= ER" — | 0,58713
R

b= 13— = {283,683

Gl oy e
]/ - L]/64+a b2 = + 13,02066
Z’ = — 13,02066
I = g + Z = + 13,31422
=+ Z'=—1272710

Die /,-Werte wurden nach Gleichung 15 korrigiert
Allgemein ist /, = /,-/,_1 — K;-K,_
nach Gl. 12: K, =/,- K, ; + K i

Index
1 f ) ' 3 .: 4 i 5 i 6 T

— 53886 572,163 — 4412,37 | + 2433486

J | —394189 + 128112 280083
K|+ 105145 — 130198 + 72,4701 —333,5080 | + 1306004 — 420358 + 928303
J' | 163215 — 132307 L 734701 4 56843 | — 1382217 + 440647 -+ 11267,86

K’ | -+ 3,98680 | — 13,0141 | — 31,5072 | + 344,3712 | — 539,403 | — 4630,25 | + 25124,97

Tabelle der Werte «, # und «, 8° der Gleichung 11.

Faktoren der beiden Schwingungen Faktoren der beiden Schwingungen
¢/1” . sin K, und ¢1? . cos Ko e/7? sin Ko und /7' - cos Kj'w
I " B 7 : o : ‘ B

M, — 1,000 | 0,000 — 1,000 | 0,000
N, + 0,394189 [ —=10,165145 + 0,163215 — 0,398680
I + 1,28112 e = LSl CR! = 132307 — 1,30141
o
875 + 0,320402 j 0,741306 — 0,718469 + 0,275204
il — 1,264217 . +59,036148 - 1,285303 ) - 56,436724
Ed. 7y — 1687,8694 | — 3746,5614 -+ 4041,2501 + 1562,4016
Ed-¢ -+ 12828,0240 | - 11994,2149 — 12811,6372 |+ 13574,6731
E-d-R.& — 72061,1 — 20841,0 — 20167,5 — 71670,9
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Grundschwingungen.
e]. © . sin K, o ej‘ © . cos Ky
Pkt. Hau[\){t;ﬁ]hwg.IGege\Posnclhwg. 7'7714;51%;1_] g ﬁ%u};t_.“. Ge‘gﬂe;l;i!iﬁ __Lz;s‘itfall T
1. Kimpfer | 2. Kimpfer | Symmetrisch Antisymmetr| Schwingung schwingung | gymmetrisch| Antisymmetr.
r — — ——— e e e _-7"-';4‘*7 —
0 0,000 4-0,00689 |4-0,00689 |—0,00689 |+1,000 —0,00347 (4+0,09653 |+1,00347
1 |-40,14456 |+0,026015 +0,170575|+0,118545 +0,25874 |40,001103 +0,259843|4-0,257637
2 |4-0,074807 +0,074807 +-0,149614/ 0,000  |4-0,046057|+0,046057 +0,092114] 0,000
3 [+0,026015|+0,14456 |--0,170575—0,118545( 4-0,001103 +0,25874 |—0,259843 -0,257637
4 |4-0,00689 | 0,000 |+0,00689 +0,00689 |- 0,00347 +1,000 |+0,99653 |—1,00347
e‘]‘l(.) B Sl-n KI,(’) ej]'(.) £ COS Kl’fl)
PKI. ﬁ;’E;\:}T;cI}_nvgf"fGégevr;s;hwgf Eal Willz’tsitfalrli L ﬁH;t_A Gegen- | Lastfall
1. Kimpfer | 2. Kimpfer Symmetrisch| Antisymmetr, schwingung | schwingung iSymmetrisch}Antisymmetr.
| ] }
0 0,000 } —0,1306 ‘. —0,1306 |+0,1316 |-+1,000 | +0,02747 +1,02747 | +0,97253
1 [+0,56964 | —0,11506 | +0,45458 | +0,68470 +0,20205 | —0,18844 | +0,01361 +0,39049
2 | +0,23019 | 4-0,23019 | +0,46038 | 0,000 —0,28365 | —0,28365 | —0,56730 | 0,000
3 | —0,11506  +0,56964 | +-0,45458 | —0,68470|—0,18844 -+0,20205 | +-0,01361 | —0,39049
4 [ —0,1306 0,000 |—0,1306 K —0,1306 |4-0,02747 | +1,000 +1,02747 | —0,97253
Symmetrischer Belastungszustand
fiir ® = 0° (Kampfer).
a b a o
rz -ejl(”. sin Ko + | a- e-li(”. cos Ky — | ' g-ll"" sin K@ + a'.gjl’(’j .cos K w—
. ej'("- cos Ky | ,3-8'/‘(')- sin K, 1 ﬁ’.eJ‘ @ cos K, o 8 8‘11 ©. sin K, e
M, | — 0,006891 _ 0996525 | -+ 0,13059 . 1,02747
N, — 0,168435 -+ 0,394421 — 0,366414 -+ 0,210795
T — 1,28863 + 1,28564 — 1,16438 — 1,52936
0
é% — 0,74615 + 0,32544 4 0,17382 — 0,73467
i + 58,8226 — 1,66659 — 58,1540 — 6,0500
Ed.n — 3747,93 — 1719,54 + 2047,27 -+ 3726,19
Ed.g -+ 12040,98 -+ 12700,87 -+ 15620,77 — 11390,72
E.-d-R- 7| — 204481 — 12520,1 — 73511,1 — 19006,7
Durch Umwandlung nach Gleichung 18:
% — 060816 | + 042202 | — 037472 | — 1,05600
H ‘ + 1,14898 ‘ — 1,27729 + 1,16214 ; -+ 1,12599
E.d.oy -+ 11993,99 -+ 11358,84 + 11562,00 .‘ — 11450,80
Esd0p e o 3908,60 l -+ 5945,58 - 10708,75 | — 3550,10
Gleichungen der A, B-Werte fiir die 3 Lastfélle.
| | | | 25
A B \ A’ 1{ B’ V=+- !H=+g _sz_*_ff
i | | qi e e
060816 | 042202 | — 037472 | — 1,05690 | +127324 | O 0
+ 1,14898 | — 1,27729 | + 1,16214 | 4 1,12599 0 | -+ 1,27324 0
— 0,74615 | -+ 0,32544 | SID017382 ¢ —0,13307H 0 0 + 1,27324
—20448,1 | — 72520,1 | — 73511,1 | ——19006,7 | 0 0 0
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Damit errechnen sich:

i 4 4 s 4
e 1068028 | — 242505
B — 0,20382 — 061748 | — 0,40287
A% — 0,12070 ‘ - 055221 | - 1.15564
B’ } — 2,71307 — 0,83379 -+ 0,82483
Antisymmetrischer Belastungszustand
fiir = 0° (Kdmpfer).
a b a b
| .ejl('). sin K o + | a. gjl(’ coS Klm — 7 e‘/1 9 sin [(1 w + rt’.g-/l’(’j. CcoS Kl'm-—
B-e1*. cos Ko g.e1 . sin Ko | B e/’ .cos Ko | #.e/7°. sin Ko
M, -+ 0,006891 — 1,003475 — 0,13059 — 0,97253
N, — 0,161855 + 0,393957 — 0,430046 + 0,115635
T, — 1,31533 + 1,27660 — 1,43844 — 1,11678
o
% — 0,736460 + 0,333366 + 0,376588 — 0,702268
il — 59,2497 — 0,8618 — 54,7185 -+ 8,6206
E-d-n — 3745,19 165() 20 + 1077,53 -+ 4356,31
E.d.-¢ -+ 1194745 + 12955,18 -+ 11528,58 — 14232,55
EdR- O — 30233,9 } — 71608, 1 — 69830,7 j — 30328,1
Durch Umwandlung nach Gleichung 18:
i L nasos I i J 074053
H + L166%6 | — 126965 .| -+ 142311 + 084438
E.d.d, | + 11916,09 -+ 11530,20 i -+ 8783,86 — 14134,32
B ‘ + 3856,71 + 6144,41 |+ 7549,70 — 4680,20
Gleichungen der A, B-Werte fiir die 3 Lastfille.
! | | ‘ -
e [t 1) TS
A ! B A | B IV +7:H__+1 5 =+ —
—0,62898 | + 041717  —0,48063 | — 0,74053 i B e K
1-1,16696 | — 1,26965 | - 1 42311 | 4 0,84438 ‘ 0 + 1,27324 0
— 0,73646 | | ~+ 0,333366 | -+— 0 376588 — 0,702268 0 0 + 1,27324
— 30233,9 | = 71608 1 6()830 7 ‘ — 30328,1 | 0 0 0
Daraus errechnen sich:
i ! ! &
| fiir Fall- I/ | H f C—S
i : ox
A | 458025 | 420205 | — 203637
B —+- 1,09843 |+ =—0,0802530 " —0,66862
A | —0,37640 , + 0,33370 | + 0,99331
B’ — 5,86689 e 1,98602 + 1,52904
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Spannungen und Verschiebungen am Tonnenrand (@ = 0°)
allgemein aus A-a+ B-b+A"a’ + B.V.

Symmetrischer Belastungszustand Antisymmetrischer Belastungszustand

4 | 4 |08 el R
V=1 — | H=14 = | — ="+ V:+—‘H:—}-~~;,‘:+—

7 T | OX 7T 7T ; T ’ ox 7T

T + 174,02 + 13,97 — 214,17 -+ 318,61 + 84,62 \ — 214,16
d 4 104508 " | 10,1355 || == 10,2361 | - 12905 | - 04205 | —i0:4320
dp + 0,1355 -+ 0,0624 e 0,0191 + 0,4295 | + 0,1510 ‘ — 0,1149

1 |
Innenfeld.

FormgréBen:

Schale. R = 10,00 m
d = 0,06 m

L = 41,00 m

sin gz = 0,58000

cos gz = 0,81463

Randtrager.
F = 0,396 m*
J, = 0,199 m*
a =154 m

Belastungen:

Schale. 0,065 m? Beton : 2,4 tfm®* = 0,156 t/m?*
Eindeckung u. Isolierung = 0,025
Schnee auf Bogen verteilt = 0,072 ,,

g = 0,253 t/m?

»

Randtrager.
Beton 2,45.0,10.2,40 t/m* = 0,588 t/m
Gefillbeton = 0,078 ,,
g = 0,666 t/m
Fiir das 1. Lastglied ist in Feldmitte (x = 0) bei
D = = t
Do im
412
m= —5 = 216,86

it
E.J.0 = 4711; = 36935,7 = 4,

VerschiebungsgréBen der Schale im statisch bestimmten Zustande. Gl. 3:

= (g-Rﬂ'p-cosWK-F 2g-M+%%‘<’) E—lg = + 0,00253 m

: : 1
O = &+ R p-sin g cos g 7 = + 0,0001208 m

2
TmD= R, g & 08 ¥i M, = —149,3 t{m2.

Die VerschiebungsgroBen des Randtrdgers im statisch bestimmten Zustande
werden nach bekannten Regeln berechnet.
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Zusammenstellung der Klaffungen.
| i 2s |
e Eastiall a4 Lastfall A \ Lastfall oF \ Lastfall m
_\ .
7] B | = e T L s e
=% | Schale + 0,4508 | + 0,1355 | — 0,2361 + 0,00253
£2.8 | Randglied | — 0,0885 0 — 0,1362 + 0,12520
= Klaffung | 4,,=+0,5483 | 4,5=+0,1355 | 4,5 — 0,999 | 4,, — 0,12267
e b aNrde Sl e i e NN T Do e
55 | Schale + 01355 |+ 0,062 — 00191 |+ 0,0001208
S22 | Randglied | 0 ‘ 0 0 0
25 Klaffung | 45, + 0,1355 | 455 + 0,0624 }ABDﬁ 0,0191 | g, + 0,0001208
s iSchale + 2900,3 + 232,8 — 35605 — 1493
g’g © | Randglied 1 1679,9 0 + 3156,4 — 2216,9
=% | Klaffung | 4oy + 12204 | dog + 2328 | dop — 67259 | 4o, + 2067,6
Gleichungsansatz,
44-Xy | 4B Xp 4p-Xp =
+ 0,5483 + 0,1355 — 0,0999 + 0,12267
+ 0,1355 + 0,0624 — 0,0191 — 0,0001208
+ 12204 | 4 2328 — 67259 | — 2007,6
Ergebnis: X, — + 057255 t/m; Xp = — 1,12040 tjm; Xp = 4 0,37220 t/m®.

Berechnung der Y-Werte aus Gleichung 22:

YG IXA'AA + XB.AB_*_XD'AD
Ya = — 0,2084588; Y» — 4- 0,4307366
Yo' — — 0,262634; Vi = — 0,304684

Die Spannungen lassen sich in der einfachen Form anschreiben. Gl. 21:
Yaca+ Yo b+ Yd-a + Yo-b.

Faktoren a & fiir die Zwischenpunkte.
1. Symmetrischer Lastzustand.

, 3
Viertelspunkt (m = I;K bezw. :[UK)
e e B
M, _ 0170575 | — 0250843 | — 0454580 | — 0,013610
N, 4 0004182 | + 0121135 | — 0043928 | -+ 0336710
T, 0119783 | + 0554975 ‘ _ 0610153 | -+ 0573588
o
aé _ 0151930 | -+ 0172744 | — 0384472 | — 0,468987
T 415124486 | — 10398580 = — 0,183831 | - 25,672499
e e o A et s S A
Ed.c | + 3304753 | 4 1287359 | — 5639163 | — 6345,141
Ed-R-&| —16230,620 | — 15028105 | —47957,757 | -+ 37683448




Scheitel (m — LLK)
2
1 a | b a ! b
M, | — 014914 | — 0092114 | — 0460380 | .4 0567300
T + 0071742 | + 0312803 | + 0120175 | | 1349721
T, +~ 5,248911 — 8,940086 -+ 32,608282 i 25,253187
Edie | - 3004087 | '— 612861 —13599,134 | | “1018,534
N ok
Ox
2. Antisymmetischer Lastzustand.
Viertelspunkt ((u == “:i’f)
g a | b a | b
M, | — 0118545 | — 0257637 | — 0684700 | — 0,300490
N, + 0,024327 -+ 0,130597 — 0,068047 + 0,183380
T, — 0,183568 + 0,484407 — 1,414094 + 0,374429
va — 0,136435 + 0,212041 — 0,322980 — 0,134558
T, -+ 15,060029 — 17,324149 — 21,157929 -+ 39,144123
Ed.y = 0406 o] 51 + 1857,63¢ | — 657,050
Ed. ¢ + 3610,852 + 1883,120 — 3471,354 — 14297,305
Ed-R-%| —20045797 | — 13634443 | — 14202223 | - 32106,285
3 o
bei v = 4 drehen sich die Vorzeichen um.
Scheitel (w = ”K)
2
a i b a | 1z
N, + 0,043764 + 0,061018 + 0,301312 + 0,096625
fi — 0,019002 | + 0,141253 | — 0486802 | - 0,280889
Ed.y — 507,640 -+ 405,062 + 074,161 | — 3011,899
Ed-R.9 —13530,123 : — 2173,205 -+ 27230,768 ‘ + 49542572
Somit die endgiiltigen Spannungs- und VerschiebungsgroBen.
T a8 ‘
\ My N, T a“ T, ‘ 7 g ‘ 3
} mt/m t/m t/m tfr’n2 t/m m m
Kimpfer | —0,1490 |+0,2371 —1,0302 —0,8476 | 4,82 |—0,01441]--0,02056] 0
Viertelspunkt +0,0472 |—0,0173 | —2,8174 |—0,5461 —25,858 | 000707 -+0,02511| 0,001568
Scheitel ‘—0 0604 000 —3,547 0,00 |—32,18 | ‘—i—O 021324 0
AuBenfeld, siehe Systemskizze Fig. 8.
VerschiebungsgréBen der Schale
wie im Innenfeld.

Die VerschiebungsgréB8en des AuBenrandgliedes 0q und die des lnnenrand-

gliedes J, werden zu symmetrischen

(£

und zu antisymmetrischen (

— g

zusammengesetzt, die dann mit den entsprechenden Schalenrandverschiebungen
verglichen werden.




VerschiebungsgroBen der Randglieder (Innen und AuBen).

Lastfall
A B | D i E /& H [ m
i 088473‘ 0  |-0,13625|—0,088473| O ~0,13625 |+ 0,12520
@ dg |-0040566] O —0,06022 [+0,040566 0 10,06022 -+ 0,10622
L [
S5| 8 + 0a|—0,120039 0 —0,19647 |—0,047907 0 —0,07603 |+ 0,23142
2|0 — 04|—0,047907| 0 —0,07603 |—0,129039 0  —0.19647 | 0,01898
> 0
S| 94 |—00645200 0 —0,00824 | —0,023954 0  |—0,03802|+ 0,11571
SE  |—0,023954) 0 ~0,03802 | 0,064520 0 —0,00824 |+ 0,00949
3 0 0 0 0 0 0 0
o da 0 —7,613961|+0,67749 0 17,613061 |—0,67749 | —12,69261
S =
55|04+l 0 —7,613061|4-0,67749 0 17,613961 |—0,67749 | —12,69261
B i=tell +-7.613061|—0,67749 0 7613961 | 1-0,67749 |+12,69261
o w
TS| ig 0 ~3,306081|0,33875 0  |43,806981 |—0,33875 — 6,34631
OF 0 +-3,806081|--0,33875 0 —3'806081 |+0,33875 |+ 6,34631
e | 07 |+1679,90 0 13156,40 | +1679,90 0 13156,40 |— 2216,87
2 | 0a |+ 741,46 | 835533 4213587 |— 741,46 | 1835533 —213587 —15781,26
=
S | 0r4 0a|+2421,36 | —8355,33 |+5202,27 |+ 038,44 |835533 4102053 —17998,13
& | 57— |4 93844 | 1835533 |+1020,53 +2421,36 | 835533 |+5292,27 |413564,39
o ;
S | op |4+1210,68 |—4177,67 |12646,14 |+ 469,22 |+4177,67 ]+ 510,27 |— 8999,07
3 | Sy |4 46922 |14177,67 |+ 510,27 [+1210,68 |—4177,67 +2646 14 | - 6782,40
Zusammenstellung der Klaffungen.
Lastfall
Al Ble oD E E0E Ho e
-Z| Tonme  |-+045980/+0,13550 023610, 0 | 0 0 |40,00253
2 |22| Randgld. |—006452 0 | —0,00824-0,023054 0 —0,03802/+0,11571
’g 22| Kiaffung |+0,52432/+0,13550 —0,13786|+-0,02305 0  |4-0,03802/—0,11318
< 22| Tonne 40,13550|4-0,06240/—0,01910| 0 0 0 0
5 |82 | Randgld. 0 |—3.80698/+0,33875] 0 |4-3,80698—0,33875—6,34631
S |2%| Klaffung |+0,13550/+3,86938| 035785 0 |—3,80608+-0,33875 +6,34031
£ | ,w| Tonne +2900 30 + 232 80/—3569,50, 0 0 0 |= 149,30
£ | 52 | Randgld. |+1210, 681—4177 67|+-2046,14+ 469,22|+4177,67 + 510,27 —8999,07
@1 =2 | Klaffung +1689,62\+4410,47 —6215,64— 469,22|—4177 67i— 510,27 +8849,77
| +E| Tonne 0 b, | 0 1200501 K0, 4295 —0,43200
S22 | Randgld. [-002395 0 | —003802—0,06452 —0,00824| 10, 00949
E >¢ | Klaffung |40,02395 +0,03802 1-1,35502 -+0,42950 —0,33376(—0,00949
« oz " i | - & Fah ey A sl ) s
~ %% | Tonne 0 | 0 |40,4295 |+0,15100|—0,11490| 0
2|85 Randgld 05k 80698{ 033875 0 | —3,80698/+0,33875 +6,34631
o vl
2| 82| Kiaffung 0 |—3,80098+0,33875 10, 42950‘+3 05798!— 0,45365 —6,34631
) S5 5] et e S e S ok Mo s S o B k| (e s
=0 x| Tonne 0 o 0 +531017I+1410 33;;3577 67 0
% Z | Randgld. |+ 469,22 +4177,67 4 51027 +1210,68 —4177,67 +2646,14 -+ 6782,40
E|7E | Kiaifung |— 469,22 —4177,67l~ 510,27\i+4099,49 1-5588,00 —6223,81 —6782,40
| |
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Gleichungsansatz.
4. X4 1g-x8 | 4o Xp'| de:Xe. | 4p:Xp | ZuXn =l
-+ 0,52432 | + 0,13550 | — 0,13786 ' + 0,02395 0 |+ 0,03802 -+ 0,11318
+ 0,13550 | + 3,86938 | — 0,35785 | 0 —3,80698 | + 0,33875 | — 6,34631
+ 1689,62 | — 4410,47 | — 0215,64 = 16090 I AT7767 | — 510,27 | — 884977
-+ 0,02395 0 + 0,03802 | + 1,35502 | + 0,42950 | — 0,33376 | - 0,00949
0 —3,80698 | - 0,33875 | | 0,42950 | + 3.95798 | — 0,45365 | - 6,34631
— 469,22 | —4177,67 | — 510,27 | +4099,49 | + 5588,00 | — 6223,81 | + 6782,40
Ergebnis: X, = -+ 0,713938 t{/m Xg = — 0,137855 t/m
Xp = — 1,342449 t/m Xr = + 0,268489 t/m
Xp = + 0,506321 t/m?® Xy = — 0,133708 t/m?
YV-Werte

fiir die symmetrischen Lastfille :

Ya

Y, = — 0,24236:

Endgiiltige Spannungen

nach der Gleichung f= Ya-a+ Ys-0

fiir die antisymmetrischen Lastfalle :
Y, =+0,12282; ¥z = —0,09935;
Y, =+ 0,00867; Yz =+ 0,07111.

0,317490; Yy = + 0,47944;
Yy = — 0,40001.

+Yd-a+ Yy b

oS

Pkt. M, N, 7, a T, 7 g 9
mt/m t/m t/m t/m2 t/m m m

e
Kamplel @ | _0,065086/+0,102520|-1,084956 +0,848007| 4,308112-0,01415+0,02036| 0
Viertelpunkt

="K 10,022525 -0,004837 -2,899952 +0,557796 -25,286833-0,00754/+0,01866 |-0,00716

Scheitel

="K 1.0,112010+0,008796 -3,765312|-0,000614 -34,934613 -0,00253|+0,01550 +0,001834

3

=K 10,067861/+0,070747-2,787340|-0,658178 -35,641687 +0,00273 +0,03121 |-0,001575
Kidmpfer (a)

@= oK -0,126490/-0,301503|-0,324428 -1, 188587 ~19,400052 +0,01452 +0,03196| 0

Zur SchlieBung der Klaffung infolge der ungleichen Horizontalkraft am Innenrand-
glied wird das beschriebene Korrekturverfahren angewendet.

Im Innenfeld — 7, - cos gz — N, - sin gy

Im AuBenfeld
Differenz der FH-Krifte

Im Innenfeld
Im AuBenfeld

Differenz der 7,-Kréfte

Im Innenfeld
Im AuBenfeld

Differenz der J4-Werte

= H = +0,772171
= +0,701714
AH = + 0,070457.
= T, = —4,8200
= —43081
4T, = — 0,4219
— &, = + 0,025107
= + 0,024793

48, = -+ 0,000314.
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Betrachtet wird die vom Kiampfer ausgehende Hauptschwingung.

A B | A’ B 4
e e = ;_1:_- S i aoiloe oy o —
Tl = + 1,156416 \ 1,272269 + 1,291402 |. 4 0,983148 | — 0,035228
& i ‘ |
J | ;
T, = 271 | 4+50,036148 | — 1,264217 | —56,436724 | + 1,285303 | — 0,210950
| | \
IR . :
e | :
04 = — A 4-11943,8520 | 411429,0582 | +10152,1430 | —12780,6691 | + 19,782
$=0 — 208410 | —72061,1 | —716709 | —29167,5 0
Ergebnis: A = — 0,008595906
B = -+ 0,010868115
A" — — 0,0055955495
B’ = — 0,00430685954.
Die endgiiltigen Werte, nun mit der Korrektur versehen, werden :
Innenfeld:
M2 } N2 ‘ T2 ((_f Tl | n £ F
25l mt/m ; t/m \ % VLIRSS t/mgwj e t/m | = m ‘”_7:_ g
K | —0,14244 |4+0,19976 |—1,046836 +-0,8591 |— 4,60905 |—0,014471 --0,020325| 0
1/, |40,04595 |—0,01738 |—2,8232 |+0,5535 |—25,505 —0,00697 |+-0,02490 +0,001506
Sch | —0,06000 0 |—2,5434 - | 0 |—-31,746 0 +-0,02101 | 0
AuBenfeld.
| ‘ ¢S ‘ ‘ [
| M, N TG e R S e 9
! ! | (‘x ‘ | I,
| mtm | t/m t/m [ ma = t/m ‘ m ! _m
Ki %—0,072547 +0,22987 | -1,06832 +0,859597 ‘— 4,60905 -0,014476  +0,020325 0
1. 1+0,025017 -0,064395  -2,88935 1+0,564406 -25,593033 -0,00756 | +0,01906 -0,00714
Sch |-0,111799 |+0,007889  -3,767088 +0,000902 |-35,151613 |-0,00246 | +0,015655 | +0,001726
My l+0,0_66619 +0,071112 | -2,792116 |-0,658924 -35,6088264 |+0,00280 | +0,03102 | -0,001622
Ka i—0,126490 -0,301593  -0,324428 |-1,188587 -19,400652 i+0,01452 +0,03196 0
Innenrandglied ;
SR ——| AuBenrandglied
Innenfeldseite { AuBenfeldseite
V — 0,7698954 [‘ — 0,8068846 — 0,433855
H -+ 0,7369232 | -+ 0,7369609 - 0,089365
04 + 0,02495053 | + 0,02495053 -+ 0,034458
0B 0,000 | 0,000 - 0,006709
Zweites Lastglied ¢ = — 3.
Zusammensiellung der endgiiltigen Spannungen.
Innenfeld.
) | ! e |
M= N R |2 T G 3
B | i I e AT
K |+0,023580 |~0,044002 +0,515265 | 0,284834 +0,750427 +0,000092| -0,000120 | 0
1, 1-0,005408 g+0,00590 +1,00411 |-0,11422 |+0,6599 -0,000014 | -0,000314 ‘ +0,000208
Sch | +0,007131 | 0 1 +1,104024 | 0 40,4616 : 0 1‘ +0,000280 | 0
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AuBenfeld.

o . 1
: S 15 7, : & v
gx ‘ I

Ki |+0,026125 -0,044092 +0,515265 -0,284837 §+0,759427‘+0,000092 -0,000129 1‘ 0

/4 1-0,00664 |+0,008942 j+0,99109 —0,099547 | +0,4758 | -0,000016 | -0,000272 | +0,000284
Sch |+0,012180 |+0,000175 |+1,133045 | -0,014326 | +0,5936 I-+~0,000038 +0,000411 | -0,000102
3/, |-0,01432 |+0,010980 |+0,974064 |+0,208773 !+1,4912 1-0,000005 | -0,000845  -0,000330

M, N, T

Ka |+0,060727 |+0,008338 {+0,112665 '+0,432174 i+0,57o3 -0,000209'| 0,00 [
I dglied

Lt A ie AuBenrandglied ‘

Innenfeldseite AuBenfeldseite ] |

Vv S0ss07 L 03307 + 0,145455 |
H — 0,3848 i — 0,3848 — 0,034744
oA — 0,000159 | — 0,000159 — 0,0001214
OB 0 | 0 — 0,0001704

Besprechung des Resultates. |

Die errechneten Spannungen sind in Fig. 11 fiir ein halbes Innenfeld
und ein AuBenfeld auf der abgewickelten Bogenaxe aufgetragen. Der statisch
bestimmt gemachte Zustand ist punktiert, die Lastfdlle sind gestrichelt, die
resultierenden Werte voll ausgezogen. Beim Gewdélbeschub erkennt man, daB
im Scheitel der endgiiltige Wert groBer als der statisch bestimmte Wert ist.
Hieraus geht hervor, daB dort eine erhéhte Tragwirkung vorliegt, dem ein
Defizit in der Niahe der Randtriager gegeniibersteht, da hier der Schub auf
einen geringen Wert abnimmt. Dementsprechend bildet sich, wie man an der
Momentenlinie sieht, in der Scheitelpartie und an den Randtrigern ein Auf-
lager fiir die gewolbte Platte aus. Die geringe GroBe der Biegungsmomente
von max. 0,10 mt/m erkldrt sich daraus, daB fiir die Biegungswirkung nur
mehr verhaltnismaBig kleine Spannweiten zu iiberbriicken sind, wobei auch
nur ein Teil der Schalenlast iibertragen werden muB, da der andere Teil vom
Gewolbeschub getragen wird. Die Abnahme des Gewdolbeschubs wird durch
die Schubabgaben S hervorgerufen, welche die aussteifenden Binder belasten.
Am stiarksten ist die Umwalzung des Membranspannungszustandes in den
fiir die Trigerwirkung maBgebenden 7,-Kriften ersichtlich. Die groBe Be-
lastung des AuBentrégers driickt sich in einer entsprechenden Verschiebung
des Schwerpunktes der 7,-Krifte aus. Besonders interessant ist die Dar-
stellung der Langsspannungen, wenn diese iiber die Querschnittshéhe auf-
getragen sind (Fig. 12). Im Innenfeld ist das ebene Spannungsdiagramm
mit groBer Genauigkeit vorhanden; die Abweichung im AuBenfeld ist nur
durch die Unsymmetrie der Belastung bedingt. Charakteristisch ist jedoch,
daB das ebene Spannungsdiagramm am Ansatz des Randtrigers einen Knick
aufweist. Dieser Knick ist umso ausgesprochener, je stirker der Randtriger
belastet ist.-Es bildet sich ein gekoppeltes Tragsystem aus, bei welchem die
Schalenlast und ein Teil des Randtragers mit sehr giinstigem Hebelarm der
inneren Krifte, jede Uberlast dagegen mit geringem Hebelarm getragen wird,
da im letzteren Falle der Druckgurt nur durch die Kampferpartie der Tonne
gebildet wird. Man kann hieraus auch ermessen, wie sehr die Form des
Spannungsdiagramms nicht nur von der Ausbildung des Querschnittes, son-
dern auch vom Verhaltnis von Schalenlast zur Randtrigerlast abhingt.
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Der Knick im Spannungsdiagramm bildete auch den Ausgangspunkt fiir
die Niherungsberechnung der Schalentriger, welche vom Verfasser schon im
Jahre 1927 durchgefiihrt wurde. Die statisch unbestimmte Rechnung wurde
in gleicher Weise, wie hier beschrieben, angesetzt, die VerschiebungsgroBen
der Tonne aus dem ebenen Spannungsdiagramm mit einigen Vereinfachungen
formelmiBig entwickelt. Das Resultat zeigt fiir den Fall der Budapester

-521,4 H/m? -575,97

o -414.11m* )
Jnnenfeld : Auvssenfeld =i
Jrovee mediane . - Traovee o 'Extremife
Centre Jpan & £nd Spon —
N
pEp L6417t/ m? -313,85
3 Zahlen in t/m?
3 / Chiffres en t/m?
3 Ciphers in t/m?
s
/ <|4 F
+603.30 £636,503
Figit12;

Lingsspannungen iiber die Querschnittshohe aufgetragen.
Efforts longitudinaux pour une coupe verticale (t/m?).
Longitudinal Stresses in a Vertical Section (t/m?).

Gewolbe eine ausgezeichnete Ubereinstimmung mit den Ergebnissen der
strengen Berechnung. Es muB allerdings bemerkt werden, daB8 diese Uber-
einstimmung nur in den Fillen zu erwarten ist, in welchem die Trager-

S

#2129
$8-+6539

0 | | g0
a4 d {
590 : 0 -
—— S 77,8 -3
Y2Jnnenfeld =S Aussenfeld S
72 Travée mediane NS Travée o Exfrémite g3
Yz Centre Jpon SR End Span =

Fig. 13.

Verschiebungen der Schale infolge des ersten und zweiten Lastgliedes, in mm.
Déformation de la voute coquille par suite du ler et 2¢ «Lastglied», en mm.
Deformation of the Shell owed to the 1st and 2d “Lastglied”, in mm.

wirkung der Schale bis zum Scheitel der Tonne reicht. Wiirde die Trager-
linge beispielsweise auf % verkleinert (vgl. 2. Lastglied T,-Spannungen), so
ist dies nicht mehr vollkommen der Fall.

Die Durchbiegung des Innenrandtrigers betragt 24,79 mm, die des
AuBentrigers 34,34 mm, bei den Scheiteln 21,29, bezw. 16,07 mm. Der AuBlen-
randtriger biegt sich um 6,5 mm nach innen (Fig. 13). Diese Werte stimmen
mit den Messungen beim Ausriisten sehr schon iiberein unter Beriicksich-
tigung der dort etwas geringeren Schalenlast (Schnee und Eindeckung
fehlten). Die im ersten Augenblick verbliiffende Einwirtsbewegung des
AuBentrigers hingt mit dessen stirkerer Durchbiegung zusammen und ist
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kinematisch leicht erklirbar; desgleichen die geringere Scheitelsenkung im
AuBienfeld. Lasten auf der Schale driicken den AuBentriger nach auBen,
Lasten auf dem Randtriger nach innen.

Das hier beschriebene Bauwerk, das in seinen Abmessungen vielfach
uber das Bisherige hinausgeht, war nur ausfiihrbar als Endergebnis einer
jahrelangen Beschiftigung mit der Theorie und der praktischen Ausfiihrung
von Kreissegmentschalen im Dachbau. Bei den vielen vorher ausgefiihrten
Bauwerken wurden stindig die dem Entwurf zugrunde gelegten' Annahmen
auf ihre Richtigkeit gepriift. Diese Sorgfalt hat sich gelohnt, insofern, als
kein Riickschlag den Weg zum Erfolg gehemmt hat.

Zusammenfassung.

Die Arbeit handelt von der Theorie der querversteiften Zylinderschalen,
welche in der Praxis unter dem Namen Schalengewélbe System ZeiB-Dywidag
in grofem Umfange ausgefiihrt worden sind. Die typischen Merkmale dieses
neuen Baugliedes sind in Fig. 2 dargestellt. Eine kreiszylindrische Schale
spannt sich iiber Binder, welche in groBen Entfernungen angeordnet sind.
Der Rand lings der Erzeugenden wird durch ein Randglied versteift. Die
Schale wirkt mit dem Randglied zusammen als gemeinsamer, zwischen die
Binder gespannter raumlicher Triger.

Die Theorie fuBt auf den Gleichungen der Elastizitits-Theorie. Durch
geringfiigige Vernachldssigungen gelingt es, eine Spannungsfunktion einzu-
fithren, dhnlich der Airy’schen Spannungsfunktion bei der Scheibenaufgabe.
Statt eines Systems von drei simultanen partiellen Differentialgleichungen
erhilt man hierdurch eine einzige partielle Differentialgleichung achter Ord-
nung. Diese 1dBt sich durch Entwickelung der Spannungsfunktion nach einer
Fourier’schen Reihe in eine totale Differentialgleichung umwandeln. Die
Losung ist eine Summe von zwei gedimpften Schwingungen. Das elastische
Zusammenwirken von Schale und Randtriger kann fiir jedes Reihenglied als
vierfach statisch unbestimmtes System berechnet werden. Man denkt sich
Schale und Randtriager durch einen Schnitt voneinander getrennt, in welchem
die zum biegungsfreien Gleichgewicht der Schale gehérenden Randkrifte
wirken. Die statisch unbestimmten GréBen, welche die Klaffung dieses
Schnittes schlieBen miissen, sind ein System von Vertikalkriften, Horizontal-
kraften und Momenten, sowie von Schubkriften, welche in Richtung des
Schnittes wirken (vergl. Abb. 5). Wenn die beiden Rinder der Schale sich
beeinflussen, wird das System achtfach statisch unbestimmt. Fiir die in der
Praxis vorkommenden Verhiltnisse der Steifigkeit von Schale und Rand-
trager kann man durch Vernachlissigung der Torsionsdrehung der Rand-
trager die statische Unbestimmtheit auf drei, bezw. sechs vermindern.

Die mathematische Losung ist in eine Form gebracht, mit welcher sich
die praktische Berechnung von Bauaufgaben durchfithren 148t. Die Methode
und ihre Ergebnisse sind an dem Beispiel der Schalendicher der GroBmarkt-
halle Budapest, dem kiihnsten bisher bestehenden Schalenbau, erldutert.

Résumé.
Le rapport étudie la théorie des vofites cylindriques minces a renforce-
ment transversal, qui sont largement employées dans la pratique de la

construction, sous le nom de voiites minces systéme Zeiss-Dywidag. Les
caractéristiques principales de ce nouveau systéme de construction sont mises
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en évidence sur la figure 2. Une vofite mince en demi-cintre repose sur des
fermes admettant entre elles un grand écartement. Le bord de la voute est
raidi par une poutre de retombée. L’ensemble ainsi constitué se comporte
comme un systeme posé, dans l’espace, entre les fermes.

La théorie de ce dispositif repose sur les équations de la théorie de
I’élasticité. En admettant quelques simplifications d’importance négligeable,
on peut faire intervenir les efforts sous la forme d’une fonction semblable a
celle d’Airy pour I’étude des parois minces. Au lieu d’un systeme de trois
équations différentielles partielles simultanées, on obtient ainsi une seule
équation différentielle partielle du huitieme ordre. Cette équation peut GlLE
transformée par développement de la fonction suivant une série de Fourier
en une équation différentielle totale. La solution obtenue est la somme de
deux oscillations amorties. Les caractéristiques élastiques de la voiite et de
la poutre de retombée peuvent étre calculées pour chaque terme de la série,
comme un systeme quatre fois indéterminé statiquement. On suppose la
voiite et la poutre de retombée séparées 'une de I'autre par une fente fictive
dans laquelle interviennent les efforts en bordure qui correspondent a I’équi-
libre sans flexion. Les efforts statiquement indéterminés dont I’action équi-
vaut i la fermeture de cette fente fictive constituent un systeme de forces
verticales, de forces horizontales et de moments, ainsi que d’efforts tranchants,
qui agissent dans la direction de la fente (voir figure 5). Si les deux re-
tombées de la voiite réagissent I'une sur I'autre, le systeme devient huit fois
statiquement indéterminé. Dans les conditions qui se présentent dans la
pratique, pour ces voiites minces avec poutres de retombée, on peut négliger
les torsions de la poutre de retombée et réduire ainsi I'indétermination statique
aux degrés trois ou SiX.

La solution mathématique du probléeme est présentée sous une forme
qui permet son emploi dans les calculs pratiques. A titre d’exemple des ré-
sultats que permet d’obtenir cette méthode de construction, "auteur décrit la
couverture en voiites minces de la halle du Grand Marché de Budapest, qui
constitue la plus remarquable illustration pratique de l’emploi des volites
minces.

Summary.

This work deals with the theory of cylindrical shells with cross stiffening,
which have been used to a great extent in practice under the name ‘‘shell
arch, system Zeiss-Dywidag”. The typical features of the new constructional
member are shown in fig. 2. A cylindrical shell spans the space between the
trusses, which are at a great distance apart. The edge along the generating
line is stiffened by an edge member. The shell, along with the stiffening
member, acts as a stereometrical system held between the trusses.

The theory is based on the equations of the theory of elasticity. Slight
simplifications allow a stress function to be introduced, similar to the Airy
stress function in the disk problem. Instead of a system of three simultaneous
partial differential equations, a single partial differential equation of the
eighth order is thereby obtained. By developing the stress function according
to a Fourier series, this may be changed into a total differential equation.
The solution is the sum of two damped vibrations. The elastic cooperation
of shell and edge nember may be calculated for each member of a row as a
four times static indeterminate system. The shell and edge member are
considered as being separated by a cut, in which the forces at the edge act
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that appertain to the equilibrium of the shell without bending. The statically
indeterminate values, which must close the aperture of this cut, are a system
of vertical forces, horizontal forces and moments, as well as of shearing forces,
which act in the direction of the cut (c.f. fig. 5). When the two edges of the
shell influence each other, the system is eight times statically indeterminate.
For the conditions of the stiffness of shell and edge members occurring in
practice, the static indeterminateness may be reduced to three and six times
respectively, by neglecting the torsional twist of the edge members.

The mathematical solution is brought into a form which may be applied
to the practical calculation of structural problems. The method and its results
are illustrated by the example of the shell roofs of the large market hall in
Budapest, the most daring structure of this type as yet erected.
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