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BEITRAG ZUR THEORIE DER HALBSCHEIBE UND DES

WANDARTIGEN BALKENS

CONTRIBUTION A LA THEORIE DES PAROIS PORTANTES

CONTRIBUTION TO THE THEORY OF WALL-LIKE GIRDERS

Dr. Ing. FRANZ DISCHINGER,
Direktor der Dyckerhoff & Widmann A.-G., Wiesbaden-Biebrich.

Die Spannungen, die in wandartigen Balken auftreten, weichen ganz
wesentlich von denen des Navier'schen Biegungsgesetzes ab; sie stellen sich
dar als Übergänge der Spannungen der unendlich hohen Halbscheibe und
denen des Navier'schen Biegungsgesetzes. In der Praxis des Eisenbetonbaues,

wo diese wandartigen Träger bei den Silobauten eine, große Rolle
spielen, ist eine einfache Dimensionierung mit Hilfe des Hebelarmes der
inneren Kräfte möglich, in gleicher Weise wie bei den schlanken Trägern. Es

wird gezeigt, daß sich für die Größen dieser Hebelarme ganz einfache
Beziehungen ergeben.

I. Die Halbscheibe bei periodischer Belastung an den;Rändern
durch Normalkräfte.

Wenn eine Halbscheibe gemäß Abb. 1 an ihrer Begrenzung y 0 durch
periodische Normalkräfte pxu beansprucht und zugleich die Schubkräfte an
den beiden Rändern y 0 und y co gleich Null sind, dann wirkt die
Halbscheibe wie ein unendlich hoher Träger.

Die äußeren Kräfte pxu seien gegeben in der allgemeinen Form

B °° x
Pxu -ry-{-2jBnCOStl7Z—

R °°
^r+'£,Bn-COSax,
*¦ l

wobei a n— (1)
Fig. 1. a

Die Koeffizienten Bn und B0 ergeben sich aus dem Fourier'schen Lehrsatz

2 fa 2 r°
Bn — pxu cos axdx, B0 — \pxu-dx (2)

CL J q
CL J q

Bei dieser Belastung der Halbscheibe lautet die Airy'sche Spannungsfunktion
00 R R v2

/=- -2^-(i + «y)e-0'-cos«* + ^)*-1) (3)
i tt /. z.

Periode

i) Siehe A. Nadai, „Die elastischen Platten", Jul. Springer, Berlin 1925, S. 225.
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Aus der Spannungsfunktion ergeben sich die inneren Kräfte des ebenen
Spannungszustandes:

Tx=^- % Bn ¦ (1—tty)e-"y-cos <xx (4)
dy i

7> |— =^ + Sß«-(H tty)e~a* • COS ax (4 b)
<jX* Z i

5 — ay - Y,Bne-ay • sin ax (4c)
dx-dy J i v ;

ß oo

für y 0 ergibt sich 5 0 und Ty -^ -+ S #« • cos öx /;*,,| i
für y co S 0 und Ty y

d. h. die Randbedingungen sind erfüllt. Wenn auf die Länge einer Periode 2 a

die pxa für sich im Gleichgewicht sind, dann ist —- — pxa dx 0, andern-
2 ajo

falls greift in der Geraden y oo eine gleichmäßig verteilte Gegenlast in

Größe von — an.
2

Sämtliche Spannungen verlaufen vom Rande aus in stark gedämpften
Schwingungen. Daraus folgt, daß die Trägerwirkung sich nur in der Nähe
des belasteten Randes abspielt, während der übrige Teil der Halbscheibe
spannungslos ist.

Von besonderem Interesse ist die Größe der Biegungsspannung Tx am
Rande y 0.

Sie ergibt sich aus Gl. 4 a zu 7~/= pxu—^ (5 a)

Und im Falle, daß ^ 0 T£
0

pxu (5 b)

Wenn nur am Rande y 0 Belastungen angreifen, ist die Biegungsspannung
gleich der angehängten Last. Wenn an beiden Rändern Belastungen an-

greifen, ist hiervon die Ausgleichskraft -^ abzuziehen (denn -^ ist die

durchschnittliche Last, die von einem Rand zum anderen Rand durch die Scheibe
hindurchgeleitet und direkt zum Ausgleich gebracht wird). Die Größe des

Biegungsmomentes, das die Halbscheibe auf Biegung beansprucht, folgt aus

d2M B0 S.
-z-ö-= —Pxu Pxu -ir + 2jBn" COS ax
C* ^ 1

M= +y)^cosax (5)
i cC

Dieses Biegungsmoment wird durch die rjc-Kräfte aufgenommen, infolgedessen

muß das Biegungsmoment sich auch ergeben aus:
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M Tx-ydy — 2 #« COS ax • (\—ay)ydy

\e-ay-{a2y2 + ay+\)— 2 B„ COS ax
Bn

-4-2 —? • COSax.
i l aa

Für die Dimensionierung der Eiseneinlage derartiger Wände im Eisenbetonbau

ist die Kenntnis des Hebelarmes d der inneren Kräfte notwendig (Fig. 2).

Zu deren Bestimmung muß die Zug- bezw. Druckkraft Z — D j Tx-dy

berechnet werden (im weiteren mit Z bezeichnet).

y*

w,LJ1
Periode

m
Z 7Wj/

Jo

S'o

S ^« • COS ax • (1 — ay) e~°y • dy

Fig. 2.
=S ^» ¦cos a* ¦ J> • e_<yr

Hierbei ist die y0 der Abstand der neutralen Achse vom Rande. Zur
Abkürzung wird gesetzt:

J'o

fiy»J' • e~ay

Z YjBn -Jiy0 • COS ax
1

Der Hebelarm <i der inneren Kräfte folgt aus:
~ 1

S —I Bn - cos ax
d ~Z

l a

S Bn 'f\y« ¦ cos a*

(6)

Des weiteren ist von Wichtigkeit der Abstand d0 der Kraft Z (bezw. £>) vom
Rande der Scheibe. Dieser folgt aus dem statischen Moment der 7x-Kräfte
um den Rand, gerechnet von y 0 bis y y0

S^° Tx-y-dy 'Z,Bn-cos ax-\-,e-ay-(a2y2+ay+\) ZjBn-cosax-fsyo
Jo 1 i a Ol

oo

rfo (8)

TiBn-Jmcosax

II. Der wandartige Träger bei periodischer Belastung durch
Normalkrafl.

An seinem oberen und unteren Rande (y + b und y — b) sei der
gedrungene Balken durch periodische Normalkräfte nachstehender Form be-
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anspracht (Fig. 3), während zugleich die Schubkräfte 5 an den beiden Rändern

gleich Null sind.

Pxu

—Periode Za

A °°

Pxo -^r + S An- COS ax
£ i

Bo -\-2^Bn- cosax2 i
Fig. 3.

Die Koeffizienten A und B folgen aus dem Fourier'schen Lehrsatz
22 [a

An= — I »M/cos ax - dx
a J0

2 [h
B„ — pxu ¦ cos ax dx

,a J„

A0
a J

B0

Pxodx

Pxudx

(9a)

(9b)

(10a)

(10b)

Das Gleichgewicht eines Balkenstreifens von der Länge der Periode 2 a

verlangt daß —5- —I Nach der Definition in I ist 4r — die durchschnitt-
z J. 2 2

liehe Kraft der Periode (2 a), die von einem Rande zum anderen Rand
hindurchgeleitet wird (Ausgleichkraft). Bei dieser Belastung der beiderseitigen
Ränder lautet die Airy'sche Spannungsfunktion

F
I An+Bn (sinh ab + ab • cosh ab) cosh ay-ay sinh ab • sinh

a2 smh.2ab + 2ab
ay COSax

yy An-Bn (cosh ab + ab- sinh ab) sinh ay-ay coshab-cosh ay
sm\\2ab-2ab

m
i a"

Die Spannungen ergeben sich aus:

cos ax+ B0

Tx
d2F
dy2' '~ax2' ö

32.F

dxdy

j — iVV^ | d Asmhab- ab- coshab) coshay+ay- sinh ab- sinh ay
sinh2a6+2a£

_i_ V / a n\ (cosn ttb-ab - sinh a£) sinh ay + ay cosh a£ • cosh ay-tZu(An-Bn)~ s\nh2ab-2ab
OO oo

S (-4« + ß«) D'y cos ax+2 (<4„ -Btt) Dy' cos ax

COSax

COS ax (12 a)

7-_A>,y*/,,DS (sinh ab + a£ cosh ad) cosh ay-ay- sinh ad • sinh
sinh2a£ + 2a£

+ y*(A -B \ (cosria*+a*•sinn «^) sinh aj-cy-cosh ad-cosh

ay

ay
sinh 2 ab -2 ab

cosax

cosax

A0
+ 1!i(An + Bn)E;-cosax + z2(A„-Bl,)E;cosax

(12b)
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s B zZ{An + Bn)

+ Z (An-Bn)
1

ay • sinh ab - cosh ay — ab • cosh ab ¦ sinh ay
sinh 2 ab+ 2ab sinax

ay • cosh ab • sinh ay- ab ¦ sinh ab • cosh ay
sinh2ab-2 ab

sinax (12 c)

S (An + Bn) F' ¦ sin ax+2 (^« - #«) ^ • sin ax
i i

Siehe hierüber Dr. ing. F. Bleich: „Der gerade Stab mit Rechteckquerschnitt als
ebenes Problem", Bauingenieur 1923, Heft 9. Ergänzend hierzu sei bemerkt, daß dieses
Problem schon früher von L. N. G. Filon 1903 ohne Zuhilfenahme der Spännungs-
funktion und deshalb sehr umständlich behandelt worden war (Phil. Transaktions —
London 1903, Senie A, Vol. 201, S>. 63). Eine weitere Behandlung mittels Einflußlinkn
erfuhr das Problem durch F. Seewald: „Die Spannungen und Formänderungen von
Balken mit rechteckigem Querschnitt". Abhandlungen aus dem Aero-dynamischen
Institut der Hochschule Aachen. Jul. Springer, Berlin, 1927 (s. Handbuch für Physik,
Band 6, S. 205). Schon vor Bleich hat Dr.-Ing. A. Timpe in seiner Dissertation „Problem
der Spannungsverteilung in ebenen Systemen", Druck von B. G. Teubner, Leipzig, 1905,
dieses Problem ebenfalls mit Hilfe der Airy'schen Spannungsfunktion kurz behandelt.

Ober den Spezialfall der Problemstellung von Bleich, nämlich feldweis wech-
n—l

4p (-1VT-selnde Belastung, d. h. für (An + Bn) — (An — B„) hat Dr. ing. H.
IX. tl

Craemer auf dem Internationalen Kongreß für Brücken- und Hochbau 1929 in seinem
Vortrag: „Spannungen in hohen wandartigen Trägern, unter besonderer Berücksichtigung

des Bunkerbaues" berichtet und seine Ergebnisse auch ausführlich in der
„Zeitschrift für angewandte Mathematik und Mecha"nik", 1930, Heft 3, veröffentlicht. Seine
Behauptung, daß ,er das strenge BaLkenproblem gelöst habe, beruht auf der Nichtkenntni,s
der .erwähnten früheren viel allgemeineren und eingehenderen Lösungen. An den Vortrag
von H. Craemer auf dem Kongreß in Wien schloß sich dann eine Debatte zwischen
Prof. Bortsch und Craemer an, in welcher Bortsch, der sich in der Melanfestschrift
1923 „Die Spannungen in Silowänden", ebenfalls mit diesem Problem befaßt hat, die
Ergebnisse von Craemer bezweifelte. Bortsch ging bei seinen Untersuchungen vom
strahligen Spannungszustand der Halbebene gemäß Abb. 4 a aus, bei denen sich die

2 P
Spannungen aus den bekannten Gleichungen o, sin q>, Ot r 0 ergeben und er-

zeugte durch Überlagerung und Spiegelung eüie periodisch belastete und gelagerte Wand

m

1 Kr A
1

;

T

r~ "i
¦ EBB nroiniiiimiiiBiiuiij', «rI^Periode }

m 1
\m

Fiar. 4.

von endlicher Höhe gemäß Abb. 4 b. Die Ergebnisse seiner Untersuchungen über die
Biegungsspannungen ax sind in der Abb.. 13, S. 49 seiner Abhandlung wiedergegeben.
Hierbei ergab sich das unmögliche Ergebnis, daß über der Stütze nur Druck-Biegungs-
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Spannungen, d. h. «ine Längskraft, auftreten, während tatsächlich entsprechend dem
Biegungsmoment gerade so große Druck- wie Zugkräfte auftreten müßten, d. h. die Längskraft

müßte zu Null werden. In Feldmitte ergab sich eine ganz kleine Zugkraft, der eine
viel größere Druckkraft gegenübersteht, ebenfalls ein unmögliches Ergebnis. Diese
unrichtigen Resultate rühren davon her, daß die an sich richtigten Gleichungen des strahligen

Spannungszustandes bei Trägern nicht anwendbar sind und zu unrichtigen Resultaten

führen, denn begrenzt man die Halbscheibe der Fig. 4 a durch eine Gerade y — B,
dann verbleiben am Rande immer Schubkräfte xx ar-cosqr>, die sich über der Stütze
zu einer Zugkraft integrieren, die den von Bortsch ermittelten Biegungs-Druckspannungen

das Gleichgewicht hält; Die Randbedingungen, die erfordern, daß an dem oberen
und unteren Rand des Balkens keine Schubspannungen auftreten dürfen, ist demnach;
nicht erfüllt, und zwar sowohl am oberen wie auch am unteren Rand, weil durch die
Spiegelung auch ata unteren Rande Schubkräfte auftreten, und damit sind auch die
Ergebnisse für alle anderen Spannungen (ay und x) unrichtig und desgleichen auch die
Einwendungen von Bortsch. Den gleichen Fehler begeht aber auch H. Craemer in
seinem Aufsatz: „Scheiben und Faltwerke als neue Konstruktionselemente im Eisenbeton",
Beton und Eisen 1929, Heft 13. Hier bespricht Craemer die Einführungsspannungen
einer Säule in eine Silowand und empfiehlt die Benutzung der Formel des strahligen
Spannungszustandes gemäß Abb, 4c, wobei sich bekanntermaßen für die Biegungs-:

Spannungen die Gleichung ax — ^- [2- (cp^ — qp2)- sin 2gjx + sin2<p2] ergibt, und

stellt als erfreuliches Resultat fest, daß durch die Einführung der Säulenlasten in beiden
Richtungen nur Druckspannungen auftreten. Diese Gleichung des strahligen Spannungszustandes

ist ebenfalls unbrauchbar, wei} sich auch hier ebenso wie bei der Abb. 4 b, nur
Biegungs-Druckspannungen, d.h. eine Längskraft ergeben, während nach den elementaren-

Gileichgewichtsbedingungen die das Biegungsmoment aufnehmenden Zug- und
Druckkräfte sich das Gleichgewicht halten müssen, d. h. auch hier greifen am oberen
Rand unberücksichtigte Schubkräfte an und die Randbedingungen sind nicht erfüllt Der
gleiche unrichtige Ansatz liegt auch der schon im Jahre 1917 erschienenen Arbeit von
A. Jackson über Spannungslinien, Stuttgart 1917, Conrad Witwer (S. 24), zu Grunde.

für y -\-b ergibt sich S 0 und Ty -~ + 2 An ¦ cos dx px0

» y —b „ S 0 „ Ty -^ -f-2 Bncos ax px

2

Bo
2

d. h. die Randbedingungen sind erfüllt.
Für die beiderseitigen Ränder y +_ b konvergieren die Reihen sehr

schlecht, j*edoch läßt sich hier eine Spaltung der Reihen durchführen, die je
nach dem Verhältnis von b:a eine Konvergenz der Reihe schon bei einem
bis drei Gliedern herbeiführt.

Für y + b ergibt die Umformung

-r-+b ivv„ DXs\nh2ab-2ab ^vw, „ \ sinh 2&b + 2ab| =^(^«)smh2K, + 2g,
COS °X + h2(An-Bn)sinh2ab_2ab COSaX

oo oo n t oo r% i.
Z\)An-cosax-z^(An+Bn) .," cosax+2.(An~Bn) *"

n cosaxi i sinn2aö + 2ao i sinh2a£-2aÄ
A —

It Pm — -^ — 2\)(An + Bn)-d'.cosax + zl(An— Bn)d"-cosax (13a)
A_0

2
und in gleicher Weise

77* =Pxu — -£ — z\](An + Bn)d'-cosax— 204« — Bn)d". cosax (13b)
£t 1 1

Um die sehr umständliche Berechnung der Reihen der Gl. 12 a und 13 zu
erleichtern, wurden für alle in Frage kommenden Werte von a die
Koeffizienten D, E, F für y ± 0, +_ 0,25 b, ± 0,50 b, ± 0,75 b, und die Koeffi-
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zienten d für y +_ 1,00 b ermittelt. Infolge Raummangels können jedoch diese
umfangreichen Tabellen hier nicht gebracht werden.

Die Gleichungen 13 geben uns einen sehr wichtigen Aufschluß über die
Größe der Randkräfte Tx. Bei hohen Trägern b ;> a ist der Einfluß der
Reihenglieder der Gl. 13 annähernd gleich Null und damit

T+b — n — ^?
ix — Pxo ~

Bot: Pxu —

für b ;> a

(14a)

(14b)

der Ausgleichskraft —- —. Bei den sehr umfangreichen Gleichungen für

d. h. die Biegungskräfte an den Rändern sind bei hohen Trägern ebenso wie
bei der Halbscheibe immer gleich der am Rande aufgebrachten Last, abzüglich

A1_B1
2 2

Tx hat es keinen Zweck, die Bestimmung der Kraft Z D und der Hebelarme

d und d0 in gleicher Weise wie bei der Halbscheibe durch mathematische
Integration zu bestimmen. Es wurden hierzu für die nachfolgenden Lastfälle
die Spannungsdiagramme für Tx aufgezeichnet und hieraus die Größen von
Z, d und d0 mittels Planimeters bestimmt. Wir gehen nun zu bestimmten
Belastungsfällen über.

III. Ermittlung der Biegungskräfte Tx und der Größen Z, d, do

für bestimmte Belastungsfälle.
1. Der durchlaufende Träger mit gleichbleibender Be¬

lastung g.
Bei konstanter Belastung ist es gleichgültig, ob die Last g am oberen

oder unteren Rande angreift. Das erkennt man ohne weiteres aus dem
Superpositionsgesetz. Wir nehmen vorerst an, die Wand sei am unteren Rand

n
m™

a) 3°-9f-»
Jö

1

go=.g*£.gkLb- z * e

3 A

*\

y$sm

-o-l
Fig. 6

L Periode _i

Fig. 5.

laufend unterstützt und die Last g greift entweder am oberen Rand oder auf
einer beliebigen Höhe, aber auf einer Geraden y konstant, oder aber am
unteren Rande an. Es kann jedoch auch sein, daß die Last g auf mehreren
Geraden y konstant mit den Teilwerten Agu Ag2 etc. angreift oder daß es
sich um das Eigengewicht des Trägers selbst handelt, das auf unendlich'
vielen Geraden y konstant verteilt ist.

tL'-äftä
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Solange nun die Wand laufend unterstützt ist, treten in ihr keine
Biegungskräfte Tx und Schubkräfte 5 auf, sondern nur vertikale Pressungen
Ty, die abhängig sind von der Lage der Last g. Nun entfernen wir die
laufende Unterstützung und lagern damit die Wand auf den Stützen auf. Das
ist aber gleichwertig damit, daß wir am unteren Rand entsprechend Fig. 5 a
die Last g anhängen. Wir folgern daraus die wichtige Erkenntnis: „Bei
gleichmäßig verteilter Last längs x sind die Biegungskräfte (Tx) und die
Schubkräfte (5) ganz unabhängig davon, in welcher Höhe die Last angreift,
nur die Normalkräfte Ty werden hierdurch beeinflußt."

Der Einfluß auf die Ty ist in der Fig. 6 schematisch dargestellt.
Der Abstand der Ty-Kurve gegenüber der y-Achse zeigt die Ty bei ange¬

hängter Last.
Der Abstand der Ty-Kurve gegenüber der Achse l_jzeigt die Ty bei oben

aufgebrachter Last.
Der Abstand der Ty-Kurve gegenüber der Schräglinie 2 zeigt die Ty bei

Eigengewichtsbelastung.
Der Abstand der Ty-Kurve gegenüber der abgesetzten Linie 3 zeigt die Ty

für den Fall, daß die Last g mit den Teilwerten Agu Ag2 etc. auf mehrere
Gerade verteilt ist.

In der Fig. 5 a ist der Belastungsfall 1 bei unten angehängter Last g
dargestellt. Die Breite der Säulen ist mit 2 c bezeichnet. Der Stützendruck

g0 ergibt sich aus dem Gleichgewicht der vertikalen Kräfte zu g0 g —= g—,
c eswobei s =—. In der Fig. 5 b sind die sich über der Stütze direkt aus-
a

gleichenden Lasten g abgezogen, sodaß nur der Stützendruck g'0 übrig bleibt,
CL C 1 6

der tatsächlich in die Scheibe eingeführt werden muß g\ g g
C c

Die beiden Belastungen der Fig. 5 a und 5 b sind einander ganz gleichwertig.
Wir ermitteln nun aus dem Fourier'schen Lehrsatz die Belastungsglieder

An und Bn.

2 fa
„ — I px0 cos ax- dx 0 (16a)

a J0

2 fa 2g (—D"
» =— »ja cos ax dx — - — srnac (16b)

a J, 7is n

und damit (An+B„) — (A„—B„) — — i—^-sinac (16c)
ixz n

Wir ersehen daraus, daß die Belastungsglieder nicht davon beeinflußt
werden, ob die Last g oben oder unten angreift, weil bei konstanter
Belastung An immer gleich Null ist. Die Folgerungen, die wir oben aus dem
Superpositionsgesetz gezogen haben, finden wir durch die Gl. 16 im
Zusammenhang mit Gl. 4 und Gl. 12 bestätigt. Durch Einsetzen des Wertes
von Bn in die Gl. 4 a wurden nun die Biegungskräfte Tx der Halbscheibe
für e i. 4-, rk i 4, —* ermittelt. Die Resultate sind für Feldmitte und
Stützenmitte in der Tabelle 1 zusammengestellt. Diese Tabelle zeigt, daß
zwischen den T x für e ^ und e ~, abgesehen von der Einführungsstelle,
keine Unterschiede bestehen und da außerdem in der Praxis geringere Säulen-
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breiten als e ^ nicht vorkommen, wurden die Werte für s — bei den

wandartigen Trägern vernachlässigt. Die Tx des wandartigen Trägers
ergeben sich durch Einsetzen des Wertes der Gl. 16 c in die Gl. 12 a bezw.
Gl. 13. Die Resultate sind in der Tabelle 2 a und 2 b für Feldmitte und

Stützenmitte und zwar für die Trägerhöhen b =—-, b — a und b a

zusammengestellt. In der untersten Reihe sind jeweils zum Vergleich die sich
aus dem Navier'schen Biegungsgesetz ergebenden Randspannungen
angegeben. Die Abweichungen gegenüber dem Geradliniengesetz sind an der

\ i i rbIJn Stülzenmitte
AuMilieu de l'Appul

Jn fheMiddle ofthe Support

i\ o Jn reldrnitte
.iV1 Au Milieu du Champr\ ]nhie Mddleofhie field

X.

Fig. 7. Biegungskräfte Tx — Efforts de flexion Tx — Bending Stresses Tx.

Stütze größer als in Feldmitte und zwar um so mehr, je schmäler die Stütze
und je größer die Trägerhöhe. Um einen guten Oberblick zu geben über den
allmählichen Übergang der Biegungskräfte der unendlich hohen Scheibe zu

denen des schlanken Trägers, sind in der Fig. 7 die 7x-Kräfte für e jg
sowohl für Feldmitte wie auch für Stützenmitte aufgetragen. Hierbei ist die
Spannweite L — 2 a konstant und die Trägerhöhe B variabel angenommen.

Die Kurve 1 zeigt die Tx-Kräfte der Halbscheibe b:a oo.

Die Kurve 2 zeigt die Tx-Kräfte des wandartigen Trägers für b:a — 1,

die Kurve 3 für b:a 2:3, die Kurve 4 für b:a 1:2.
Die entsprechenden Geraden des Navier'schen Biegungsgesetzes sind

mit 2', 3', 4' bezeichnet. Bei allen Spannungskurven ist der untere Teil des

Diagrammes fast gleich, der Einfluß der abnehmenden Trägerhöhe macht
sich fast ausschließlich im oberen. Teil des Diagrammes bemerkbar und je
schlanker der Träger wird, umso größer werden die Abweichungen von der
Kurve 1 des unendlich hohen Balkens und um so mehr nähern sich die Kurven
dem Geradliniengesetz. Die Neigung zu dem Geradliniengesetz ist in der
Feldmitte viel stärker wie über der Stütze, denn in der Feldmitte ist bei
Kurve 4 das Geradliniengesetz schon annähernd erreicht, nicht aber bei der
Stütze. Dieses verschiedenartige Verhalten ist bedingt durch die größeren
Einführungskräfte über der Stütze, sobald die Einführungskräfte gleich groß
sind und das ist der Fall bei s \ (Stützenbreite Feldweite), dann werden
die Diagramme über Stütze und in Feldmitte gleich. Die gestrichelte Kurve tn
zeigt die Größe der Randspannung Tx am oberen Rand bei beliebiger Trägerhöhe,

mit deren Hilfe man die Spannungskurve Tx ohne jede Rechnung bei



Tabelle 1. Halbscheibe: Tx für gleichbleibende Belastung

y\a
7x (Feldmitte) Tx (Stützenmitte)

• Vi %\ m /to Voo « Vi V* Vio $0 V=°

+ 0,00 + 1,000 +1,000 + 1,000 + 1,000 + 1,000 — 1,000 — 4,000 - 9,000 —19,000 — oo g
+ 0,25 + 0,167 + 0,270 + 0,284 + 0,286 + 0,290 — 0,167 + 0,147 + 0,516 + 0,679 + 0,735 ff
+ 0,50 — 0,137 — 0,112 — 0,107 — 0,107 — 0,104 + 0,137 + 0,400 + 0,483 + 0,507 + 0,514 ff
+ 0,75 -0,161 — 0,195 - 0,1983 — 0,199 — 0,199 + 0,161 + 0,297 + 0,325 + 0,333 + 0,336 g
+ 1,00 — 0,118 — 0,158 — 0,164 - 0,166 — 0,166 + 0,118 + 0,187 + 0,200 + 0,203 + 0,204 ff
+ 1,25 — 0,073 - 0,104 - 0,1085 - 0,109 — 0,110 + 0,073 + 0,1125 + 0,1185 + 0,1195 + 0,1195 ff
+ 1,50 - 0,0424 — 0,0614 — 0,0643 — 0,0651 — 0,0651 + 0,0424 + 0,0636 + 0,0670 + 0,0677 + 0,0677 g
+ 1,75 — 0,0235 — 0,0343 - 0,0360 — 0,0364 — 0,0364 + 0,0235 + 0,0347 + 0,0366 + 0,0371 + 0,0371 g<

+ 2,00 - 0,0126 - 0,0185 - 0,0194 — 0,0196 — 0,0196 + 0,0126 + 0,0185 + 0,0194 + 0,0196 + 0,0196 g

Tabelle 2a. 1 eldmi tte) Wandartiger Träger: Tx für gleichbleib ende Belastung.

y\b « Vi
b= "\

% fl (90 « Vi
b 'k 0 ^/»

Vio ho • v3

b a
Vio /io

+ 1,00 — 0,746 — 1,032 — 1,065 — 1,070 — 0,330 - 0,470 — 0,495 — 0,502 - 0,060 — 0,088 - 0,092 — 0,093 ff
+ 0,75 — 0,458 — 0,636 — 0,658 — 0,665 — 0,185 - 0,269 — 0,286 — 0,286 — 0,031 — 0,045 — 0,047 — 0,049 ff
+ 0,50 — 0,304 — 0,403 — 0,417 — 0,448 — 0,144 - 0,196 — 0,204 — 0,206 — 0,042 — 0,062 — 0,064 — 0,065 ff
+ 0,25 — 0,210 — 0,245 — 0,249 — 0,250 — 0,147 — 0,185 — 0,188 — 0,190 — 0,070 — 0.098 — 0,103 — 0,104 ff
m 0,00 — 0,129 — 0,103 — 0,095 — 0,081 — 0,154 — 0,169 — 0,168 — 0,168 — 0,115 — 0,156 — 0,162 — 0,163 ff
— 0.25 — 0,001 + 0,091 + 0,105 + 0,107 — 0,122 — 0,089 — 0,083 — 0,081 — 0,162 — 0,194 — 0,192 — 0,199 ff
-0,50 + 0,240 + 0,374 + 0,382 + 0,377 + 0,030 + 0,127 + 0,139 + 0,140 — 0,136 — 0,110 -0,106 — 0,104 ff- 0,75 + 0,647 + 0,735 + 0,783 + 0,785 + 0,407 + 0,512 + 0,523 + 0,531 — 0,178 + 0,277 + 0,272 + 0,292 ff- 1,00 + 1,204 + 1,289 + 1,313 + 1,317 + 1,042 + 1,062 + 1,065 + 1,066 + 1,001 + 1,002 + 1,002 + 1,002 g
Navier: ± 0,750 ± 0,960 ±0,990 ±1,000 ± 0,422 + 0,540 ± 0,556 ± 0,563 ±0,187 ±0,240 ± 0,2475 ± 0,250 g

Tabelle 2b. Stützenmitte) Wandartiger Träger: Tx für gleichbleibende Belastung.

1! b ak LL b=*U a L\% b a Lk
« Vi Vs VlO '20 «¦;.= Vi 1 Vio Vio pj V» | % /io

+ 1,00 + 0,746 + 1,175 + 1,250 + 1,250 + 0,330 + 0,496 + 0,525 + 0,533 + 0,060 + 0,088 + 0,092 + 0,094 ff
+ 0,75 + 0,458 + 0,717 + 0,760 + 0,760 + 0,185 ¦f 0,274 + 0,287 + 0,292 + 0,031 + 0,045 + 0,047 + 0,049 ff
+ 0,50 + 0,304 (- 0,504 + 0,542 + 0,570 + 0,144 + 0,228 + 0,244 + 0,247 + 0,042 + 0,062 + 0,064 + 0,067 ff
+ 0,25 + 0,210 + 0,414 + 0,463 + 0,478 + 0,147 + 0,250 + 0,271 + 0,276 + 0,070 + 0,108 + 0,113 + 0,115 ff
+ 0,00 + 0,129 + 0,385 + 0,464 + 0,488 + 0,154 + 0,315 + 0,354 + 0,363 + 0,115 + 0,186 + 0,199 + 0,202 ff
-0,25 + 0,001 + 0,330 + 0,486 + 0,540 + 0,122 + 0,374 + 0,456 + 0,480 + 0,162 + 0,295 + 0,317 + 0,332 ff
— 0,50 — 0,240 + 0,124 + 0,394 + 0,568 — 0,030 + 0,385 + 0,533 + 0,607 + 0,136 + 0,396 + 0,476 + 0,500 ff
— 0,75 — 0,647 — 0,750 — 0,445 + 0,185 — 0,407 — 0,083 + 0,156 + 0,440 -0,178 + 0,169 + 0,483 + 0,620 ff
— 1,00 — 1,204 — 4,302 — 9,317 - 19,32 — 1,042 — 4,062 — 9,065 —19,066 — 1,001 - 4,002 — 9,002 —19,002 g
Navier: ±0,750 ±1,440 ±1,71 ± 1,85 ± 0,422 ±0,810 ±0,962 H 1,041 ±0,187 ± 0,360 + 0,4275 ± 0,4625 g
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beliebiger Trägerhöhe einzeichnen kann. Die gestrichelte Kurve n gibt den
entsprechenden Wert des Navier'schen Biegungsgesetzes.

Die. Größe des Biegungsmomentes M ergibt sich aus der Gl.- 5 durch
Einsetzen des Wertes von Bn aus Gl. 16b zu:

M + 2 Hr cos ax
l «

2 ^ sin ac • cos ax hieraus ergibt sich
7t£ i

für x 0 Feldmitte M,
1 (—1)"x ' cm/v/» —2g 2 4 v—^ sin ac +^ (1-fi2)

Tee i a-

2g 1 1

für x 0Stützenbreite Mst=-— S^— sinac= -g^-.(l-e)-(2-e) (17b)
tt£ i ai n 0

Diese Gleichungen lassen sich naturgemäß auch ohne Reihen, direkt aus der
Belastung der Fig. 5 a ableiten.

In der Fig. 8 sind dieselben Spannungsdiagramme Tx (e jg)
aufgezeichnet, jedoch wurde jetzt nicht die Trägerhöhe, sondern die Spannweite
L 2 a variabel angenommen. Die Kurven zeigen sehr gut den Übergang
zum Geradliniengesetz.

a) Jn Feldmitte 6.) Über der Stütze

Au Milieu du Champ — Jn Me rtidd/e ofthe field il'Appui - ai the Support

* 13

ft' 082

Fig. 8.

t.O 0,5 0 O.S 1,0 0,S t> 0,5 1,0 t.25j

Biegungskräfte Tx — Efforts de flexion Tx — Bending Stresses Tx

Bei dem Navier'schen Biegungsgesetz beträgt der Hebelarm der inneren

Kräfte d jj
Längskraft

B, der Abstand der Kraft Z D vom Rande do — und die
6

¦7 M
Zn ——

d
M
&R (18)

Bei dem strengen Biegungsgesetz des wandartigen Trägers wurden diese
Größen nach Aufzeichnen der Spannungskurven Tx in großem Maßstab mit
Hilfe des Planimeters ermittelt. Für den Grenzfall des unendlich hohen
Trägers (Halbscheibe) konnten diese Werte durch Integration mit Hilfe der
Gl. 6, 7, 8 ermittelt werden. Die Resultate sind in den Tabellen 3 a und 3 b
für Feld- und Stützenmitte für b:a \, |, 1 zusammengestellt.

In der ersten Reihe sind die Biegungsmomente gemäß den Gl. 17
angegeben. In der zweiten Reihe die Längskräfte Zn des Navier'schen Biegungsgesetzes

(Gl. 18), in der dritten die tatsächlichen Längskräfte Z, in der

vierten die Hebelarme d, bezogen auf a =—, in der fünften die Hebelarme d,



Tabelle 3a (Feldmitte). Gleichbleibende Belastung.

e

* Vifl V^
h h /io /so /» U /IO /lO

b a '/i L
/2 h /lO 120

b oo

li Is 110 /20

Reihe 1 M
2 Zn
3 Z
4 d
5 d
6 do

0,125 0,160 0,1645 0,166
0,188 0,240 0,247 0,249
0,186 0,235 0,239 0,240
0,674 0,682 0,690 0,692
0,674 0,682 0,690 0,692
0,114 0,127 0,128 0,129

0,125 0,160 0,1645 0,166
0,141 0,180 0,185 0,187
0,151 0,182 0,186 0,187
0,828 0,880 0,888 0,890
0,620 0,660 0,666 0,667
0,111 0,122 0,124 0,125

0,125 0,160 0,1645 0,166
0,094 0,120 0,1235 0,1245
0,144 0,172 0,177 0,178
0,870 0,924 0,932 0,934
0,435 0,462 0,466 0,467
0,109 0,121 0,123 0,124

0,125 0,160 0,1645 0,166
0,000 0,000 0,000 0,000
0,1434 0,171 0,176 0,177
0,874 0,930 0,936 0,938
0,000 0.000 0,000 0,000
0,108 0,121 0,122 0,122

ga3
ga
ga
a
B
a

0,25 gL
0,50 gL
0,50 gL
0,5 L
2 b
0,5 L

Tabelle 3b (Stützenmitte). Gleichbleibende Belastung.

* n^9/i h /io 'ao

» 'li«= Vi L
la h ho /ao

b a Vu L

la h /io /ao

b oo

/a U lio /ao

Reihe 1 M
2 Zn
3 Z
4 d
5 d
6 do

0,125 0,240 0,285 0,309
0,188 0,360 0,428 0,464
0,186 0,375 0,458 0,515
0,674 0,640 0,622 0,600
0,674 0,640 0,622 0,600
0,114 0,062 0,039 0,022

0,125 0,240 0,285 0,309
0,141 0,270 0,321 0,348
0,151 0,351 0,428 0,498
0,828 0,686 0,656 0,620
0,620 0,515 0,492 0,465
0,111 0,059 0,036 0,021

0,125 0,240 0,285 0,309
0,094 0,180 0,214 0,232
0,144 0,324 0,424 0,497
0,870 0,740 0,682 0,612
0,435 0,370 0,341 0,312
0,109 0,059 0,036 0,021

0,125 0,240 0,285 0,309
0,000 0,000 0,000 0,000
0,1434 0,322 0,422 0,495
0,874 0,746 0,674 0,612
0,000 0,000 0,000 0,000
0,108 0,059 0,038 0,024

ga2
ga
ga
a
B
a

§ 0,25 gL»
0,50 gL
0,50 gL

m 0,50 L
2 b
0,5 L
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bezogen auf die Höhe des Trägers B 2 b und in der sechsten die
Abstände d0 der Längskräfte Z vom Rande.

Um einen guten Überblick über die auftretenden Längskräfte Z und
Hebelarme d zu geben, sind diese in der Fig. 9 für e ^ aufgetragen.

Für schlanke Träger beträgt die Längskraft Z„ entsprechend dem Navier-

schen Biegungsgesetz Z„ d. h. die Längskraft für die verschiedenen

Trägerspannweiten verläuft nach einer Hyperbel, die sowohl für Feldmitte
(Zn Feld) und für den Stützenquerschnitt (Zn Stütze) aufgezeichnet ist.

Sobald jedoch im Feld das Verhältnis — —und bei der Stütze — —-erreicht
J

a 3 a 2
ist, weicht die tatsächliche Normalkraft von Zn ab und verläuft nach einem
kleinen Übergangsbogen in einer Geraden weiter. Die Kurve der tatsächlichen

Längskraft Z ist demnach sehr genau begrenzt durch die Navier'sche
Hyperbel und eine Gerade, deren Längskraft Z der unendlich hohen Scheibe

o.422gu

0.936a

«fN d
I25dOßga

J?c fee -Apput- Support)
04gu loa

'ä/Fefa'-ChoiDP -Field)

Qßov 07Sa

wfStffze-App -Support)
N^

¦zfFeld- Champ-'Ffelo'}02gu

*S6

0,2SoOJati

I.2S0.75

0,176gu

0.25

Fig. 9.

zu entnehmen ist. Damit ergibt sich eine sehr einfache und leicht anwendbare
Dimensionierungsregel für die Bestimmung der notwendigen Eiseneinlagen.
Die Größe der Längskraft Z ist gegeben einerseits durch den Navier'schen

Wert Z -5-—» jedoch kann sie für die verschiedenen Stützenbreiten

e
10

1

20

in Feldmitte nie kleiner
werden als

in Stützenmitte nie kleiner

werden als

Z^ 0,144 0,171 0,176 0,177 0,178 Xga=g —

LZ^ 0,144 0,322 0,422 0,495 0,546 Xga g —

(19)

In der Fig. 9 sind auch die Hebelarme d für e ^ für Feld- und
Stützenmitte aufgetragen. Für schlanke Träger ist d gegeben durch den
Navier'schen Wert d %B. Sobald für die Stützenmitte ein Verhältnis
b:a 0,5 und für die Feldmitte ein Verhältnis b:a 2:3 erreicht ist,
wächst d nicht mehr an, sondern verläuft nach einem kurzen Übergangs-
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bogen in einer horizontalen Geraden weiter, die gegeben ist durch die Hebelarme

d der unendlich hohen Scheibe.
Es ergibt sich deshalb für die Bestimmung der Hebelarme d eine ebenso

einfache Annäherungsregel wie für die Längskräfte.
Der Hebelarm der inneren Kräfte ist gegeben durch den Navier'schen

Wert d \B, jedoch kann er für die verschiedenen Säulenbreiten

11111S — 2 5 10 20

in Feldmitte nie größer
werden als d Ö 0,874 0,930 0,936 0,938 0,940 x a 0,5 L (20)

und in Stützenmitte nie
größer werden als d=l 0,874 0,746 0,674 0,624 0,604 x a 0,5 L

Die beiden Näherungsformeln ergeben in der Nähe des besprochenen
Übergangsbogens etwas zu günstige Werte, jedoch ist der Fehler so gering,
daß er insbesondere in Feldmitte vernachlässigt werden kann. Die genaueren
Werte können jedoch immer auch den Tabellen 3 a und 3 b entnommen
werden. Während die Spannungskurven (Fig. 7 und 8) nur einen sehr
allmählichen Übergang von der unendlich hohen Scheibe zum Navier'schen
Biegungsgesetz zeigten, ist der Übergang bezügl. der für die Dimensionierung
maßgebenden Längskraft N und Hebelarm d ein sehr rascher. Auffallend ist,
daß bei dem durchlaufenden Träger mit gleichbleibender Belastung g die
Hebelarme in Feldmitte viel größer sind wie über der Stütze und zwar ist
der Unterschied um so größer, je geringer die Stützenbreite. Mit abnehmender

Stützenbreite wächst der Hebelarm d in Feldmitte, und über der Stütze
nimmt er rasch ab. Diese Erscheinung ist sehr wichtig für die
Dimensionierung.

Bei dem Preisausschreiben der Akademie des Bauwesens (1930) auf
dem Gebiet des Eisenbetons2) hat der Verfasser auch Kugelschalen untersucht,

die auf weit entfernten Einzelstützen gelagert sind und wobei die
Schale zwischen den Säulen als Träger wirkt und zwar in ganz ähnlicher
Weise wie hier die Scheibe. Hierbei ergaben sich die gleichen Verhältnisse
bezügl. der Hebelarme d, nur mit dem Unterschied, daß diese in einem
bestimmten Verhältnis kleiner sind8). Diese Erkenntnis bildete die Anregung
dafür, auch, die ebene Scheibe in dieser Hinsicht genauer zu untersuchen.

Am Anfang dieses Abschnittes haben wir festgestellt, daß ganz
unabhängig davon, in welcher Höhe die gleichbleibende Belastung g angebracht
ist, die Trägerwirkung sich immer am unteren Rand abspielt und die
Tabellen 2 und die Gl. 14 zeigen, daß die max. Biegungskräfte Tx annähernd
von gleicher Größe sind wie die max. 7>-Kräfte, d. h. wie die angehängte Last.

Der Satz vom Minimum der Formänderungsarbeit gibt die Erklärung
hierfür. Die Formänderungsarbeit hängt bekanntlich ab von den Quadraten
der Spannungen. Infolgedessen werden sich, wenn es möglich ist, immer
möglichst gleich große Spannungen in allen Richtungen ergeben, und
unnötige Maximalwerte müssen vermieden werden. Wir betrachten nun den
Fall der oben aufgebrachten Last. Würde sich in diesem Falle die
Trägerwirkung an der oberen Begrenzung abspielen, dann müßten die Lasten durch
konzentrierte 7>-Kräfte nach den Säulen abgetragen werden, womit eine

2) Dr. Ellerbeck, „Zentralblatt der Bauverwaltung", 1930, Heft 24.
8) Dr. Ing. Fr. Dischinoer, „Eisenbetonschalendächer Zeiß-Dywidag", 1.

Internationaler Eisenbeton-Kongreß, Luttich 1930.
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sehr große Formänderungsarbeit verbunden wäre. Infolgedessen ist es
wirtschaftlicher, die oben aufgebrachte Last der hohen Wand, wie von
nebeneinanderstehenden Säulen bei geringen Ty-Kräften nach unten zu schaffen
und dann erst durch Trägerwirkung nach den Säulen abzutragen und zwar
muß sich zur Erreichung des Minimums der Formänderungsarbeit eine solche
Trägerhöhe einstellen, daß die Biegungskräfte Tx annähernd von gleicher
Größe werden wie die zugehörigen Ty, d. h. wie die angehängte Last.

2. Feldweise wechselnde Verkehrslast gemäß Fig. 10.

Bei der feldweise wechselnden Verkehrslast entstehen keine Auflagerdrücke.

Wenn die Verkehrslasten im Gegensatz zur Fig. 10 nicht am unteren,
sondern am oberen Rand des Trägers angreifen, dann sind Fx-Kräfte das

Spiegelbild bezügl. der x-Achse; eine neue Berechnung erübrigt sich.

IfrJHIIHWIIIHI

Periode
2a=2L
Mx

Qx

Rg 10.

Ls ergibt sich

An

Bn

px0 cos ax dx 0 (21 a)

1 f«

a J„

(An+Bn) —(An+Bn)
4p (¦

und damit

-1)" nn—- sin —n 2

cos ax dx

4p

4p (- -1)" mt—!- sin— (22 b)

ZJ1 (* -!,+3,-5...) (22 c)

Der Vergleich der Fig. 10 mit der Fig. 5 b zeigt, daß der Belastungsfall der
feldweise wechselnden Verkehrslast vollständig identisch ist mit dem Fall
e i der Eigengewichtslastung; das zeigen auch die Belastungsglieder der

Gl. 16. Setzt man in Gl. 16 für e f, für g p, für c =—-, dann wird

sinax sin — und damit sind die Gl. 16 in die Gl. 22 übergeführt.

Infolgedessen können die Werte von e \ der Tabellen 1, 2, 3 für die
Ermittlung der Größen von Tx, Nn, N, d, do bei den verschiedenen Trägerhöhen

b:a \, f, 1, benutzt werden. (Den Spezialfall b — hat Dr. ing.

Craemer in seinem schon erwähnten Aufsatz behandelt.) Jedoch ist zu
beachten, daß, wie der Vergleich der Fig. 5 b und Fig. 10 zeigt, jetzt die Länge
der Periode 2 a 2L, im Gegensatz zur gleichbleibenden Belastung, wo
2a L war; infolgedessen sind die Hebelarme d, bezogen auf a, zwar gleich,
aber bezogen auf L sind sie bei Verkehrsbelastung doppelt so groß, der Übergang

zum Navier'schen Biegungsgesetz erfolgt also rascher und der Träger
ist bei Verkehrsbelastung günstiger ausgenutzt.

Die vereinfachte Dimensionierungsregel lautet:
Die Größe der Längskraft Z ist gegeben durch den Navier'schen Wert

Z„ =-^—-, jedoch kann Z nie kleiner werden als 0,144 pa 0,144 pL.

Die Größe der Hebelarme d ist gegeben durch den Navier'schen Wert
d \B, jedoch kann d nie größer werden als 0,874 a 0,874L. Der Verlauf



Tabe lle 4. Biegungskriifte 7x der Iialbscheib e bei Belastung durch Einze

(Feldmitte — Stützenmitte)
y\a H Vi \ Vio Vio ü
0,00 + 1,000 + 2,500 + 5,000 +10,000 + oo pla
0,25 + 0,167 + 0,062 — 0,115 — 0,197 — 0,223
0,50 — 0,137 — 0,255 — 0,296 — 0,306 — 0,309
0,75 — 0,161 — 0,245 — 0,262 — 0,266 — 0,267
1,00 — 0,118 — 0,173 - 0,182 - 0,185 — 0,185
1,25 — 0,073 — 0,108 — 0,114 — 0,114 — 0,115
1,50 — 0,0424 — 0,063 — 0,066 — 0,067 — 0,068
1,75 — 0,0235 — 0,034 — 0,036 - 0,037 — 0,037
2,00 — 0,0126 — 0,019 - 0,019 — 0,020 - 0,020

Tabelle 5. (Feld mitte — Stützen mitte. Biegungskräfte: Tx des wandartigen Trägers bei Belastung durch Einzelkräfte.

b ah LU b 3/8 « ^8 b a LI*
fa *= */» % Vio /ao •> '/. Vs Vio /ao « Va k Vio /ao

+ 1,00 — 0,746 -1,100 — 1,104 — 1,180 — 0,330 - 0,483 -0,510 — 0,517 — 0,060 — 0,088 — 0,092 — 0,094 pla

+ 0,75 — 0,458 — 0,680 — 0,704 — 0,712 — 0,185 _ 0,272 — 0,285 — 0,294 - 0,031 — 0,045 — 0,047 — 0,048 I»

+ 0,50 — 0,304 — 0,454 — 0,480 — 0,484 — 0,144 -0,213 — 0,223 — 0,230 - 0,042 — 0,062 — 0,065 — 0,066 »

+ 0,25 — 0,210 — 0,330 — 0,356 — 0,364 — 0,147 — 0,218 — 0,229 — 0,233 — 0,070 — 0,103 — 0,108 — 0,110 )»

+ 0,00 -0,129 — 0,244 — 0,280 — 0,292 — 0,154 — 0,243 — 0,243 — 0,267 — 0,115 — 0,171 — 0,193 — 0,196 1>

— 0,25 — 0,001 -0,116 — 0,190 - 0,214 — 0,122 — 0,233 — 0,267 — 0,282 — 0,162 — 0,245 — 0,260 — 0,266 JJ

— 0,80 + 0,240 + 0,168 + 0,006 - 0,056 + 0,030 — 0,098 — 0,198 — 0,233 — 0,136 — 0,251 — 0,292 — 0,303 JJ

— 0,75 + 0,647 + 0,990 + 0,710 + 0,406 + 0,407 + 0,440 + 0,302 + 0,143 + 0,178 — 0,054 — 0,105 — 0,190 JJ

— 1,00 + 1,204 + 2,800 + 5,320 + 10,320 + 1,042 + 2,570 + 5,050 + 10,01 + 1,001 + 2,500 + 5,002 +10,002 »

Navier: + 0,750 + 1,200 + 1,350 + 1,424 + 0,422 + 0,675 + 0,760 + 0,802 + 0,1875 + 0,300 + 0,338 + 0,356 Pla

Tabelle 6. (Feldmitte —Stützenmitte). Belastung durch Einzelkräfte.

Reihe M
Zn
Z
d
d
do

- b=1ka=1UL
Va Vs Vio Vao

0,125
0,188
0,186
0,674
0,674
0,114

0,200
0,300
0,289
0,692
0,692
0,077

0,225
0,338
0,320
0,704
0,704
0,048

0,238
0,357
0,333
0,716
0,716
0,028

b %a Vs L
Va Vio Vao

0,125
0,141
0,151
0,828
0,620
0,111

0,200
0,225
0,244
0,820
0,615
0,072

0,225
0,253
0,278
0,808
0,606
0,044

0,238
0,268
0,303
0,788
0,591
0,026

b a Va L
Vi Vs Vio Vao

0,125
0,094
0,144
0,870
0,435
0,109

0,200
0,150
0,241
0,830
0,415
0,068

0,225
0,169
0,276
0,816
0,408
0,043

0,238
0,178
0,298
0,790
0,395
0,025

Va

b oo

k lio !/„,

0,125 0,200
0,000 0,000
0,1434 0,238
0,874 0,840
0,000 0,000
0,108 0,072

0,225
0,000
0,273
0,824
0,000
0,045

0,238
0,000
0,295
0,810
0,000
0,026

Pa
P
P
a
B
a

0,5 PL

0,5 L
2 b
0,5 L
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der ßiegungsspannungen Tx unterscheidet sich kaum von den in Fig. 7 und

Fig. 8 aufgezeichneten Tx-Kräften für gleichbleibende Last g (e ^).

3. Gleichzeitige Belastung sämtlicher Felder durch
Einzelkräfte.

Der einfacheren Rechnung wegen setzen wir voraus, daß die Belastungsbreiten

gleich sind den Auflagerbreiten. Die Länge der Periode beträgt
2 a L.

a) Wir betrachten zunächst den Fall, daß die Einzellasten
unten angehängt, sodaß die Lasten und die Auflagerkräfte auf der gleichen
Seite des Trägers angreifen (Fig. 11). Nach dem Fourier'schen Lehrsatz

ergibt sich:

^4

1

_2_

a
px0 cos ax dx — 0 (25 a)

c.h Periode '
| '2a,L

Mx

m
Fig. 11.

\-^

Bn — 1 -\ Pxu cos ax dx

— — sin ac (n ¦ 1, 3, 5 (25b)
it c n

2P 1 •

(An+Bn) — (An+Bn) — — sinac («=1,3,5...) (25 c)

Für den Fall, daß e
Pist — p und damit gehen die Gl. 25 in die Gl. 22

über und sie entsprechen zugleich dem Spezialfall s \ der Gl. 16. (Vergl.
auch die zugehörigen Fig. 5 a, 9.) ßurch Einsetzen der Werte der Gl. 25 in

die Gl. 4 a wurden wieder die Biegungskräfte Tx der Halbscheibe für s= m

I I 1 und durch Einsetzen in die Gl. 12 a bezw. 13 die Biegungskräfte
des wandartigen Trägers für e f, ^, ^ bei b.-a \, f, 1 ermittelt. Die

Ergebnisse sind in den Tabellen 5 und 4 wiedergegeben und in der Fig. 12

sind die Tx-Kräfte für e ^ bei den verschiedenen Balkenhöhen b:a f,
f, 1 aufgezeichnet. Die Tx-Kräfte über der Stütze unterscheiden sich von
denen des Feldes nur durch das Vorzeichen. Der Übergang der Tx-Kräfte zu
denen des Navier'schen Biegungsgesetzes spielt sich in der gleichen Weise
ab wie bei der gleichbleibenden Belastung nach Abb. 7.

Das Biegungsmoment bei dieser Belastung ergibt sich aus der Gl. 5 bezw.
Pa

durch direkte Ableitung aus der Belastung zu M + —- (1 —e).

In der Tabelle 6 wurde nun wieder die Dimensionierung wichtiger
Formgrößen zusammengestellt und hieraus ergeben sich wieder wie bei den

vorhergehenden Belastungsfällen vereinfachte Dimensionierungsregeln. Diese
lauten:

Die Längskraft Z ergibt sich aus dem Navier'schen Biegungsgesetz,
jedoch kann sie für die verschiedenen Belastungsbreiten
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,1_

10
%
20

in Feld- u. Stützenmitte pnie kleiner werden als Z^ 0,144 0,238 0,273 0,295 0,312 x —
(26)

Der Hebelarm der inneren Kräfte d ist gegeben durch den Navier'schen Wert
d f B, jedoch kann er für die verschiedenen Belastungsbreiten

10
i

20

in Feld- u. Stützenmitte
nie größer werden als d<^ 0,894 0,840 0,824 0,810 0,802Xa.

(27)

b) Die Einzellasten sind oben aufgebracht: Dieser Be*-

lastungsfall unterscheidet sich vom vorigen nur bei sehr großer Trägerhöhe.
In der Fig. 13 sind die sich ergebenden Tx-Kräfte zwecks Vergleich mit der

1
i

1
1

1

\\ \
1 ö

& \ v\ *

/ \ 1y- ^ \

jS fr x E

| / ~*9 is
V i&i5^ 1

-W^d^ i <?•»

S f
+ *J -~y" *% /_

3 ^ -°

M n 1

Fig. 12.

Biegungskräfte Tx — Efforts de flexion Tx
Fig. 13.

Bending Stresses Tx.

Fig. 12 aufgetragen. Ein wesentlicher Unterschied gegenüber Fig. 12 ergibt
sich erst bei hoher Trägerhöhe (b a). Hier ist ein einheitliches Spannungsdiagramm

nicht mehr vorhanden, es ergeben sich drei neutrale Achsen und
damit zwei Zugzonen.

Die Belastungsglieder ergeben sich zu:
P 1

sm ac
nc n

P (-D" -
Bn -| s - sin ac

nc n

Ao P
2 2a

Bo
_

2

P
~~2a

An + B„

An — Bn

2P 1

itc n

2P 1

nc n

sin ac (n 2, 4, 6...)

sinac (n =^1, 3, 5...)

(28 a)

(28 b)

(28 c)

(28 d)

Auch für diesen Belastungsfall wurden die Hebelarme der inneren Kräfte
ermittelt, sie sind bei hohen Trägern etwas günstiger wie bei a), bei schlanken
Trägern jedoch gleich, sodaß die Dimensionierung von a) immer brauchbare
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Werte ergibt. Es wurde deshalb und aus Gründen der Raumersparnis von

einer Wiedergabe der zugehörigen Tabellen abgesehen. Zu beachten ist nur,
daß bei Trägern b a die Zugeisen geteilt werden müssen, da zwei getrennte

Zugzonen auftreten. • .:: _¦:.
c) Feldweise wechselnde Belastung durch Einzelkraft

e n a ch Fig. 1 4. Dieser Belastungsfall unterscheidet sich von dem

Belastungsfall 3 a, wie der Vergleich der Fig. 11 und der Fig. 14 zeigt, nur
dadurch daß die Periode 2a doppelt so groß ist. Während bei dem Belastungsfall

3 a 2 a L war, ist jetzt 2 a 2L. Da jedoch die Kräfte Tx und

desgleichen Zn, Z, d, do auf a bezogen sind, ändert sich an den Tabellen und

den Dimensionierungsformeln des Abschnittes 3 a nichts. Bei Benutzung der

P t s
t *

-i-l——t^-j—<!—1

1 11

y—femde2a-21-~* >~2°—<— 2°~'

Fig. 14. Fig. 15.

Gl 26 und 27 ist aber zu beachten, daß bei den angegebenen Zahlenwerten
nunmehr a L ist. Zwischen dem Belastungsfall 3 a und 3 c besteht das

gleiche Verhältnis wie zwischen dem Belastungsfall 1 und 2.

Die Vergrößerung der Periode bewirkt, daß d und a wächst und dadurch

eine größere Annäherung an das Navier'sche Biegungsgesetz geschaffen ist.

d) Belastung durch gegenüberliegende Einzelkräfte
gemäß Fig. 15. Derartige Belastungsfälle kommen vor, wenn Säulenlasten

durch Silowände hindurchgeführt werden müssen, desgleichen auch

bei Decken, auf denen Hallenbinder aufgesetzt sind, durch deren Horizontalschub

die Decke auf Zug beansprucht wird.
Nach dem Fourier'schen Lehrsatz ergibt sich:

^R^^B t=-^ (29a)

^^HUi Älllt (29b)

{An-Bn) 0 (29c)

Die sich aus dieser Belastung ergebenden Biegungskräfte 7x sind in der

Fig. 16 für die Verhältnisse b -|- (Kurve 1), b a (Kurve 2), b 2 a

(Kurve 3), b 4a (Kurve 4) aufgetragen, und zwar wurden die Tx-Kräfte

durch — ausgedrückt, um einen guten Vergleich zu ermöglichen. Je kleiner

die Höhe des Balkens im Verhältnis zur Periode, um so mehr erstrecken sich

die Biegungskräfte über die ganze Höhe des Balkens. Dagegen konzentrieren
sich die Biegungskräfte bei hohen Wänden nur an den Rändern und werden

in der Balkenmitte annähernd zu Null. Der Grenzfall ist die unendlich hohe

Halbscheibe, bei der die Biegungsspannungen Tx auf eine Randzone

ungefähr von der Höhe 2 a beschränkt sind, während im übrigen die
Halbscheibe frei von Biegungsspannungen ist. Dies läßt sich auch ohne weiteres

aus dem Prinzip von St. Venant folgern.
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Die eingeklammerten Zahlen der Fig. 16 zeigen die Resultate von F. Seewald, der
in seiner schon erwähnten Arbeit dieses Problem auch behandelt hat. Nach Seewald
sind jedoch die Biegungsspannungen Tx ganz unabhängig von dem Verhältnis b:a (siehe
Fig. 10 der SEEWALD'schen Arbeit) und das ist nach den bisherigen Darlegungen ganz
unmöglich. Dagegen stimmen die SEEWALD'schen Resultate bei einem Verhältnis von
b — 0,5 a fast genau mit den hier ermittelten Resultaten überein. Daraus folgt, daß die
SEEWALD'schen Gleichungen nur für einigermaßen schlanke Balken gültig sind (6<^0,5a),
bei höheren Wänden ergeben sie jedoch unrichtige Resultate.

Courbe
Curne ro*4a\

3
b=2a

4<-^=--r~-^ H- '

^\\ o

1 h
1/ y t\ -o

J^rC_^y
4<^^~\-^=—

1
'

-38,00%

+ 0,360

10.039

10.003

toooo

-19.00$

10,467

10.200

+ 0.070

f-0039

t-0.328

10.281

t- 0.221

10,199

t

¦4.mT
t 0.236

10.278

10.253
10.246

fr0.232)

fr 0.242)

Fig. 16.

Seewald stellt die Biegungsspannungen des Balkens als Summe der Navier'schen
Spannungen und bestimmter Zusatzspannungen dar, die er als Last-Einführungsspan-
jnungen bezeichnet und deren Größe in der Fig. 11 der SEEWALD'schen Arbeit und der
nebenstehenden Fig. 17 wiedergegeben sind. Nach den Darlegungen von Seewald
sollen diese Einführungsspannungen wiederum unabhängig von b:a sein. Nun läßt sich
aber durch Ühereihanderlagerung der Einführungsspannungen zweier gegenüberliegender
Kräfte P der Ffg. 17 das Spannungsdiagramm der Fig. 16 erzeugen (siehe Tabelle der

7r (fr P B Ä P' f\V tbeiP=P')

1-

7>— -r

-- q/36

-- e.f33

- q/33 £'
- c.fje
% e.fS-f

7>

* 0.2f2

* $2f2

^S

Fig. 17.

Fig. 17). Deshalb können wir folgern, daß ebenso wie die Spannungen der Fig. 16, so
auch die Einführungsspannungen, abhängig sein müssen von b:a und es ist auch ohne
weiteres klar, daß bei einer unendlich hohen Scheibe, an deren Begrenzungen Kräfte P

"gemäß Abb. 17 angreifen, Biegungskräfte nur in der Nähe des Randes auftreten können,
nicht aber in der Mitte der Scheibe, wie Seewald annimmt. Auch bezüglich der
Einführungsspannungen gilt also, daß die SEEWALD'schen Gleichungen nur bei verhältnis-
mäßig schlanken Balken richtige Resultate ergeben.

Zwecks Nachprüfung der SEEWALD'schen Ergebnisse mit den vielen in dieser
Arbeit durchgerechneten Beispielen wurden die Navier'schen Biegungskräfte von den
tatsächlichen Tx abgezogen, sodaß sich als Differenz die durch die Säulenlasten ergebenden
EUiführungs-Biegungskräfte ergeben. Hierdurch wurde die obige Folgerung bestätigt,
daß erst bei einem Schlankheitsverhältnis von 6<;0,5 a die SEEWALD'schen Formeln
Gültigkeit haben und auch dann nur, wenn die Einführungsbreite der Säule 2 c bezw. s
klein ist. Die SEEWALD'sche Lösung ist jedoch eine sehr wertvolle Ergänzung der
BLEicri'schen Arbeit und gestattet gerade in den Fällen eine rasche Berechnung der
tatsächlichen Biegungskräfte, bei denen die Auswertung der BLEicH'schen Formeln sehr
mühevoll wird, d,enn je schlanker 9er Balken, um so rascher vermehren sich die Glieder
der ReiJien für die Ermittlung der Tx.
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4. Schlußbemerküngen.
Durch die bisherigen Darlegungen sind nunmehr für alle wesentlichen

Belastungsfälle des kontinuierlichen wandartigen Balkens mit vielen gleichen
Feldern einfache Dimensionierungsformeln gegeben. Der Verfasser hat seine
Untersuchungen aber auch auf Träger mit wechselnden Spannweiten LtLt
gemäß Fig. 18 ausgedehnt und hieraus ergeben sich wichtige Rückschlüsse
auf die Größe der Hebelarme bei beliebig wechselnden Spannweiten des

kontinuierlichen Trägers, sodaß auch diese Träger leicht dimensioniert werden
können.

[

[Fig. 18.

-Motte 2o-2L ¦

Fig. 19.

Des weiteren wurde auch das Problem des nur auf zwei Stützen
gelagerten endlichen Balkens behandelt. Dabei wurde die Belastungsfunktion
so gewählt, daß an den beiden senkrechten Rändern der Scheibe weder
Biegungsmomente noch Querkräfte auftreten (s. Fig. 19), sodaß damit eine

strenge Lösung des Balkenproblems geschaffen wäre, wenn nicht an diesen
Rändern sich gegenseitig aufhebende Schubkräfte übrig blieben. (Die Summe
dieser Schubkräfte — die Querkraft -- ist gleich Null). Durch diese nicht
strenge Erfüllung der Randbedingung werden die Tx-Kräfte zwar beeinflußt,
nicht aber die Hebelarme d der inneren Kräfte. Um das zu beweisen, wurde
die gleichmäßige Last g im Gegensatz zur Fig. 19 nicht nur am unteren,
sondern auch am oberen Rande aufgebracht. Damit ergeben sich ganz
verschiedene Belastungsglieder An und Bn und damit auch ganz andere sich
gegenseitig aufhebende Schubkräfte an den senkrechten Rändern und damit
auch abweichende Tx, trotzdem sich nach dem schon im Anfang erörterten
Superpositionsgesetz genau die gleichen Tx ergeben müßten, aber die Hebelarme

d der inneren Kräfte werden dadurch nicht geändert. Damit ist der
Beweis gegeben, daß diese Dimensionierungsformeln richtige Resultate
ergeben, allerdings nur für Scheiben von annähernd quadratischer oder schlankerer

Form. Wird der Balken wesentlich höher als die Spannweite, dann
ergeben sich Differenzen und damit ist auch bewiesen, daß die Lösung ungenau
wird. Da jedoch kein weiterer Raum zur Verfügung steht, müssen diese
Untersuchungen einer späteren Veröffentlichung vorbehalten bleiben, wobei auch

zugleich Angaben über die auftretenden Schubkräfte 5 und die Ty-Kräfte
gemacht werden.

Das Problem des auf
wurde auch von Dr. ing. H.
Trägern und die Bewehrung von Eisenbetonwänden", Verlag Conrad Wrtwer, Stuttgart
1931, behandelt. Bay ersetzte zwecks Einhaltung der Randbedingungen die Differentialgleichung

durch eine Differenzengleichung und ermittelte den Hebelsarm der inneren
Kräfte gemäß Abb. 9 zu d= 0,65 L und die Längskraft zu Z 0,15 pL, während der
Verfasser für unten oder oben angebrachte Last g hierfür den Wert d 0,676 L und
Z 0,148 pL feststellte. Diese Resultate stimmen also überraschend gut überein. Vom
auf zwei Stützen gelagerten freiaufliegenden Balken geht nun H. Bay zum kontinuierlichen

Balken über, durch Aneinanderreihen" von frei aufliegenden Balken gemäß Fig. 20,

zwei, Stützen gelagerten Balkens von quadratischer Form
"ay in seiner Schrift „Ober den Spannungszustand in hohen
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indem er wie bei einem Schlanken Balken entsprechend der Momentenverteilung die
Zugkraft Z 0,15 pa mft a/3Z 0,10 pa auf die Stütze und mit 1/3Z 0,05 auf das
Feld verteilt (siehe S. 50). Das führt jedoch zu falschen Ergebnissen, denn beim
kontinuierlichen Balken sind entsprechend der Verkleinerung der Periode von 2 a 21 zu
2 a L die Hebelarme kleiner und gemäß Tabelle 3 a und 3 b ergibt sich für e ~
und b a über der Stütze Z 0,424 ga 0,212 gL und in Feldmitte Z 0,177-.ga

0,0885:g:L. Die Längskräfte von BAY sind also beim kontinuierlitehen Balken vkl
zu klein, sie betragen nur die Hälfte der tatsächlichen,. Der Grund liegt, wie schon
erwähnt, in der Verkleinerung der Periode von 2,a=2Z.zu2a Z..

Zum Schluß sei noch darauf hingewiesen, daß derartige Träger gegenüber

den Stützensenkungen sehr empfindlich sind. Die Verbiegungen spielen
eine viel geringere Rolle wie die Schubverzerrungen und noch wichtiger sind

Periode I Periode
"" la-L ^20.L ¦

Fig. 20.

die Stauchungen an der Einführungsstelle der Lasten. Nehmen wir nun z. B.
als Grenzfall an, daß bei einem kontinuierlichen Träger jede zweite Stütze
durch schlechten Baugrund ausfiele, dann würde sich die Periode a und
damit auch die Hebelarme auf das Doppelte vergrößern, sodaß sich wiederum
dieselben Längskräfte Z ergeben würden. Die Armierung im Feld wäre also
in Ordnung, wenn sie durchgehend an der Unterkante von gleicher Stärke
wäre. Aber über der Stütze würde die Armierung zu niedrig liegen und der
Balken würde von oben aufreißen. Ein derartig krasser Fall, daß jede zweite

Armierungspion -Plön de l'Armature

Reinfbrcement-Plan (b'O, £'-^'a)
1

Tx (Fetdmitte) Tx( Stützenmitte)
Tk (Milieu du Champ) Tx(Milieu de l'Appui)
Tx (Middle oftheField) Tx(Middle ofthe Support)

~A d* 0.932a
d. 0682a'm 'm± _Joi>. 0.123a

d+do*T555ä
do ,O036a

d*do>0,78la
Z-D'0.424aaZ—M=0,177qa

Fig. 21

^LPeriodefa-l

Stütze ganz ausfällt, wird naturgemäß nie auftreten, jedoch empfiehlt sich
immer in der Wand außer der normalen Armierung an der Oberseite und
Unterseite eine durchgehende Armierung einzulegen, insbesondere da die
Silowände meistens auch als Sicherung gegen ungleichmäßige Setzungen
verwendet werden und in diesem Fall infolge Vergrößerung der Periode die
ganze Wandhöhe als Träger wirkt. Für den Fall des kontinuierlichen Trägers
gemäß Fig. 20 sind in der Fig. 21 die Biegungsarmierungen eingezeichnet
unter Angabe der Hebelarme, der Spannungsdiagramme Tx und der Längskräfte

Z. Hierbei sind auch die eben besprochenen Sicherungseisen am oberen
und unteren Rand mitberücksichtigt. Entsprechend der Ausstrahlung der
Kräfte über der Stütze empfiehlt es sich auch bei den Zugeisen auf die
Ausstrahlung, gekennzeichnet durch die Schräglinie k, Rücksicht zu nehmen.
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Zum Schlüsse sei noch bemerkt, daß auch für die Biegungskräfte 7",

am Rande sich ganz einfache Näherungswerte ergeben, ebenso wie für die

Längskräfte Z und die Hebelarme d.
Die Randspannung Tx ist gegeben durch das Navier'sche Biegungsgesetz

Tx =-%r- Jedocn kann sie am oberen Rande gemäß Gl. 14 a nie

kleiner werden als px0 und am unteren Rande gemäß Gl. 14 a nie kiemer
r. 2

werden als pxu —
Bo
2

Der Übergangsbogen zwischen dieser Geraden und dem Navier'schen
Wert von Tx ist etwas gestreckter wie bei den Längskräften Z und bei den

Hebelarmen d.
Bei den umfangreichen Ausrechnungen hat mich Herr Dipl. Ing. Ohuö

in dankenswerter Weise unterstützt.

Zusammenfassung.
Während bei schlanken Trägern die Navier'sche Hypothese der

geradlinigen Verteilung der Biegungsspannungen eine sehr gute Übereinstimmung
mit der strengen Theorie ergibt, weichen die Spannungen bei hohen,
wandartigen Trägern, die im Eisenbetonbau bei Silobauten sehr häufig auftreten,
ganz wesentlich von dem Geradliniengesetz ab; sie stellen sich dar als
Übergänge der Spannungen der unendlich hohen Scheibe und denen des Navier-
schen Biegungsgesetzes. Anhand vieler durchgerechneter Beispiele gibt der
Verfasser für alle auftretenden Belastungsfälle den Verlauf der Biegungskräfte

für verschiedene Verhältnisse von Balkenhöhe zur Balkenspannweite
an und zeigt, in welcher Weise allmählich der Übergang von den Spannungen
der hohen Scheibe zu denen des schlanken Balkens, für welche die Navier-
sche Hypothese gültig ist, vor sich geht.

Besonders einfache Gleichungen ergeben sich für die Randspannungen,
mit deren Hilfe man für jede beliebige Balkenhöhe die Spannungskurven
ohne umfangreiche Rechnung leicht aufzeichnen kann.

Für die Dimensionierung derartig hoher Balken im Eisenbetonbau und
für die Bestimmung der Zugeiseneinlagen sind jedoch diese Spannungsdiagramme

selbst von geringerer Bedeutung als die Kenntnis der Größe der
Hebelarme der inneren Kräfte, aus denen sich die notwendigen Zugeiseneinlagen

bestimmen, und in der Ermittelung dieser Hebelarme für alle
beliebigen Belastungsfälle besteht für den Ingenieur der Praxis der Wert dieser
Arbeit.

Es ergeben sich erfreulicherweise derart einfache Dimensionierungs-
regeln, daß nunmehr der hohe Träger in ebenso einfacher Weise
dimensioniert werden kann wie der schlanke Balken. Die Dimensionierungsregeln
haben ganz allgemein folgende Form: Der Hebelarm der inneren Kräfte von
wandartigen Trägern ist ebenso wie beim schlanken Balken gleich zwei Drittel
der Balkenhöhe, jedoch kann er nie größer werden als ein der Spannweite
proportionaler Zahlenwert, dessen Größe abhängig ist von dem Verhältnis
der Stützenbreite zur Spannweite.

Bei hohen Balken ist demnach der Hebelarm der inneren Kräfte nicht
mehr proportional der Balkenhöhe, sondern proportional der Balkenspann-
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weite. Ein ganz wesentlicher Unterschied ergibt sich zwischen frei
aufliegenden und durchlaufenden Trägern. Bei den ersteren ist der Hebelarm
der inneren Kräfte ca. doppelt so groß wie bei den durchlaufenden Trägern,
und in gleicher Weise sind auch die Hebelarme der inneren Kräfte der
durchlaufenden Träger bei Verkehrsbelastung ca. doppelt so groß als bei
Eigengewichtsbelastung.

Zugleich werden auch die zahlreichen, bisher auf diesem Gebiet
erschienenen Arbeiten eingehend besprochen.

Resume.
L'hypothese de Navier concernant la repartition lineaire des efforts de

flexion donne des resultats qui sont parfaitement en accord avec la theorie
rigoureuse, dans le cas des elements porteurs, de faible hauteur. Par contre,
lorsqu'il s'agit de parois portantes tres- haiutes, telles que celles qui sont
employees tres frequemment pour la construction des silos, les efforts
s'ecartent tres sensiblement de la repartition lineaire. On obtient une
repartition intermediaire entre les efforts qui correspondent aux parois in-
finiment hautes et ceux que donne la loi de Navier. En s'appuyant sur
de nombreux exemples de calcul, l'auteur indique, pour tous les cas de
repartition de charge que l'on rencontre couramment, les Variation des efforts
de flexion, pour differents rapports entre la hauteur et la portee; il montre
la transition progressive entre le cas de la paroi tres haute et celui de l'ele-
ment de faible hauteur, pour lequel l'hypothese de Navier peut etre appliquee.

On obtient pour les efforts en bordure des equations particuliereinent
simples, qui permettent de determiner la courbe des efforts, sans calculs
compliques, pour des hauteurs arbitraires.

Ces diagrammes sont toutefois d'une utilite moins grande pour le calcul
de ces elements, dans le beton arme, et pour la determination des armatures,
que la connaissance des bras de levier des efforts interieurs, ä partir
desquels se determinent les armatures necessaires. La valeur de cette publication
consiste specialement dans le fait qu'elle permet la determination de ces bras
de levier.

On dispose de methodes de calcul permettant de calculer les parois
portantes de grande hauteur d'une maniere aussi simple que les elements de
faible hauteur. La regle ä appliquer peut s'enoncer sous la forme generale
suivante: le bras de levier des efforts interieurs est, de meme que pour les
poutres de faible hauteur, egal aux 2/s de la hauteur de l'element porteur, sans
toutefois pouvoir depasser une fraction de la portee, dont la valeur depend
du rapport entre la largeur des appuis et la portee.

Dans les poutres de grande hauteur; le bras de levier des efforts
interieurs n'est plus proportionnel ä la hauteur de la poutre, mais ä sa portee.
II existe une difference notable entre les poutres reposant librement sur
leurs appuis et les poutres continues. Dans les premieres, le bras de levier
est en effet deux fois plus grand que dans les deuxiemes; de meme, pour les
poutres continues, le bras de levier est deux fois plus important, environ,
pour la charge roulante que pour le poids propre.

L'auteur etudie en outre d'une maniere approfondie les nombreux
travaux qui ont ete dejä executes dans ce domaine.
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Summary.
In slender girders the Navier hypothesis of the distribution of bending

stresses in straight lines gives very good agreement with the strict theory,
but the stresses in high, wall-like girders, which very often occur in reinforced
concrete work in silos, differ quite considerably from the straight-line law;
they appear as transitions of the stresses in an infinitely high disk and of
those of the Navier law of bending. With the help of many worked-out
examples the author gives, for all cases of loading that occur, the run of the

bending forces for various ratios of beam height to beam span, and shows
in what way the stresses of the high disk gradually pass over into those of
the slender beam, for which the Navier hypothesis holds.

Particularly simple equations result for the edge stresses, and with
their help the stress curves for any desired height of beam may be easily
drawn without any complicated calculation.

For obtaining the dimensions of such high beams in reinforced concrete
structures, and for determining the tension reinforcement, these stress

diagrams are however in themselves of less importance than the knowledge
of the amount of leverage at which the internal forces act. The great practical
value of this work for the engineer lies in determining these leverages for all
desired cases of loading.

Happily, the rules for dimensioning are so simple, that the proportions
of high girders may now be calculated as easily as in the case of slender
beams. In general the form of the rules for dimensioning is as follows: The

leverage of the internal forces of wall-like girders is equal to two-thirds the-

height of the beam, as in the case of slender beams, but it can never be greater
than a figure proportional to the span, the magnitude of this figure depending
on the ratio of the width of the supports to the span.

In high girders the leverage at which the inner forces act is accordingly
no longer proportional to the height of the girder, it becomes proportional
to the span. There is quite a considerable difference between freely supported
and continuous girders. In the former, the leverage at which the internal
forces act is about twice as great as in the case of continuous girders, and

in the same way also the leverages of the internal forces in the continuous
girders are about twice as great under working load as under their own
weight.

In addition, the numerous works which have hitherto appeared on this
subject are thoroughly discussed.
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