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BEITRAG ZUR THEORIE DER HALBSCHEIBE UND DES
WANDARTIGEN BALRKRENS

CONTRIBUTION A LA THEORIE DES PAROIS PORTANTES
CONTRIBUTION TO THE THEORY OF WALL-LIKE GIRDERS

Dr. Ing. FRANZ DISCHINGER,
Direktor der Dyckerhoff & Widmann A.-G., Wiesbaden-Biebrich.

Die Spannungen, die in wandartigen Balken auftreten, weichen ganz
wesentlich von denen des Navier’schen Biegungsgesetzes ab; sie stellen sich
dar als Uberginge der Spannungen der unendlich hohen Halbscheibe und
denen des Navier’schen Biegungsgesetzes. In der Praxis des Eisenbeton-
baues, wo diese wandartigen Trager bei den Silobauten eine groBe Rolle
spielen, ist eine einfache Dimensionierung mit Hilfe des Hebelarmes der
inneren Krifte moglich, in gleicher Weise wie bei den schlanken Trigern. Es
wird gezeigt, daB sich fiir die Gr6Ben dieser Hebelarme ganz einfache Be-
ziehungen ergeben.

I. Die Halbscheibe bei periodischer Belastung an den!Randern
durch Normalkrafte.

Wenn eine Halbscheibe gemidB Abb. 1 an ihrer Begrenzung y = 0 durch
periodische Normalkrifte p,, beansprucht und zugleich die Schubkrifte an
den beiden Riandern y = 0 und y = co gleich Null sind, dann wirkt die Halb-
scheibe wie ein unendlich hoher Trager. :

Die duBeren Krafte p,, seien gegeben in der allgemeinen Form

Pxu = §q+ > B, cos nml =
2 L a

— %9 + 2J By cOS ax,
1

|
Periode
l—.—-— 2a 7T

wobel ¢ = n— (1)
Fig. 1. a
Die Koeffizienten B, und B, ergeben sich aus dem Fourier’schen Lehrsatz
2 [a 2 (@
B — = j'op_m cosexde, By — = L/un'dx (2)
Bei dieser Belastung der Halbscheibe lautet die Airy’sche Spannungsfunktion
F:—Zlif-(l—}—ay)e_“y-COSaxﬁ—%fxi L) (3)
TR D2

1) Siehe A. Napal, ,,Die elastischen Platten*, Jul. Springer, Berlin 1925, S. 225.




70 Franz Dischinger

Aus der Spannungsfunktion ergeben sich die inneren Krifte des ebenen
Spannungszustandes:

Tple— aay[: — ;B,, (1 —ay)e=¥.cosax . (4)
2 3 oo
et s (4b)
ox? 2 T
O F = .
== = . e YOS
e oy 2138,16 sin ax (4c)

ftirsys —Oengibt sich =S —0sund "7 — %9_]_23" - COS' @Y = Prs
1

fiir y = oo S =10 1nd T_,,———%Q
d. h. die Randbedingungen sind erfiillt. Wenn auf die Linge einer Periode 2 a

die p,, fiir sich im Gleichgewicht sind, dann ist %9 = ;J.z pzu dx = 0, andern-
falls greift in der Geraden y = o eine gleichméBig verteilte Gegenlast in

GrofBe von %’ an.

Samtliche Spannungen verlaufen vom Rande aus in stark gediampften
Schwingungen. Daraus folgt, daB die Trigerwirkung sich nur in der Nihe
des belasteten Randes abspielt, wahrend der iibrige Teil der Halbscheibe
spannungslos ist.

Von besonderem Interesse ist die GroBe der Biegungsspannung 7x am
Rande y = 0.

Sie ergibt sich aus Gl. 4a zu 7}~ "= p,m—%—) (5a)

Und im Falle, daB % L e O s (5b)
Wenn nur am Rande y = 0 Belastungen angreifen, ist die Biegungsspannung
gleich der angehingten Last. Wenn an beiden Rindern Belastungen an-
greifen, ist hiervon die Ausgleichskraft % abzuziehen (denn % ist die durch-

schnittliche Last, die von einem Rand zum anderen Rand durch die Scheibe
hindurchgeleitet und direkt zum Ausgleich gebracht wird). Die GroBe des
Biegungsmomentes, das die Halbscheibe auf Biegung beansprucht, folgt aus

a32M B -
9% — ==y Pxu — ’29 '+' %}Bn - COSax

M:+Zf§’c03ax (5)
P

Dieses Biegungsmoment wird durch die 7x-Krafte aufgenommen, infolge-
dessen muB das Biegungsmoment sich auch ergeben aus:
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ry = oo oo
T,-ydy = — ZBH coSax -
y=0 1 .
1 «?

— — >, B,cosax- ‘lCT_.,e““J’-(cz‘zy2 +ay+1) ; — el Ceosimy.
1 : 0

oo

(1 —ay)ydy =

0

M= —

Fiir die Dimensionierung der Eiseneinlage derartiger Winde im Eisenbeton-
bau ist die Kenntnis des Hebelarmes 4 der inneren Krifte notwendig (Fig. 2).

Zu deren Bestimmung muB die Zug- bezw. Druckkraft Z= — D = jy" T dy
0

berechnet werden (im weiteren mit Z bezeichnet).

Yo
Zi= Wil aye—
J0

Vo

— 21] Bn-cosax - [U(l —ay)e Y. dy =

Jo

O |
— > B, cosox: |y e
T . 0

Hierbei ist die y, der Abstand der neutralen Achse vom Rande. Zur Ab-
kiirzung wird gesetzt:
| Yo

’y-e“‘y : = fiz

Z —— 2 B,l 'f]y“ b COS «X (6)
1

Der Hebelarm d der inneren Krifte folgt aus:

1
ﬂ ZQEBM'COSWC

— = )
>3 By fiy, - COS ax
1

Des weiteren ist von Wichtigkeit der Abstand d, der Kraft Z (bezw. D) vom

Rande der Scheibe. Dieser folgt aus dem statischen Moment der 7x-Krifte
um den Rand, gerechnet von y = 0 bis y = y,

J

: *Yo 22 \ 1 ) o9,
Srior— Tx-y-dy—_—ZB,Z-COSax-i?e“‘)’-(a2y9+ay+l) —_—EDBH-(:OSOUC-_}’,U,0
Jo i |2e 1

0
e %]B,l-f,yucosw
st = (8)
ZB,,'flyOCOSCUC
it

II. Der wandartige Triger bei periodischer Belastung durch
Normalkraft.

An seinem oberen und unteren Rande (y = -+ 6 und y = — 0) sei der
gedrungene Balken durch periodische Normalkrifte nachstehender Form be-
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ansprucht (Fig. 3), wihrend zugleich die Schubkrifte S an den beiden Rin-
dern gleich Null sind.

Pro = -”;9—}—2/1,1 - COS ax (9a)
i

S %’ S e (Ob)
1

Periode Zo —+
Fig. 3.
Die Koeffizienten 4 und B folgen aus dem Fourier’schen Lehrsatz

2 "a : 2 a

A, = — | puicos ax - dx Ao = — | pry dx (10a)
aJ, a J,
2 a 2 |a

B, = — | pxu- COS ax dx Boi—r——lin. iy (10b)
& Jy Lo

Das Gleichgewicht eines Balkenstreifens von der Linge der Periode 2« ver-
langt, daB % = % Nach der Definition in I is 5420 = % die durchschnitt-

liche Kraft der Periode (2&), die von einem Rande zum anderen Rand hin-
durchgeleitet wird (Ausgleichkraft). Bei dieser Belastung der beiderseitigen
Rénder lautet die Airy’sche Spannungsfunktion

S An+ By (sinh ab + ab- cosh wb) cosh ay—aysinh ab-sinh ay

(11)

o e sinh2ab+2ab S
s An— B, (cosh wb+ab-sinh «b) sinh «y—«y coshes-cosh ay ; 3
*21) o sinh2ab—2ab & e L
Die Spannungen ergeben sich aus:
azF a2F azlf.‘
Tt == e — e .S _ —
ROy dx dy
e - (sinh ab—ab-cosh ab) cosh ay + ay-sinh «b- sinh «y
L= 21] (Aat By) sinh 2ab +2ab e
& (cosh @b—ab - sinh ab) sinh ay + ay- cosh ab - cosh ay
+21: (4= By) sinh 2ab —2 ab cosax ¢ (12a)
— 21 (An+ By) Dy cos ax + ) (A, ~ B,) Dy cOS ax
T T
g /;Q S ) (sinh b+ eb cosh b) cosh ay—ay - sinh «b - sinh ay i
i

sinh 2ab +2ab

-+

) (coshab+ab-sinh ab) sinh ay—ay- cosh ab - cosh ay

(4.~ Br sinh 2eb —2 ab

_- Ao

>
D

(An+ B,) E)-cosax+ ; (An—B,) Ejcos ax

cosax | (12b)
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ay-sinh ab-cosh ay — «b-coshab-sinhay . .
(Ant B) sinh 2ab + 2ab 0y

ay-cosh ab-sinh ay—ab-sinh ab- cosh ay ‘

sinh2ab—-2ab LLCs (12¢)

(An— Bx)

+
~Me =8 =[]

(Ap+By) F; - sin ex+ > (Ax— By) )+ sin ax
1

Siehe hieriiber Dr. ing. F. Breich: ,,Der gerade Stab mit Rechteckquerschnitt als
ebenes Problem*, Bauingenieur 1923, Heft 9. Erginzend hierzu sei bemerkt, daB dieses
Problem schon frither von L. N. G. Fion 1903 ohne Zuhilfenahme der Spannungs-
funktion und deshalb sehr umstindlich behandelt worden war (Phil. Transaktions —
London 1903, Serie A, Vol. 201, S. 63). Eine weitere Behandlung mittels EinfluBlinien
erfuhr das Problem durch F. SEewaLp: ,,Die Spannungen und Formidnderungen von
Balken mit rechteckigem Querschnitt’‘. Abhandlungen aus dem Aero-dynamischen In-
stitut der Hochschule Aachen. Jul. Springer, Berlin, 1927 (s. Handbuch fiir Physik,
Band 6, S. 205). Schon vor Breich hat Dr.-Ing. A. TimpE in seiner Dissertation ,,Problem
der Spannungsverteilung in ebenen Systemen‘’, Druck von B. G. Teubner, Leipzig, 1905,
dieses Problem ebenfalls mit Hilfe der Airy’schen Spannungsfunktion kurz behandelt.

Uber den Spezialfall der Problemstellung von BLeicH, ndmlich feldweis wech-

n—1
selnde Belastung, d.h. fiir (4, 4 B,) — — (A,— B,) =22. (;’])% hat Dr. ing. H.
T
CraeMer auf dem Internationalen KongreB fiir Briicken- und Hochbau 1929 in seinem
Vortrag: ,Spannungen in hohen wandartigen Tridgern, unter besonderer Beriicksich-
tigung des Bunkerbaues‘ berichtet und seine Ergebnisse auch ausfiihrlich in der ,,Zeit-
schrift fiir angewandte Mathematik und Mechanik‘‘, 1930, Heft 3, veroffentlicht. Seine
Behauptung, daB er das strenge Balkenproblem geldst habe, beruht auf der Nichtkenntnis
der erwihnten fritheren viel allgemeineren und eingehenderen Lésungen. An den Vortrag
von H. Craemer auf dem KongreB in Wien schloB sich dann eine Debatte zwischen
Prof. BortscH und CrRAEMER an, in welcher BortscH, der sich in der Melanfestschrift
1023 ,,Die Spannungen in Silowidnden‘, ebenfalls mit diesem Problem befaBt hat, die
Ergebnisse von CrRAaEMER bezweifelte. BortscH ging bei seinen Untersuchungen vom
strahligen Spannungszustand der Halbebene gemaB Abb. 4a aus, bei demen sich die

Spannungen aus den bekannten Gleichungen ¢, = =~ sin @, o; = 7 = 0 ergeben und er-
7T
zeugte durch Uberlagerung und Spiegelung eine periodisch belastete und gelagerte Wand
a)
e er
i
| X
1?
b).

T R T T

-y

[ Persode :

g

I

Fig. 4.

von endlicher Héhe gemdB Abb. 4b. Die Ergebnisse seiner Untersuchungen iiber die
Biegungsspannungen o, sind in der Abb. 13, S. 49 seiner Abhandlung wiedergegeben.
Hierbei ergab sich das unmdégliche Ergebnis, daB iiber der Stiitze nur Druck-Biegungs-
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spannungen, d. h. eine Lingskraft, auftreten, wiahrend tatsichlich entsprechend dem Bie-
gungsmoment gerade so groBe Druck- wie Zugkrifte auftreten miiBten, d. h. die Lings-
kraft miifte zu Null werden. In Feldmitte ergab sich eine ganz kleine Zugkraft, der eine
viel groBere Druckkraft gegeniibersteht, ebenfalls ein unmdgliches Ergebnis. Diese un-
richtigen Resultate rithren davon her, daB die an sich richtigen Gleichungen des strah-
ligen Spannungszustandes bei Trigern nicht anwendbar sind und zu unrichtigen Resul-
taten fithren, denn begrenzt man die Halbscheibe der Fig. 4 a durch eine Gerade y — B,
dann verbleiben am Rande immer Schubkrifte 7, — o, cos ¢, die sich iiber der Stiitze
zu einer Zugkraft integrieren, die dem von Bortsch ermittelten Biegungs-Druckspan-
nungen das Gleichgewicht hilt. Die Randbedingungen, die erfordern, dafi an dem oberen
und unteren Rand des Balkens keine Schubspannungen auftreten diirfen, ist demnach
nicht erfiillt, und zwar sowohl am oberen wie auch am unteren Rand, weil durch die
Spiegelung auch am unteren Rande Schubkrifte auftreten, und damit sind auch die Er-
gebnisse fir alle anderen Spannungen (¢, und 7) unrichtig und desgleichen auch die
Einwendungen von BortscH. Den gleichen Fehler begeht aber auch H. CRAEMER in
seinem Aufsatz: ,Scheiben und Faltwerke als neue Konstruktionselemente im Eisenbeton,
Beton und Eisen 1920, Heft 13. Hier bespricht Craemer die Einfithrungsspannungen
einer Saule in eine Silowand und empfiehlt die Benutzung der Formel des strahligen
Spannungszustandes gemidB Abb. 4c¢, wobei sich bekanntermaBen fiir die Biegungs-

spannungen die Gleichung ¢, = — QPTT [2: (@ — @,) "sin 2¢; -} sin 2¢,] ergibt, und

stellt als erfreuliches Resultat fest, daB durch die Einfithrung der Siulenlasten in beiden
Richtungen nur Druckspannungen auftreten. Diese Gleichung des strahligen Spannungs-
zustandes ist ebenfalls unbrauchbar, wei] sich auch hier ebenso wie bei der Abb. 4 b, nur
Biegungs-Druckspannungen, d.h. eine Lingskraft ergeben, wihrend nach den elemen-
taren Gleichgewichtsbedingungen die das Biegungsmoment aufnehmenden Zug- und
Druckkrifte sich das Gleichgewicht halten miissen, d.h. auch hier greifen am oberen
Rand unberiicksichtigte Schubkrifte an und die Randbedingungen sind nicht erfiillt. Der
gleiche unrichtige Ansatz liegt auch der schon im Jahre 1917 erschienenen Arbeit von
A. JacksoN iiber Spannungslinien, Stuttgart 1917, Conrad Witwer (S. 24), zu Grunde.

fiir y = |- & ergibt sich S =0 und 7, :g"—I—EA,z-cosdx =0
1

yw Jy=—0b ” soos =0 Ty:%—i—ZBnCOSax:/Jm
1
d. h. die Randbedingungen sind erfiillt.

Fiir die beiderseitigen Rinder y = 4 & konvergieren die Reihen sehr
schlecht, jedoch 1dBt sich hier eine Spaltung der Reihen durchfiihren, die je
nach dem Verhiltnis von 0:a eine Konvergenz der Reihe schon bei einem
bis drei Gliedern herbeifiihrt.

Fir y = - b ergibt die Umformung

= sinh 2ab —2ab
S ls
=421 (AtBi) o5 r oo

sinh 2ab + 2 b i
sinh 2ab—2 ab g

2 ab
sinh 2ab —2ab

COS ax+ 3 21: (A,—By)

2ab
sinh 2ab+2 ab

= > A,-cos ax— D (An+By) cos ax+ X (A,—By)
1 1 1

A = .
?0"_;(:4,: + B,)-d’ -cos ox + 23 (A, — B, d" - cos ax (13a)
1

und in gleicher Weise

S
Tx —Px0

oo

£ B : -

755 7 /J_\-H~E°—21](A,Z+B”)a’ . COS ax—Z(A,Z—B,,) d”.cosax (13b)
1

Um die sehr umstandliche Berechnung der Reihen der Gl. 12a und 13 zu

erleichtern, wurden fiir alle in Frage kommenden Werte von a die Koeffi-

zienten D, E, F fiir y = £+ 0, 4- 0,25b, +0,50b, + 0,75b, und die Koeffi-

COS ax
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zienten d fiir y 4+ 1,00 b ermittelt. Infolge Raummangels konnen jedoch diese
umfangreichen Tabellen hier nicht gebracht werden.

Die Gleichungen 13 geben uns einen sehr wichtigen AufschluB iiber die
GroBe der Randkrifte 7x. Bei hohen Tragern & = a ist der EinfluB der
Reihenglieder der Gl. 13 annahernd gleich Null und damit

T g (14a)
fir b= a
Tx_b: m'__o 14b
Dusoss (14b)
d. h. die Biegungskrifte an den Rindern sind bei hohen Trigern ebenso wie
bei der Halbscheibe immer gleich der am Rande aufgebrachten Last, abziiglich

Ay . Bo

der Ausgleichskraft e Bei den sehr umfangreichen Gleichungen fiir

Tx hat es keinen Zweck, die Bestimmung der Kraft Z = D und der Hebel-
arme 4 und d, in gleicher Weise wie bei der Halbscheibe durch mathematische
Integration zu bestimmen. Es wurden hierzu fiir die nachfolgenden Lastfalle
die Spannungsdiagramme fiir 7x aufgezeichnet und hieraus die GroBen von
Z, d und d, mittels Planimeters bestimmt. Wir gehen nun zu bestimmten Be-
lastungsfillen iiber.

III. Ermittlung der Biegungskriafte T, und der Grofien Z, d, do
fiir bestimmte Belastungsfille.

1. Derdurchlaufende Trages mit gleichbleiblender Bie-
lastung g.

Bei konstanter Belastung ist es gleichgiiltig, ob die Last g am oberen
oder unteren Rande angreift. Das erkennt man ohne weiteres aus dem Super-
positionsgesetz. Wir nehmen vorerst an, die Wand sei am unteren Rand

e Zﬁ’f’fe—-*
Fig. 5. Fig. 6.

laufend unterstiitzt und die Last g greift entweder am oberen Rand oder auf
einer beliebigen Hohe, aber auf einer Geraden y = konstant, oder aber am
unteren Rande an. Es kann jedoch auch sein, daB die Last g auf mehreren
Geraden y = konstant mit den Teilwerten Abl, Ag, etc. angreift oder dal3 es
sich um das Eigengewicht des Triagers selbst handelt, das auf unendlich
vielen Geraden y = konstant verteilt ist.
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Solange nun die Wand laufend unterstiitzt ist, treten in ihr keine Bie-
gungskriafte 7x und Schubkrifte S auf, sondern nur vertikale Pressungen
Ty, die abhingig sind von der Lage der Last g. Nun entfernen wir die lau-
fende Unterstiitzung und lagern damit die Wand auf den Stiitzen auf. Das
ist aber gleichwertig damit, da wir am unteren Rand entsprechend Fig. 5a
die Last g anhidngen. Wir folgern daraus die wichtige Erkenntnis: ,,Bei
gleichmaBig verteilter Last lings x sind die Biegungskrafte (7.x) und die
Schubkrifte (S) ganz unabhingig davon, in welcher Hohe die Last angreift,
nur die Normalkrifte 7y werden hierdurch beeinfluBt.*

Der EinfluB auf die 7y ist in der Fig. 6 schematisch dargestellt.

Der Abstand der 7y-Kurve gegeniiber der y-Achse zeigt die 7y bei ange-
hangter Last,

Der Abstand der 7y-Kurve gegeniiber der Achse 1 zeigt die 7y bei oben
aufgebrachter Last.

Der Abstand der 7Ty-Kurve gegeniiber der Schriglinie 2 zeigt die 7y bei
Eigengewichtsbelastung.

Der Abstand der 7y-Kurve gegeniiber der abgesetzten Linie 3 zeigt die 7Ty
fiir den Fall, daB die Last g mit den Teilwerten Ag,, Ag, etc. auf mehrere
Gerade verteilt ist.

In der Fig. 5a ist der Belastungsfall 1 bei unten angehiangter Last g
dargestellt. Die Breite der Saulen ist mit 2¢ bezeichnet. Der Stiitzendruck

g, ergibt sich aus dem Gleichgewicht der vertikalen Krifte zu = —%: g :—
wobei & =;C--. In der Fig. 5b sind die sich iiber der Stiitze direkt aus-
gleichenden Lasten g abgezogen, sodaBl nur der Stiitzendruck g’, iibrig bleibt,
gg_z—cz 1*8.
Die beiden Belastungen der Fig. 5a und 5b sind einander ganz gleichwerfig.

Wir ermitteln nun aus dem Fourier’schen Lehrsatz die Belastungsglieder

An und Bn.

der tatsichlich in die Scheibe eingefiihrt werden muB} ¢’ =

= ‘21 rpxocos k0 (16a)
“0
B2 Japm s o L2t DR (16b)
a 0 T € n
und damit (A,+B,) = —(Ap,—Bx) = — 72;5’; ("% sin ac (16¢)

Wir ersehen daraus, daB die Belastungsglieder nicht davon beeinfluBt
werden, ob die Last g oben oder unten angreift, weil bei konstanter Be-
lastung An immer gleich Null ist. Die Folgerungen, die wir oben aus dem
Superpositionsgesetz gezogen haben, finden wir durch die Gl. 16 im Zu-
sammenhang mit Gl. 4 und GIl. 12 bestatigt. Durch Einsetzen des Wertes
von Bn in die Gl. 4a wurden nun die Biegungskrifte 7x der Halbscheibe

fir e = 3, %, 110, %, Z*ermittelt. Die Resultate sind fiir Feldmitte und

Stiitzenmitte in der Tabelle 1 zusammengestellt. Diese Tabelle zeigt, daB zwi-

schen den T x fiir ¢ = 21—0 fnde— j—o, abgesehen von der Einfithrungsstelle,

keine Unterschiede bestehen und da auBerdem in der Praxis geringere Sdulen-




Theorie der Halbscheibe und des wandartigen Balkens T7

; 1 . . s 1 .
breiten als ¢ = 5; nicht vorkommen, wurden die Werte fiir e = _ bei den

o0

wandartigen Tragern vernachldssigt. Die 7x des wandartigen Tragers er-
geben sich durch Einsetzen des Wertes der Gl. 16c¢ in die Gl. 12a bezw.
Gl. 13. Die Resultate sind in der Tabelle 2a und 2b fiir Feldmitte und

Stiitzenmitte und zwar fiir die Tragerhohen & = g" = —%— a und b = a zu-

sammengestellt. In der untersten Reihe sind jeweils zum Vergleich die sich
aus dem Navier’schen Biegungsgesetz ergebenden Randspannungen ange-
geben. Die Abweichungen gegeniiber dem Geradliniengesetz sind an der

WS R T [ I B . o S8 2 e e B R e
\ '\ -
\J/A a)n Rldmitte \ TN b0 Stitzenmine
\\W‘\n Au Miliey qu Champ | Y \m Av Mitieu de [4ppur
NG| Jn the Middle of the freld Iy s I the Migdle of fhe Support

()
| \ \\ <
N [ b
=) S

| [ N
~

|

i | ,
| A | |
‘[4 i i /
e
a5

159 10

0 05 10

Fig. 7. Biegungskrifte 7, — Efforts de flexion 7, — Bending Stresses 7.

Stiitze groBer als in Feldmitte und zwar um so mehr, je schmiler die Stiitze
und je groBer die Tragerhohe. Um einen guten Uberblick zu geben iiber den
allmihlichen Ubergang der Biegungskrifte der unendlich hohen Scheibe zu

denen des schlanken Trigers, sind in der Fig. 7 die 7x-Krafte fiir ¢ — % so-

wohl fiir Feldmitte wie auch fiir Stiitzenmitte aufgetragen. Hierbei ist die
Spannweite L = 2a konstant und die Triagerhohe B variabel angenommen.

Die Kurve 1 zeigt die 7x-Krifte der Halbscheibe &:a = co.

Die Kurve 2 zeigt die 7x-Krifte des wandartigen Trigers fiir b:a = 1,
die Kurve 3 fiir b:a = 2: 3, die Kurve 4 fiir b:a = 1: 2.

Die entsprechenden Geraden des Navier’schen Biegungsgesetzes sind
mit 2’, 3’, 4 bezeichnet. Bei allen Spannungskurven ist der untere Teil des
Diagrammes fast gleich, der EinfluB der abnehmenden Triagerhohe macht
sich fast ausschlieBlich im oberen Teil des Diagrammes bemerkbar und je
schlanker der Triger wird, umso groBer werden die Abweichungen von der
Kurve 1 des unendlich hohen Balkens und um so mehr nihern sich die Kurven
dem Geradliniengesetz. Die Neigung zu dem Geradliniengesetz ist in der
Feldmitte viel stirker wie iiber der Stiitze, denn in der Feldmitte ist bei
Kurve 4 das Geradliniengesetz schon annahernd erreicht, nicht aber bei der
Stiitze. Dieses verschiedenartige Verhalten ist bedingt durch die groBeren
Einfithrungskrifte iiber der Stiitze, sobald die Einfithrungskrifte gleich groB
sind und das ist der Fall bei e = 1 (Stiitzenbreite = Feldweite), dann werden
die Diagramme iiber Stiitze und in Feldmitte gleich. Die gestrichelte Kurve m
zeigt die GroBe der Randspannung 7x am oberen Rand bei beliebiger Trager-
hoéhe, mit deren Hilfe man die Spannungskurve 7x ohne jede Rechnung bei




Tabelle 1. Halbscheibe: 7x fiir gleichbleibende Belastung.

4 Tx (Feldmitte) Tx (Stiitzenmitte)
e etk 1y Yo Yoo Yoo | o= Yo o Yoo tos
-+ 0,00 -+ 1,000 -+ 1,000 -+ 1,000 —+ 1,000 -+ 1,000 — 1,000 — 4,000 — 0,000 19,000 — oo of%
SR 25 % SIS 6T + 0,270 - 0,284 + 0,286 + 0,290 (0 + 0,147 40,516 + 0,679 + 0,735 g
+050 | —0,137 - (ili — (0}l — 0,107 — 0,104 + 0,137 -+ 0,400 + 0,483 + 0,507 + 0,514 g
-+ 0,75 — 0,161 — 0,195 — 0,1983 — 0,199 — 0,199 + 0,161 -+ 0,297 + 0,325 + 0,333 -+ 0,336 .g
-+ 1,00 — 0,118 — 0,158 — 0,164 — 0,166 — 0,166 -+ 0,118 + 0,187 -+ 0,200 -+ 0,203 -+ 0,204 .g
-+ 1,25 — 0,073 — 0,104 — 0,1085 — 0,109 — 0,110 + 0,073 + 0,1125 -+ 0,1185 + 0,1195 -+ 0,1195 .g
S1EN 50 RS 0 0494 () ()6 T4 () () AR () () 65 | — 0,0651 +0,0424  +0,0636 -+ 0,0670 + 0,0677 -+ 0,0677 .g
+ 1,75 — 0,0235 — 0,0343 — 0,0360 — 0,0364 — 0,0364 -+ 0,0235 -+ 0,0347 -+ 0,0366 + 0,0371 -+ 0,0371 .g
HED0 | 001260 = 0,0185° =0 0104 e G {0g == (06 S 0,01268 =S 001858 = 0,01945 1= 001868 -F0,0196 g
Tabelle 2a. (Feldmitte) Wandartiger Triger: 7x fiir gleichbleibende Belastung.

)/ b=y =1, b="a=1L| b=a=1

4 T s 'fs 10 2o g=itia s "0 Y20 gi—ils s Y10 Y20
—+ 1,00 — 0,746 —1,032 — 1,065 — 1,070 — 0330 —0470 —0,49 — 0,502 — 0,060 —0,088 —0,002 — 0,093 .g
+ 0,75 — 0,458 — 0,636 — 0,668 — 0,665 —- 0,185 — 0,269 —0,280 — 0,286 — 0,031 — 0,045 —0,047 — 0,049 g
4+ 0,50 — 0,304 —0,403 —0,417 —0,448 — 0,144 —0,196 —0,204 — 0,206 —0,042 —0,062 —0,04 — 0,065 .g
-+ 0,25 — 0,210 — 0,245 — 0,249 — 0,250 — 0,147 —0,18 —0,188 — 0,190 — 0,070 —0.098 —0,103 —0,104 g

= 0,00 — 0,129 —0,1038 —0,095 — 0,081 — 0,154 —0,169 —0,168 —0,168 — 0,115 —0,156. —0,162 — 0,163 g

—0.25 — 0,001 -+ 0,091 -+ 0,105 4 0,107 —0,122 —0,089 — 0,083 @ — 0,081 —0,162 —0,194 —0,192 — 0,199 .g
— 0,50 + 0,240 -+4+0,3714 -+ 0,382 -+ 0,377 -+ 0,030 4+ 0,127 -+ 0,139 -+ 0,140 —0,136 —0,110 —0,106 —0,104 .g
— 0,75 + 0,647 -+ 0,735 4 0,783 -+ 0,785 + 0,407 -+ 0,512 + 0,523 -+ 0,531 — 0,178 0,277 + 0,272 + 0,292 .g
— 1,00 + 1,204 +1,280 -+ 1,313 -+ 1,317 -+ 1,042 + 1,062 + 1,065 + 1,066 -+ 1,001 +1,002 + 1,002 - 1,002 .g
Navier: | 40,750 +0,960 -+0,990 1,000 | +0422 0540 +0556 +0,563 | +0,187 0,240 +0,2475 +0,250 | .g
Tabelle 2b. (Stiitzenmitte) Wandartiger Trager: Tx fiir gleichbleibende Belastung.

7 b=a4a, =1, b=1sa =1L b=a=1L

lo &= 1 s "f10 Yzo £ ="y s Y10 Ja0 e =1, Ys U0 *Jz0

41,00 | +0746 +1,175 +1,250 + 1,250 [ 40,330 40,496 +0525 -+ 0533 | +0,060 40,088 +0,092 -+ 0,094 | .g
+075 | +0458 40717 -+0760 -+ 0760 ;: 0,185 10274 0287 -+ 0,292 | 40031 +0045 0,047 - 0049 | .g
+050 | +0304 0504 +0542 -+ 0570 | +0,144 0,228 0,244 -+ 0247 | +0,042 +0,062 <+ 0,064 - 0067 | .g
+0,25 | +0210 40414 40,463 + 0478 [ +0,147 +0250 +0271 + 0276 | +0070 40,108 +0,113 <+ 0,115 | .g
-+ 0,00 + 0,129 -+ 0,385 -+ 0,464 -+ 0,488 4+ 0,154 -+ 0,315 + 0,354 4 0,363 -+ 0,115 + 0,186 40,199 4 0,202 g
—025 | 40001 +0330 048 + 0540 | +0,122 40374 0456 -+ 0480 | +0,162 40295 +0317 + 0332 | .g
— 0,50 — 0,240 +0,124 40,394 + 0,568 — 0,030 -+ 0,385 -+ 0,533 -+ 0,607 +0,136 +0,396 -+ 0,476 4 0,500 .g
— 0,75 — 0,647 — 0,750 — 0,445 -+ 0,185 —0,407 —0,083 0,156 + 0,440 — 0,178 + 0,160 -+ 0,483 - 0,620 .g
—vl,()p__ — 1,204 —4,302 —9,317 —19,32 — 1,042 — 4,062 — 0,065 —19,066 — 1,001 — 4,002 --9,002 —19,002 .g
Navier: | +0,750 -+1,440 +1,71 + 1,85 +0,422 +0810 0,962 -+ 1,041 | +0,187 10,360 -+ 0,4275 -+ 0,4625| g
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beliebiger Tragerhohe einzeichnen kann. Die gestrichelte Kurve n gibt den
entsprechenden Wert des Navier’schen Biegungsgesetzes.
Die GroBe des Biegungsmomentes M ergibt sich aus der Gl. 5 durch
Einsetzen des Wertes von Bn aus Gl. 16b zu:
— — (— D" . : ; :
M= 4> -B-f,‘ COS ax =— — L‘i 2 Lﬂ—) sin«c- cos ax hieraus ergibt sich
T (e 7T 1

_-_l)rz [12

fiievi— 0 Feldmitte sinac= +g- 6 (1-¢2)

2
fiir x = 0 Stiitzenbreite Mgs—= — - ;l—f sinec—= —g % -(1-¢)-(2—¢) (17Db)

T
S
Z S
o
Diese Gleichungen lassen sich naturgemaB auch ohne Reihen, direkt aus der
Belastung der Fig. 5a ableiten.

In der Fig. 8 sind dieselben Spannungsdiagramme 7x (¢ = 110-) auf-

gezeichnet, jedoch wurde jetzt nicht die Trigerhohe, sondern die Spannweite
L — 2a variabel angenommen. Die Kurven zeigen sehr gut den Ubergang
zum Geradliniengesetz.

a) Jn Feldmitte b) Uber der Stitze
Au Mitieu s Champ — Jn Hhe Aliddle of fhe Feld  ¢/4ppur’ - of the Sypport

=

3
T

Q

x X

R\

[
3 9 y -
/ / 2v 806 %%ﬁ?

05 10 45 7 05 10 125¢

10 o5

(S

Fig. 8. Biegungskrifte 7, — Efforts de flexion 7, — Bending Stresses 7.

Bei dem Navier’schen Biegungsgesetz betrigt der Hebelarm der inneren
Krifte d = “23_B’ der Abstand der Kraft Z = D vom Rande do = lﬁi und die

Langskraft

M M

Ll — T (18)
Bei dem strengen Biegungsgesetz des wandartigen Trdgers wurden diese
GroBen nach Aufzeichnen der Spannungskurven 7x in groBem MaBstab mit
Hilfe des Planimeters ermittelt. Fir den Grenzfall des unendlich hohen
Trigers (Halbscheibe) konnten diese Werte durch Integration mit Hilfe der
Gl. 6, 7, 8 ermittelt werden. Die Resultate sind in den Tabellen 3a und 3 b

fiir Feld- und Stiitzenmitte fiir 6:a = 1, 2, 1 zusammengestellt.
In der ersten Reihe sind die Biegungsmomente gemaB den Gl. 17 an-
gegeben. In der zweiten Reihe die Lingskrifte Zn des Navier’schen Biegungs-
gesetzes (Gl. 18), in der dritten die tatsidchlichen Langskrifte Z, in der

vierten die Hebelarme d, bezogen auf a = -é—, in der fiinften die Hebelarme d,




Tabelle 3a (Feldmitte).

Gleichbleibende Belastung.

b=ha="lL b=ha="tL b=a="hL b = oo
& = s 10 20 s Y10 ‘20 s s 10 Y20 e s 10 a0
Reie 1 M — 0,160 0,1645 0,166 | 0,125 0,160 0,1645 0,166 | 0,125 0,160 0,1645 0,166 | 0,125 0,160 0,1645 0,166 | ga®— 0,25 gL
o 0,240 0247 0,249 0,180 0,185 0,187 | 0,004 0,120 0,1235 0,1245 | 0,000 0,000 0.000 0,000 | ga — 0,50 gL
A — 0,235 0,239 0,240 0,182 0,186 0,187 | 0,144 0,172 0,177 0,178 | 0,1434 0,171 0,176 0,177 | ga = 0,50 gL
ol = 0,682 0,690 0,692 | 0,828 0,880 0,888 0,890 | 0,870 0,924 0,932 0,934 | 0,874 0,930 0,936 0,938 |a =05 L
dife— 0,682 0,690 0,692 | 0,620 0,660 0,666 0,667 | 0,435 0,462 0,466 0,467 | 0,000 0.000 0,000 0,000 | B =2 b
do — 0,127 0,128 0,129 | 0,111 0122 0,124 0,125 | 0100 0121 0123 0.124 | 0,108 0,121 0122 0122 | a = 05 L
Tabelle 3b (Stiitzenmitte). Gleichbleibende Belastung.
b=1a=1L b="2a="; L b=a=1L b = oo
£ s T1o o) s 10 120 Uy s 5o a0 1y s Y10 a0
Reihe M = 0,240 0,285 0,309 | 0,125 0,240 0,285 0,309 | 0,125 0,240 0,285 0,309 | 0,125 0,240 0,285 0,309 | ga?= 0,25 gL?
Zni— 0,360 0,428 0,464 0,270 0,321 0,348 | 0,094 0,180 0,214 0,232 | 0,000 0,000 0,000 0,000 | ga = 0,50 gL
e — 0,375 0,458 0,515 0,351 0,428 0,498 | 0,144 0,324 0,424 0,497 | 0,1434 0,322 0,422 0,495 | ga = 0,50 gL
dit— 0,640 0,622 0,600 | 0,828 0,686 0,656 0,620 | 0,870 0,740 0,682 0,612 | 0,874 0,746 0,674 0,612 | a = 050 L
o= 0,640 0,622 0,600 | 0,620 0,515 0,492 0,465 | 0,435 0,370 0,341 0,312 | 0,000 0,000 0,000 0,000 | B = 2 b
do = 0,062 0,039 0,022 0,059 0,036 0,021 | 0,109 0,059 0,036 0,021 | 0,108 0,059 0,038 0,024 {a =05 L
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bezogen auf die Hohe des Trigers B = 26 und in der sechsten die Ab-
stinde d, der Liangskrifte Z vom Rande.
Um einen guten Uberblick iiber die auftretenden Lingskrifte Z und

Hebelarme d zu geben, sind diese in der Fig. 9 fiir ¢ = 11—0 aufgetragen.

Fiir schlanke Triager betrigt die Lingskraft Z, entsprechend dem Navier-

*gﬂ’; , d. h. die Langskraft fiir die verschiedenen
Tragerspannweiten verlauft naih einer Hyperbel, die sowohl fiir Feldmitte
(Zn Feld) und fiir den Stiitzenquerschnitt (Zn Stiitze) aufgezeichnet ist. So-

bald jedoch im Feld das Verhiltnis g»: g und bei der Stiitze --g-:%erreicht

schen Biegungsgesetz Z, =

ist, weicht die tatsichliche Normalkraft von Zz ab und verlduft nach einem
kleinen Ubergangsbogen in einer Geraden weiter. Die Kurve der tatsich-
lichen Lingskraft Z ist demnach sehr genau begrenzt durch die Navier’sche
Hyperbel und eine Gerade, deren Lingskraft Z der unendlich hohen Scheibe

== )
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Fig. 9.

zu entnehmen ist. Damit ergibt sich eine sehr einfache und leicht anwendbare
Dimensionierungsregel fiir die Bestimmung der notwendigen Eiseneinlagen.
Die GroBe der Lingskraft Z ist gegeben einerseits durch den Navier’schen

Wierts Z6— ;/.{B’ jedoch kann sie fiir die verschiedenen Stiitzenbreiten
> Pl 1 1 1 1
T 5 10 20 =
in Feldmitte nie kleiner i
werden als Z > 0,144 0,171 0,176 0,177 0,178 >< ga = &5 o)
in Stiitzenmitte nie klei- i
ner werden als Z = 0,144 0,322 0,422 0,495 0,546 >< ga — g5

In der Fig. 9 sind auch die Hebelarme 4 fiir ¢ = %0 fiir Feld- und
Stiitzenmitte aufgetragen. Fiir schlanke Trager ist d gegeben durch den
Navier’schen Wert d = 2B. Sobald fiir die Stiitzenmitte ein Verhiltnis
b:a = 0,5 und fiir die Feldmitte ein Verhiltnis #:a = 2:3 erreicht ist,
wichst ¢ nicht mehr an, sondern verliuft nach einem kurzen Ubergangs-
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‘bogen in einer horizontalen Geraden weiter, die gegeben ist durch die Hebel-
arme ¢ der unendlich hohen Scheibe.

Es ergibt sich deshalb fiir die Bestimmung der Hebelarme d eine ebenso
einfache Anniherungsregel wie fiir die Lingskrafte.

Der Hebelarm der inneren Krifte ist gegeben durch den Navier’schen
Wert d = 2 B, jedoch kann er fiir die verschiedenen Siulenbreiten

e 1 1 1 1
2 R T =

‘in Feldmitte nie groBer

werden als d = 0,874 0,930 0,936 0,938 0,940 ><a = 0,5 L | (20)

und in Stiitzenmitte nie
groBer werden als d = 0,874 0,746 0,674 0,624 0,004 ><a =0,5L

Die beiden Niherungsformeln ergeben in der Nihe des besprochenen
Ubergangsbogens etwas zu giinstige Werte, jedoch ist der Fehler so gering,
daB er insbesondere in Feldmitte vernachlassigt werden kann. Die genaueren
Werte kénnen jedoch immer auch den Tabellen 3a und 3b entnommen
werden. Wihrend die Spannungskurven (Fig. 7 und 8) nur einen sehr all-
mahlichen Ubergang von der unendlich hohen Scheibe zum Navier’schen Bie-
gungsgesetz zeigten, ist der Ubergang beziigl. der fiir die Dimensionierung
maBgebenden Lingskraft N und Hebelarm d ein sehr rascher. Auffallend ist,
daB bei dem durchlaufenden Triger mit gleichbleibender Belastung g die
Hebelarme in Feldmitte viel groBer sind wie iiber der Stiitze und zwar ist
der Unterschied um so grofier, je geringer die Stiitzenbreite. Mit abnehmen-
der Stiitzenbreite wichst der Hebelarm & in Feldmitte, und iiber der Stiitze
nimmt er rasch ab. Diese Erscheinung ist sehr wichtig fiir die Dimen-
sionierung.

Bei dem Preisausschreiben der Akademie des Bauwesens (1930) auf
dem Gebiet des Eisenbetons?) hat der Verfasser auch Kugelschalen unter-
sucht, die auf weit entfernten Einzelstiitzen gelagert sind und wobei die
Schale zwischen den Siulen als Triger wirkt und zwar in ganz ahnlicher
Weise wie hier die Scheibe. Hierbei ergaben sich die gleichen Verhaltnisse
beziigl. der Hebelarme 4, nur mit dem Unterschied, daB diese in einem be-
stimmten Verhiltnis kleiner sind%). Diese Erkenntnis bildete die Anregung

~dafiir, auch die ebene Scheibe in dieser Hinsicht genauer zu untersuchen.

Am Anfang dieses Abschnittes haben wir festgestellt, daB ganz unab-
hingig davon, in welcher Hohe die gleichbleibende Belastung g angebracht
ist, die Trigerwirkung sich immer am unteren Rand abspielt und die Ta-
bellen 2 und die Gl. 14 zeigen, daB die max. Biegungskrafte 7x annihernd
von gleicher GroBe sind wie die max. 7y-Kréfte, d. h. wie die angehangte Last.

Der Satz vom Minimum der Forminderungsarbeit gibt die Erklarung
hierfiir. Die Forminderungsarbeit hingt bekanntlich ab von den Quadraten
der Spannungen. Infolgedessen werden sich, wenn es moglich ist, immer
moglichst gleich groBe Spannungen in allen Richtungen ergeben, und un-
notige Maximalwerte miissen vermieden werden. Wir betrachten nun den
Fall der oben aufgebrachten Last. Wiirde sich in diesem Falle die Trager-
wirkung an der oberen Begrenzung abspielen, dann miiBten die Lasten durch
konzentrierte Ty-Krifte nach den Sdulen abgetragen werden, womit eine

2) Dr. ELLERBECK, ,,Zentralblatt der Bauverwaltung, 1930, Heft 24.
) Dr. Ing. Fr. DiscHINGER, ,Eisenbetonschalendiacher ZeiB-Dywidag‘, 1. Inter-
nationaler Eisenbeton-KongreB, Liittich 1930.
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sehr groBe Forminderungsarbeit verbunden wire. Infolgedessen ist es wirt-
schaftlicher, die oben aufgebrachte Last der hohen Wand, wie von neben-
einanderstehenden Siulen bei geringen 7y-Kriften nach unten zu schaffen
und dann erst durch Trigerwirkung nach den Siulen abzutragen und zwar
muB sich zur Erreichung des Minimums der Formédnderungsarbeit eine solche
Triagerhohe einstellen, daB die Biegungskrifte 7x annihernd von gleicher
GroBe werden wie die zugehorigen 7y, d. h. wie die angehangte Last.

2. Feldweise wechselnde Verkehrslast gemdB Fig. 10.

Bei der feldweise wechselnden Verkehrslast entstehen keine Auflager-
driicke. Wenn die Verkehrslasten im Gegensatz zur Fig. 10 nicht am unteren,
sondern am oberen Rand des Trigers angreifen, dann sind 7x-Krifte das
Spiegelbild beziigl. der x-Achse; eine neue Berechnung eriibrigt sich.

7 Es ergibt sich
o
N
S Ea T e e o e
Tl ‘.‘I TETIII m___ | (I 'z—? p-\'ocosaxdx—— (213)
I [l \M_", ru_l 2 B ST ‘L[[‘_“__ 0 1
| Periode "a o qiVe
““i S evs— L Do COS % O — 272 (——)smﬂ (22b)
3);\ % dea 4 % 2
IR [ |
EEI{IO und damit
ig. 10.
(Arz+Bu) = —(AII+BII) = /-HJ“ bll Sin il?i = @ (’Z = 1: +31 45 (e ) (22C)

7T n 2 TN

Der Vergleich der Fig. 10 mit der Fig. 5b zeigt, daB der Belastungsfall der
feldweise wechselnden Verkehrslast vollstindig identisch ist mit dem Fall
¢ = 1 der Eigengewichtslastung; das zeigen auch die Belastungsglieder der

G160 Setzti man it Gl 16-fiie e =4 Sfiirgo— p “fiiric =%, dann wird
sinax = sin %75 und damit sind die Gl. 16 in die Gl. 22 iibergefiihrt.

Infolgedessen konnen die Werte von ¢ = 1 der Tabellen 1, 2, 3 fiir die
Ermittlung der GroBen von Tx, Nn, N, d, do bei den verschiedenen Tréager-

héhen b:a = 1, 2, 1, benutzt werden. (Den Spezialfall & = ~‘2Z— hat Dr. ing.

CRAEMER in seinem schon erwihnten Aufsatz behandelt.) Jedoch ist zu be-
achten, daB, wie der Vergleich der Fig. 5b und Fig. 10 zeigt, jetzt die Linge
der Periode 2a = 2L, im Gegensatz zur gleichbleibenden Belastung, wo
2 a = [ war; infolgedessen sind die Hebelarme d, bezogen auf @, zwar gleich,
aber bezogen auf L sind sie bei Verkehrsbelastung doppelt so groB, der Uber-
gang zum Navier’schen Biegungsgesetz erfolgt also rascher und der Trager
ist bei Verkehrsbelastung giinstiger ausgenutzt.

Die vereinfachte Dimensionierungsregel lautet:
Die GroBe der Lingskraft Z ist gegeben durch den Navier’'schen Wert
e
n % B
Die GroBe der Hebelarme d ist gegeben durch den Navier’schen Wert
d = 2 B, jedoch kann d nie groBer werden als 0,874 ¢ = 0,874 L. Der Verlauf

-, jedoch kann Z nie kleiner werden als 0,144 pa = 0,144 pL.




Tabelle 4. Biegungskrifte Tx der Halbscheibe bei Belastung durch Einzelkrafte.

(Feldmitte = — Stiitzenmitte)
Ya v =1 s 1o /20 Yoo
0,00 - 1,000 -+ 2,500 -+ 5,000 410,000 + o Plg
0,25 -+ 0,167 + 0,062 — 0,115 — 0,197 — 0,223 ’i
0,50 — 0,137 0255 — 029() — 0,306 — 0,309 3
0,75 — 0,161 — 0,245 — 0,262 — 0,266 — 0,'267 o
1,00 — 0,118 - 0,173 — 0,182 — 0,185 — 0,185 5
1,25 e Eoos Sei0 A R0 d1a e =015 i
1,50 0,0424 — 0,063 — 0,066 — 0,067 — 0,068 53
1,75 — 00,0235 — 0,034 — 0,036 — 0,037 — 0,037 iy
2,00 — 0,0126 — 0,019 — 0,019 — 0,020 — 0,020 5
Tabelle 5. (Feldmitte = — Stiitzenmitte. Biegungskrifte: 7x des wandartigen Trigers bei Belastung durch Einzelkrifte.
_,V/ b:afﬂzl'/«l :B,H_‘L/ b:a:[/2
o 4 v e = 1, Ys 110 Yzo & '/2 s 1o a0 e =1 'Is ’/10 1/207
-+ 1,00 —0,746 —1,100 —1,104 — 1,180 —0,330 —0,483 —0510 — 0,517 — 0,060 —0,088 —0,002 — 0,094 | Pla
-+ 0,75 — 0,458 —0,680 —0,704 —- 0,712 — 0,185 — 0272 —028 — 0,204 — 0,031 — 0,045 —0,047 — 0,048 5
-+ 0,50 — 0,304 —0,454 —0,480 — 0,484 — 0,144 —0213 —0223 — 0,230 — 0,042 —0,062 —0,066 -- 0,060 ,,
-+ 0,25 —0,210 —0,330 —0,356 — 0,364 — 0,147 —0,218 —0,229 — 0,233 —0,07 —0,103 —0,108 — 0,110 5
-+ 0,00 —0,120 —0,244 —0,280 — 0,292 —0,154 --0,243 —0,243 — 0,267 —0,115 —0,171 — 0,193 — 0,196 5
— 0,25 — 0,000 —0,116 —0,190 — 0,214 —0,122 —0,233 —0,267 — 0,282 — 0,162 —0,245 —0,260 — 0,200 .
— 0,80 + 0,240 40,168 40,006 — 0,056 40,030 —0,098 —0,198 — 0,233 —0,136 —0,251 —0,202 — 0,303 3
— 0,75 + 0,647 -+0,990 40,710 - 0,400 + 0,407 + 0,440 40,302 -+ 0,143 40,178 —0,064 — 0,106 — 0,190 5
— 1,00 + 1:204 015 et 2,80080E 5320 +10,320 41,042 +2570 + 5,050 410,01 s 1t 001 4::2,500 -+ 5,002 +10 002 Sty
Navier: | +0,750 -+1,200 +1,350 - 1,424 +0422 +0,675 40,760 -+ 0,802 0,1875 +0,300 +0,338 -+ 0,356 | Pla
Tabelle 6. (Feldmitte — — Stiitzenmitte). Belastung durch Einzelkrifte.
b=1pa="1Y,L b=2ga="Y, L b=a=1,L b= oo
Ry Chies s s 1o Y20 1/2 s 1o Y20 2 ' s 10 %20 1/2 'Is Tho a0
Reihe 1 M = | 0,125 0,200 0,225 0,238 | 0,125 0,200 0,225 0,238 0,125 0,200 0,225 0,238 | 0,125 0,200 0,225 0,238 | Pa = 05 PL
9 Zn=—:1.0,188 0300 0,338 0,357 | 0,141° 0,225 10,253 * 0,268 0,004 0,150 0,169 0,178 | 0,000 0,000 0,000 0,000 | P  ......
3 Z = 0,18 0,289 0,320 0,333 | 0,151 0,244 0,278 0,303 0,144 0,241 0,276 0,298 | 0,1434 0,238 0,273 0,295 | VARt
4 d =|0674 0692 0,704 0,716 | 0,828 0,820 0,808 0,788 | 0,870 0,830 0,816 0,790 | 0,874 0,840 0,824 0810 (a = 051L
5 d = | 0,674 0,692 0,704 0 716 | 0,620 0,615 0,606 0,591 | 0,435 0,415 0,408 0,395 | 0,000 0,000 0,000 0000 | B =20b
6 do= | 0,114 0,077 0,048 0,028 | 0,111 0,072 0,044 0,026 | 0,109 0,068 0,043 0,025 | 0,108 0,072 0,045 0,026 | a = 051L
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der Biegungsspannungen 7x unterscheidet sich kaum von den in Fig. 7 und
Fig. 8 aufgezeichneten 7.x-Kriften fiir gleichbleibende Last g (e = 110).

3. Gleichzeitige Belastung simtlicher Felder durch
Einzelkratte :

Der einfacheren Rechnung wegen setzen wir voraus, daB die Belastungs-
breiten gleich sind den Auflagerbreiten. Die Linge der Periode betragt
2t =L

a) Wir betrachten zunachst den Fall, daB die Einzellasten
unten angehiangt, sodaB die Lasten und die Auflagerkrifte auf der gleichen
Seite des Trigers angreifen (Fig. 11). Nach dem Fourier’schen Lehrsatz er-

gibt sich:
e
% . I (i a
;!!ﬂ:_‘ :
[

I P
_""ZQC_}*__ Periode 18 F— I8y — = i COS Co Uk —
| [ 2L IT \ 0
il
|

N M A
; !\f i)/'m /\EZ = 25 4 Stttz sl =21:8:.57 ) (25b)

‘a

Do COSiaxdri—_0 (25a)

()

A | e n
@x
Fig. 11.
2Rl
(An +sz) = _(AII+B’1) =5 e ; e (” = 1L8 81 ) (25C)

Fiir den Fall, daB ¢ = 1, ist ? — p und damit gehen die Gl. 25 in die Gl. 22

iiber und sie entsprechen zugleich dem Spezialfall ¢ = 1 der Gl. 16. (Vergl.
auch die zugehorigen Fig. 5a, 9.) Burch Einsetzen der Werte der Gl. 25 in

die Gl. 4 a wurden wieder die Biegungskriafte 7x der Halbscheibe fiir e = i,

i :? und durch Einsetzen in die Gl. 12a bezw. 13 die Biegungskrifte

10 20>

des wandartigen Tragers fiir ¢ = %, %ﬁ, % bei b:a = 1, 2, 1 ermittelt. Die
Ergebnisse sind in den Tabellen 5 und 4 wiedergegeben und in der Fig. 12
sind die 7x-Krifte fiir e = % bei den verschiedenen Balkenhohen &:a = %,

2 1 aufgezeichnet. Die Tx-Krafte iiber der Stiitze unterscheiden sich von
denen des Feldes nur durch das Vorzeichen. Der Ubergang der 7x-Krifte zu
denen des Navier’schen Biegungsgesetzes spielt sich in der gleichen Weise
ab wie bei der gleichbleibenden Belastung nach Abb. 7.

Das Biegungsmoment bei dieser Belastung ergibt sich aus der Gl. 5 bezw.

durch direkte Ableitung aus der Belastung zu M = + % (1 —e).

In der Tabelle 6 wurde nun wieder die Dimensionierung wichtiger Form-
oroBen zusammengestellt und hieraus ergeben sich wieder wie bei den vor-
hergehenden Belastungsfillen vereinfachte Dimensionierungsregeln. Diese
lauten:

Die Lingskraft Z ergibt sich aus dem Navier’schen Biegungsgesetz, je-
doch kann sie fiir die verschiedenen Belastungsbreiten
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5 1 1 1 1 1
f= 2 5 10 20 oo

in Feld- u. Stiitzenmitte P

nie kleiner werden als Z<= 0,144 0,238 0,273 0,295 0,312 o

(20)

Der Hebelarm der inneren Krifte d ist gegeben durch den Navier’schen Wert
d = 2 B, jedoch kann er fiir die verschiedenen Belastungsbreiten
1 1 1 1 1
Emaig 5 10 20 =
in Feld- u. Stiitzenmitte )
nie groBer werden als = 0,804 0,840 0,824 0810 0802><a= ",

b) Die Einzellasten sind oben aufgebracht: Dieser Be-
lastungsfall unterscheidet sich vom vorigen nur bei sehr groBer Trigerhohe,
In der Fig. 13 sind die sich ergebenden 7Tx-Krafte zwecks Vergleich mit der

o
B

2. ). ). a5 : 10
Rigr el Fig. 13.
Biegungskrafte 7, — Efforts de flexion 7y — Bending Stresses 7.

Fig, 12 aufgetragen. Ein wesentlicher Unterschied gegeniiber Fig. 12 ergibt
sich erst bei hoher Trigerhohe (& = «). Hier ist ein einheitliches Spannungs-
diagramm nicht mehr vorhanden, es ergeben sich drei neutrale Achsen und da-
mit zwei Zugzonen.

Die Belastungsglieder ergeben sich zu:

PR i
e 775(,‘ 117 Sin ac 7 = — ﬁ (283)
R P (—1)” . BO s lot P
B” = + /:L‘AC T SIin cc¢ '-:?'-— == ZI (28b)
Ap,+ B, = — 2h T sittiges sei(m =2, 4 305%) (28¢)
7w 1N
Pl i
At g 0 2% — sinac  (n=41,3,5..) (284)

Auch fiir diesen Belastungsfall wurden die Hebelarme der inneren Krifte
ermittelt, sie sind bei hohen Tragern etwas giinstiger wie bei a), bei schlanken
Tragern jedoch gleich, sodaB die Dimensionierung von a) immer brauchbare
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Werte ergibt. Es wurde deshalb und aus Griinden der Raumersparnis von
einer Wiedergabe der zugehorigen Tabellen abgesehen. Zu beachten ist nur,
daB bei Triagern b — a die Zugeisen geteilt werden mussen, da zwei getrennte
Zugzonen auftreten.

c) Feldweise wechselnde Belastung durch Einzel-
krifte nach Fig. 14. Dieser Belastungsfall unterscheidet sich von dem
Belastungsfall 3 a, wie der Vergleich der Fig. 11 und der Fig. 14 zeigt, nur
dadurch, daB die Periode 2 doppelt so groB ist. Waihrend bei dem Belastungs-
fall 32 24 — L war, ist jetzt 2a = 2 L. Da jedoch die Krifte 7x und des-
gleichen Zn, Z, d, do auf a bezogen sind, dndert sich an den Tabellen und
den Dimensionierungsformeln des Abschnittes 3 a nichts. Bei Benutzung der

P j J’i 1’” ;p f BT
iTL_ R SR M 5 }Q‘
| IP | E

r L‘l #L”q—fti 7:{ p p tp J

= Pertode2a-2L—~ fo2a —+— 20—

Fig. 14. Figiil5,

Gl. 26 und 27 ist aber zu beachten, daB bei den angegebenen Zahlenwerten
nunmehr @ — L ist. Zwischen dem Belastungsfall 3a und 3c besteht das
gleiche Verhiltnis wie zwischen dem Belastungsfall 1 und 2.

Die VergroBerung der Periode bewirkt, daB & und a wichst und dadurch
ecine groBere Anniherung an das Navier’sche Biegungsgesetz geschaffen ist.

d) Belastung durch gegeniiberliegende Einzelkridfte
gemaB Fig. 15. Derartige Belastungsfille kommen vor, wenn Siulen-
lasten durch Silowinde hindurchgefiihrt werden miissen, desgleichen auch
bei Decken, auf denen Hallenbinder aufgesetzt sind, durch deren Horizontal-
schub die Decke auf Zug beansprucht wird.

Nach dem Fourier’schen Lehrsatz ergibt sich:

o = JEEEA e Ao ss /e
A” = BH_ = — ;;E 7]; Sin ac 2" == i‘g (293)
e D 1 ; Do =t £
(An+ Bn) = — - sin ac e 2a (29b)
(Ar—Bn) =0 (29¢)

Die sich aus dieser Belastung ergebenden Biegungskrifte 7'x sind in der
Fig. 16 fiir die Verhiltnisse b = —;— (Kurve 1), & = a (Kurve 2), b = 24
(Kurve 3), b = 4a (Kurve 4) aufgetragen, und zwar wurden die 7x-Krifte
durch % ausgedriickt, um einen guten Vergleich zu ermoglichen. Je kleiner

die Hohe des Balkens im Verhiltnis zur Periode, um so mehr erstrecken sich
die Biegungskrifte iiber die ganze Hohe des Balkens. Dagegen konzentrieren
sich die Biegungskrifte bei hohen Winden nur an den Riandern und werden
in der Balkenmitte annihernd zu Null. Der Grenzfall ist die unendlich hohe
Halbscheibe, bei der die Biegungsspannungen 7x auf eine Randzone un-
gefihr von der Hohe 2a beschrinkt sind, wihrend im ibrigen die Halb-
scheibe frei von Biegungsspannungen ist. Dies 148t sich auch ohne weiteres
aus dem Prinzip von ST. VENANT folgern. :
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Die eingeklammerten Zahlen der Fig. 16 zeigen die Resultate von F. SeewaLp, der
in seiner schon erwihnten Arbeit dieses Problem auch behandelt hat. Nach SEEwALD
sind jedoch die Biegungsspannungen 7 x ganz unabhingig von dem Verhiltnis 6. a (siehe
Fig. 10 der Seewarp’schen Arbeit) und das ist nach den bisherigen Darlegungen ganz
unmoglich. Dagegen stimmen die SeewarLp’schen Resultate bei einem Verhiltnis von
b = 0,5 a fast genau mit den hier ermittelten Resultaten iiberein. Daraus folgt, daB die
SeewaLp’schen Gleichungen nur fiir einigermaBen schlanke Balken giiltig sind (6==0,5:a),
bei hoheren Winden ergeben sie jedoch unrichtige Resultate.

Courbe

4 9 62 i
Lape b-4a| b=2a| b=a d=§

1 Al Pl P 2
35:003 7.9,005- .9,545b '4,_9383- oo

—
S 7 +0360 |+ 0467 #0328 |+ 0236

’ +0.039 |+0,200 |+0,287 |+0,278 |(+0.292)

2 Q #0003 #0070 |+0,221 |#0253
1\\ \ #0000 (#0039 |#0,799 |+ 0,246 |(+0242)

Fig. 16.

SeewaLD stellt die Biegungsspannungen des Balkens als Summe der Navier’schen
Spannungen und bestimmter Zusatzspannungen dar, die er als Last-Einfithrungsspan-
nungen bezeichnet und deren GroBe in der Fig. 11 der SEewaLp’schen Arbeit und der
nebenstehenden Fig. 17 wiedergegeben sind. Nach den Darlegungen von SEEwALD
sollen diese Einfithrungsspannungen wiederum unabhiingig von b:a sein. Nun ldBt sich
aber durch Ubereinanderlagerung der Einfiihrungsspannungen zweier gegeniiberliegender
Krifte P der Fig. 17 das Spannungsdiagramm der Fig. 10 erzeugen (siehe Tabelle der

T fir P b i Pu P (robes P=P’)
G A A s e
o=6 0/.;36 Z
T Ao Les - Gr76 ¢ 292
St arey r Q121 * 242
TTT- 4436 04928  rg292
-==== g1, - = =
27133 o aab
Fig. 17.

Fig. 17). Deshalb kénnen wir folgern, daB ebenso wie die Spannungen der Fig. 16, so
auch die Einfithrungsspannungen, abhiangig sein miissen von &:« und es ist auch ohne
weiteres klar, daB bei einer unendlich hohen Scheibe, an deren Begrenzungen Krifte P
‘gemidB Abb. 17 angreifen, Biegungskrifte nur in der Nihe des Randes auftreten kénnen,
nicht aber in der Mitte der Scheibe, wie SEEwALD annimmt. Auch beziiglich der Ein-
fuhrungsspannungen gilt also, daB die Seewarp’schen Gleichungen nur bei verhiltnis-
maBig schlanken Balken richtige Resultate ergeben.

Zwecks Nachpriifung der SeewarLp’schen Ergebnisse mit den vielen in dieser Ar-
beit durchgerechneten Beispielen wurden die Navier’schen Biegungskrifte von den tat-
siachlichen 7'x abgezogen, sodaB sich als Differenz die durch die Siulenlasten ergebenden
Einfithrungs-Biegungskrifte ergeben. Hierdurch wurde die obige Folgerung bestitigt,
daB erst bei einem Schlankheitsverhiltnis von 6==0,5a die Seewarp’schen Formeln
Giiltigkeit haben und auch dann nur, wenn die Einfithrungsbreite der Siule 2 ¢ bezw. &
klein ist. Die Seewarp’sche Losung ist jedoch eine sehr wertvolle Erginzung der
BLeicr’schen Arbeit und gestattet gerade in den Fillen eine rasche Berechnung der
tatsichlichen Biegungskrifte, bei denen die Auswertung der BreicH’schen Formeln sehr
miihevoll wird, denn je schlanker der Balken, um so rascher vermehren sich die Glieder
der Reihen fiir die Ermittlung der Tx.
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4. SchluBbemerkungen.

Durch die bisherigen Darlegungen sind nunmehr fiir alle wesentlichen
Belastungsfille des kontinuierlichen wandartigen Balkens mit vielen gleichen
Feldern einfache Dimensionierungsformeln gegeben. Der Verfasser hat seine
Untersuchungen aber auch auf Triger mit wechselnden Spannweiten L, L,
gemiB Fig. 18 ausgedehnt und hieraus ergeben sich wichtige Riickschlisse
auf die GroBe der Hebelarme bei beliebig wechselnden Spannweiten des
kontinuierlichen Trigers, sodaB auch diese Triger leicht dimensioniert werden
kénnen.

| i
[ v L o iy
Lo -l L---
a-L

T .I. Jr ¥
Ly L2l Ly Lt2) Ly
1 5 Jr e
o *}tnade 20:2L

(Fig. 18. Fig. 10.

Des weiteren wurde auch das Problem des nur auf zwei Stiitzen ge-
lagerten endlichen Balkens behandelt. Dabei wurde die Belastungsfunktion
so gewihlt, daB an den beiden senkrechten Rindern der Scheibe weder
Biegungsmomente noch Querkrifte auftreten (s. Fig. 19), sodaB damit eine
strenge Losung des Balkenproblems geschaffen wire, wenn nicht an diesen
Rindern sich gegenseitig aufhebende Schubkrifte {ibrig blieben. (Die Summe
dieser Schubkrifte — die Querkraft — ist gleich Null). Durch diese nicht
strenge Erfiillung der Randbedingung werden die 7x-Krifte zwar beeinfluBt,
nicht aber die Hebelarme d der inneren Krifte. Um das zu beweisen, wurde
die gleichmiBige Last g im Gegensatz zur Fig. 19 nicht nur am unteren,
sondern auch am oberen Rande aufgebracht. Damit ergeben sich ganz ver-
schiedene Belastungsglieder Az und Br und damit auch ganz andere sich
gegenseitig aufhebende Schubkrifte an den senkrechten Randern und damit
auch abweichende 7x, trotzdem sich nach dem schon im Anfang erorterten
Superpositionsgesetz genau die gleichen 7x ergeben miiBten, aber die Hebel-
arme d der inneren Krifte werden dadurch nicht geindert. Damit ist der
Beweis gegeben, daB diese Dimensionierungsformeln richtige Resultate er-
geben, allerdings nur fiir Scheiben von annihernd quadratischer oder schlan-
kerer Form. Wird der Balken wesentlich hoher als die Spannweite, dann er-
geben sich Differenzen und damit ist auch bewiesen, daBl die Losung ungenau
wird. Da jedoch kein weiterer Raum zur Verfiigung steht, miissen diese Unter-
suchungen einer spiteren Veroffentlichung vorbehalten bleiben, wobei auch
zugleich Angaben iiber die auftretenden Schubkrifte S und die 7'y - Krifte
gemacht werden.

Das Problem des auf zwei Stiitzen gelagerten Balkens von quadratischer Form
wurde auch von Dr. ing. H. Bav in seiner Schrift ,,Uber den Spannungszustand in hohen
Trigern und die Bewehrung von Eisenbetonwanden, Verlag Conrad Witwer, Stuttgart
1031, behandelt. Bay ersetzte zwecks Einhaltung der Randbedingungen die Differential-
gleichung durch eine Differenzengleichung und ermittelte den Hebelsarm der inneren
Krifte gemiB Abb. 9 zu d — 0,65 L und die Lingskraft zu Z = 0,15 p[, wihrend der
Verfasser fiir unten oder oben angebrachte Last g hierfiir den Wert 4 = 0,676 L und
Z = 0,148 pL feststellte. Diese Resultate stimmen also iiberraschend gut {iberein. Vom
aut zwei Stitzen gelagerten freiaufliegenden Balken geht nun H. Bay zum kontinuier-
lichen Balken iiber, durch Aneinanderreihen von frei aufliegenden Balken gemdB Fig. 20,
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indem er wie bei einem schlanken Balken entsprechend der Momentenverteilung die
Zugkraft Z = 0,15 pa mit 2/3 Z = 0,10 pa auf die Stiitze und mit */; Z = 0,05 auf das
Feld verteilt (sieche S. 50). Das fithrt jedoch zu falschen Ergebnissen, denn beim konti-
nuierlichen Balken sind entsprechend der Verkleinerung der Periode von 2a = 2L 2
24 — [ die Hebelarme kleiner und gemiB Tabelle 3a und 3 b ergibt sich fiir & = ;
und b = a itber der Stittze Z = 0,424 ga = 0,212 g L und in Feldmitte Z=10,177: ga
— 0,0885:g: L. Die Lingskrifte von BAY sind also beim kontinuierlichen Balken viel
zu klein, sie betragen nur die Halfte der tatsichlichen, Der Grund liegt, wie schon er-
wihnt, in der Verkleinerung der Periode von 24 = 2L zu 2a = L.

Zum SchluB sei noch darauf hingewiesen, daB derartige Trager gegen-
itber den Stiitzensenkungen sehr empfindlich sind. Die Verbiegungen spielen
eine viel geringere Rolle wie die Schubverzerrungen und noch wichtiger sind

e

Il

LPmode Perrode
2oL 20

Fig. 20.

die Stauchungen an der Einfithrungsstelle der Lasten. Nehmen wir nun z. B.
als Grenzfall an, daB bei einem kontinuierlichen Triager jede zweite Stiitze
durch schlechten Baugrund ausfiele, dann wiirde sich die Periode « und da-
mit auch die Hebelarme auf das Doppelte vergroBern, sodaB sich wiederum
dieselben Liangskrifte Z ergeben wiirden. Die Armierung im Feld wire also
in Ordnung, wenn sie durchgehend an der Unterkante von gleicher Stirke
ware. Aber iiber der Stiitze wiirde die Armierung zu niedrig liegen und der
Balken wiirde von oben aufreiBen. Ein derartig krasser Fall, daB jede zweite

7x (Feldmitte) x( Stufzenmitte)

Armierungsplon -Flan de /4rmature & (Miliev dv Chomp) — Tx(Milieu de [ Appur)
Reinforcement-Flon (b-a , E=4=1L) Te(Middle of the Freld) — T&(Middle of the Sypport)
R
e b
el f < Q J |
’ — : " ‘_szd,:?:»‘Za L
J /\—r,’\ ; m > AI d-0682a
}L : ‘;_’ > 4_* 'fda=a/23a D= 00:0036a
; [ JE d+do=1055a dido-0787a
Zcle 2 Z:=0=0177ga Z:-D-0424 gu
Periode 2a-L
Fig. 21.

Stiitze ganz ausfillt, wird naturgemiB nie auftreten, jedoch empfiehlt sich
immer in der Wand auBer der normalen Armierung an der Oberseite und
Unterseite eine durchgehende Armierung einzulegen, insbesondere da die
Silowdnde meistens auch als Sicherung gegen ungleichmiBige Setzungen ver-
wendet werden und in diesem Fall infolge VergroBerung der Periode die
ganze Wandhohe als Triager wirkt. Fiir den Fall des kontinuierlichen Tragers
gemil Fig. 20 sind in der Fig. 21 die Biegungsarmierungen eingezeichnet
unter Angabe der Hebelarme, der Spannungsdiagramme 7x und der Lings-
krafte Z. Hierbei sind auch die eben besprochenen Sicherungseisen am oberen
und unteren Rand mitberiicksichtigt. Entsprechend der Ausstrahlung der
Kriafte iiber der Stiitze empfiehlt es sich auch bei den Zugeisen auf die Aus-
strahlung, gekennzeichnet durch die Schriglinie £, Riicksicht zu nehmen.
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Zum Schlusse sei noch bemerkt, daB auch fiir die Biegungskrafte 7,
am Rande sich ganz einfache Niherungswerte ergeben, ebenso wie fiir die
Langskrifte Z und die Hebelarme d.

Die Randspannung 7, ist gegeben durch das Navier’sche Biegungs-

gesetz T, — 2/{ . Jedoch kann sie am oberen Rande gemiB Gl. 14a nie
6 A

kleiner werden als p., — -i(—’ und am unteren Rande gemaB Gl. 14 a nie kleiner

werden als p,, — 52—0

Der Ubergangsbogen zwischen dieser Geraden und dem Navier’schen
Wert von 7T, ist etwas gestreckter wie bei den Lingskriften Z und bei den
Hebelarmen d.

Bei den umfangreichen Ausrechnungen hat mich Herr Dipl. Ing. OHLIG
in dankenswerter Weise unterstiitzt,

Zusammenfassung.

Wihrend bei schlanken Trigern die Navier’sche Hypothese der gerad-
linigen Verteilung der Biegungsspannungen eine sehr gute Ubereinstimmung
mit der strengen Theorie ergibt, weichen die Spannungen bei hohen, wand-
artigen Trigern, die im Eisenbetonbau bei Silobauten sehr haufig auftreten,
ganz wesentlich von dem Geradliniengesetz ab; sie stellen sich dar als Uber-
ginge der Spannungen der unendlich hohen Scheibe und denen des Navier-
schen Biegungsgesetzes. Anhand vieler durchgerechneter Beispiele gibt der
Verfasser fiir alle auftretenden Belastungsfille den Verlauf der Biegungs-
krafte fiir verschiedene Verhiltnisse von Balkenhche zur Balkenspannweite
an und zeigt, in welcher Weise allmahlich der Ubergang von den Spannungen
der hohen Scheibe zu denen des schlanken Balkens, fiir welche die Navier-
sche Hypothese giiltig ist, vor sich geht.

Besonders einfache Gleichungen ergeben sich fiir die Randspannungen,
mit deren Hilfe man fiir jede beliebige Balkenhohe die Spannungskurven
ohne umfangreiche Rechnung leicht aufzeichnen kann.

Fiir die Dimensionierung derartig hoher Balken im Eisenbetonbau und
fiir die Bestimmung der Zugeiseneinlagen sind jedoch diese Spannungs-
diagramme selbst von geringerer Bedeutung als die Kenntnis der GroBe der
Hebelarme der inneren Krifte, aus denen sich die notwendigen Zugeisen-
einlagen bestimmen, und in der Ermittelung dieser Hebelarme fiir alle be-

liebigen Belastungsfille besteht fiir den Ingenieur der Praxis der Wert dieser
Arbeit.

Es ergeben sich erfreulicherweise derart einfache Dimensionierungs-
regeln, daB nunmehr der hohe Tréger in ebenso einfacher Weise dimen-
sioniert werden kann wie der schlanke Balken. Die Dimensionierungsregeln
haben ganz allgemein folgende Form: Der Hebelarm der inneren Krafte von
wandartigen Trigern ist ebenso wie beim schlanken Balken gleich zwei Drittel
der Balkenhohe, jedoch kann er nie groBer werden als ein der Spannweite
proportionaler Zahlenwert, dessen GréBe abhingig ist von dem Verhiltnis
der Stiitzenbreite zur Spannweite.

Bei hohen Balken ist demnach der Hebelarm der inneren Krifte nicht
mehr proportional der Balkenhdhe, sondern proportional der Balkenspann-
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weite. Ein ganz wesentlicher Unterschied ergibt sich zwischen frei auf-
liegenden und durchlaufenden Tragern. Bei den ersteren ist der Hebelarm
der inneren Krifte ca. doppelt so groB wie bei den durchlaufenden Tragern,
und in gleicher Weise sind auch die Hebelarme der inneren Krifte der durch-
laufenden Triager bei Verkehrsbelastung ca. doppelt so groB als bei Eigen-
gewichtsbelastung.

Zugleich werden auch die zahlreichen, bisher auf diesem Gebiet er-
schienenen Arbeiten eingehend besprochen.

Résumé.

L’hypothése de Navier concernant la répartition linéaire des efforts de
flexion donne des résultats qui sont parfaitement en accord avec la théorie
rigoureuse, dans le cas des éléments porteurs, de faible hauteur. Par contre,
lorsqu’il s’agit de parois portantes tres hautes, telles que celles qui sont
employées trés fréquemment pour la construction des silos, les efforts
s’écartent trés sensiblement de la répartition linéaire. On obtient une ré-
partition intermédiaire entre les efforts qui correspondent aux parois in-
finiment hautes et ceux que donne la loi de Navier. En s’appuyant sur
de nombreux exemples de calcul, 'auteur indique, pour tous les cas de ré-
partition de charge que ’on rencontre couramment, les variation des efforts
de flexion, pour différents rapports entre la hauteur et la portée; il montre
la transition progressive entre le cas de la paroi trés haute et celui de I’élé-
ment de faible hauteur, pour lequel ’hypothese de Navier peut étre appliquée.

On obtient pour les efforts en bordure des équations particuliérement
simples, qui permettent de déterminer la courbe des efforts, sans calculs
compliqués, pour des hauteurs arbitraires.

Ces diagrammes sont toutefois d’une utilité moins grande pour le calcul
de ces éléments, dans le béton armé, et pour la détermination des armatures,
que la connaissance des bras de levier des efforts intérieurs, a partir des-
quels se déterminent les armatures nécessaires. La valeur de cette publication
consiste spécialement dans le fait qu’elle permet la détermination de ces bras
de levier,

On dispose de méthodes de calcul permettant de calculer les parois por-
tantes de grande hauteur d’une maniere aussi simple que les éléments de
faible hauteur. La reégle a appliquer peut s’énoncer sous la forme générale
suivante: le bras de levier des efforts intérieurs est, de méme que pour les
poutres de faible hauteur, égal aux 2/, de la hauteur de I’élément porteur, sans
toutefois pouvoir dépasser une fraction de la portée, dont la valeur dépend
du rapport entre la largeur des appuis et la portée.

Dans les poutres de grande hauteur; le bras de levier des efforts inté-
rieurs n’est plus proportionnel a la hauteur de la poutre, mais a sa portée.
Il existe une différence notable entre les poutres reposant librement sur
leurs appuis et les poutres continues. Dans les premieres, le bras de levier
est en effet deux fois plus grand que dans les deuxiémes; de méme, pour les
poutres continues, le bras de levier est deux fois plus important, environ,
pour la charge roulante que pour le poids propre.

L’auteur étudie en outre d’une maniere approfondie les nombreux tra-
vaux qui ont été déja exécutés dans ce domaine.
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Summary.

In slender girders the Navier hypothesis of the distribution of bending
stresses in straight lines gives very good agreement with the strict theory,
but the stresses in high, wall-like girders, which very often occur in reinforced
concrete work in silos, differ quite considerably from the straight-line law;
they appear as transitions of the stresses in an infinitely high disk and of
those of the Navier law of bending. With the help of many worked-out
examples the author gives, for all cases of loading that occur, the run of the
bending forces for various ratios of beam height to beam span, and shows
in what way the stresses of the high disk gradually pass over into those of
the slender beam, for which the Navier hypothesis holds.

Particularly simple equations result for the edge stresses, and with
their help the stress curves for any desired height of beam may be easily
drawn without any complicated calculation.

For obtaining the dimensions of such high beams in reinforced concrete
structures, and for determining the tension reinforcement, these stress
diagrams are however in themselves of less importance than the knowledge
of the amount of leverage at which the internal forces act. The great practical
value of this work for the engineer lies in determining these leverages for all
desired cases of loading.

Happily, the rules for dimensioning are so simple, that the proportions
of high girders may now be calculated as easily as in the case of slender
beams. In general the form of the rules for dimensioning is as follows: The
leverage of the internal forces of wall-like girders is equal to two-thirds the
height of the beam, as in the case of slender beams, but it can never be greater
than a figure proportional to the span, the magnitude of this figure depending
on the ratio of the width of the supports to the span.

In high girders the leverage at which the inner forces act is accordingly
no longer proportional to the height of the girder, it becomes proportional
to the span. There is quite a considerable difference between freely supported
and continuous girders. In the former, the leverage at which the internal
forces act is about twice as great as in the case of continuous girders, and
in the same way also the leverages of the internal forces in the continuous
girders are about twice as great under working load as under their own
weight.

In addition, the numerous works which have hitherto appeared on this
subject are thoroughly discussed.
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