Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 14 (1992)

Artikel: Contrôle de l'étanchéité des enceintes nucléaires à double paroi

Autor: Jancovici, Gilbert / Merino, Patrick

DOI: https://doi.org/10.5169/seals-13797

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

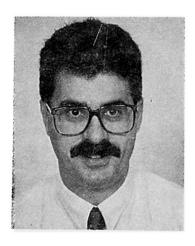
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Contrôle de l'étanchéité des enceintes nucléaires à double paroi

Dichtigkeitskontrolle doppelwandiger KKW-Sicherheitsbehälter


Sealing Checks on Double-Walled Nuclear Vessels

Gilbert JANCOVICI Ing. d'études et d'éssais Electricité de France Lyon, France

Gilbert Jancovici, né en 1954, est issu de la Promotion Supérieure du Travail d'EDF (POT 1980). Après s'être occupé de métrologie gazière, il a participé à l'ordonnancement des grands projets d'équipement nucléaire. Il dirige actuellement la réalisation des mesures d'étanchéité des enceintes nucléaires françaises.

Patrick MERINO Cadre technique Electricité de France Lyon, France

Patrick Merino né en 1954, obtint ses diplômes à Grenoble (DUT Mesures Physiques). Depuis 1980 il développe et met en œuvre les méthodes de mesure du taux de fuite des enceintes de confinnement.

RÉSUMÉ

Parmi les 58 tranches nucléaires qu'Electricité de France exploite et construit, 24 sont équipées d'enceintes à double paroi pour la protection de l'environnement, en cas de situation accidentelle. Les bâtiments réacteurs sont constitués de deux enceintes superposées. Cette disposition permet, en cas d'accident majeur (rupture du circuit primaire se traduisant par une montée en pression de l'espace confiné) de collecter et de filtrer les effluents par l'espace entre-enceinte mis en dépression.

ZUSAMMENFASSUNG

Von 58 Kernkraftwerken, die die "Electricité de France" gebaut hat und betreibt, sind 24 mit einem doppelten Einschluss für den Störfall versehen. Sollte ein Bruch im Primärkreislauf zum Druckanstieg im Ringspalt führen, so gestattet diese Konstruktion den Abzug und die Filterung der kontaminierten Luft durch Unterdruck. Der Beitrag beschreibt verschiedene getestete Methoden zur Messung der nicht gefassten Leckagen, die vor allem aus den Nebengebäuden während des Drucktest entweichen.

SUMMARY

Of 58 nuclear power plants built and operated by the "Electricité de France" 24 have been provided with a double-walled enclosure in the case of a fault. If a break in the primary circuit were to lead to a pressure rise in the ring-shaped gap, then this type of construction allows the contaminated air to be removed and filtered by means of underpressure. The paper describes different tested methods for measuring the leaks that could not be controlled, above all of air escaping from auxiliary buildings during the pressure test.

1. INTRODUCTION

La particularité des enceintes à double paroi réside dans le concept de sûreté lié au collectage des fuites en cas d'accident majeur. L'enceinte interne, en béton précontraint, est destinée à supporter la pression et à assurer l'étanchéité. L'enceinte externe, en béton armé, doit résister aux agressions extérieures telles que chute d'avion ou explosion. En fonctionnement normal, l'espace entre ces enceintes est maintenu en légère dépression (- 15 mbar) et toute fuite à travers la paroi intérieure doit être collectée et filtrée avant rejet. Le taux de fuite global de l'enceinte interne ne doit pas dépasser 1 % par jour de la masse totale de gaz contenu dans cette enceinte, à la pression correspondant à la perte du réfrigérant primaire. La fuite maximum tolérée correspond à environ 150 N m³/h à 5 bar absolus. On sait mesurer cette fuite avec précision (voir l'article de C. DUBS au congrès de l'AFPC à Helsinki en 1988). Pour les enceintes à double paroi, le problème consiste à évaluer de façon suffisament précise, dans ces conditions, la part de la fuite non collectée par l'espace entreenceinte. Cette fuite s'échappe en grande partie dans les bâtiments périphériques, et pour une faible part dans l'environnement, par les traversées mécaniques ou par le radier.

Trois méthodes de mesure ont été expérimentées par EDF.

2. ANALYSE DU PROBLEME

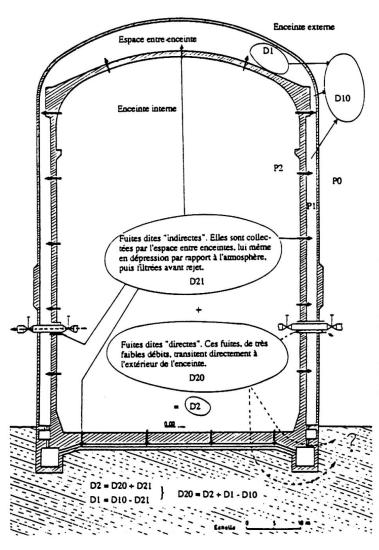


Figure 1: Bilan des fuites

En considérant une mise en pression de l'enceinte interne correspondant à l'accident de perte du réfrigérant primaire, le bilan des fuites sans dépressurisation de l'espace entre-enceinte est représenté figure 1.

On distingue tout d'abord les fuites dites "indirectes" D21 qui sont collectées par l'espace entre-enceinte. On identifie ensuite les fuites dites "directes" D20 qui s'échappent du bâtiment réacteur par les traversées mécaniques ou par le radier. L'ensemble de ces fuites représente la fuite globale D2 de l'enceinte interne. L'espace entre-enceinte laisse échapper vers l'extérieur une fuite D10 à travers l'enceinte externe.

Le bilan global de cette configurationpeut-être représenté sous la forme :

$$\begin{array}{c}
D2 = D20 + D21 \\
D1 = D10 - D21
\end{array}$$
 => D20 = D2 + D1 - D10

(Ce qui sort d'une cavité est négatif, ce qui entre est positif).

D2 est mesuré par la méthode classique de détermination du taux de fuite global des enceintes nucléaires.

Il reste donc à évaluer les débits D1 et D10, sachant qu'il n'est pas possible de mesurer directement la fuite D20.

3. DETERMINATION D'UNE METHODE DE MESURE DES FUITES "DIRECTES"

Les méthodes expérimentées prennent en compte la mise en pression de l'enceinte interne à la pression d'accident, soit environ 5 bar absolus. Cette condition est réalisée aux épreuves périodiques d'essais d'enceintes. Par ailleurs, elles mettent en oeuvre la mesure du taux de fuite global de l'enceinte interne D2, le débit de fuites "directes" étant obtenu par différence.

3.1 Méthode du débitmètre à faible perte de charge

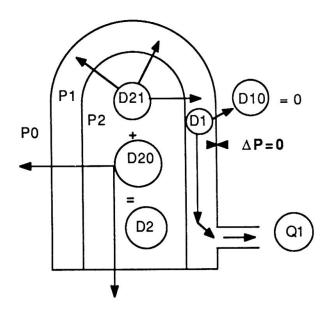


Figure 2: Méthode du débitmètre

Le principe de cette méthode est de collecter l'ensemble de la fuite D1 à travers un débitmètre à faible perte de charge, et de maintenir pendant la mesure, l'équipression entre la pression de l'espace entre-enceinte et la pression atmosphérique. Ceci revient à annuler le débit D10 (cf. figure 2). Le bilan de la méthode peut donc s'écrire :

$$\begin{cases} & \Delta P = P1 - P0 = 0 \Rightarrow D10 = 0 \\ & Q1 = -D1 \end{cases}$$

On en tire: D20= D2 - Q1

Le problème de cette méthode consiste à obtenir un écart de pression voisin de zéro, ce qui nécessite de disposer d'un débitmètre ayant les caractéristiques suivantes : plage de 150 N m³/h à 250 N m³/h avec une précision inférieure à 1 % et une perte de charge inférieure à 0,2 mbar à débit maximum. L'incertitude de ce type de mesure avoisine les ± 10 N m³/h dans les conditions optimales.

3.2 Méthode du traceur hélium

La pressurisation de l'enceinte interne est réalisée avec un mélange air/hélium à 0,1 % d'hélium. On dépressurise l'espace entre-enceinte selon les conditions normales de fonctionnement.

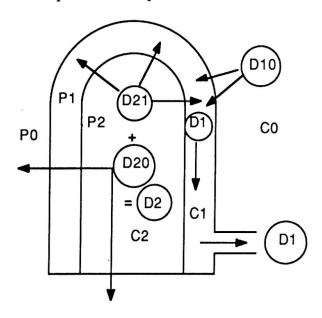
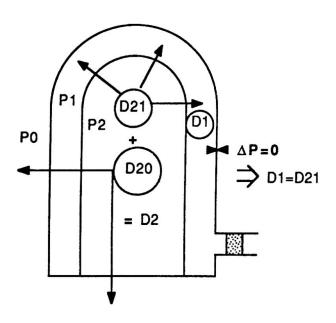


Figure 3: Méthode du traceur hélium

On a donc un apport d'air extérieur D10. Le bilan des échanges gazeux peut s'écrire :

$$\begin{array}{c}
D2 = D21 + D20 \\
D1 = D21 + D10
\end{array}$$
 => D20 = D2 - D1 + D10


En considérant les concentrations en hélium de l'atmosphère C0 et celles de l'espace confiné à l'intérieur de l'enceinte interne C1, on obtient :

$$D20 = D2 + D1 (C1 - C0)$$

 $C0 - C2$

l'avantage de cette méthode est de ne pas nécessiter la prise en compte du débit D10. Par contre, de réelles difficultés sont rencontrées au niveau de la détermination de l'évolution des concentrations en hélium qui se font à l'aide d'un spectomètre de masse. L'incertitude sur ce type de mesure avoisine également les \pm 10 N m³/h avec un temps de réponse incompatible avec les contraintes de l'exploitation.

3.3 Méthode du taux de fuite "dynamique"

L'enceinte interne étant préssurisée à la pression nominale d'essai, on dépressurise l'espace entre-enceinte à environ - 10 mbar, puis on isole l'ensemble. Lorsque l'équipression entre P0 et P1 est réalisée, l'échange gazeux avec l'extérieur ne se fait plus que par les fuites "directes". Si on mesure simultanément les débits de fuites globaux D2 et D1 à l'instant précis ou $\Delta P = 0$, on obtient le débit de fuites "directes" D20 par différence :

D20 = D2 - D1

Cette méthode de mesure a été préférée aux deux autres de part la mise en oeuvre des moyens associés, ainsi que par l'évolution possible du niveau d'incertitude évalué dans un premier temps à ± 10 N m³/h. De plus, la mesure est peu perturbée par les conditions climatiques.

Figure 4 : Méthode du taux de fuite "dynamique"

4. MISE EN OEUVRE DE LA METHODE RETENUE

4.1 Réalisation de la mesure

La méthode validée est donc celle de la mesure du taux de fuite "dynamique". Comme pour les autres méthodes, la mesure du débit de fuite global D2 de l'enceinte interne est réalisée grâce à la méthode absolue. On met en place une installation de mesure qui comporte plus de cinquante capteurs de haute précision (deux manomètres, quarante quatre sondes de température, dix hygromètres). Pour effectuer régulièrement les relevés sur les capteurs et réaliser les calculs nécessaires, on fait appel à un calculateur, une centrale d'acquisition des mesures et un voltmètre numérique de précision. Les capteurs de température et les hygromètres sont répartis à l'intérieur de l'enceinte, tandis que les manomètres et les autres appareils sont regroupés dans un local de mesure spécifique, près de la salle de commandes de la centrale. Les liaisons entre les capteurs placés dans le bâtiment réacteur et les appareils extérieurs sont réalisées grâce à des traversées électriques étanches.

Pour la mesure du débit de fuite global de l'espace entre-enceinte D1, on utilise une instrumentation équivalente. Neanmoins, pour tenir compte des variations éventuellement plus rapides des paramètres, il a été choisi des capteurs de température ayant des temps de réponse plus faibles et un doublement des points de mesure de la pression. La mesure de la pression atmosphérique est réalisée en trois points situés à 120°, à mi-hauteur du fût de l'enceinte externe. Un système de chicanes mis en place sur les prises de pression améliore la représentativité de la mesure.

L'écart de pression entre la pression atmosphérique et la pression de l'espace entre-enceinte est obtenu avec une très bonne précision grâce à une comparaison, juste avant l'essai, des valeurs données par chaque capteur, et une prise en compte de leur écart éventuel. Une vérification de la valeur trouvée est réalisée après l'essai.

4.2 Causes d'erreurs et incertitudes

La cause principale d'erreur réside dans l'évaluation des débits de fuite lorsque $\Delta P = 0$. La mesure sera d'autant plus précise que les débits seront faibles et que P0 sera stable. Par ailleurs, on calcule la pente de la courbe de variation de masse d'air sec ΔM pour des espaces de temps parfaitement M

symétriques autour de $\Delta P=0$. On s'efforce également de multiplier le nombre d'acquisitions autour de $\Delta P=0$ afin d'affiner le résultat. Enfin, on étalonne l'ensemble du système de mesure par une injection d'air "étalon" avant essai. On détermine de cette manière un coefficient de correction à appliquer à la mesure finale. Le calcul de l'incertitude totale tient compte des deux incertitudes sur la mesure des débits de fuites globaux. On y intègre l'erreur sur le coefficient de correction lié à l'injection de gaz "étalon" et l'erreur de détermination du ΔP nul. Cette incertitude ne dépasse pas \pm 10 N m³/h dans le plus mauvais cas, elle peut être améliorée par une meilleure analyse des dépouillements de données et par des étalonnages complémentaires.

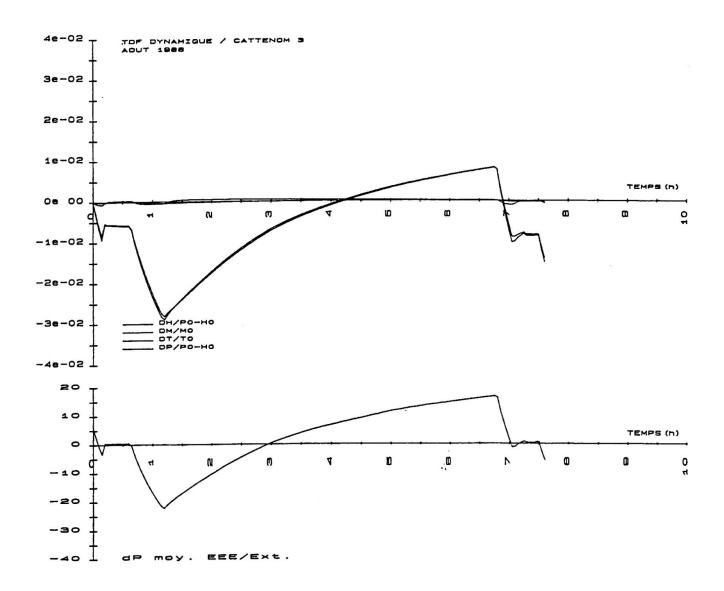


Figure 5 : Evolution de la variation de masse d'air sec dans l'espace entre-enceinte en fonction du temps et de la pression.

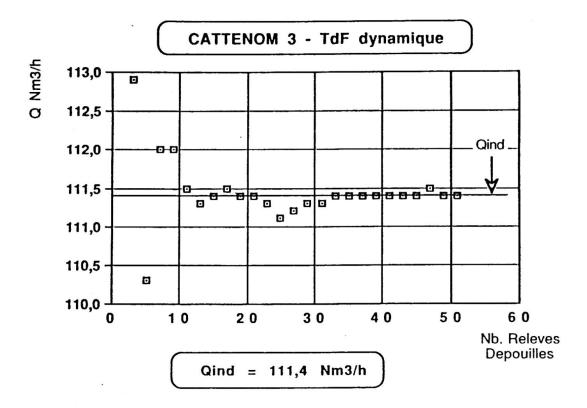


Figure 6 : Incidence du nombre de relevés dépouillés sur la détermination du débit de fuites "indirectes".

5. CONCLUSION

La méthode du taux de fuite "dynamique" retenue pour évaluer le débit des fuites "indirectes" des enceintes nucléaires à double paroi est une méthode fiable et évolutive. Elle met en oeuvre la méthode de mesure du taux de fuite global ou méthode dite "absolue", approuvée depuis près de dix ans pour le contrôle de l'étanchéité de l'ensemble des enceintes du parc nucléaire français. Des études en cours permettront d'apporter un meilleur résultat à la mesure. En effet, une détermination mathématique des équations des courbes d'évolution de la masse d'air sec ainsi que l'action entreprise pour minimiser l'ensemble des causes d'erreur permettront de réduire l'incertitude totale de façon significative. Par ailleurs, on a pu constater, d'après les relevés effectués, que les valeurs des débits de fuites "directes" étaient compatibles avec les débits de fuites globaux des enceintes à simple paroi avec peau d'étanchéité en acier. Les deux concepts d'enceintes donnent par conséquent toute garantie vis-à-vis des problèmes de sécurité nucléaire et de protection de l'environnement.