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Buckling of Extraordinary Deep and Slender Concrete Box Girders
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SUMMARY
It is necessary to consider the stability problem of very long-span deep and slender concrete box girders or
concrete folded plate structures. The computer-based nonlinear finite element numerical technique involving
large deflection theory, nonlinear material characteristics, cracking, concrete rebar interface ete is used for the
calculation of the instability of reinforced concrete plate elements and folded plate model.

RESUME
II faut considerer le probleme de la stabilite des poutres-caissons profondes et minces de tres longue portee ou
des structures en beton faites en plaques plissees. Un programme d' elements finis non lineaires tenant compte
des grandes deformations, des proprietes non lineaires des materiaux, de la fissuration et de l'interface acier-
beton a ete utilise pour le calcul de l'instabilite des plaques et plaques plissees en beton arme.

ZUSAMMENFASSUNG
Es ist notwendig, das Stabilitä'tsproblem sehr langer, hoher und schlanker Stege von Betonhohlkä'sten zu
betrachten. Für ihre Stabilitä'tsberechnung als Stahlbetonscheiben und -faltwerke werden numerische Verfahren
der Finite-Element-Methode eingesetzt, die die Nichtlinearität infolge grosser Deformationen, hoher Matenalaus-
nützung, Rissbildung, Verbundschlupf usw. berücksichtigen.
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1. INTRODUCTION

Reinforced and prestressed concrete panels are commonly used as structural
elements of large box girder bridges, folded plate roofs, etc. Very deep and
slender concrete box girder sections may be considered as thin folded plate
structures and it is conceivable that some form of buckling may take place
under the action of various load combinations, smaller in magnitude than those
methods which do not consider stability. Complex geometric shapes and the
concrete material with stress-strain relationships exhibiting different
behaviors in tension and in compression of the above mentioned structures,
effective and useful prediction of buckling response or post-buckling load
carrying capacity via analytical approaches is generally very difficult. Therefore,

numerical means such as the nonlinear finite element
method is used in this instability study.

Separate modeling is used for the rebar and the concrete. Rebar is treated as
an elastic-plastic metal. The concrete itself is modeled with an elastic-
plastic-failure theory due to Chen and Chen's model [1,2]. This is an
associated flow, isotropic hardening theory based on the yield surfaces written
in terms of the first two stress invariants and parameters which are chosen to
fit uniaxial and biaxial yield and failure data.

2. STRESS-STRAIN RELATIONS OF CONCRETE

A plasticity model originally developed by Chen and Chen [1,2] is utilized to,
represent the stress-strain response of concrete. The model consists of a
compressive yield/flow surface to model the concrete response in predominantly
compressive states of stress, together with damaged elasticity
to represent cracks that will occur at a material calculation point.
The model thus uses the classical concepts of plasticity theory: a strain rate
decomposition into elastic and inelastic strain rates; elasticity; yield; flow
and hardening [1,2,3,8]. Cracking dominates the material behavior when the
state of stress is predominantly tensile. Cracking failure is defined by. the
maximum principal strain reaching a critical value, with cracks normal to that
direction. In cracked zones a strain softening model is assumed for the
direct stress across the cracks, and for the shear stiffness. Subsequent to
cracking failure, elastic-plastic calculations are continued in a reduced
stress space containing those components not associated with the crack normal
direction so long as the cracks are open. The basis of the post cracked
behavior is the brittle fracture concept of Hilleborg [4]. The uniaxial
behavior of concrete is shown in Fig. 1 and failure surfaces are shown in Fig.
2.

3. MODELING OF REINFORCEMENTS

It is intended that reinforced concrete modeling be accomplished by combining
Standard elements, using the piain concrete model with rebar elements, defined
singly or embedded, that use one dimensional strain theory. This modeling
approach allows the concrete behavior to be considered independently of the
rebar. The nonlinear effects of the rebar and concrete interface, such as
dowel action and aggregate interlock were modeled through the uses of "tension
stiffening" and "shear retention strain" [1 thru. 3] which will simulate the
load transfer across cracks through the rebars.
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4. NUMERICAL ANALYSIS

The constitutive relations of reinforced concrete outlined in references [1,
2] have been implemented into a nonlinear finite element program ABAQUS [3]
for application purposes. ABAQUS is a nonlinear incremental finite element
structural analysis program for large strain and large displacement problems.
The program provides a general interface so that the user may introduce own
material constitutive model in a "user subroutine". To illustrate the ap-
plicability of the above constitutive model, the buckling responses of four-
teen reinforced concrete rectangular plates and of a long-span reinforced
concrete folded plate model were examined by the finite element analysis
[5,6,7,8]. The reason for choosing these R.C. rectangular plates and the
folded plate model for the analysis is that the experimental data are available

for comparison [9,10,11]. /

4.1 Rectangular plates
Fourteen rectangular reinforced concrete plates selected [5,6,8] for nonlinear
buckling analysis, have the dimensions as shown in Fig. 3, 4 ft. (1,219 mm) x
8 ft. (2,436 mm). They are reinforced by two layers of welded wire mesh. The

eight node thin shell elements, S8R5 5 D.O.F. per node) with four integration
points on the surface and nine integration points through the thickness

of the element are used in the finite element model. Various plate thickness,
reinforcement ratios, maximum concrete compressive strengths, and the
comparison of experimental buckling and post-buckling results with that of
nonlinear numerical results are summarized in reference [5,6,8]. The maximum
load-deflection plots, buckling-load points, and the post buckling load points
for the plates no. 19 and 23 are shown in Figs. 4 and 5. The plot of non-
dimensional buckling stress versus slenderness ratio and the comparison of
experimental results with that of F.E. results are
shown in Fig. 6 [5,8].
Plate No. 19 [Plate thickness, 0.757 inch; nominal steel area %, 0.50; cyl.
strength, 3,448 psi]
Buckling Load Post-buckling load
Experiment-70.1k (314.05kN) Experiment-84.9k (380.35kN)
F.E.-65.0k (291.2kN) F.E.-80.9k (362.43 kN)

Plate No. 23 [Plate thickness,0.763 inch; nominal steel area %, 1.0; cyl.
strength, 3,396 psi]
Buckling Load Post-buckling load
Experiment-70.0k (313.6kN) Experiment-78.0k (349.44kN)
F.E.-68.2k (305.54kN) F.E.-79.8k (357.5kN)
The numerical buckling and post buckling analysis [5,6,8] of R.C. rectangular

plates agreed very well with that of experimental results [9,10].

4.2 Long-span reinforced and prestressed concrete folded plate model
A uniformly loaded post-tensioned lightweight concrete folded plate unit was
tested by I. Martin [11]. During the experiment, a buckling failure mode was
detected. The overall dimensions of the model is shown in Figs. 7 and 8. To
solve the problem numerically, a finite element model (Fig. 9) is developed
and more than forty-five nonlinear incremental analyses are performed through
the Computer program ABAQUS [3]. There are 84 elements and 293 nodes in the
model. Material properties given [11], and other estimated values [1,2,3] for
the constitutive formulations of concrete and steel are shown in Tables 1 and
2. The results of the analysis are shown in Figs. 10

thru 13.
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5. CONCLUSIONS

(1) Local buckling may take place in very deep.and slender box girder sections
under the action of various load combinations, smaller in magnitude
than those methods which do not consider buckling.
(2) The experimental buckling load for the folded plate model [11] is equal
to 34.0 psf which is in fact the post-buckling load and it fits exceptionally
well between the numerical buckling load of 31.9 psf and the numerical
post-buckling load of 38.8 psf obtained from the F.E. method.

(3) Nonlinear F.E. analysis method involving elasto-plastic associated flow
isotropic hardening constitutive r.elations for concrete and rebar treated as
elastic-plastic metal can successfully predict the buckling load and the
post-buckling strength of R.C. plate elements, folded plate structures and
other R.C. structures.
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