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Modelling the Fire Behaviour of Multistorey Buildings
Modélisation du comportement au feu de batiments a étages multiples

Modellierung des Brandverhaltens von mehrgeschossigen Gebauden

Reijo KOUHIA Juha PAAVOLA Markku TUOMALA
Research Scientist Research Scientist Professor

Finnish Academy Helsinki Univ. of Techn. Tampere Ur_nv. of Techn.
Espoo, Finland Espoo, Finland Tampere, Finland
SUMMARY

A finite element method is developed for steel framed structures subjected to large loads and high tem-
peratures. Material nonlinearities and large deformations are taken into account. An incremental Lagran-
gian description is adopted in formulating the equations of motion of structures. An elastic plastic material
model within a theory of plasticity is formulated based on the recent studies on the properties of steel at
temperatures 20-600°C. An incremental iterative procedure is established to follow the nonlinear re-
sponse of structures. Emphasis is given to detecting the onset of local nonlinearities, their progress and
interaction with global structural response. Beams and frames exposed to fire are analyzed and results
are compared with experimental data.

RESUME

Une méthode des éléments finis a été développée pour I'analyse des portiques en acier, soumis aux
grandes charges et aux hautes températures. Les matériaux déformés du modele ainsi que les grandes
déformations sont pris en compte. Une équation de Lagrange a été adoptée afin d'établir les équations
de mouvements des structures. Les récentes études sur les propriétés des aciers soumis aux températu-
res de 20 a 600°C ont permis de formuler un modele élasto-plastique selon la théorie de la plasticité. Une
méthode itérative a été établie pour suivre la réaction non linéaire des structures. L'accent a été mis sur
la detection des apparitions de déformées locales sur leur interaction avec la réaction structurale globale.
Des poutres et des portiques exposés au feu ont été analysés. Les résultats ont été comparés avec des
données expérimentales.

ZUSAMMENFASSUNG

Ein Finite-Element-Verfahren fur Stahlrahmentragwerke bei grossen Lasten und hohen Temperaturen
wurde entwickelt, bei dem Materialnichtlinearitadten und grosse Deformationen berlicksichtigt werden.
Die Bewegungsgleichungen basieren auf der inkrementellen Lagrangeformulierung. Eiun elastoplasti-
sches Materialgesetz auf der Grundlage einer Plastisitatstheorie, das sich auf neueste Ergebnisse der
Materialforschungen an Stahl bis 600°C stiitzt, wurde erarbeitet. Das Modell zur Berechnung des nichtli-
nearen Strukturverhaltens verwendet ein inkrementelles Iterationsverfahren. Der Beginn lokaler Nichtline-
aritat, inr Fortschreiten und ihr Zusammenwirken mit der Gesamtstruktur wird besonders beachtet. Die
Recheﬂergebnisse brandbeanspruchter Balken und Rahmen werden mit Versuchsergebnissen
verglichen.
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1. INTRODUCTION

The behaviour of structures under large loads and high temperatures is complex due to
material nonlinearities and large deformations. In fire safety analysis of steel structures
analytical calculation methods are applicable only for very simple structures with considerable
approximations in the analysing model. Detailed information about structural behaviour can
be obtained by the finite element method, FEM. Linear elastic analyses by FEM are nowadays
a part of everyday practice in engineering design. In many important applications, however,
they do not provide information enough for completely safe but economical design. Nonlinear
FEM analyses, on the contrary, require much more experience from the user because material
and geometrical nonlinearities are coupled. However, the character of the load-deformation
curve is important in assessing the safety of the structure in the post-buckling range.

In the present study a geometrically nonlinear elasto-plastic finite element analysis of steel
frames in high temperatures is considered. Finite deformations are taken into account by
adopting an incremental Lagrangian formulation of the problem. The temperature depen-
dence of material parameters is modelled in accordance with Refs. [ 1,2 |. The resulting
nonlinear equilibrium equations are solved by an incremental iterative procedure based on
Newton’s method. In constant temperature analyses an arc-length method is used. In tran-
sient problems creep type displacement-temperature curves are integrated by an adaptive
step-size selection method. The FEM program developed is applicable for three-dimensional
beams and frames.

The numerical examples calculated consist of steel beams and frames for which experimental
data exist. Solutions obtained by different material models are compared with the test results
of Refs. [ 2,4 |. In addition, an ECCS calibrating multistorey frame | 3 | exposed to a local
fire is studied.

2. FINITE ELEMENT FORMULATION

In the finite element method the displace-

ment vector u of a material point X is in-

terpolated within an element by shape func-
D tions N and nodal point displacements q

NX\'\'ZL u(X) = N(X)q (1)

0; §

'\_N;B ALY Ir}serting (1) ir}to an equatior{ of incrfal.nefltal
virtual work gives the following equilibrium

GAUSS POINT equation [ 5 |
”X.u 1 2 .
(K1 +Ky)gq=*Q-'F (2)
Fig. 1 Geometry of plane frame element where K = K + K, is the tangent stiffness

matrix, K, the geometrical stiffness matrix,
Q the external force vector and F the vector of internal forces. The left superscript 1 refers
to the reference configuration at q(t;) and the index 2 to the configuration at q(t; + At),
where t is a load parameter. In the incremental Lagrangian formulation the matrix K, is
also dependent on incremental deformations between configurations 1 and 2.



N R. KOUHIA — J. PAAVOLA — M. TUOMALA 625

An isoparametric curved beam element is shown in Fig. 1. The position vector of an arbitrary
point P in the reference configuration is

R = R° + D, + ¢D, (3)

where D are director vectors and n,¢ coordinates in the cross section. R° and Dy are
interpolated by polynomials N;

R°=3%"" Ni(s)R?, Di =37 Ni(s)Dg, (4)

where n is the number of nodes in one element. In the deformed configuration the position
vector of material point P is

r=r°+nd; +¢d; (5)

where r° and di are interpolated by polynomials Ny, correspondingly. The director vector
d in the deformed configuration 2 is obtained from D in configuration 1 by the formula
d = QD, in which Q is a rotation matrix. The displacement vector is then

u=r—-R or u=u°+n(d1—D1)+§(d2—D2) (6)

where u° is the displacement vector of the reference line. The finite element presentation of
Eq. (6)
u= > Ni(u?+n(d; —Dy); +¢(d2 — Dz);) (7)

is inserted into an incremental form of the Green-Lagrangian strain tensor
Eij = 4(uij + wj,i + ukiuk,j) (8)

containing normal strain and shear strains. The stiffness matrices K; and K, and the vector
of internal forces F for an element are evaluated by numerical integration. In the applications
a two-noded element with a one point Gaussian rule [ 5 | is used.

3. CONSTITUTIVE MODEL
The strain rate D is decomposed into elastic, plastic, creep and thermal parts
D=D.+D,+D.+Dr (9)
The elastic part D, is obtained from Hooke’s law
o= Ce, (10)

where ¢ is the Cauchy stress tensor, C an elastic constitutive tensor and ¢, the elastic strain
tensor. A rate form of Eq. (10) is

acC ..

o=CD, + a7 1€ (11)

where ¢ is the Jaumann rate of ¢. The Jo-flow theory is used to evaluate the plastic strain

rate
_;9f
D, =g (12)
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where f = /3J2 and J; is the second invariant of the deviatoric stress. The thermal strain
rate is
Dr =aTl (13)

where a is the coefficient of thermal expansion. In short duration loadings D. is assumed to
vanish. The yield condition is expressed by the formula

F:f—o'y=0 (14)

where the yield stress o, is dependent on a hardening parameter x and temperature T.
According to the consistency condition during plastic flow

8F , @F , OF
dF = S=do+ Z—dr + ZdT = 0 \\ (15)

By inserting the flow rule Eq. (12) into the equation \

oC

bl |
aT Tfe | (16)

0=C(D-D,—-Dr)+

and by using the consistency condition Eq. (15) X is obtained [6]. Eq. (16) gives then

5= (C~ £bbT)(D - Dr) + ;b(S27 - T‘Z—g e,) + g—(;j‘c, (17)
i - wherea = 8f/80,b = Ca, h = aTb+E,
~c} Se and superscript T means transpose. The
g, :’30 plastic hardening modulus E is obtained
35 i As from the tangent modulus E; and the
‘é; i §' p modulus of elasticity £ by the formulas
[ Eu
wot e _ EE, _ doy
° . o . 5= E—-E’ be= dép E)
0 500 1000 [} 500 1000
Tin°C TineC
The yield stress oy is obtained from a ten-
Fig. 2 Modulus of elasticity E and yield sion test as a function of the logarithmic
stress oy vs. temperature inelastic strain

= / /3D, Dt (19)

where ¢ is a load parameter. Using the relationship between the strain rate D and the rate of
Green-Lagrange strain E an appropriate constitutive equation for the incremental Lagrangian
formulation is obtained in the form

S =CLE (20)

where S is the 2nd Piola Kirchhoff stress. The temperature dependency of E, o, and a is in
accordance with Ref. [ 1 | or alternatively with Ref. | 2 |, depicted in Fig. 2. The material
model is evaluated at discrete integration points on the cross section. The transverse shear
stresses are taken into account.
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APPLICATIONS

Applications are chosen mainly to enable comparisons with experimental data. The FEM
program developed is applicable for three-dimensional beams and frames, but, due to the lack
of test results on three-dimensional cases, plane structures are analyzed. An IPE 80 beam
with a point load at midspan is considered first, merely to verify the material model. The
problem definition and the results corresponding to the experimental measurements in | 2 ]
are given in Fig. 3. In most cases the ECCS material parameters [ 1 |, which are mainly not
defined in temperatures over 600°C, result in conservative estimates for displacements, also
under this temperature. The results corresponding to the material parameters of Ref. [ 2 |
agree reasonably well with experimental data.
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As a second example a two-bay test frame of Ref. [ 4 | is analyzed. The problem definition
and the calculated horizontal deflections vs. temperature by using the material parameters
of ECCS [ 1] or Rubert and Schaumann | 2 | are given in Fig. 4.

Fig. 5 shows the calculated horizontal deflections in the first floor of a multistorey frame
(ECCS calibrating frame I in Ref. [ 3 |) and the deformed configurations when exposed to a
local fire. The results correspond to ECCS material parameters. Results of a modified frame
in which the lower end of the central column is hinged are shown by dashed lines.
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Fig. 5 Horizontal deflections of points 1 and 2 and deformed shapes magnified by a factor of 30
at temperatures 320,460,470 and 480°C
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Mathematical Model of Structural Steel Members
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SUMMARY

To calculate the restoring force characteristics of steel members under strong loads, a mathematical
structural model is proposed in which the idea of "’the equivalent two-flange section’ is introduced to
make it simple. Although the model has only three degrees-of-freedom of end-deformation, the inelastic
and hysteretic behavior of steel member can be analyzed by expressing the accumulated plastic defor-
mation in the closed-form function of the end-deformations. From numerical analysis it is pointed out that
the presented model is useful and suitable to carry out the analysis of the detailed behavior of steel
buildings and it does not require a large amount of calculation to execute it.

RESUME

Un modéle structural mathématique est proposé pour calculer les caractéristiques de récupération d'élé-
ments structuraux en acier sous des charges considérables. Le concept de ''section a deux semelles
equivalentes’ est introduit pour la simplification du modeéle. Dans ce modéle, il n'y a que trois degrés de
liberté de déformations des extrémités, mais les deux comportements d'inélasticité et d’hystérisis des
barres en acier peuvent étre analysés en exprimant le déformation plastique accumulée dans une fonction
de forme fermeée des déformations des extrémités. Utilisant une analyse numérique, on a trouvé ce
modele simple, utile et approprié pour I'exécution d'analyses du comportement détaillé de constructions
métalliques.

ZUSAMMENFASSUNG

Um die Ruckstelleigenschaften von Stahlteilen unter starken Belastungen zu berechnen, wird hier ein
mathematisches Strukturmodell vorgestellt, in dem zur Vereinfachung des Modells das Konzept des
""gleichwertigen zweiflanschigen Schnitts”” eingefihrt wird. Das Modell hat nur drei Freiheitsgrade von
End-Deformation, aber das inelastische und hysteretische Verhalten von Stahlteilen kann durch die Ana-
lyse der angesammelten plastischen Deformationen als eine geschlossene Funktion der End-Deforma-
tionen analysiert werden. Verwendet wird eine numerische Analyse, um zu zeigen, dass dieses Modell
nutzlich und chne komplizierte Rechnungen anwendbar ist.
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1. INTRODUCTION

The collapse of building frames composed of many members is generally caused
by local failure or the failure of a few members among many elements of the
frame under intense loads such as seismic load or strong wind force. From this
reason the behavior of all members must be analyzed accurately in the structural
analysis of building frames composed of many members. To calculate the detailed
behavior of steel members under strong loads, the following conditions, which
change every moment according to the hysteretic behavior, must be satisfied
strictly in the analysis.

- The incremental stress-strain relation.

- The accumulated plastic deformation.

- The plastic zone over the cross section and along the axis of steel member.
To execute the above-mentioned analysis, FEM (Finite Element Method) is the
best and most widely used analysis method. However, FEM requires a large amount
of calculation. Numerical errors in the analysis are accumulated as the amount
of calculation increases. For this reason we must try in the numerical analysis

to decrease the calculation as much as possible.

The plastic hinge method has been proposed as a simple analysis method of
steel members to decrease the amount of calculation.[1]-[5] With this method,
it is difficult to calculate the effect of the plastic zone, which changes every
moment over the cross section and along the axis of each member.

Another possibility has been presented to decrease the amount of calculation
of FEM by introducing a transfer matrix to combine a few elements.[6] In this
way, the size of the matrix to be solved in the analysis becomes smaller than
that of the original FEM. But this method also requires a large amount of
calculation because the number of freedom in the analysis is basically the same
as the original FEM.

In this paper a mathematical structural model is presented which is simple but
useful in analyzing the behavior of steel members relatively accurately and can
be easily applied to the structural analysis of tall buildings.[7]

2. MATHEMATICAL MODEL

2.1 Assumptions

1) The structural model of a steel
member is considered with respect to the
cantilever member which is subjected to
horizontal load (Fx), vertical load (Fz)
and bending moment (Fr) at the free end
as shown in Fig.l.

2) The section of the steel member is
replaced by a two-flange section. The
area and the moment inertia of the
replaced section are equal to those of
the original section in the elastic range.

When plastic strain is generated the

section is replaced by "the equivalent Fig.1
two-flange section" explained in the next Structural Model
paragraph. Fig.2

3) The normal stress of the concentrated

. . Incremental Strain
sections distributes linearly along the axis of the member.

Distri 5
4) The compatibility condition is given by Eq.(1). istributions
E=W'+(U")¥**2/2-U""'X (1)
in which E : the normal strain at Z-section, ' : the differentiation with

respect to Z, U,W : the displacements at Z-section. The notations in this
equation are explained in Fig.l. The rate of this equation gives the
incremental strain (E) expressed by Eq.(2).

E=W'+U'U'-U"'X (2)
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in which the dots mean the increment. .
5) The incremental plastic strains (Epa,Epb) are expressed by Eq.(3).
Epa Ra(1l- Z/Za)Ee at X=d ,Z=(0,Za)
pr Rb(1- 2/Zb)Ee at X=-d,Z2=(0,Zb) (3)
in which Ra,Rb : the ratio of the incremental plastic strain to the incremental
elastic strain, Za,Zb : the length of the plastic zone along the axis, Ee : the
incremental elastic strain, d : the half distance between the concentrated
sections. The distribution of the incremental strains and the notations are
explained in Fig.2. The values of Ra,Rb are decided according to the hysteretic
stress-strain relation at the fixed end. The stress-strain relation is
expressed by the tri-linear model shown in Fig.3.
6) The shear deformation is neglected.

SISy

2.2 The equivalent two-flange section

Fig.4 shows the moment-axial force
(M-N) interaction of the section of a
steel member which is defined by the
ultimate stress (Mu,Nu). The relation
is generally expressed by the curved
line as shown by the real line in the
figure. However, the M-N relation of
the two-flange section explained in the
assumption 2) is given by the straight
line as shown by the dashed line in Fig.4.
In this case the error is too large tc analyze bracing members which are
subjected to high tensile axial load. To exclude this error, in this study the
concentrated areas (Aa,Ab) of the replaced equivalent two-flange section are
given under the condition to minimize the sum of the difference between the two
curves over the yield axial force (Ny) which is shown by the shaded area in
Fig.4. Although the values of Aa,Ab should be changed according to the
sectional shape of member, to simplify the calculation, Aa,Ab are given by the
representative values shown in Eq.(4).

Aa=0.8%A, Ab=0.2%A (4)

where Aa : the sectional area of the higher stress flange, Ab : the sectional
area of the other flange, A : the sectional area of the original section.

Fig.3 Stress-Strain Fig.4
Relation M-N Interaction

2.3 The incremental elastic strain

The incremental strain (E) of the model presented in this study is divided
into the three components which are the incremental elastic strain (Ee) and the
incremental plastic strains (Epa pr) The elastic strain component among them
will be expressed by the end-deformations.

According to the assumption 4), the incremental elastic strain component can
be exgressed by Eq (5).

Ee=We'+U'Ue'-Ue' 'X (5)
The suffix e means the elastic component. As the loads (Fx,Fz,Fr) work only at
the free end of the model, the incremental elastic strain at the center of
section (Eoe) is constant along the axis and it is given by Eq.(6).

Eoe=We'+U'Ue' . (6)
The incremental curvature (Ue'') which is generated by the incremental elastic
strain is the linear function of Z due to the assumption 3). From this
condition and the boundary condition at the fixed end, the incremental
deflection (Ue) caused only from elastic strain can be expressed by the
incremental end-deformations (Dxe, Dre) The incremental end-displacement (Dze)
in Z-direction due to the elastic strain is derived from Eq.(6) and it is
expressed by Eq. (7)

Dze= I(Eoe-U Ue')dZ (7)
Substituting We' Ue and Ue'' expressed by the incremental end-deformations into
Eq.(5), we obtaln the following equation.

Ee=[e][De] (8)




632 MATHEMATICAL MODEL OF STRUCTURAL STEEL MEMBERS “\

where [De]=[Dxe/L Dze/L Dre]', [ ]' means the transposed matrix.

2.4 The incremental plastic end-deformations

The incremental plastic strain is divided into the two components (Epa pr)
whose distributions are shown in Fig.2. Using the assumption 4), the components
can be expressed by Egs.(9).

Epa Eopa-Upa''X at X=d ,Z=(0,Za)

pr Eopb Upb"X at X=-d,Z=(0,2Zb) (9)
Eopa Eopb are the incremental plastic strain at the center of the section (X=0).
Upa Upb are the incremental plastic deflection caused from Epa pr respectively.
Epa, pr are defined so as to satisfy Eqs.(10) respectively.

Eopa=Epa/2,  Eopb=Epb/2 (10)
Substituting Eqs.(8),(9) and (10) into Eq.(3), the following relations are
derived.

Ra(l—Z/Za)[e][ﬁe]=—2d*0pa", Rb(1-2/Zb)[e][De]=2d*Upb"" (11)
The functions Upa,Upb in Eq.(11) are obtained by the use of the boundary
conditions at the fixed end. . ..

The incremental plastic end-deformations (Dxp,Dzp,Drp) caused from the
incremental plastic strain components (Epa,Epb) are given by Egs.(12) and (13).
Dxp=Upa+Upb,  Drp=Upa'+Upb' at Z=L (12)

and

Dzp= f (Eopa+Eopb-U'(Upa'+Upb'))dZ (13)
In the equations Dxp,Dzp are the incremental plastic end-displacements in X-
direction and in Z-direction respectively. Drp is the incremental plastic end-
rotation. Eopa, Eopb in Eq.(13) can be expressed by Upa,Upb from Egs.(9) and
(10). _Substituting Upa Upb into Eqs.(12) and (13), we get Eq.(14).

S] =[T][De] (14)

where [Dp]=[Dxp/L Dzp/L Drp]'.

The integrations in the matrix [T] are easily executed and they are expressed
in the closed form function of the end-deformations [De], [Dp] because the
deformation included in the integration can be expressed by Eq.(15)

U'=g (Ue' +Upa’ +Upb ) (15)
'where I means the summation of the increments.

2.5 The rate equation

The relation between the end-loads and the end-deformations of a steel member
will be derived in this paragraph.

The incremental virtual work equation of the model, shown in Fig.l and
explalned in the assumption 1), is given by Eq.(16).

[F]'[D)= JJs.E.dZdA/(PyL) (16)
in which, [F]=[Fx/Py Fz/Py Fr/(Py.L)]', [D]=[Dx/L Dz/L Dr]', Py : the yield
axial force, S : the normal stress and JdZ,JdA : the integration along Z-axis
and over the sectional area respectively. The notations in Eq.(16) are
explained in Fig.l.

The incremental strain E in Eq.(16) is the sum of the elastic component and
the plastic components and it is shown by Eq.(17).

E=Ee+Epa+Epb (17)

The incremental strains in the right side of Eq.(17) can be expressed by the
function of [De] by substituting Eqs.(3) and (8) into Eq.(17) and we find

E=(1+Ra(1- Z/Za))[e][De] at X=d ,Z=(0,Za)

E-(1+Rb(1 Z/Zb))[e][De] at X=-d,Z2=(0,Zb) _ (18)
Since [D] [De]+[Dp] [De] can be expressed by [D].
[De]=inv[To][D] (19)

in which [To]=[T]4+[1] and "inv" means the inverse matrix.
The equilibrium equation is derived by substituting Eqs.(18) and (19) into
Eq.(16).
[Fl=inv[To]"' J(J S(1+Ra(1-Z/Za))[e] 'dA+J S(1+Rb(1-Z/Zb))[e]'dA)dZ/PyL (20)
The rate equatlon of Eq.(20) becomes
[To)' [F]=[k][De] (21)
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Substituting Eq.(19) in Eq. (21) we finally obtain the relation between [F] and

(. .

[F]=(K][D] (22)
in which [K]=inv[To]'[k]inv[To]. [K] is the tangent stiffness matrix of the
structural model. It is defined by the tangent modulus of the stress-strain
relation and the residual deformations. In the presented stiffness matrix in
Eq.(22) the influence of the residual deformations is expressed in the closed
form function in which only the sum of the incremental end-deformations
[De],[Dp] and the plastic zone length (Za,Zb) are included. This expression of
the residual plastic deformation in the stiffness matrix makes the presented
method very simple.

2.6 The plastic zone length

Since the loads of the model works only at the free end, it is reasonable to
assume that the incremental normal stress distributes linearly along the axis of
the member. But the elastic limit stress may not distribute linearly along the
axis according to the hysteretic plastic deformation. To simplify the
calculation of Za,Zb, the critical stress of elastic range is also assumed to
distribute linearly. Under this condition the plastic zone length is easily
obtained as the intersection point of the two linear functions of Z.

2.7 Application to steel member and steel frame

If every steel member of building frames is divided into the two parts along
the axis, each part can be considered as the cantilever member whose loading
condition is the same as shown in Fig.l and the load-deformation relation is
given by Eq.(22). From this reason the relationships between the end-loads and
the end-deformations of every steel member can be derived by coupling the two
presented equations, shown by Eq.(22), under the continuation cenditions at the
center along the axis of the member. The derived load-deformation relation is

easily applied to the analysis of steel frames. G = 6t
l‘-——b'ﬂ—*—h
3. NUMERICAL ANALYSIS .
-
To show the usefulness of the presented analysis method, :
the numerical analysis of plane steel frames under seismic .
load has been carried out. The analyzed steel frames, .
named Frame-1 and Frame-2, are 10-story 3-bay braced frames .
shown in Fig.5. Frame-1 is designed based on the Japanese .
Aseismic Design Code and the horizontal strength and the .
stiffness of every story are perfectly agree with the coL-1 .
required criteria of the code. To simulate the collapse B E;

behavior, Frame-2 is designed under the half of the seismic
load of Frame-1. The ground motion is the N-S component of . BR-1  COL-2
the well-known E1 Centro 1940 record amplified by three Fig.5
times. The calculation of the seismic response has been Calculated Frame
carried out by the use of the linear-acceleration 1
method under the condition that the errors of the .
energy balance equation [6] does not exceed 0.5 —
percent of the input energy. |
Numerical results are shown in Figs.6-9. From ' ‘ '
these figures we can say the inelastic hysteretic 7
behavior and the collapse behavior of the frames ‘ q
are analyzed fairly well. It is also shown that =
the restoring force characteristics of the /1 '
columns, which effect strongly on the response ¥
of the frames, are remarkably complicated and
different mutually and the deformation of the EhaE~] 1 PRAME=2
frames tends to be concentrated only in one story. Fig.6 Deflected Shape
These results emphasize that in the analysis of (in Real Proportional Scale)
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steel frames the detailed behavior of all members should be analyzed.

4. CONCLUSIONS

i) The proposed analysis method is
simple and does not require so much
calculation but it can simulate the
hysteretic inelastic behavior of
steel members under intense loads
relatively accurately. Since the
presented method is applicable to
columns, beams and braces in the
same manner, it is useful and
suitable for the detailed structural
analysis of building frames without
a large amount of calculation.

ii) The collapse of building
frames is caused from the failure of
a few members whose restoring force

characteristics are very complicated.

Accordingly it is necessary for the
reliable structural analysis of tall
buildings, which are composed of
many members, to analyze the
detailed behavior of all members
accurately.
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SUMMARY

The present work describes a wide investigation on joint behaviour. Semi-analytical formulae are estab-
lished for initial stiffness, strength under single and combined loading, and the secant stiffness at any
load up to collapse. This information is sufficient to plot the complete non-linear behaviour until collapse
and to determine the stiffness at working loads. All this work has been checked against experimental
data from a large data bank. The work on simple multibraced joints is incomplete because of the absence
of experimental data for these joints.

RESUME

Cette étude présente une vaste recherche sur le comportement d’assemblages. Des formules semi-ana-
lytiques donnant la rigidité initiale, la résistance pour des charges simples et combineés ainsi que la
rigidité sécante, ont été établiés pour des charges allant jusqu’a la limite de rupture. Cette information
suffit pour décrire complétement le comportement non linéaire jusqu’a la rupture ainsi qu'a déterminer la
rigidité aux charges d’exploitation. Tous les résultats de cette recherche ont été vérifies en les comparant
a des données expérimentales. L'étude faite sur les assemblages simples a branches multiples estincom-
pléte puisqu’il manque des données expérimentales.

ZUSAMMENFASSUNG

Die vorliegende Forschungsarbeit beschreibt eine breite Untersuchung des Verhaltens von T und DT Kno-
tenpunktsverbindungen. Halb-analytische Formeln werden gegeben fur Anfangssteifigkeit, Festigkeit un-
ter einfacher und mehrfacher Belastung und fir die Sekantensteifigkeit bei jeder Belastung bis zum Errei-
chen der Traglast. Diese Daten sind ausreichend, um das ganze nicht-lineare Verhalten bis zum Errei-
chen der Traglast darzustellen und um die Steifigkeit bei der vorhandenen Belastung zu bestimmen. Die
gesamte Forschungsarbeit wurde verglichen mit experimentellen Daten aus einer grossen Datenbank.
Die Arbeit an mehrfachen Knotenpunktsverbindungen ist nicht komplett weil experimentelle Daten fehlen.
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1. INTRODUCTION

Tubular lattice girders and frames are popular in various building and offshore structures,
so that tubular joints of various kinds are very common. The structural behaviour of such
joints is complex, with each type of joint, its parametric variation of geometry and type of
loading having considerable influence on the strength and stiffness characteristics.

This paper is restricted to T and DT (Double Tee) joints with loaded braces under single
and combined (proportional) loading and as a special case, multibraced joints with loaded
and unloaded braces (Fig. 1). Simple formulae have been established for the joint stiffness,
strength and non-linear behaviour of these joints. Semi-analytical models are used as a basis,
and a large experimental data bank used to assess the values from existing and proposed
formulae.

T- jointvl'-j'—d- BD Moes
N
3k 6:&

1T-D/zf lunloc:ded /! _——

DT-joint rj ‘l ‘.|| l‘.‘
e NG
N

Fig. 1 Joint types investigated

2. ANALYTICAL MODELS FOR INITIAL JOINT STIFFNESS

2.1 T and DT joints

Empirical formulae are available for the initial joint stiffness (or flexibility) of T and Y
joints only,[ 3,4,5 |, which gives stiffness values higher than those observed experimentally.
Experimental studies using epoxy resin (Araldite) models, gives consistently higher stiffness
values than those with steel models for all cases (see Figs. 2,3,4). This may be due to different
material properties and effect of weld intersection.

The real complex behaviour of T and DT joints under axial and OPB moment loading of
the brace can be approximated by using a simplified model where the three dimensional
behaviour of the joint is represented by assuming a two dimensional ring (Fig. 2). The
following derivation is made for the initial axial stiffness K, :

(B./D)

Ko=Plb= 205

~Z¢/Z ED = k,ED (1)

where f,(8) is a complicated function of # and a = arestnfB. This function f,(3) can be
closely approximated by the function (1 — 8)* where the exponent ”s” has an average value
of 1.13. By assuming a power law dependence upon ~ for B./D and then fitting all the
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available experimental data to equation (1), a formula (2) presented in Fig.2 can be found
for K, of T joints. Similarly, this procedure gives formula (3) shown in Fig. 3 for the initial
OPB stiffness of T joints.

Fig. 2 gives a plot of all the initial axial stiffness data of T joints versus 8. Formula (2) is
expressed with lines of constant < values of 8,15 and 24, showing reasonable agreement with
the data points. Test values on plastic (epoxy) tubes | 4 | are also shown in Fig. 2.

Fig. 3 gives a plot of all the initial OPB stiffness data of T joints and a formula (3) based on
a similar procedure, along with the data points from tests on plastic tubes.

4 P o
10' TRITIAL AXIAL T/AX {f 16 (A o8 /0P8
STIFFN " d STIFFN T /\M
ko=Ko/ED ) b co= CIVED 1 d ors
af—m—u ( A& #=t0-02 [Fcsserata o0 T
P I RING MODEL e -us 1
0 2L A o wz d1.
16° d i i 5 i P4 B < 1A
=i=llo» 2
N ‘3’ 7 3 B Pad 7
= P d )
o5 |e34ds K, =kED=P/§ Calftec S a's-d
rd L /d vd
° 5
10 §/ Y 16 '/, ,}"/JL
v - €q.2): P — Eq.(3):
P>y r ’I
~ 010 oy _ 0.00.e™P
—wpge % —entf
L]
10 p=d/o 10 A=4D
02 03 0% 05 06 Q7 08 09 10 Q2 Q3 Q% 05 06 07 08 09 10

Fig. 2 Initial axial stiffness of T joints vs. #  Fig. 3 Initial OPB stiffness of T joints vs. 8

The analogy of a beam on elastic foundations (BEF) is applied for the initial IPB stiffness
of T joints by assuming the section of the chord between brace saddle points as a beam over
the entire chord length, supported by the remaining

v 's"r?#ué';% - A M sector as a BEF along at the two longitudinal edges
f_;i:.aom T of the beam. On the basis of the expressions de-
—o v l- i rived for the foundation stiffness (k) and bending

= 22% P stiffness (:1f t.htla be:ﬂ; (E}{b),ua: formﬁula (4)fs;10wn in
= ria e, T Fig. 4 is developed for the IPB stiffness of T joints.

© 2 Fig. 4 shows all the relevant experimental data for
€% = € ED= Mey/¥ the IPB stiffness of T joints (with formula (4)) plot-

3 dn{ o gi — ted as lines of constant v (10,15,25). Data points
= 17 g are also shown from the tests on plastic tubes [ 4 |.
A —-ceGogmps-  Similar comparisons as above with the available ex-

2 perimental data and formulae based on the ring

i p=a/0 model and the analogy of a beam on elastic founda-

05 a3 W
02 I Oe 05 A A7 tions are also developed for approximating the initial

Fig.4 Initial IPB stiffness vs. g axial, OPB and IPB stiffness of DT joints [ 1 ].

2.2 Simple multibraced joints with unloaded braces

Formulae for the initial axial and OPB stiffness of simple multi-braced DT and T joints with
unloaded braces in a perpendicular plane to loaded braces can be derived by applying the ring
model where a rigid cap between the brace saddle points is assumed. Because of the enormous
complexity of the cases with only one unloaded brace in the joint, only symmetrical cases of
DT and T joints with two unloaded braces have been considered at present. Joint stiffness
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Fig. 5 Results of 2D interaction tests (AX-IPB,AX-OPB,IPB-OPB) for § = 0.36,0.68, 1.0

equations derived on the basis of the above model cannot be further developed and calibrated
because of the lack of experimental data. Experimental testing of these joints planned to be
carried out in the near future will provide some reliable data points for finalizing the model.

3. JOINT STRENGTH MODELS UNDER SINGLE BRACE LOADS

A number of basic failure modes or their combinations are identified for DT and T joints
under single brace loads [ 2 | depending upon the joint parameters and loading conditions.
Semi-analytical models such as ring models with plastic hinges [ 2,9 | and the punching shear
model [ 2 | have been used. The present work extends this theory for axial load and OPB
moment. For IPB moment a BEF analogy has also been used. Because of the complexity
of the derived formula and the scatter (or lack) of experimental data, the calibration of the
formulae have not yet been performed. This work has taken lower precedence because of
recent international agreement | 7 | on comprehensive, simple design rules. However, an
insight into the failure modes has been obtained.

The ultimate strength of simple multi-braced joints with unloaded braces is also studied on

the same lines as above. In this case, however, no experimental data is available yet for
calibrating the models.

4. JOINT STRENGTH UNDER COMBINED BRACE LOADS

In service the joints, especially in three dimensional tubular structures, are subjected to the
combined action of axial and bending moment (IPB and OPB) loads in the brace. Only T
and DT joints are considered. Ultimate brace loads due to interaction effects are further com-
plicated due to the dependence upon the load vector and whether the loading is incremented
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proportionally or non-proportionally. Therefore, only empirical approaches have been used.

Such a formula is [ 8 |:
Py M./ pB M. /opp

The above formula does not fit the experimental results [ 10 |. A semi-analytical interaction
equation is suggested for T and DT joints, based upon a modification to the theoretical plastic
strength of tubular section:

£ + Z¢1,1'¢:.<3irl,\/(£)2 + (ﬂ) =1 (6)
P, M./ pp M. )opp

The API rules [ 6 | use the unmodified formula. Both the API rules [ 6 ] and equation (6)
take the IPB-OPB coupling effect into account, which equation (5) does not.

An inspection of the 2 D interaction plots of all the available experimental data in Fig. 5
shows that the collapse mecanisms are different, with the API rules [ 6 | unable to give safe
lower bounds to the interaction data. A check is also carried out against 3 D interaction
(P—Mips — Mopg) by substituting test results [ 10 | into equation (6). The results confirm
that the generated yield surface is a reasonable lower bound also for 3D behaviour. This is
also valid for 3D interaction tests on DT joints [ 11 |.
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Fig. 6 Normalized axial, IPB and OPB secant stiffnesses of T joints for § = 0.36 and 0.68

5. NON-LINEAR JOINT BEHAVIOUR UNDER SINGLE BRACE LOADING

Normalized secant stiffness values at various normalized load levels (as a percentage of ulti-
mate load) have been recorded from the experimentally obtained non-linear load-deflection
plots in the data bank, as shown for T joints in Fig. 6. DT joints have also been treated
similarly [ 1 ]. Lower bound equations such as shown in Fig. 6 have been deduced, based
upon the lowest experimentally obtained secant stiffnesses. Once the initial stiffness (K,,C,)
and the ultimate load (P, M,) are known or calculated from formulae, the secant stiffness at
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various load levels can be determined from these equations to retrace the complete non-linear
behaviour. If necessary, the tangent stiffness can also be determined from the equation or
the non-linear plot using two close load levels. In this way, correct joint stiffnesses may be
derived for any design criteria under working load levels.

6. CONCLUSIONS

Initial stiffness and strength formulae have been established or confirmed for T and DT joints
under single brace loading. This will be done for simple multibraced joints when planned
experimental work is completed. A lower bound interaction formula is also established for
joint strength under combined loading for T and DT joints, which satisfies all experimental
data. Finally, lower bound stiffness formulae for tracing the non-linear behaviour of T and
DT joints up to ultimate load have been established. This can be useful in calculating the
tangent or secant stiffness at any (working) load level in accordance with design criteria.
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SUMMARY

The paper is concerned with the effect of stiffener eccentricity on the critical stress and on the elastic
postcritical behaviour of orthotropic plates in compression. The non-linear theory takes account of initial
geometrical imperfections and of large displacements. The problem has been studied on four large scale
steel models. The first results have shown that effect of stiffener eccentricity is practically negligible.

RESUME

L'article traite I'influence de I'excentricité des raidisseurs sur la contrainte critique et sur le mouvement
élastique postcritique des plagues orthotropes comprimées. La théorie non-linéaire prend en considéra-
tion les fléches initiales et les grandes déformations. On étudie ce probléme sur quatre modeéles d’acier.
Les premiers résultats montrent que I'influence de I'excentricité des raidisseurs est pratiquement négli-
geable.

ZUSAMMENFASSUNG

Der Aufsatz beschaftigt sich mit dem Effekt der Steifenexzentrizitat auf die kritische Spannung und auf
das elastische Uberkritische Verhalten der druckbeanspruchten orthotropen Platten. Die nichtlineare
Theorie bertcksichtigt anfangliche Verformung und gréBere Durchbiegungen. Das Problem wurde an vier
groBen Stahimodellen untersucht. Die ersten Ergebnisse zeigten, daB der EinfluB der Steifenexzentrizitat
praktisch vernachlassigbar ist.
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1. INTRODUCTION

During the last seventeen years intensive research programmes,
both theoretical and experimental, have been undertaken in the field
of orthotropic plates in compression as a result of the four collap-
ses of long span box girder bridges that occured between 1969 and
1971. Extensive studies have influenced the design codes, and de-
sign rules based on the postcritical behaviour of plated structures
have been established.

Two most widely adooted approaches are usually considered in the
study of the stiffened plate behaviour: /i/ the strut approach and
/ii/ the orthotropic plate approach. The latter is analysed in the
Present paper.

In this approach, the stiffened plate is treated as an eguivalent
orthotropic plate and the elastic large deflection theory is used.

MAQUOI and MASSONNET /1971/ developed a design method that takes

account of postcritical strength increases produced by membrane

stresses. The main assumptions of this analysis are as follows:

- the rigidities of the stiffeners can be smeared in order to obtain
a substitute plate that is then analysed by a non-linear large
displacement theory;

- the postbuckling shape of the plate is represented by only its
first term of the double FOURIER series expansion;

- collapse is reached when the mean longitudinal membrane stress
along the unloaded edges of the orthotrovic panel reaches yield
stress fv‘ The flexural stresses are neglected;

- allowance for plate buckling between the stiffeners is made by
using an effective width approach.

Starting from the Liege method / 9 7/, an attempt / 1 7 has been un-

dertaken to improve the above-mentioned approach:

- it has been able to take account of several terms of a FOURIER
expansion and

- to prepare design formulae which simplify considerably the mathe-
matical procedure and present therefore the ultimate strength
theory of stiffened plates in a form suitable for practical use
in designing bureaux;

- simply supported orthotropic plate in compression with more com-
plex in-plane boundarv conditions has been solved in / 1_/ and
solution comprises case of isotropic plate too and/or transver-
sely loaded plates;

- relating collapse to the maximum membrane stress - rather than
the mean membrane stress along the unloaded edges - has enabled
to avoid any plastic redistribution of the membrane stresses.

The theoretical and the numerical results of the thesis /1_/ can

be found also in the chapter 7 of the book /5_/. Results of a pa-
rametric study were published also in / 3 /.

In addition, it has been analysed in the paper [/ 2 _/:

- the combined effect of the membrane stresses and the flexural
stresses on the limit state by using several various collapse
criteria;

- the shear lag phenomenon determined according to the new edition
of the code CSN 73 6205 "Design of Steel Bridge Structures";

- the comparisons of the theoretically obtained values and the ex-
perimental data of the ultimate load tests on 34 steel girders
and 34 orthotropic plates in compression.
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The aim of the present paper is to demonstrate a solution of the
following system of two simultaneous differential equations descri-
bing of slender orthotropic plates with unsymmetrically arranged
stiffeners and with an initial deflection

- O'w - d'w s 3w v S3P . SP\_ ete 3P FPF(wotw) _
D‘-a?+2H8x’8y2+D"ay‘ +1 f/’(e'S, ax® s, 8}"‘) 1-v?3xdy* odx* Ay’ (x= 0)

D (wetw),, TP Fmtw) o (1a)

dy? ax? 9xdy 0dxdy
13'¢ 2 30 1 o' w13 (wat w) )P B wot w) 3 (wot w)
—aatrrmmst e a==(1-v — - 1
5, ox ' §3x7ay' TS, oy - (1Y) l 3xay ax’ 3y’ (16
3wy \2 9wy 3w, e, 3'w e 3'w 'w
- (axay) dx* ay’ } S(S,. 8x‘+5, ay‘) (e, ax’ay?

Equations (1) generalize the well-known eguations of FOPPL-von KAR-
MAN-MARGUERRE and HUBER s equation. Earlier solutions / 1,2,3,5,97
neglected the terms of the equations (1) that contain excentrities

€y ey.

2. SOLUTION TO THE SYSTEM OF EQUATIONS
2.1 General

The system (1) is going to be solved by P.F. Papkovich”™s method,
which means that the compatibility equation (1b) will be solved ex-
actly while the approximative method of B.G. GALERKIN will be em-
ployed in the solution to the equilibrium equation (1la)}.

2.2 Solution to the Compatibility Equation

The functions of the initial and additional deflections are supposed

to have the form of a series in which all terms fulfil boundary con-
ditions

Wo= 2 O Wi, sin mu€ sin nan , 'E:g’ T]=%r ﬁ’=7w, u':nsz" (2a)
W= W sin muk sin nan (2b)
The stress function is written as follows
S i s (i we B
(D —¢u+¢, ) —S,(l—\?z)ll (3)

@* being the general solution and ¢; a particular integral of the
compatibility equation.

After solution of the homogeneous compatibility equation we obtain

A -
§=D+ P+ DY, = “7(N1n2+N}‘§202)+E R*(n) cos ink + Y, S¥(&) cos jnn (4)
where R¥(n)= A% cosh ifn + B* sinh ifn + C¥ cosh ién + D* sinh idn
S1(&)=E* cosh jyE + F* sinh jyE + G* cosh jeE + H* sinh jeE (5)

»® »® » »*

The constants AE, Bi’ C *

i+ Dir By F;, Gj' H; are determined from
the in-plane boundary conditions. In the case of boundaries being

regarded as inflexible in the plate plane A, BY =c% = D; =0

1
(boundaries parallel to axis X) and/or E% = F% =G* = H" =0
(boundaries parallel to axis Y).

(SR ]

I |
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The notation, which is not defined in the present paper, can be
found in /[ 1,2,5 7.

The particular integral, with regard (2), can be written in the
following way:

=P +ar =

(6)
a? E 2 2 Z (wmnwn i wmnwo:: + anbmn)x

2

3 (=1 [(= 1) (= 1)s] cos m+ (= 1)r)nE xcos [n+ (< 1)s] g+ (62D

,.M..

+ (1=-v)a” 3 > W ge(m,n) sin mXE sin nny (6b)

where the functions g(tl,tz), ge(m,n) are defined as follows:

mt:(nt, — mt;)

9(n, )= (m+n)

+2xw’a’(m+ ) (n+ LY + w'a*(n +1,)* (7a)
- - 2
v ve «
x 4 = 2 2 Y 4
Syqz m - (€ + ey)m n o+ 5, n . (7b)
g (m,n) = g = —
%(’ m'+ 2x0iaimin? 4 %'t %= %

2.3 Solution to the Equilibrium Equation

Let us solve the equation (la) by GALERKIN s method. The system of
GALERKIN s equations is then

fszinansinqnndEdn=0, (p=123,...:9=1,2,3,..) (8)

After integration (8)is transformed in a system of algebraic cubic

equations, which is solved by NEWTON-RAPHSON s method. Details will
be published in a journal.

3. NUMERICAL RESULTS
3.1 Critical Stress

The critical stress of an orthotropic plate is given by

7’Ey 12 5y «*(1+2nwal+ wiec®) 2
OCI',Q= IZ((S,-VI)A}aZ. ,‘p("__‘_)z) 'ge("l‘:‘f, "1=4) (9)
“ - - g ol
o, (1,97 influence of eccentricities e, e,
The influence of the stiffener eccentricity e (e, = 0) on the cri-
tical stress is studied in the Tab. 1 on the four models.

Table 1 N1 N2 N4 N3
relative rigidity (v-¥%)/¥ 5.214 0.533 0.058 -0.254
relative eccentricity ex/t 5.600 2.560 1.524 0.290
ratio of stresses Gér,e/cér 1.035 1.031 1.020 1.C13

21
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Details of the four large scale steel models N1, N2, N3, N4 (span
8.5m, depth 0.5125m)and of the test setup will be published in /4 /.
The full description of the tests can be found in / 8 /.

Fig. 1 KVOUAK s test girder N4 /4,8 7

3.2 Postecritical behaviour

The approach proposed in this paper enables to distinguish between
two directions of orthotropic plate buckling: /i/ in the direction
of the flange plate (eX < 0) and /ii/ in the direction of the lon-
gitudinal stiffeners (ex > 0). The former case is more danger (Tab. 2),

but both cases differ only slightly from the case with e, = 0is

The results presented in the Tab.2 were calculated for one term of
series (2), viz. Vii1r Y1y and they practicallyv don"t differ from

those calculated for five terms of series (2), viz. Viiyr Wi3s W3ps

Wyqr Wy and wypg- 8 (e, # 0)and Bx(éx = 0) are the average

X, e
stresses in the ortho%ropic plate at the moment when the maximum
membrane stress attains the yield stress f_,. On the question of the
in-plane boundary conditions of the orthotropic plate it had been
assumed that transverse edges are "constrained", i.e. that they
can freely move but remain straight. The longitudinal edges

22
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can deflect in the plane of the plate.

Table 2 N1 N2 N4 N3
Scr, e’ £y 6.429 1.581 1.079 0.756
W, /t 0.500 0.600 0.600 0.730

5 e, <0 0.990 0.986 0.902 0.856
Bx'e e =0 1. 1. 1. 1.
@ e > 0 1.008 1.012 1.057 1.134

4, CONCLUSIONS

The study have been started, which enables to evaluate the influen-
ce of the stiffener eccentricities €ys ey Oon the critical stress

(Tab. 1) and/or on the limit load of the orthotropic plate in com-
pression (Tab. 2). The first results of the study have shown that
the basic system of non-linear equations (1) can be simplified by

neglecting the terms that contain eccentricities ey re,-
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SUMMARY

Since 1935 over 200 experiments on stiffened plate girders, subjected to shear and bending loads, have
been carried out worldwide. It is now to be determined, using a probabilistic approach whether, by means
of the above mentioned experiments, the tension field model of the Eurocode 3 is verified for transversely
stiffened girders and whether it may be extended to longitudinally stiffened ones.

RESUME

Depuis 1935, plus de 200 expériences ont été effectuées sur la capacité portante des poutres a ame
pleine raidie, soumises a des efforts tranchants et fléchissants. L'objet de cette publication est de
déterminer, de fagon probabilistique, si le modéle de champ de traction de I'Eurocode 3 est vérifiable
pour les poutres a ame pleine raidie transversalement et s'il peut étre étendu aux poutres a ame pleine
raidie longitudinalement, en tenant compte des expériences mentionnées auparavant.

ZUSAMMENFASSUNG

Weltweit wurden seit 1935 Uber 200 Versuche zur Tragféhigkeit ausgesteifter Vollwandtrager unter Schub-
und Biegebeanspruchung durchgefuhrt. Jetzt wird auf probabilistischer Grundlage untersucht, ob damit
das Zugfeldmodell des Eurocode 3 fUr querversteifte Trager verifiziert und auf l&ngsversteifte Trager aus-
gedehnt werden kann.
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1. INTRODUCTION

In the past three decades, various tension field models were de-—
veloped in order to predict the ultimate load capacity of stif-
fened plate girders subjected to shear and bending loads [1].

From time to time this development has been the target of funda—
mental questioning. Recently, a design model, based on the fully
plastic shear 1load of the unstiffened web, has been presented
{2].

Parallel to this, the number of experiments on stiffened plate
girders has continually increased; in 1968, approximately 50
experiments were carried out, ten years later about 140 and nowa-
days there are more than 200.

However, experiment and theory only have their meaningfulness if
full attention is paid to the stochastic character of the load
capacity, and its influence quantities, in the experimental evalu-
ation as well as in the calculations.

Since 1986, the Institute for Steel Structures in Braunschweig is
working on the documentation, evaluation and recalculation of all
avalilable experiments. The work is performed - in an unpreceden-—
ted extensive manner — using the programmable database system
dbaselll+. Moreover. 1i was atiempted to estimate the uncertainty
in the experiment execution and in the load capacity prediction.

In the context of the revision of the EC3, a few new questions
arise, that may now be answered:

— 1s it allowable, in the Eurocode safety concept to apply the
tension flield models to transversely stiffened plate girders?

— could the application of these models, within the same safety
concept, be extended to longitudinally stiffened girders? Which
of the established models 1s optimal, taking into account the
results of the experiments that were analysed in this study?

2. EVALUATION PROCEDURE

After compiling all experimental data into databases for trans-—
versely and longitudinally stiffened girders, the experiments
containing parameters outside of the EC3 definition domain were
rejected. The most frequent reason therefore were end post failu-
res.

The test analysis described below (Fig. 1) was derived from the
outline of the Eurocode paper "Procedure for the determination of
the design resistance from tests" published in September 1987.

For the remaining i tests, the measured values of load capaci-
ties V,e j (for the moment considered as exact), are compared
with the calculated values Vut j using model factors Mj, whose
mean value M as well as the error terms 6; are calculated. The
scattering of the measured values with respect to the theoreti-
cal ones can be estimated by means of vg.



A J. SCHEER — H. PASTERNAK

649

The variation coefficient vy, of the calculated load capacity
is to be estimated from the randomization of the design models
according to sections 3 and 4, in which the input values (basic
variables) are to be formulated with wvariation coefficients nor—
mally wused for steel siruclures:

yield stress - vgy = 0.06...0.08
modulus of elasticity - Vg = 0.04
plate thickness - V¢ = Q.02

The authors have no data concerning the scattering of the buck-—
ling coefficient kg
(mainly because of the
scalttering of the
boundary conditions).

1. Measure VUE.i It 1s assumed that
2. Calculate V; (from EC3 or [1]) Vkg = 0.03. The scat-—
! tering of the other

3 M = Vu&i input values is negli-
- i = Vo, gible. From the com-
_ ut,i putational model, the

L M variation coefficient
of the load capacity
M is then calculated to

5.0 = vi be vyut = 0.08.

"
5
™M

=

n Until now 1t has not

6 v ‘Jﬁ"(zz 6?-0'1) been taken into ac-
b 1 ! count, that vaguely
=1 defined experimental

. data must also have
7. Estimate VVut been introduced into

: the data Dbase: e.qg.
. Vv
8. Estimate Sexp the vield stress was

2 2 F ] often not measured or

9. VVu: %’Vut +V5 "Vﬁexp measured inaccurately,
5 the modulus of elasti-

V.. = X _ v., -05v cily was often not
10 uk M MJ*e p(-1.645 Vu 0, VU) measured at all, and
for LN -distributed load capacity in some cases, only
the nominal plate

1. Ym = exp((0:8 p "1:645)VVU)'B =38 thicknesses were gi-
ven. The scattering

for the whole set of
experiments may be

Fig.l Algorithm estimated with VSexp =
= 0.10.
The variation coefficient vy, characteristic value Vu,k as well

as the partial safety factor Y, of the uitimate load capacity may
then be calculated.

3. TRANSVERSELY STIFFENED GIRDERS

The EC3 contains simplifying assumptions for the load capacity
calculations of transversely stiffened girders: bending moment
and longitudinal force are taken up Dby the flange, transverse
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forces are transfered
log Vi, to the web through the

rn
"

log Vi

Fig.2 Correlation between calculation
and experiment

4. LONGITUDINALLY STIFFENED GIRDERS

frequency

0.45
0.40- }
0.5 H

0.30 P

0.151 ! |
0,401 | \

0.05 / LY

0.0 +——————— = —
Ja L o .

Fig.3 Frequency distribution
of the model factor

tension field and the
shear field mechanism.

Fig.2 shows the satis-
factory agreement bet-

ween calculated and
experimental results.
Fig.3 gives the fre—

quency distribution
of the model factor.

Characteristic value
and partial safety
factor of the load ca-
pacity may be read off
Fig.4.

The limit load capa-
city of longitudinal-
ly stiffened girders
could be determined
within EC3, in the
same way as for trans-—

versely stiffened gir-

ders. The assumption
of the tension field
mechanism, however,

still has to be deter-—
mined. During the com-
parison of competing
models, it was possi-
ble to substantially
increase the number of
evaluated experiments,
relative to earlier
investigations descri-
bed in (11. Fig.4 gi-
ves the results for
various models.,
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Longitudinally stitfened girders (n =59)
1 2 3 4
Trans- | 1 '
versely |y ‘ V V vV
stiffened| S v b 1| % ‘
girders N
(n=98) it ‘ l l
Separate tension| Single tension Separate tension | Separate tension
field bands field band field bands field bands
Each a function | A function Each a function | Each a function
of subpanel T; [of full panel of subpanel T; |of subpanel T;
and aspect aspect ratio & tand common and common
ratio Q; aspect ratio panel aspect
Lin ratio
M 1,10 1,15 1,17 1,12 0,99
Vs 0,16 013 0,10 0,12 0,08
Vu,k 0,85 VUt 0,95 Vut 0,94 Vut O, gl& vUt 0,91 Vu{'
Ym 1,23 1,17 1,12 1,16 1,08

Fig.4 Characteristics of various computational models

5. CONCLUSIONS

The first two guestions of section 1 can in priciple be answered
positively. However, the characteristic values of the load capa-
cities are a few percent lower than the theoretical values; the
partial safety factors are mostly greater than the code value of

Ym = 1.1.

it is noticeable that even the models having
with consideration of all the
originaling from experiment and calculation, do not
safe side any more. Considering this result, one might be tempted
to jump to conclusions, but should rather be prompted to further
investigate the experimental assessment of computational models.

an average
scattering
lie on the

Moreover,
model factor above 1,

lon-
not

Model 2 seems to be optimal for describing the behaviour of
gitudinally stiffened girders; the model is simpler and does
vield worse characteristics than the other models.

The method in [2]
factors, that 1is
section 3 and 4.

i1s characterized by scattering in the model
larger than that of the models discussed 1in
From our experience, this yields a lower bound
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of the load capacity.

All of the experimental data and detailed results of the evalua-
tion are available from the authors.
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SUMMARY

Y-shaped buildings are characteristically non-orthogonal in the directions of structural elements and
asymmetric in rigidity. For the Y-shaped building with a semirigid floor system, the longitudinal defor-
mations of its wings, because of their lengths in plan and due to the much more rigid central 'core’’, can
be reasonably neglected. The '"Spatial Multi-Mass-Point System'' is used as the mechanical model to
describe the various structural responses under ground motion, i.e. parallel translation, twisting and the
deformations of the wings perpendicular to their longitudinal axes.

RESUME

Les batiments en forme de Y sont, de fagon caractéristique, non-orthogonaux dans la direction des élé-
ments structuraux et asymétriques dans leur rigidité. Pour les batiments en forme de Y avec un systéme
de plancher semi-rigide, les déformations longitudinales des ailes peuvent étre raisonablement négligées
en raison de leur longueur en plan et de la trop grande rigidité du noyau. Un modéle mécanique permet
de décrire divers comportements structuraux sous I'effet de mouvements au sol, par exemple translation
paralléle, torsion et déformation des ailes perpendiculairement aux axes longitudinaux.

ZUSAMMENFASSUNG

Im Grundriss Y-férmige Bauwerke weisen schiefwinklige Anschlisse der Tragelemente und eine asymmet-
rische Steifigkeit auf. Bei der Verwendung von halbsteifen Deckensystemen kdnnen die Langsverformun-
gen der Y-Flugel verglichen mit den Kernverschiebungen vernachlassigt werden. Ein rdumliches Modell
mit mehreren Masspunkten wird verwendet, um das Verhalten bei Bodenbewegung, d.h. die Verschiebun-
gen, Verdrehungen und die Verbiegungen der Y-FIlgel zu beschreiben.
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1. INTRODUCTION

Few actual buildings are entirely symmetric with respect to mass and stiffness
distribution about one or more axes of the buildings. This geometric and physi-
cal asymmetry is greatly enhanced with irregular shaped high-risers which have
come into architectural vogue during the recent decades. Furthere more, floor
systems which used to be taken as absolutely rigid diaphragms are now known in
some cases that their rigidities are only comparable in magnitude ( although
often greater than ) those of the vertical structural elementsy i.e. floors are
to some degree deformationable. Damage surveys of major earthquakes clearly re-
veal the unfavorable effects of asymmetry and floor deformation on some of the
damaged buildings. It is therefore incumbent upon the structural engineer to pay
serious attention to these facts in his seismic analysis and design of an impor-
tant building, especially when it is irregular shaped in plane

2. MATHEMATICAL MODIL

Before discussing the mathematical aspects of the structure's model, it is per-
haps necessary to mention briefly the important physical property of the floor
system. In recent years inverstigations have been carried out on this subject,
some by observing the ambient vibrations of buildings, some by recording the de-
formed building subject to applied lateral loading. The results may be summa-
rized as: (1) The magnitude of floor stiffness depends on the lenth-width ratio
and the material and construction of flooring. (2) The shape of floor deforma-
tion is basically of the shear type. (3) The actual values of floor rigidity are
difficult to determine and few reliably accurate figures have been given. For
the common type of floors of precast concrete, the "basic" shear stiffness of
10% kN is often accepted.

Complex—shaped tall buildings are characteristically non-—orthogonal in direc-
tions of structural elements, asymmetric in rigidity and the lack of coincidence
between the dominant direction of ground motion and one of the principal axes of
symmetry, thus resulting in strong torsional vibrations during an earthquake. If
the building is long and narrow in plan, or the flooring is comparatively fle-
xible, its horizontal deformation is appreciable. An adequate analysis should
take all the above facts in consideration.

The establishment of the mathematical model is best illustrated by taking an
example. The Y-shaped high-riser is quite popular today. If the wings are short
compared to their width, and if the concrete floors are cast-in-situ, the struc-
ture may be regarded as a '"multiple rigid disk system" for analysis purpose. If
s however, the wings are long and narrow, or if the flooring is less rigid, for
example, like the precast slab type, or, if the lateral stiffnesses of the ver-
tical structure elements of the wings are much less than that of the central
core, then the influence of floor deformation should not be neglected.

For the Y-shaped tall building as shown in Fig.1, the longitudinal deformations
of its wings, because of their lengths in plan and due to the much more rigid
central "core" can be reasonnally neglected. The "Spatial Multi-mass-point Sys-
tem" (Fig.2) is used as the mathematical model to describle the structural wva-
rious responses under ground motion, i.e. parallel translation, twisting and
the deformations of the wings perpendicular to their longitudinal axes.

2+ EQUATIONS OF MOTION

We can assume the dominant components of a very complex earthquake ground motion
are the two-directional translations plus rotation. The equations of motion of
the system under an earthquake may be written in the familiar form:

(MG} + [cHT) + [K1{U) = -(M)Te} (1)
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Fig.1 Typical floor plan Fige2 Mechanical model

"
(0} = [{x) {3} {9} {v)] |
el .. . T
{Ug} = [I][xg §g ¥y O 71,
[1] = aiag1}, 01}, {1n  Uidaegim) ,
where {U}, {ﬁ}, {ﬁ} are respectively the column vectors of the generalized re-
lative displacements, velocities and accelerations. {Ug} is column vector of the

generalized ground acceleration. {xX.}, {y.} and {{¥} give respectively the x, y,
tp directional translations in the global co-ordinates. {v} gives the displace-

ments due to floor deformation ( Fig.3 ).

Fig.3 Displacements of the rth floor's mass-points

[¥]) is the generalized mass matrix, in which [m], [J] are respectively subma-
trices of mass and mass moment of inertia. [myx], [myy]and [mye]are the
coupled mass submatrices between the translations and rotation.

[K]) and [Kyv] are respectively the stiffness matrices in the global and local
co-ordinates, in which [T] is the transformation matrix. [Kuv], [Kv] and [Ke¢]
are the stiffness matrices refferred to the planar motion of the rigid disk sys-
tem. [Kyy] is the stiffness matrix of the flexible floor system. [Ky] is the
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stiffness matrix of the vertical structural elements, [ky] is the stiffness ma-
trix coupling the vertical sub-structures due to stiffness of diaphragms. [Kyy]
and [Kwp] are the stiffness matrices coupling the displacements due to floor de-
formation and those due to solid-body motion of the floors. [dy] and [du] are
the matrices giving the distances between the story mass centers of the wings to
the story mass center of the building. k:; is the equivalent horizontal shear-
ing stiffness of the floor of the ith bay.

(%} = [0 =xP-oxt--xb] , (w) =[y" ¥ oy gh ]T ’
(e} = [0 2.0t @h T tv) =[{0O) fva}' (vl v]",
s} = [(vad (vs2)" o qvsi) o v ]T, (s = abyc )

{vsi} = [ Vgi AAREI AR 4 ] s (1 =1,2y"07,1)

[m] [0] [O] [mxv]_l

[0] [m] [0] [myy] [m] = diag [m" m® . m . mh],
"= llo) [01 (3] [mw]| [J1=diag[d" 3V 3T 3h],
(mvx] [Bvy] [Mve] [myv ]] s
[my] = diag [[0)  [ma] [mp] [me]]
[ms] = diag [ [ms) [ms2] - [®si] - [mst]] >
[ms; ] = diag [mg; mey - om& - mb, ] (s = aybyc )
(myx] = —[mv][i]{S} ’ [mvy] = [mv][f]{c] y [myv] = I'_m\«ry].r ’

[mxv] = [myx]" 5 [Byg] = [my](d:i][I]{1) 5 [mev] = [mve] s

{8} = [sinda sinda sin«, sineg ],

{C} =[coscta coscta cosol, cosolc] ,

[I] = aiag [ {1}, {1}, O}, 013], {(1}=[1 1 1 17,
(4 = diag [[0] [da] [ds] [dc]] s

[ds] = diag [[ds) [ds2] « [ds:i] - [dst]] »

[dsi] = dlag[d‘s': ds? .. di - a% ], (s =aybyc)
[Kxx] [Kxy] [Kxy] [Kxy]]
[Kyx] [Kyy] [Kye] [Kyv]
[(Kex] [Kpy] [yl [K] | =TT K0VATT,

| [Kvz] [Kvy]l [Kvp) [Kw] ]

[K] =

[ [ku ] [0] [Kue] [0] ] {c), sy, f{o} [0}

0] kvl [Kvel [Kwi] sy, -tc}, fo} [o]
[¥ov] = | ko] o] (ke ] Tl | D737 | G0} {0} {1}, (o]

01 [Kw] (Kl Kal], (o) fo) {0} (1),

[Ky] = disgl[Ko] [Keu) [Keud (Kel]
[Ky] = diag[[Kev] [Kav] [Kev] [Kev]]

(ko] [O ]H[M} [Kyv]= -[av][xu],

(xe] = [[ay] [du] ]
(01 [kv]j{[du] [Kev 1= [du][Kv],

[dv] = diag[[dev] [day] [dev] [dev]] s
[du] = diag[[dou]  [dau]  [dew] (2] ]
[dsv] = dlag[ d(” d‘s’\; er d:‘\l see V ]
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[dsu] = diag [a%h d(snzi dgu d’;u 1, ( 8 =0y a9y by c )
[KnpU] - -[dv][KU] ’ [K‘PV] = [du][KV] ’ [KU:.p] = [K(pU]T ]
[(Kyw] = [Kyl+[ky]l, [Ky)=diag[[0] [Kav] [Ku] [X&1] ,
[Ksy] = diag [[Ksiv] [Ksav] = [Ksiv] =+ [Kstv]] 5 (s =ay, by c)
[ Ky  Kay R Kyl |
Koy EEP e KR v Koy
IKSWI = i r,2 r,t h
Ksiv Ks'iv Ksi'v K;'iv
Ko K Kot K& |
[ky] = diag[[0] [ka] [kp] [ke) ] s
[[ks)* [ksa] - [ksa] ]
—[ks2] [ksoJt[kss] -[kss] 0
[ks] = -lksi)  [keilt[Kscien) = [kscien]
0 ~[ksct-n) [Keq-n)+[kst] ~[ksi)
! - [kst) (kst]]
[ksi) = diag[ky — Kei s ke"] , (s =aybyoc)
[Kv‘/] = [Kv][i] ’ [KWP] - [Kv][di][ i] ’
[Kw] = [Kw] 5 [Kev]= [Kvp]

(2)

where [ U] stands for [K]'[M] , [A] the total modal matrix and [A] the eigen va-
lue diagonal matrix, is trivial. [A]and [A] give all the natural periods of

vibration and modal shapes, while the participation factors of modes can be de-
termined by simply inverting [A], i.e.
|
[(r] =[a][1] (3)
'Yx| 'Yy| 'V\pt 'Yv| {1 }h
y (13, 0
Vs Yy Yei Wi |=[4] {1},
Van ')')m 'Y?N YN 0 1 }(I+§.lsh)
[a]=[{a) {aa) --- (45} {AnY], N =3n+1+ZLn
{43} =[{Xj}T {Yj}T {CI’j}T {1 ]
- (X X e XYW Y® e W P T 9N
o V& VR - W Vai Ve, Vat LA Vo vee
| Vel vt VRV w LA (A

The resultant sidesways of the jth mode of the

vertioal structural elements in
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the local ( or member ) co—ordinates are derived from the generalized displace—
ments of the structure by means of co-ordinate transformation. The jth earth-
quake forces acting on the vertical elements as isolated members are given by
multiplying the displacement matrices by the corresponding stiffness matrices.
The members' design internal forces are finally obtained by superposing all the
modal contributions according to the CQC ( complete quadratic combination )
method.

4. CONCLUSIONS

When torsion and floor deformation are considered the foundamental period of the
vibration of the irregular shaped building is about 5 % greater, the increase of
the internal forces of the verticle elements far away from the central core may
amount to as much as 20~90 % . For buildings of large foundamental periods ,
the first 15 modses should be taken in to account. For this reason, the CQC
method is more accurate than commonly used SRSS method and the discrepency be-
tween the two is kmown to be approximate 10 % .
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SUMMARY
The damping behaviour of reinforced concrete significantly influences the deformations of reinforced
concrete structures under dynamic loading. The energy dissipation mechanisms due to cyclic bond ac-
tion are studied experimentally and analytically. Results of theoretical models are compared with experi-
mental data.

RESUME

La capacité d'amortisement du béton armé influence de fagon considérable les déformations des struc-
tures en béton arme sous I'effet de charges dynamiques. Les mécanismes de I'énergie de dissipation
résultant de I'action d’adhérence cyclique sont étudiés de fagoin expérimentale et analytique. Les résul-
tats des modeles théoriques sont comparés avec les mesures faites.

ZUSAMMENFASSUNG

Die Dampfungsfahigkeit des Stahlbetons kann die Verformungen von Stahlbetontragwerken unter dyna-
mischer Belastung stark beeinflussen. Die Energiedissipation infolge Verbundhysterese liefert im gerisse-
nen Zustand einen wichtigen Beitrag zur Démpfung. Hier sollen die Ergebnisse diesbeziiglicher experi-
menteller und analytischer Untersuchungen vorgestellt werden.
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1. INTRODUCTION

The dynamic response of structures is influenced to a large extent
by the damping behaviour of its structural elements. Especially in
the cases of forced steady state-vibration and earthquake action a
realistic estimate of damping, which should be regarded as a
consequence of energy dissipation, 1is necessary in order to
predict the peak response correctly.

In the following some basic considerations are presented which
might help to understand and model one of the basic dissipative
mechanisms 1in reinforced concrete: the hysteretic bond action
between reinforcement and concrete. This mechanism is one of the
main important sources for damping of R/C under service 1load
conditions, where the reinforcing steel remains still elastic.

2. DAMPING AS A CONSﬁbUENCE OF ENERGY DISSIPATION

A Definition of Damping may be given by the damping ratio d:

d =D/Wp
where D denotes the Energy dissipated during one cycle and Wp
means the Deformation-Energy (see Fig.l and [1,2]). It is useful
to define the deformational energy using the secant modulus and
the Force

Fo = (Fmax + len)/z,
which corresponds to the static equilibrium state as shown 1in
Fig. 1. This definition allows to sum up or integrate D and Wp
over different structural parts or volumina and interfaces. So the
influence of each possible dissipative mechanism may be
considered.

F
Fig. 1:
Definition
of Damping Ratio 4 max F
d.= O
A W
min F

mins ‘ So mc;xs S
3. DISSIPATIVE MECHANISMS IN REINFORCED CONCRETE STRUCTURES

Energy Dissipation in R/C members is mainly caused by the

following mechanisms:

- hysteresis of stress-strain-relationship of concrete,

- hysteresis of stress-strain-relationship of reinforcing steel,

- tensile fracture of concrete,

- hysteretic action of aggregate interlock in cracks,

- friction between aggregates and/or hardened cement paste in
cracks, which open and close during load cycles,

- hysteresis of bond between reinforcing steel and concrete.
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4. EXPERIMENTAL PARAMETRIC STUDY

In order to study the influence of hysteretic bond action upon

energy dissipation in R/C-members an experimental program was set

up. It was intended to let the experiments reveal the contribution

of bond hysteresis to damping only and separate or exclude other

dissipation mechanisms. So contrary to tests with beams or

cantilever elements reported by [1,2,3] the test specimens used

here only represent the region between two adjacent cracks in a

R/C structural member (see Fig. 2). The load is applied directly

via the rebar. The parameters under investigation are:

- rebar diameter,

- reinforcement percentage,

- concrete strength,

- crack spacing (i.e. length of specimen),

- preloading (i.e. maximum steel stress reached before and number
of cycles),

- actual 1loading (i.e. max. and min. steel stress during actual
cycle),

- exXcitation frequency.

Zonel:
( )

M ! i

-« 7777} D DL ImITIm —

ZS ZS
Fig. 2: Choice of specimen
4+ F ~ = Strain gage

N «— LVO1

, N N
| NN
= 6y \\4\\\=\\‘?\\=\\T\ c\ ) 2

Fig. 3: Instrumentation of specimen

5. EVALUATION OF TEST DATA

On the basis of the measured 1longitudinal steel strain at the
locations of the gages and the deformations measured by the LVDTs
(see Fig.3) the - local steel stresses os (X),

- the local bond stresses Ts (x) and

- the local slip s(x)
can be calculated.
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6. PRELIMINARY RESULTS

Whereas in the first cycles a 1large increase of deformation
occurs, the deformation tends to stabilize after a higher number
of cycles. Fig. 4 shows an example of the bond stress-slip
relation. Whereas for small bond stresses a friction-like-
behaviour applies, for 1larger bond stresses a combination of
elastic and plastic effects has to be considered.

MEASURED BOND STRESS SLIP HYSTERESIS OF EXPERIMENT . R
DK 15202, POINT 9 Damping as Functio

g =0/Wp
-

o
m r /J/’ ‘
H T — )
01 I:‘)/ |
| ]
0 2% 02 04 08 3
0 ; ‘ S (mm] Frrin/Frnax
0,025 005 0075 e ovis202
Fig. 4: Example of bond- Fig. 5: Damping ratio d as
stress-slip relation function of Fmtn/Fmax

for max os = 200 MPa

Fig. 5 shows the damping ratio d as a function of the ratio of
minimum to maximum Force. For a large ratio Fmin/Fmax, this means,
that for small oscillation amplitudes compared to the average
Force Fo the damping ratio 4 is higher than for small values of
Fnin/Fmax. The damping ratio increases with crack spacing. This is
a consequence of the large percentage of deformational energy of
bond compared to the deformaticnal energy in the steel. Vice versa
this means that e.g. for high reinforcement percentages 1low
damping values can be expected.

7. MODELING

In order to model the damping and stiffness behaviour of cracked

R/C subjected to cyclic (tensile) load two steps are necessary:

- calculate the crack spacing,

- simulate bond action under cyclic 1loading for given crack
pattern.

For the calculation of crack spacings the basic principles are

reported in [5]). In order tc simulate the bond action under cyclic

loading the relation between bond stress and slip is needed as

constitutive relation. Because of the fact that the bond law is

influenced by many parameters which are not easy to estimate (e.g.

self induced stress, dependancy from local discontinuities) simple

bond models should be used.

For fully numerical calculations the model described in [6] may be
used in the modified formulation (7] (Fig.6). It has been imple-
mented into a nonlinear Finite-Element-Program as constitutive
relation for contact elements [7] enabling a discrete crack
approach.
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MODELING OF BOND -STRESS-SLIP-RELATION ——
Loading
. | -
MPal T
'n‘;* [_‘ 4 - » S
5,0 r //f ' 11:1
035 s[mm]

Fig. 6: Modified Bond Model Fig. 7: Simplified Bond Law
after [6,7]

For analytical treatment a simplified bond model can be adopted
(Fig. 7). This enables a direct calculation of 71s (x) and os (x), as
Fig. 8 illustrates. Also the mean strain esm, the crack width w
and the deformational energy as well as the dissipated energy can
be calculated directly. Fig. 10 gives the damping ratio calculated
on the basis of a bond law as shown in Fig. 7. Also the tension
stiffening effect for cyclic loading can be computed on this
basis. Fig. 9 shows calculated deformations for axial tension.

By this method the energy dissipation due to bond can be
calculated for R/C-members rather fast. Furthermore the proposed
method is well suited to be used as subroutine in nonlinear Finite
Element codes in order to model the hysteretic behaviour of
reinforcement embedded in concrete by a smeared crack approach.

>k

| g
G e
+T

\QLOADING
®\|'1T° T
] 2-T, - 8 X
UNLOADIRG | ‘oﬂ—l\@
\\
D:/]T(X)dex - /\|—-

Fig. 8: Direct Calculation Fig. 9: Computed Force -
of os (x) and 71s (x) Elongation -

for repeated loading Relationship
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Fig. 10: Computed d-Q1
Damping Ratio W

8. CONCLUSIONS

Energy dissipation due to hysteretic bond action plays an
important role in respect to damping of R/C - structures under
service 1load conditions. The experiments have shown the 1large
influence of actual and previous locading on stiffness and damping
behaviour. All parameters influencing the c¢rack spacings will
influence the damping ratio alsoc. For modeling a numerical and an
analytical procedure are discussed. Whereas both of them can be
used with Finite Element Codes, the analytical approach also
enables quick estimates of damping values with only few
computational effort.
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with sufficient aseismic safety.

SUMMARY

This paper presents a method for considering the shear deformation of a beamcolumn joint and the
continuity of the reinforcing bars through beams, columns, and beam-column joints. The authors have
performed the analyses of a single-storied single-span reinforced concrete structure and a cross-shaped
reinforced concrete structure. Analysis results compare favorably with experimental data for these struc-
tures.

RESUME

L'étude décrit une méthode pour étudier la déformation due au cisaillement d’un joint de poutre-poteau
et la continuité des armatures passant par les poutres et poteaux ainsi que les joints poutre-poteau. Les
auteurs ont analysé une structure en béton armé a un étage et une portée et une structure en béton armé
croisée. Les résultats des analyses correspondent aux données expérimentales.

ZUSAMMENFASSUNG

Die Studie befaBt sich mit einem Verfahren zur Berechnung der Verformung einer Balkentragerverbindung
und der Fuhrung des Bewehrungsstahles durch Balken, Stiitzen und Rahmenknoten. Von den Autoren
wurden Analysen an einem einstéckigen, einschiffigen Stahlbetonrahmen und an einem kreuzférmigen
Stahlbetonknoten im Vergleich zu den experimentellen Daten mit guten Ergebnissen durchgefihrt.
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1. INTRODUCTION

Until now, most analysis methods which consider bond-slip or shear deformation
of beam-column joints have been 2-dimensional or 3-dimensional methods, such as
finite element method. Some researchers have made use of beam theory taking into
consideration shear deformation of beam-column joints[l]. Others have taken into
consideration bond- slip[Z]’[4] But there have been few analysis of reinforced
concrete frame structures taking into consideration the continuity of
reinforcing bars among beam, column and beam-column joints.

In this paper, we report on a technique using finite segment method, that
considers the shear deformation of beam-column joints and the continuity of
reinforcing bars among beam, column and beam-column joint.

2. ANALYTICAL METHOD
2.1 Modeling of Reinforced Concrete Frame and Analytical Assumptions

An outline of analytical model for a single beam-column joint is shown in Fig.l.
2.1.1 Reinforced concrete members

(a)The member is assumed to be of such type that traditional beam theory is
applicable. But in order to approximate the curves of each member after
deformation, the member is divided into 20 to 60 member elements.

(b)In each member element, only the bending deformation and the axial
deformation is considered and shearing deformation is ignored.

(¢)The distribution of stress intensity and strain in the cross section is
considered by dividing the cross section into 34 layers as shown in Fig.2. The
values of stress and strain in each unit element are represented by the values
at the each center point.

(d)Stress and strains condition in member elements are traced solely at the
sections at the ends of each member element[5].

2.1.2 Beam-column joints

Beam-column joints are treated as a joint panel. Only shear deformation is
considered in the joint panel. In consideration of the bond-slip and yielding of
the reinforcement in the joint panel, individual reinforcement in it will be
divided into 20 elements in the axial direction of that reinforcement.

2.1.3 Mechanical properties of materials

The stress-strain relation of concrete and reinforcement is taken to follow,
hysteresis loops as shown in Fig.3 and Fig.4 respectively. For the bond-slip
relation, a hysteresis loop which is shown in Fig.5 is used. For the stress-
<0 Comprossive
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Fig.l Reinforced concrete; relationship of relationship relationship of
frame model [ reinforcement concrete panel
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strain relation of the concrete panel, a hysteresis loop which is shown in Fig.6
is used.

2.1.4 Coordinates and incremental displacements

(a)Axes X and Y in the global coordinate system, and axes x and y in a local
coordinate system associated with each of the member elements are defined.
Incremental displacements 4Ju and 4V as the displacement constituents in the
directions corresponding to axes x and y, incremental rotation 46, and the
incremental slip of individual reinforcement, 4s , will be considered at
individual nodes (Fig.7).

(b)x, and y, with the origin positioned at the center of the joint panel are
defined. Incremental displacements 4t and 4V as the displacement constituents
in the directions corresponding to axes x, and y, and incremental rotations 48,
and 46c of the beam and column surfaces will be considered at the center points
of the joint panel. Regarding individual reinforcement, incremental slips
dos will be considered at the 19 nodes inside, and the 2 nodes on the surfaces
of the ends of the joint panel (Fig.8).

2.2 Analytical Method

The non-linear analytical method discussed in this paper is based on the
incremental method, called initial stress method, which is derived from the
stationary principle of incremental potential energy. As a result, the equation
for each node is given in Eq.(1)

Kdu + fin - fex 0 — (1)

where K : The whole structure stlffness matrix
du : The incremental displacement in the global coordinate system of the whole structure

fin : The internal force vector at the node
fex : The external force vector at the node

4du is obtained by using Eq.(l). Then incremental strain in the structure induced
by Ju is computed utilizing the local coordinate system at pre—incremental step
and also, stress is modified according to such incremental strain. Thus, the
computation procedures gain one step.

3. INCREMENTAL DISPLACEMENTS AND INCREMENTAL STRAINS

3.1 Incremental Displacement Inside a Member Element

The cross section which passes through points(x,0)
on axis x will be considered. Incremental
displacements in the directions corresponding to
axes x and y at the points(x,0) on axis x will be
taken as Ju and 4v, respectively and incremental
rotation displacement will be taken as 46.

Incremental slip between the reinforcement and
concrete in tier k within this cross section will

. Fig.7 Deformation and

be taken as 4s« (Fig.7). coordinate of member element
For concrete elements, the incremental
displacements in the directions of x and y at
arbitrary points x and Yi within the cross
section, and incremental rotatlon displacements
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the direction of x and the incremental slips Fig.8 Deformation and coordinate of
dsux and A4Sk between the reinforcement and joint panel
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concrete can be as given by eqs.(3)

dsug = Ju - .Vx'd—Ay‘ + A4Sk — (3
A5k = A4Sk dx

3.2 Incremental Shear Strain _‘lf;é Concrete Panel

It is assumed that the concrete panel is subject to shear deformation only.
Incremental shear strain 47 in the joint panel can be expressed as the
difference between the incremental rotations of column and beam surfaces:

dr = Apac - dpeb — (4)
where 4 6. : Incremental rotation of column surface
40 : Incremental rotation of beam surface

3.3 Incremental Displacement of Reinforcement in Joint Panel

The incremental displacement ZsU» , in the axial direction of x_ , of the beam
reinforcement positioned between axes xp and y within the joint panel, and the
incremental displacement bsVe, in the axial direction of Yp > of the column
reinforcement positioned between axes Yp and x can be expressed as given by
equations (5) and (6):

Beam Reinforcement] = Asus = AU - ¥ 286+ £hSs —== (5i

Colum Reinforcement] Astic = AV = X pBc+ Aosec — (6 -
v»'mare‘d.,t(xe n:o'fnc“ermtal displacement, in the axial direction of X, of the center point of the joint panel

dov : Incremental displacement, in the axial direction of y,, of the center point of the joint panel
dpSp ¢ Incremental slip of beam reinforcement
dosec : Incremental slip of column reinforcement

4, COMPATIBILITY OF INCREMENTAL DISPLACEMENTS BETWEEN MEMBER AND JOINT PANEL

The condition of compatibility of incremental displacement at center point P of
the joint panel,fu=(4u, 4V, 46s %467, and that at center point B on the
beam surface, Juy=( Jup, JVs, 465)T, can be expressed as given by eq.(7) (Fig.9). :

Eub] [1 0 0 0} Sbu

dvsl = |10 1 0 L« SV

& 0 0 1 0 450
By 4ou 46 ¢ — (D

The condition of compatibility of incremental displacement at center point P of
the joint panel, and that at center point C on the column surface, du.
(due, 4Ve, 46:)T, can be expressed as given by equation (8):

du. [I 0 -4, O} deu

-B1ve 2

= R.4u 46 ¢ — (8)

where £x and £y will be given in the panel coordinate
system (see Fig.9).

Fig.9 Joint panel

5. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

5.1 Single-storied Single-span Reinforced Concrete Structure

Matuzaki and his colleagues experimented with a single-storied single-span
reinforced concrete structure. Figure 10 shows the specimen and Fig.ll shows
idealized model for the analysis. Tensile force will be applied to the top of
the left column when loading in the right direction, and to the top of the right
column when loading in the left direction.

Table 1 shows the empirically established mechanical properties of materials and
Fig.12 shows both analysis and experimental results for the relationship between
load and the horizontal displacement at point ®(see Fig.l1l). The results of our
analysis and agree very well with experimental values. Figure 13 shows the
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diagram of deformation at point -

wy
® (P=34.4kN,5=8.96mm) in Fig.12, Sr 276 -
the diagram of crack i
distribution, the diagram of "Ej
reinforcement stress SE  [©]6R10 1somis0 ;0]
. . - . o e @ !, <!
distribution, and the diagram - ‘,1quo[]ummcqi
of bond stress distribution. —SOQ'f 2-D16 150-30(-1?‘;{3001
| = 1 TE R
Lgﬂlﬁ.Lli~;ITTL_;_J
T Uni t:mm
able 1 Mechanical properties g 10 Specimenfﬁl F1g.11 Ideallzed model
cE =24892. HPa sE =205800. HMPa — for the analysis
«(J8=27.2 MPa E »=2058. MPa
cEe00023 azios,  ea
k¥ e O R BT TR
Ks =4.9 HPaICI G2 =4704. MPa 1 g
s173.92  HPa Gs =1176. MPa - !
Tv2=0 49 MPa Tvlirﬁ- 5
I y2=U.
® crack
5 e lormet ion il‘ _— zZones
. & fie lex
— Analysis q0%P “jr""l it !i
--- Experiment. I @ Sl % : l‘lm( - T ,l. L,
. i
e et !___ I li I | I
Deformatxon of frame Spread of crack zones
= O
NP 7 12

{mnm) Cobumnziaft 1 B Bol Lonn

Kerntorcoment aanlorecment

HSIE)
(Ml%y)

it

Fig.12 Relation of -
T load-deflecticy Stress of reinforcement Bond stress

Fig.13 Deformation, crack,
reinforcement stress, and bond stress

5.2 Cross—shaped Reinforced Concrete Structure

In another experiment Shirouchi and his colleagues tested a cross-shaped
reinforced concrete structure. Figure 14 shows the specimen and Fig.l5 shows
idealized model for the analysis. Table 2 shows the mechanical properties of
materials. Fig.l6 shows the relationship between the shearing force of the
column and the horizontal displacement at the loading point, where the shearing
force is that for which consideration is given to the effect of additional
bending moment due to the axial force. Figure 17 shows the relationship between
the shearing force of a column and the deflection of a beam derived from the
rotation angle of that beam. Figure 18 shows the distribution diagram of beam
reinforcement strain. Figure 19 shows the distribution diagram of cracks at
point ®(P=179%kN,$=53.2mm) in Fig.l6. The results of experiment and analysis
again agree very closely.

8-D22 N=735.5kN{}
: ;gﬁ Table 2 Mechanical properties
E5| 500%600 _ - _
a5 mfm Foror M B0 R
EED10 620k cE-:0.00Z‘I a/ca a:lmi HP:
S5 Uni 1. : mm £ %% e ﬂ':?lﬂo 1%
-2 K3 =1.9.  HPa/ca 2 ATO4.  MPa
1250 Ty1=3.92 MPa G: lT MPa
300 4 7,2=0.49 MPa v
Fig.14 Specimen(7] Fig.l5 Idealized medel

for the analysis
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A

Fig.16 Relation of
load-column deflection

£ ",'_’." / '
--»20=--" 40 (mm)

2 I,"—"IOO }aoy(—l1

L —
I-]SO 6=1'9l 4

Fig.17 Relation of
load-beam deflection

6. CONCLUSIONS

80007 Tensile Strnin
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é Hesam Il‘n.m iI 13 m A j
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rensile Stimin o
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8000t ©Q, A
£
C s I
s000- '2--< '
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Fig.18 Stress.of beam reinforcement

Lg

Analysis

e L
___11[ rm‘
Experiment
Fig.19 Spread of crack zomes

1)By incorporating a joint panel, the shear deformation of beam-column joints
can be considered while satisfying the continuity of the reinforcement through

the beam-column joints.

2)Although only two analytical examples have been outlined, the results of
experiment and analysis show a good correspondence with respect to the load-

displacement relationship, reinforcement

strain distribution and

crack

distribution. The analytical method dealt with in this paper would be effective
for bending yield type reinforced concrete frames.
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Dynamic Characteristics of a Liquid Filled Egg-Shaped Tank
Caractéristiques dynamiques d'un réservoir ovoide plein

Dynamische Einwirkungen einer Flussigkeit in einem eiférmigen Wassertank

Teruhiko TAKANISHI

Kiyoshi UNO
Assoc. Prof. }Izrof.hDr.l o e
Kyushu Univ. yushu Inst. of lech.

Kitakyushu, Japan

Fukuoka, Japan

Masaru NARITOMI Seima KOTSUBO
Dr. Eng. Prof. Dr.
Kyushu Univ. Kyushu Kyoritsu Univ.

Fukuoka, Japan Kitakyushu, Japan

SUMMARY

When an Egg-shaped tank is constructed in Japan, pile-group foundation is used in order to resist the
effect of earthquakes. It is difficult to analyse the response of tank, liquid and foundation reaction during
earthquakes. We proposed approximate equations for the calculation of dynamic liquid pressures in the
Egg-shaped tank during earthquakes.

RESUME

La fondation par groupe de pieux est utilisée pour des réservoirs ovoides au Japon, afin de résister aux
effets des tremblements de terre. Il est difficile d’analyser le comportement du réservoir, du liquide et de
la fondation pendant les tremblements de terre. Les auteurs proposent des équations approximatives
pour le calcul des pressions dynamiques du liquide dans le réservoir ovoide lors de séismes.

ZUSAMMENFASSUNG

Beim Bau von eifdrmigen Wassertanks wird in Japan zur Aufnahme der Erdbebeneinwirkungen auf Pfahl-
fundationen zurickgegriffen. Die Berechunung des dyanmischen Verhaltens von Tank, Flussigkeit und
Pfahlgruppe ist relativ schwierig. Es werden Naherungsgleichungen zur Bestimmung der dynamischen
Flussgigkeitsdricke im eiférmigen Behalter vorgestellt.
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1. INTRODUCTION

The Egg-shaped tank shown in Fig.l
is developed in West Germany and it is
more effective on sewage purification
than that of a cylindrical tank.
Recently many tanks of this type have
been constructed in West Germany. When
the Egg-shaped tank is constructed in
Japan, pile-group foundation is used in
order to resist the effect of
earthquakes, which in turn makes it
difficult to analyse the response of
the tank, liquid and foundation system
subject to earthquakes.

The purpose of this study is to
propose the approximate equations for
evaluating the dynamic liquid pressures
of the Egg-shaped tank during
earthquakes. Through the results of
this calculation, the value of moment
at the top of the pile can be easily
obtained.

He

2. METHOD OF ANALYSIS

Dimensions of three Egg-shaped tanks Table 1 Dimensions of the
constructed in Japan are shown in _—

Table 1. The ratio Rg/Hg falls in the Egg-shaped tank
narrow range between 0.301 and 0.315 .

for all three cases so that the shapes
of these tanks are considered similar
to each other. Since the values Rg and

CASE 1 CASE 2 CASE 3

(Hg/2)3 are nearly equal to the ratios Ry (=) 0, o0 15 580 13065
of volume(V) of each Egg-shaped tank, Re () 6. 800 10. 900 9.180
it dis known that the standard of the
shape can be set up from the ratio re (m) 1.000 2.500 2.495
Ra/He. Hp is the height from the bottom
of the Egg-shaped tank to the top of H, (m) 4.000 5. 000 4. 474

the pile, as is indicated in Fig.l.
Dynamic  liquid pressures <can be He/2 () 11.200 17.340 | 14.541
separated into impulsive part, which

depends on short pgriod comgonent, and Re/He (n) 0.304 0.314 0:315
sloshing part which depends on long
period component. Since it is difficult
to analyse these two types of dynamic
liquid pressures exactly, the transfer
matrix proposed by Sogabe is used for calculating the dynamic liquid pressures.

A% (»*) 1748.0 6863. 0 4000.0

3. RESULTS AND PROPOSED EQUATION

3.1 Impulsive Liquid Pressures (Pi)

Since the value of impulsive liquid pressures increases in proportion to the
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acceleration and the height of liquid surface(H), the proposed approximate

equations for @i and H;/He are written in the following form
@;=0.27T(H/He) +0.73  0.9sH/ He . (1)
=1.08 (H/Hg) 0.5=H/He<0.9
Hi/He=0.25(H/Ho) +0.26 0.8 H/Ho e (2)
=0.50 (H/ Ha) +0.06 0.5 H/Hg<0.9
o p
R
=
where @ i 1is the coefficient of added -
mass and MH; is the height of the x H:/He o
loading point of impulsive  liquid w
pressures. Figure 2 shows a ; — H/Hq
and H;/Heg—H/Hy relationships. Using
these values, impulsive liquid o
pressures(Pi) and the moment(Mi) at the — -
top of the pile can be given as follows b
=
P.=pa;Vuw2A, e (3) =
=
w
Mi=Pi(Hi'_Hp) ......... (4) .
S
— Transfer Matrix
where 0 is the density of liquid, Vw is ------ Proposed
volume of 1liquid, w; is the natural
circular frequency and A; is amplitude 0.4 0.6 0.8 1.0
of displacement. H/He
Fig 2 a — H/Me, H; He— H/Ha
relationships

3.2 Sloshing Liquid Pressures (Ps)

Since sloshing 1liquid pressures are under the influence of the first
vibration mode, the proposed approximate equations are obtained for the first
vibratinal mode. The proposed approximate equations for a@ s, Hs, Ts, B4, are
written in the following form

0s=0.37—0.40 (H/ Ho)? 0.5SH/ Ho veesesveeveen (5)
Hs/ Hs=0.8 (H/ Ha) seeeesene e ()
Tos/ Re?5=1.10 (R/Rg) +0.40 IR G
Bs=0.27/ {1.0— (H/ He) +0.67} R IERRI & - D)

where @ s is the coefficient of added mass, M, is the height of the loading
point of sloshing liquid pressures, T4 is the natural period and B 4 is the
participation factor.
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Figure 3 shows O s=— H/He and He/Hs — H/He relationships.
Ts/Ra® 55— H/Hg relationship and B ,— H/H, relationship are presented
in Fig.4 and Fig.5, respectively. "
[ ] és
IS — 224
- : ] S .
Sl as — 'll;ransfe:;l Matrix | = * Transfer Matrix
—--= Propose 3 o I
PO - = Proposed
o’
I"
e >
s 2 i
,®
= o
o 5+
N 24 ’1.
S 2
»
e e
o i |
1=
—
c. 'c L
[~
0.2 ] 1.0
0.6 R/Re
(—]
S04 0.6 0.8 1.0 Fig 4 Tes/Re— R/Re®"®
H/He relationships
Fl& 3 aqs— H/HB: HS/HB— H/HB
relationships
: : —_ e  Transfer Matrix
Using these values, sloshing liquid q; _______ Proposed
pressures(Ps), the moment at the top of
the pile(Ms) and the maximum vertical
displacement of free-surface(Wmax) =) ¢
during earthquakes can be given as S ?
follows ;
1
rf
!
P.=pasVuiwaAs, (9) : i
.
Ms=P, (Hs—H}) cweees (1 0) p,
(=] ’/’
2 & P
Wnax=BsSa/w5=BsAs "'(11) "'
o -~ e
where w4 is the natural circular i
frequency, Ag is the amplitude of 0.4 0.6 0.8 1.0
earthquake displacement for w4 and H/H,
Sa is the amplitude of acceleration
for W, . Figure 6 shows M:— H/Hg Fig.5 B.— H/Mq relationships
and My — MH/Hg relationships when the . <
amplitude of input earthquake relationships

acceleration is 100 cm/s".
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4. CONCLUSIONS

The results are useful for
aseismic design of the pile-
group foundation. When
comparing our proposed results
with those of the transfer
matrix, the accuracy is quite
satisfactory, and the dynamic
liquids' characteristics of
the Egg-shaped tank can be
easily given.

It is essential for
aseismic design of the Egg-
shaped tank to evaluate the
moment at the top of the pile-
group foundation. The proposed
equations are readily used to
estimate this moment.

— Transfer Matrix
-—-- Proposed

M;

10 (*10° kN-m )

5

0.2 0.4 0.6 0.8 10
H/He

Fig.6 M- H/Hs,Ms- H/Hp

relationships
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