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Runnability of Train on Transit Girder System.

For development of transit girder system, runnability of train had been studyed as mentioned
below.

Runnability of trains at the transit girder system can be separately checked for sections of the
expansion joint and the dispersion system for angular bend.

At the expansion joint, the structure is designed so that rail tracks may continue to secure a
proper.gauge line and wheelset load can be structurely supported.

Rail of the inserted girder type expansion joint is cut out partially to keep space for expansion,
and the guardrails are arranged to prevent derailment.

For the runnability on the expansion joint, running tests by actual cars were conducted in 1974
to certify safety of trains with speed up to 180 km/hr.

The runnability on the angular bend section is extreamely influenced by a vertical and horizon-
tal angular bend. The safety against derailment when a train run on the transit girder with
vertical, horizontal angular bend or composite angular bend of the both and passenger’s conr
fortableness for vertical and horizontal vibration had to be investigated.

The investigations for derailment and comfortableness were carried out for criteria of the rate of
off-loading of wheels and the lateral pressure and magnitude of the vibration, respectively, and
they were numerically analyzed or simulated for various types of cars.

And, important items among them were confirmed by running tests of actual cars and model
cars, and results of the running tests and the calculation were compared. As the result of these
investigations, relation between the running speed and the limit of angular bend is established
as shown in right figure.
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Fig.
Allowable speed of various types of cars

For example, when the total angular bend is 10%0 and span of the dispersion girder is 15m, these figures show that allowable velocity (V/Vsr) of
Shinkansen is 1.07 for the rate of off-loading of wheels, in other words, Shinkansen car can run with 1.07 times speed of standard running speed. As

for an electric locomotive, it can run with 1.04 times speed of 120 km/hr.

uedepr ‘0Ay0 |

Arioyiny abplig N3o31ys-NysuoH

VAVAVLY 13 ‘0LOD ninsupy
VINYNSL DeodiH ‘YIWYAVIVL _IDY

abprg ueds buoT uo Ajljiqeuuny 4o} uoilej|eisu)

vl

SH3LSOd — IIA



INSTALLATION FOR RUNNABILITY ON LONG-SPAN BRIDGE

In Kojima-Sakaide Route of Honshu-Shikoku Bridge Project,
suspension bridges and cable stayed bridges which have high
flexibility are being constructed for highway and railroad with
high speed trains.

At the end of these bridges, large amount of expansion /contra-
ction and angular bend occur.

In order to let the high speed train run safely on these deforma-
tion, transit girder system has been developed.

Two types of expansion joint are developed.

One is called the inserted girder type for expansion (including
effect of earthquake) up to * 760 mm of suspension bridges.
And, another is called the moving type for expansion up
to * 400 mm of cable stayed bridges.
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Beam to-Column-Connections with Composite Beams

Hiroshi OSANO Masami NAKAO Sanzo UNNO Takeo NAKA
Res. Assoc. Prof. Dr. Prof. Dr. Prof. emeritus
Tokyo Denki Univ Tokyo Denki Univ. Tokyo Denki Univ. Univ. of Tokyo
Tokyo, Japan Tokyo, Japan Tokyo, Japan Tokyo, Japan

This research deals with the contribution of reinforced concrete slab of
composite beams on the strength and the deformation capacity of steel beam—to-
column connections subjected to seismic loading.

Dimension and configuration of specimens are shown in figure 1 and table
1. Relative yield strength of panel-zone to that of adjoining members is
expressed marks '"Rpy' and "sRpy'" in table 1. Those are considered to be the key
parameter on the evaluations of strength, deformation capacity and energy
absorption of beam-to-column connections.

Figures &4a-4c are the summary of representative relatioms between load
and shear deformation of panel-zone. Vertical axis represents the ratio of load
to calculated yield strength of beam-to-column connection composed of bare steel
beams and column, while horizontal axis represents the ratio of shear
deformation of panel-zone to calculated yield shear deformation. Dotted lines in
figures 4a-4c show the test results of beam-to-column connections of the same
configuration without concrete slab. The reinforcing effect of steel beam-to-
column connections by the reinforced concrete slabs of composite beam 1is
illustrated.

A model to take the effect of concrete slab into consideration 1is
proposed in figure 5. In this model, the strength of panel-zone is considered to
increase by the enlargement of nominal volume of panel-zone as shown in the
figure 5. Relation between '"sRpy' (relative yield strength of panel-zone to that
of adjoining steel members) and strength, deformation capacity and energy
absorption are shown in figures 6a-6d with the other test results of beam-to-
column connections composed of bare steel beams and column. The empirical
formulas in figures 6a-6d are obtained by regression analyses on the test
results of beam—to-column connections composed of bare steel beams and column.
Shiftings to the estimated results of yield strength of enlarged panel-zone are
indicated by arrows. The seismic behavior of steel beam—to-column connections
with composite beams can be evaluated by making use of the model in figure 5 and

empirical formulas in figures 6a-6d.



BEAM-TO-COLUMN CONNECTIONS WITH COMPOSITE BEAMS

. Table1 Specimens .
s | | Slab '
No. Specimen Column | Beam type Rpy ;sty
1 Z0-l  H-300x300x22x22 |H-350x175x9x12| | [1.13]0.80
2 AO-l  H-300x300x16x16 H-350x175x9x12| | (063 062
3 BO-1  H-250x250x12x16 H-350x175x9x12| 1 |056 0.40
L 80-m ditto | ditto m |056/0.40
5 | B'1-I ditto ditto | 1 1049080
6 CO-1  H-250x250x 9x16 H-350x175x9x12| | 0.33/0.33
7 CO-IW ditto ditto | OW 051/0.33
8  CO-IS ditto _ ditto | 1S 028|033
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Optimum Design of Double-Layer Space Grids

Henning AGERSKOV

Assoc. Prof. of Struct. Eng.
Technical University of Denmark
Lyngby, Denmark

In recent years extensive and increasing use has been made of space
trusses, especially in the form of double-layer space grids. These types
of structures have in many cases been able to compete with more traditio-
nal constructions. The main areas of application have been sports halls,
swimming pools, exhibition buildings, churches, shopping centres, han-
gars, factory buildings, etc., where the space grid is used as roof
construction.,

In the design, almost unlimited possibilities exist in practice for the
choice of geometry of space trusses. This forms the background for a
research project, in which the optimum design of double-layer space
trusses has been investigated. As a first part of the investigation, a
study covering what has, until recently, been obtained as regards optimi-
zation of double-layer space grids was carried out. With the results of
this investigation as a starting point, various geometrical designs were
studied in detail to determine the optimum design. Both square and
rectangular grids have been investigated, under the assumption of either
simple supports along the entire edge or column supports at the corners.

In determination of the optimum design, an ordinary mathematical optimi-
zation based on a minimum of material consumption, was found to be of
little practical interest. The present investigation is based on assump-
tions concerning nodes, members, supports, loading, etc., which make the
results realistic to a practical design. To determine the optimum de-
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Fig. 1. Space grid systems, which will in general result in good overall
economy .
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sign, both the material consumption, the number of nodes, and the number
of members in the structure have to be considered, while an optimum
design based only on a minimum of material will rarely, if ever, be an
economical optimum for a double-layer space grid.

On the basis of the results obtained in the investigation, guidelines for
the structural engineer to obtain an optimum design, have been worked
out. Guidelines are given for choice of overall geometry of simply
supported and corner-supported square and rectangular space grids.

RECOMMENDATIONS

The following general recommendations concerning optimum design of doub-
le-layer space grids can be made:

1. The member density must be small. In addition to giving a small
material consumption, this leads to a grid with relatively few nodal
points and thus least possible production costs for nodes, erection
expenses, etc.

2. The system should be chosen so that the space grid is built of
relatively long tension members and relatively short compression
members.

3. For rectangular, relatively long space grids, optimum design is ob-
tained with systems where the load is mainly carried across the short
span. Systems where the members in both top and bottom layer grids
are parallel to the edges will generally result in the least material

consumption.

4. If both the material consumption and the number of nodes and number
of members are considered, the space grid systems shown in Fig. 1 a
and b will, generally speaking, result in good overall economy. This
could be concluded from investigations on both square and rectangular
double-layer space grids, simply supported along the entire edge or
column-supported at the corners.
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R.B. KULLMAN — R.W.MILLS — M.U. HOSAIN
Macphedren, Robb Engineering, Robertson Kolbeins Teevan & Gallaher Associates, & University of Saskatchewan, Canada

ANALYSIS

Most Common Method of Analysis is to
Model the Stub-Girder as a Vierendeel
Girder and Then Use a Conventional Stiffness
Program

RESEARCH
Univ. of Saskatchewan, Saskatoon, Canada
Univ. of Alberta, Edmonton, Canada

Louisiana State Univ., Baton Rouge, U.S.A.
Univ. of Arizona, Tucson. USA. _
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() Vierendeel Girder Model

Integration of Building Services inic
g the Structural System
" ADVANTAGES:

Integration of Building Services

Simplified Girder to Beam Connectior
Reduced Building Heights, Lower Cost

APPLICATIONS IN CANADA

Building Storeys Area (m’)
Nova Building, Calgary 37 70,000
| Manulife Bldg., Edmonton 24 711,000
401 West Georgia
Project, Vancouver
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T. OSHIRO — T.YABUKI — S. HAMADA — Y. ARIZUMI

University of the Ryukyus, Japan

ULTIMATE STRENGTH OF HIGH DEPTH CURVED GIRDERS

. AIR_VIEW FUTURE OKINAWA CITY MONO-RAIL
WHICH WILL BE COMPLETED IN 1987.

THE PURPOSE OF THIS STUDY IS TO INVESTIGATE
THE BEHAVIOR OF THE CURVED GIRDERS TO BE
CONSTRUCTED WHERE THE GIRDERS ARE

DESIGNED WITH THE RADIUS OF 55 M TO 120 M.
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