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Vil

Optimum Design of Metal Structures by Backtrack Programming

Dimensionnement optimal de constructions métalliques au moyen de la méthode de programmation
,,backtrack”

Optimalbemessung von Metallkonstruktionen mittels der Backtrack-Programmierungsmethode

JOZSEF FARKAS
Prof., Dr. techn.
Technical University
Miskolc, Hungary

SUMMARY

The backtrack method solves the nonlinear constrained function minimization problems by a systema-
tical search procedure. This combinatorial discrete programming method can be successfully applied to
optimization problems if the number of unknowns is not too large. In the optimum design of welded
beams a substantial search reduction may be achieved. A simple numerical example shows that this
method is also advantageous for educational purposes.

RESUME

La méthode ,,backtrack’’ donne la solution des problémes de minimisation de fonctions nonlinéaires
conditionnelles par procédé de recherche systématique. Cette méthode combinatoire de la programma-
tion discrete est bien applicable aux problémes d'optimisation, si le nombre des inconnues n'est pas
trop grand. Dans le cas de poutres soudées, il est possible de réduire considérablement les pas de la re-
cherche. Un simple exemple numérique illustre les avantages que cette méthode offre pour I'enseigne-
ment.

ZUSAMMENFASSUNG

Die Backtrack-Methode I6st die nichtlinearen bedingten Funktionsminimierungsprobleme mit Hilfe ei-
nes systematischen Suchverfahrens. Diese kombinatorische diskrete Programmierungsmethode ist auf
Optimierungsprobleme gut anwendbar, wenn die Anzahl der Unbekannten nicht sehr gross ist. Im Falle
von Schweisstragern kann man die Suchschritte wesentlich reduzieren. Ein einfaches Zahlenbeispiel
zeigt, dass diese Methode auch fir Unterrichtszwecke vorteilhaft ist.
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1., THE BACKTRACK PROGRAMMING XLTHOD

The general exposition of backtrack was given emong others by GOLONB
and BAUMERT [4]. This method was spplied to welded girder design
e.g. by ANNAMALAT, LEWIS snd GOLDBERG [1]. SZABS [5]hss used it for
the minimum cost design of hybrid I-besms. The backtrack method
solves the constrained function minimizetion problems by & systema-
tical search procedure. A pertisl search is carried out for each
veriable and, if the possibilities are exhausted, then a backtrack
and a new partial search is performed. In the optimum design of
welded beams s substantial search reduction may be schieved by uti-
lizing the fect thet, in most cases, the cost function becomes
meximum if the verisbles take their msximum values. Thus, the opti-
mum solution cen be found by decreasing the varisbles,

We should search for a vector of varisbles x (xl,xz,oo.,xn) for
which the cost function will be minimsl: C(xPmin end which sstis-
fies the design constraints: gj(z)EEO (j=1...p). The series of
discrete values of variables are determined by Ximin® Ximex 2Nd

by the constent steps 4x; between them. The flow disgram of
backtrack for three veriables is given in Fig.l. The mein phsses of
the calculation sre described as follows.

1/ With constent values of Xorax 204 X ox the minimum X0
velue is searched which still satisfies the design constraints.
For the sake of simplicity we use further on the notetion Xy =Xy
The search msy be more efficient by using the intervel halving
procedure. First, Xypin velue is proved. If x

the requirements, the interval x

. dissatisfies
1mex F1lmin is halved. For the

helving method it should be x % = 43xi02q where q is an

imax “imin

integer.

2/ Sirkilerly to the first phase, the minimum X, =X, Vvalue is
determined by meens of helving process, which sstisfies the design
constreints.

3/ In order to obtain the next xs—velue, we do not use the intervel
helving method. In general, X5 mey be easily expressed from the
equation 0(11’12’13) = C,, so this will be the next x,-value.
Thus, for the series of x3-values it is not necessery to prescribe
the condition Xy nex X3min - z&x3°2q° Regarding the next x3-value
three cases may occur as follows.



‘ J. FARKAS 599

5?/'If x3>'?3max’ Te ?ake Xg = x3ma; and dec?ease it step-by-step
t1ll Xz which satisfies the constreints or till Xznin® Then the
first partisl search region is exhausted and we must backtrack to

_ ) : ‘ 4 + .
}_C2‘ If Xn <Xpnaxr WE continue the calculation with X, sz,
if X5 = Xopayr WE backtrack to Xy .

3b/ If X5 < X , we backtrack to x;.

3min
3¢/ If x3min<:x3<:x3m8x and %3 dissetisfies the constraints, we
backtrack to x,. If the constreints are satisfied, we continue the
celculation according to 3a.

The simplicity of the method ensbles us to apply it in the educstion
as well. The following numerical example shows that the steps of
the calculation csn be essily followed by a pocket celculator.

2. NUMERICAL EXAMPLE
The cross section areaer of & welded I-section subjected to bending

and compression should be minimized. The objective function is
C=4A=ht +2A (v

h = x; web height, ty T % web thickness, Ap = X5 area of o flange.
The constraint of meximum stress (gl) is
<
6y + 6 £ R, 3 (2
where Gﬁ = M/W_; the section modulus W_= h{Ap + htw/6) (3)
ond 6 = N/A “)

M end N are the factored bending moment and ccmpressive force, res—
pectively, R, is the limit stress /ultimate resistence/.

The constreint of web buckling (g2) for steels of tensile strength
370 MP2 may be expressed as [3]

2
a + 6/6,)

h <

2 2145 (5)

R 1+17%6,/G,)
Take M = 320 kNm, N = 128 kN, Ru = 200 MPa. The lists of discrete
values are as follows (cm, cm2): h .= 66; hoox = 74; Aah = 2;
twmin =0,53% twmax=0,9;.dtw=0,1; Afmin =14; Afmax =22;41Af=1. Thus,

the total number of combinations is 5.5.9 = 225. The steps of the
calculations are shown in Table 1. It can be seen that the backtrack
method requires only 37 tests to obtein the following optimal values:

h =70 cm; t, = 0,6 cm; Ap =18 cm2.

Note that a significant sesrch reduction cen be schieved by using
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firgt a coarse scale of discrete values (iarger Alxi) and then
continuing with smaller 4% values in a smaller region near the

optimum found in first phase.
%+« APPLICATIONS

We: have carried out cslculations with & Fortran program of backtrack
method for the following optimizetion problems.

1/ Optimum design of compressed columns of constant welded square
box cross section by using the author’s cslculation method published
in (2] (2 unknowns) .

2/ Minimization of cross section erea of welded I-sections subjected
to bending and compression (4 unknowns) . The spplicetion of these
suboptimized I-sections to the elsstic minimum weight design of fra-
mes was demonstrated by & numericel exsmple in [3]. This numerical
example wasg calculated as a problem with 8 unknowns as well.

3/ Minimum cost design of welded homogeneous and hybrid I-beams,
simply supported end uniformly losded (4 unknowns) . In the objective
function the costs of meterisls, welding and peinting were taken
into account. The lowering of flange thickness with & welded splice
wes elso considered (3], [5].
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Flow chert for the backtrack progremming
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Table 1. Numerical example illustrating the steps of backtrack
method in the case of three unknowns. Notation: + satisfies,

- dissstisfies
X 3 c g g
1| %2155 1 2
cm)| em| @m?| (cm? Eq. (2)| Eq. (5 Commenta
741 0,9 | 22 | 110,6 + + C, = 110,6 cm?
66 10,9 | 22 10%3,4 + + x, - satisfies, it is not
66| 0.5 | 22 77.0 + = dmin ’ :
66| 0,7 52 90,2 + + necessary to use the helving
66 | 0.6 55 836 & ") process for xl,only for X,
66 | 0,6 | 22 83,6 + + =(110,6-66.0,6)/2=35,5>
glgel 2| ) 1| 1| T G
66| 0,6 | 19 TT, - + | backtrack with X,
66 0,7 | 16 78,2 - + x3=(79,6—66.o,7’)72 = 16,7
661 0,81 13 X < X i backtrack with Xy
28 0,91 22 105,2 * + [ halving process for X,
810,55 | 22 78,0 ¥ -
68| 0,7 | 22 91.6 + +
68 1 0,6 | 22 84,8 * *
68| 0,6 | 19 78,8 + + x3=(79,6—68.0,6)/2 = 19,4
681 0,6 | 18 76,8 - * Co = 78,8; backtrack with X,
680,71 15 77,6 - + x3.=(78,8-68°0,7)/2 = 15,6
68| 0,8 | 12 Xy < Xz backtrack with Xy
701 0,9 | 22 107,0 + + | helving process for x
70| 0,5 | 22 79,0 B - 2
70(0,7| 22 93,0 + +
701 0,6 | 22 86,0 + +
T0] 0,6 | 18 78,0 T ¥ [ %5=(78,8-70.0,6772 = 18,4
701 0,6 | 17 76,0 - + Co = 78,0; becktrack with X,
70 0,7 | 14 TT,0 ¥ [ %5=(18,0-70.0,7)72 = 14,5
701 0,8} 11 Xy < Xgnins backtrack with Xy
721 0,9 | 22 108,8 + + | halving process for X5
72| 0,5 | 22 80,0 + -
72| C,7 | 22 94,4 + + ,
721 0,6 | 22 87,2 + . i
721 0,7 | 13 x3=(78,0-72.0,7)/2 = 13,8<
<Xznin? backtrack with Xy
;j 8,2 gg lég,g + + | helving process for X,
: + -
741 07| 22 | 95,8 | + +
4] 0.6 22 88, +* -
X=X oy’ Tesults: Comin—78,0
Xy= 703 X5= Q,63; x3= 18
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