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Optimization Concepts and Techniques in Structural Design
Concepts et techniques d‘optimisation

Grundlagen und Methoden

ANDREW B. TEMPLEMAN
Professor of Civil Engineering
University of Liverpool
Liverpool, GB

I INTRODUCT ION

Since the early 1960's structural optimization has established itself as
an important area of research in structural engineering and it is now gradually
becoming an integral part of the fechnological expertise of practising designers.
The phrase "structural optimization" conjures a very specific impression in the
minds of most engineers relating tfo the application of numerical search tech-
niques to mathematical models of certain types of structures. Whilst this
impression is correct in detail it is by no means the whole story. The history
of architecture and structural design has been characterized from the very
earliest times by efforts to design structures which were in some respect
"better" than their predecessors; to use materials and resources more efficiently
and to design structures which were as well-suited as possible to their
functions. This continual search for improvement is essentially an optimization
process, to use the term in its widest sense, and it pervades all present-day
engineering activities.

On a national and regional scale governments seek to invest in new
industries, resources and communications so as to obtain maximum benefit from a
limited investment. At the project level an engineer strives to produce
efficient, cheap and reliable designs for projects to satisfy functional
requirements. The contractor wishes to use his resources of manpower, machinery
and capital in the most efficient manner and the client is concerned whether his
structure will be economical to run, to use and to maintain. The whole process
of project planning, design, construction and operation is governed by the need
to produce the best possible solution. Traditionally, emphasis has been placed
on the infuitive skills and ability of experienced planners and engineers to
produce near-optimal solutions to problems. However, the demands of an increas-
ingly technological |ly-based population now require that projects are larger,
more expensive and more complex. Financial pressures towards cost economy are
increasing. Restrictions imposed by aesthetic, social, environmental and
technological factors are ever more stringent. A result of this increasing
complexity of the design process is that traditional reliance upon the skills of
individual designers must change to meet present-day circumstances.
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Consequently, more assistance is now sought from the digital computer, with its
speed and power to solve complex problems rapidly, to meet these demands.

Since the digital computer was first used on structural engineering
problems over twenty years ago it has completely transformed methods of struct-
ural analysis, so that now the use of matrix stiffness and flexibility methods
as well as finite element techniques is commonplace in structural design offices
throughout the world. However, as it became possible to analyse increasingly
complex structures it also became more difficult to interpret the results of the
analysis in a logical way for design purposes. |t was, therefore, a natural
trend in research to try to use the computer to produce design-oriented informa-
tion rather than analysis-oriented information for the designer to interpret.
Thus over the last ten or fifteen years research into aspects of computer-aided
structural design has considerably increased. Once it was recognized that the
engineering planning and design process is an optimum-seeking one it was also
natural to see whether the computer could not also be used to produce not merely
design information but optimum design information so that the structural
engineer could play his part effectively in the planning and design of efficient,
cheap and reliable structures. The computer, therefore, afforded the possibility
of helping with the two basic problems mentioned above of the increasing
technological complexity of structural design and the growing pressures fowards
cost control and economical designs.

However, just as the computer revolutionized structural analysis by
demanding new techniques suited to its abilities a similar revolution was
needed in design techniques if the computer was fo be of real use in this area.
In the early 1960's Schmitl and others gave a first insight into a new computer-
oriented approach to structural design by examining the application of newly-
developed techniques of mathematical programminy and optimization to problems of
structural design. Thus structural optimization in its modern form was born.
With the passing of time it is perhaps difficult to realize that in the early
1960's the philosophy of structural optimization was really very novel. The
early research referred to above clearly demonstrated what had not previously
been self-evident: That the largely ad hoc processes of structural design which
appeared to have little formal logic may in fact be expressed formally and in
mathematical terms, and that there was as much rigour and logic in solving an
optimum structural design problem as there was in solving a structural analysis
problem. Perhaps the largest contribution which the study of optimization has
given to structural engineering is that it has put structural design on a formal,
mathematical basis and by so doing has unified a previously fragmentary and ill-
disciplined subject.

Coming some fifteen years after Schmit's original work this paper examines
some of the more recent developments in structural optimization techniques. It
shows that there are still many difficulties to overcome for the full potential
of optimization to be realized and it is hoped that it will give an insight intfo
the way in which structural optimization creates a greater understanding of the
nature of the design process and of structural behaviour.

2. A HIERARCHY OF STRUCTURAL OPTIMIZATION PROBLEMS

The rationalizing and formalizing influence which optimization has had
upon structural design now means that structural optimization problems may be
conventionally expressed as:
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Minimize, or Maximize 9 (xi) i=1, ..., N )
<
Subject to constraints gJ (xi) =+ 0 J= 1y oy M r ()
>
X, 2 0 1 = 1y weny N J
The variables in this problem, xj, i =1, ..., N, usually represent physical

parameters of the structure tc be designed such as dimensions, spacings, bar
sizes, plate thicknesses, etc. These variables are under the designer's control
and he wishes to find "best", or optimal values for all of them. The objective
function gg (xj) which is to be extremized represents some evaluable criterion

of efficiency of the structure. The efficiency criteria most frequently used

are such things as minimum structural weight, minimum cost, maximum factor of
safety, etc. The choice of objective function will be commented upon later.

The M constraints 9j (xj) may be equalities or inequalities and they originate
from many sources. They specify, for example, the mechanical behaviour of the
structure under load, the known properties of the materials used, requirements

of relevant codes of practice, fabricational requirements, geometric and layout
requi rements, etc. All relevant restrictions and requirements upon the structure
must appear among the constraints. The non-negativity condition upon each
variable is necessary fto ensure that values are obtained for all the problem
variables which are real and feasible in an engineering sense. Sometimes integer
values or values from a discrete set may be required.

Generally structural optimization problems are large -and non-|inear except
for all but fthe simplest structures. This is seen if a single, very much
simplified structural element is examined. Fig. | shows the cross-sectional
shape of a typical reinforced concrete T-beam,

To design this beam of known length and
- Xy loading so as to minimize a simple cost
function involves finding optimal values

for the seven variables shown. The cost

rr—————
function go is fairly simple o write down.

A IT involves the cost of the concrete and
| of the steel, both roughly proportional to

b 3 the volumes of concrete and steel, and it
QCS Total also involves the cost of shuttering the
- Areas  beam during pouring. This cost depends
upon the perimeter of the cross-section.
L — The objective function is then a simple
LE one but is non-linear in the variables.
qfﬁjiffg;; Many constraints are necessary to ensure
that the concrete and steel can adequately
XCq carry the bending stresses in the beam and
o also resist shearing stresses. Codes of
practice prescribe maximum permissible
FIG.1 values for these stresses and also
prescribe a large number of other permiss-
ible values for such things as deflections, crack widths, bar spacings, efc.
There may be fabricational constraints which limit, for example, the bar areas
to be not less than some available size. The designer may also add constraints
himself if the beam has to fit some restricted location within a structure.
Typically to fully describe the optimum design problem, between ten and twenty
constraints may be needed in the seven variables and because of the functions
involved in these constraints they are almost all highly non-linear ones.

|
\f
B
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Problems of this size and complexity can now be solved fairly rapidly by a
variety of methods which will be outlined later in this paper. However, This
example is merely a single beam element. Most real-world structures have many
elements such as beams, columns, slabs, panels, etc., and to fully describe the
optimum design problem for such real-world structures may require many hundreds
of variables and constraints. The general characteristics of structural
optimization problems are therefore that they are large, multivariate, non-
linear, constrained problems.

Because problem size and complexity become enormous when all variables and
constraints are lumped together in a single problem a hierarchy of problems has
developed. The hierarchy is as follows:

l. Topology of the structure

2. Geometry of the structure

3. Overall sizes of structure members
4, Detailed design of elements

The logic and implications of this hierarchy can be demonstrated by reference to
the beam example which falls into category 4 of the hierarchy as it is a detailed
design of an element. Suppose this beam was one of a known number of beams
supporting a deck slab longitudinally. By optimizing the cost of each beam in
turn cost savings would accrue over a non-optimized design and may be consider-
able. However, the inquiring designer will ask himself whether the specified
number of beams is itself optimal. |f more longitudinal beams were used the

load to be carried by each would be reduced and so the necessary size would also
be reduced. The cost savings to be gained by using a larger number of smaller
beams or a smal ler number of larger beams might well be far greater than anything
achieved by merely paring down upon detailed design sizes. This type of problem
falls into category 3 of the hierarchy.

I f the deck and beams form part of a bridge over several piers then the
interested designer will soon find himself considering the cost savings to be
made by varying the distances between piers to arrive at an optimum geometric
arrangement in category 2 of the hierarchy. This promises the possibility of
even greater cost economy. Finally category | which holds out the greatest
savings of all, is concerned with topology. Was the decision to build a deck on
concrete beams over supporting piers itself optimal? Would not an alternative
structural form be more efficient? Why not use a steel box-section deck?

This example demonstrates the logic of the hierarchy fairly well and also
demonstrates two general features of it. Starting from the lowest category 4,
the higher up the hierarchy that optimization can be used the greater the
potential for economy becomes but also the more difficult optimization becomes
fo implement. This second feature is reflected by the fact that very little
work has been published on the optimum fopologies of real-world structures, the
work of Michell? being of theoretical interest rather than practical use.
Indeed, the present state of the art of sfructural optimization is that a vast
amount of research work has been published on methods for category 4 problems,
and it can be stated that most problems in this category can be solved fairly
rapidly. Much work has also been done in category 3 but success there has been
less general and new techniques are required. The available literature in
category 2 is fairly small but has significantly increased in the last two or
three years. Much more work remains to be done in this category and in category
| where significant practical literature is almost non-existent.
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3. APPROXIMATION CONCEPTS

Very often approximations are used in the formulation of optimum design
problems for two reasons. Firstly they can be used to hold problem sizes down
to a level at which computer solution does not become inordinately expensive.
Secondly they can be used to decompose a large design problem into a series of
smal ler problems. Another simple example demonstrates this. Consider the
problem of the optimum elastic design of the beam/column framework of a multi-
storey building such as that in Fig. 2. Each member of this framework may have

up to ten detailed dimension varia-
: . bles and perhaps ten to twent
Vertical Se’IF—welght and cons‘i’r‘aings. E\ comp lete op*rir)rlmm
imposed loads design problem for such a structure
including both overall member sizes
and detailed dimensions (i.e.,
categories 3 and 4) would therefore
involve hundreds of variables and
constraints and would be impossibly
Wind expensive in computation time.

Load Approximations can be used to
effectively decompose or separate out
the large problem into a single
category 3 program and many simple
category 4 problems. This is done by

4 J’ J selecting for each beam or column
4 e = 7 element of the structure a single
parameter and relating the cost,
FIG.2 weight and behaviour of the element

to this single parameter. In this
particular example a suitable parameter might be stiffness, E L. Each element
has thus been approximated and obviously in problems generally care must be
taken to ensure that the approximate element really does behave as the real
element does. The framework is then reassembled using approximate elements and
a single category 3 problem may be formulated. This would consist of finding a
complete set of optimal stiffness values for the framework which minimizes the
cost of the framework while satisfying as constraints the equations of equili-
brium and compatibility for all the applied load cases.

Having found the'set of optimal stiffness values an analysis of the frame
using these values determines all the beam and column moments and forces. Each
element may then be designed separately as a category 4 problem so that its cost
is minimized over all five fo ten detailed variables. The loadings are those
obtained in the analysis and the constraints would be the normal detailed
constraints plus an additional one that the stiffness of the element must be
equal to the value obtained for the approximate stiffness parameter in the over-
all size optimization.

Decomposition by means of approximations such as this is very widely used
with considerable success. Frequently, in the aerospace industry very complex
structures such as wing boxes, fin and tail structures, etc., are approximated
as assemblies of membrane plates and shear panels for which rapid minimum weight
design programs are available. One note of warning however; the last stage of
any optimum design problem should always be a detailed analysis of the optimum
design to ensure that approximations have not caused errors to be introduced.
Indeed, on a more general basis it should perhaps be made clear fthat optimiza-
tion is not intended to replace the designer. The cbjective is to provide him
with information on what the most efficient solution to the problem posed might
be. Only the designer can know whether the problem he posed is a complete one
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and whether it was representative of the real-world structure. Optimization can
only suggest a possible design which the designer is then at liberty to modify or
reject or accept after further analysis. There are always factors in the mind

of a designer which he cannot quantify but which nevertheless influence his

designs. In using structural optimization to assist him the designer should
attempt to formulate a representative problem only. According to how much he
feels has been pui intfo the problem or omitted he alone will know how much

reliance to place upon the suggested optimum design and also how much he must
alter it to satisfy himself regarding the unquantifiable factors such as
aesthetics. Structural optimization produces preliminary design information and
should never be expected to produce a final design.

In this section on approximation concepts it is useful to comment further
upon the choice of objective function to be extremized. In purely technical
problems involving reliability, dynamic response, etc., tThe correct objective
function is usually fairly obvious. In more general problems cost or weight
usually provide a direct measure of the efficiency of a design. In the aerospace
and shipbuilding fields weight is generally of paramount importance partly
because it directly reflects an element of cost but more because it directly
affects the operational efficiency of the vehicle. |In civil engineering weight
is perhaps not so important and cost seems to be the vital factor in design.

Some structural design applications of optimization in the civil field are fre-
quently criticized because weight has been used as an objective function or, if
cost has been used then not enough of the elements of cost arising from fabrica-
tion, erection, labour, etc., have been used or the cost coefficients are invalid
in an inflating economy. Sometimes these criticisms are valid but frequentiy the
solution is relatively insensitive to variations in the objective function. What
is important in constructing an objective function is to ensure that all the
variable major elements are included with coefficients of the right order. If,
in the future the price of steel was to reach the present price of gold tThen
designs for steel structures would change only minimally since labour costs would
likewise have escalated along with costs of all other materials. Cost objective
functions are almost always approximations in themselves and as was stated
earlier the important thing is to ensure rthat they are truly representative
approximations.

To conclude this section on approximation concepts the occasional require-
ment that variables must have integer values or values picked from a discrete set
is examined. Ihese requirements considerably complicate the solution of problems.
A useful way of handling them is first of all to ignore them and solve the
problem using continuous variables. The solution of this problem will then be in
the approximate area of the solution for integer or discrete variables in most
cases. Pathological examples can be constructed mathematically in which the
integer/discrete optimum is completely different from the continuous optimum but
this does not occur in real-world structural optimization. Having found a
continuous optimum integer programming may be used to find the integer/discrete
optimum in that region, or, as is perhaps more appropriate, the designer in his
analysis, checking and modification can round the continuous solution to suitable
discrete values. This continuous approximation to discrete functions is most use-
ful by virtue of the fact that it has reduced the area of search for a discrete
optimum to a small region around the continuous optimum. Had this discrete search
been made over the whole feasible design space it would be a very lengthy
procedure.

In the field of steel civil engineering structures geometric similarity
may be used to construct continuous functions representing the section proper-
ties of rolled steel sections which are available only in a range of discrete
sizes. Consider, for example, the range of available wide flange beams.
Select a characteristic cross-section parameter such as section area, A. The
assumption is now made that all beams in the range of available sizes are
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geometrical ly similar in shape but differ only in scale. Then with this assump-
tion it can be shown that the section modulus Z of a beam in tThis range is
related to its area A by the relationship:

Z = C A2 (2)

Similarly the moment of inertia, | and the depth d are given by:

n

| = Cy A2
1 (3)

d = Cy A2

and similar relationships hold for all section properties which may be related
to a single characteristic parameter, The coefficients C,, C,, C3, efc., are all
constants for the particular range of sections and may be found by examining any
discrete beam within the set.

This continuous approximation has essentially replaced the set of discrete
beams by a single variable A fo which all section properties are related by known
functions (2),(3), etc., |If variable A is used in an optimization problem the
optimal value A¥ will correspond very closely to perhaps two or three beams
within the set from which a discrete member may be selected., The assumption of
geometric similarity is not absolutely valid for all sets of available rolled
sections but is sufficiently accurate for the purpose here.

Thus far this paper has examined some of the major concepts of structural
optimization and some of the general techniques involved in problem formulation
for real-world structures. Very often it is difficult fo formulate a representa-
tive mathematical model for the design of some structures particularly in the
architectural area where the component of subjectivity in design is far greater
than objectivity., However, having formulated a problem in the general form of
problem (l) it is necessary to be able to solve it, and so solution methods for
structural optimization problems will now be considered.

4, SOLUT ION METHODS IN STRUCTURAL OPTIM|ZATION

It is important in any survey of methods of structural optimization to
di fferentiate between mathematical and structural optimization fechniques.
Although problems of optimum structural design can be expressed in mathematical
form (problem (1) ), the ideal solution technique from the viewpoint of a
structural engineer is quite different from what a mathematician would consider
ideal., Basically the structural engineer is interested in the structure which
the problem represents rather than the problem itself. He is interested in the
results of the optimization rather than the means whereby they were obtained.
Any optimization method for use in engineering problems must therefore be flex-
ible enough to solve as wide a range of problems as possible - frequently
problems will alter several times as new constraints and variables are introduced
by the engineer to more accurately represent his real-world design problem, The
method used should be robust in operation and reliable - +the engineer wants
useable results and is frustrated by a solution method which in operation is
very sensitive to the mathematics of a problem. Any method should be compara-
tively easy to use and should require a minimum of pre-sclution computer
programming and preparation. The engineer is comparatively little bothered by
the need to differentiate between global and local optimality of solutions since
a great many structural optimization problems display very flat, plateau-like
optima. Similarly, exfreme accuracy of the solution is not necessary since the
mathematical problem itself is only an approximation to a real-world structural
design and the designer is aware that the optimum solution is only a guide for
him and will probably require modification in accordance with factors not
included in the mathematical formulation.
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The mathematician, however, has a different viewpoint and is interested in
the means whereby results are obtained. He is happy 1o develop a method which
solves a very limited class of problems if it is efficient on those problems.
Flexibility of a method is of comparatively little interest. Methods are offen

reported in the mathematical literature which have low reliability - they are
efficient on some problems yet fail to produce results for purely mathematical
reasons on problems which to all intents and purposes look very similar., Such

methods are of little interest to an engineer who wants results all the fime.

By training, the mathematician concentrates upon such factors as solution
accuracy, speed and accuracy of convergence to the solution, and differentiation
between local and global optima.

It is not the intention to disparage the approach of the mathematician in
developing optimization techniques. Without this work structural optimization
would not be af its present stage of development. |t should be sfressed however
that it is very necessary to examine all mathematical fechniques carefully fo
determine whether they are suitable for the needs of the structural engineer.
Very often the structural engineer uses relatively simple and crude techniques
to solve problems, not out of ignorance of more sophisticated methods but
because he can place reliance upon the results obtained, This point is often
mis-understood but is an essential difference between mathematical and structural
optimization,

The methods now described are those which, after careful examination and
thorough testing by structural engineers, have been established as suitable for
optimum structural design problems, The criticisms levelled at them are likewise
based upon the performance of the methods on problems arising in the design of
real-world structures. At this stage it is useful to restate the basic
characteristics of most structural optimization problems which are that they are
large problems with many variables and a large number of non-linear constraints.

4.1 Unconstrained Methods

I+ may seem odd to commence a survey of methods of structural optimization
with methods for solving unconstrained problems since structural design problems
almost always have a large number of constraints, However, many of the concepts
of unconstrained methods are useful in constrained problems and also there are
methods which transform problems having constraints to unconstrained problems.
Unconstrained optimization can be formally expressed as:

Minimize 9 (xi) i=1, «..p, N (4)
I+ is not necessary to consider maximization separately since this can be
effected by minimizing the negative of go (xj). The N variables xj represent an
N-dimensional infinite design space in which all values are feasible. |In order
to find the minimum value of the function go the classical theory of optimization
examines all stationary points of g5, i.e., solves the set of equations:

9 '
~a->-<—i— O(xi)—O i =1, «ves, N (5)
The minimum must be one of the set of possible solutions of (5) and it can be
found by substitution of all solutions of (5) into (4), the lowest result being
chosen. However, there are very many circumstances under which this classical
approach just does not work, Typically, it does not work if go (xj) is a non-
analytic function or if some of the derivatives in (5) are discontinuous. The
science of optimization theory stems from the very frequent failure of fhe
classical approach to solve problems.
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In the absence of a successful classical approach to problem (4) a logical
method of finding the minimum value of go would seem to be to evaluate go at a
series of trial sets of values of the variables and to numerically select the
lowest result. This can be done by imposing a 'grid' over the design space and
evaluating go numerically at each grid intersection point. However, if the
likely range of each variable x; Is divided into equal divisions so as to give 10
trial values for each variable the total number of values of g5 which must be
evaluated is 10N, |f there are many variables, i.e., if N is large, this number
is very large and the method uses too much computer time. A random search in
which trial points are selected according to a statistically random sequence is
likewise Inefficient because of the large number of trial evaluations of go which
must be made even to locate a point near to the optimum,

A much better search strategy is to try to ensure that each trial evalua-
tion of gy is made according to a set of rules which give a good likelihood fhat
go Will be reduced. A vital concept in this context is that of the gradient of
go- The gradient of go with respect to some variable xj is simply the first
partial derivative of go for xi, i.e.,

§%T % (xj)

Obviously if the gradient of go for variable x; is negative then if the value of
Xj Is increased go can be expected to decrease. |f, at each new evaluation of

9o (xj) all the first partial derivatives can also be evaluated then a new trial
point at which the value of g5 could be expected to decrease can easily be found
by either increasing or decreasing each value of x{ according to the sign of ifs
partial derivative. Very many numerical search strategies are based upon using
gradient information to produce a new search direction in which new trial evalua-
tions may be made with maximum |ikelihood that go will decrease.

The steepest gradient method is one such strategy. The N gradients of go
at a particular ftrial point represent an N-dimensional plane which is exactly
tangential to the surface of go at the trial point. The steepest gradient method
finds that direction upon the tangent plane in which the slope of the plane is
maximum. Then by placing a new trial point somewhere along this direction in a
decreasing sense gy can be expected to decrease in value by more than if fthe
trial were placed in any other direction. The steepest gradient method is a
frequently used one in engineering design because of its reliability and its ease
of implementation. However, though it always finds a minimum it can often
converge very slowly. This is because the tangent plane is essentially a linear
approximation to the surface of go which is exact only at the trial point. Once
a new trial point is selected, even in the direction of the steepest gradient, at
some distance from the original trial point the non-linearity of go may render
the tangent plane approximation inaccurate, leading to very slow convergence.

For this reason directions other than the steepest gradient direction are
often used to form the basis of a search procedure. Methods based upon conjugate
directions are typical of these. Within the scope of this paper it is not
possible to examine these methods in detail but their objectives should be
stressed. The purpose of such methods is fo improve the rate of convergence of
methods |lke the steepest gradient which, although logical, is sometimes very
slow.

All methods of search which used gradient information as well as frial
evaluations are collectively termed first-order methods because they require
first partial derivatives of go. |In order to improve upon the efficiency of
these methods many second-order methods have been proposed and used. These
methods use the second partial derivatives of go, (i.e., information about the
local curvature of go) in order to speed convergence. Once again space precludes
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further examination of these methods other fthan to comment that because they use
more information about the local behaviour of go they are consequently more
efficient. For a very readable account of many different methods for uncon-
strained minimization reference should be made to the work of Sargent".

Several comments should be made on the general applicability of zeroth-,
first- and second-order methods to structural optimization. From the point of
view of speed and efficiency second-order methods are obviously strong candid-
ates. However, these methods require the prior and recurring evaluation of not
only the function gg but also all its first and second partial derivatives. This
can be very time consuming, |f go is a function of 50 variables xj, i =1, ...
50, then there is at each trial point a single function evaluation, 50 first
partial derivative evaluations and the matrix of second partial derivatives
requires the evaluation of 2500 elements. The computer time and space required
for preparatory work and general housekeeping operations can be considerable in
the implementation of second-order optimization methods. First-order methods
also suffer from this criticism but less so. Carpenter and Smith® have
compared the performance of zeroth-, first- and second-order methods on a
selection of simple structural optimization problems by the SUMT method®
This comparative study is valuable as it brings out very clearly the advantages
and the disadvantages of each method. They c0nc|uge that on the problems they
examined the first-order method of Fletcher-Powell was preferable for larger
problems, Newton's second-order method for small analytic problems and the
behaviour of Powell's method’” , a frequently used one, was generally poor.
However, it is also fair to comment that although this sort of information is
very useful it is inevitably problem-dependent. For some problems the first and
second partial derivatives may be easy to obtain while for others they may be
obtainable only by numerical difference fechniques which can be very laborious,
The choice of methods is therefore a complex one but, bearing in mind that
Carpenter and Smith compared only three methods which have been available for at
least ten years, their conclusions form a very useful guide.

4.2 Penalty Function Methods

The above section on unconstrained methods is necessary for an understand-
ing of penalty function methods which solve a constrained problem by means of a
sequence of unconstrained problems. Penalty function methods have been widely
used in structural optimization and are among the more popular methods.
Consider the equality-constrained problem:

Minimize 9% (xi) i I, «vep N
(6)

Subject to gJ (xi) =0 Jg=1, «vep, M

The penalty function approach replaces problem (6) by the unconstrained problem:

M
Minimize F = g (x.) + 2. P. [g. (x)]2 i =1, «ee, N (7)
o i T=1 J J i
In which values of Pj, j =1, +.., M, are positive constants. The function F is
therefore composed o* the original objective function go plus the value of each

constraint multiplied by a penalty factor Pj. Starting with some known set of
factors Pj, F is minimized using unconstrained techniques. All values of Pj are
then considerably increased and another unconstrained minimization of F is
performed. This process continues for increasing values of the penalty factors
and has the effect of forcing each of the constraint functions gj towards the
value zero. Thus as values of P; are increased the results of fthe sequence of
unconstrained minimizations of F tend towards the sclution of problem (6).
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Penalty function methods are also applicable to inequality constrained
problems. |f the constraints gj in problem (6) are writfen as:

g; x) 50 J= 0, e, M (8)

a suitable interior penalty function problem is:

ly veus N (9)

Minimize F = g_ (x.) = P %‘. [gJ. (x)]1 i
J=

where P is a positive penalty factor. Starting with a large value of the penalty
factor P an unconstrained search is carried out from a feasible starting point,
(i.e., values of x; which do not violate any of the constraints - hence an
interior or feasible point). The solution of this search cannot be at a point
which causes any constraint value g; fo be zero otherwise F would be infinite.
This time the effect of P is to keep the solution away from the constraint
boundaries. Further unconstrained searches are carried out using a sequence of
decreasing values of P thus the process can progressively approach any constraint
boundary, where gj = 0, if it wishes or can remain feasible, g; < O, if this is
advantageous. The results of the sequence of problems thus converges to the
minimum of go with constraints given by (8).

Much work has been published on penalty function methods and both interior
and exterior methods (the search is always in the infeasible region) have been
widely studied. A popular method is the SUMT method of Fiacco and McCormick®
to which reference should be made. Lootsma’ has given a comprehensive
review of the ToEic and its use in structural optimization has been championed by
Fox10 and Moell in particular.

The chief disadvantage of the approach is that although it converts
constrained optimization problems to the much simpler unconstrained form, it
requires a considerable amount of time to solve the unconstrained problem many
times. Furthermore the composite unconstrained objective function F contains all
the constraint functions gi.and since we have seen that structural optimization
problems usually have many constraints F can be very large. In solution of the
unconstrained minimization if first-order or second-order methods as described
in section 4.1 are used, partial derivatives of all the constraint functions gj
must be evaluated since they appear in F. Thus considerable time is necessary
for the evaluation of derivatives and for this reason the penalty function
approach cannot really be deemed suitable for large structural optimization
problems. |t has been used very effectively on the detailed design of structural
elements or components such as beams, plates, panels, etc., where the number of
variables is perhaps a maximum of |5 and the number of constraints is of the same
order. For more complex problems ifts efficiency can sometimes be rather poor.

4.3 Constrained Numerical Search

In section 4.1 methods of unconstrained numerical search were considered.
Here the feasible region is infinite. When constraints are present, however,
they limit the feasible region which is hedged around by constraints which must
not be violated. The only way of knowing whether a particular frial point is or
is not feasible is to evaluate all constraints at that point and check them for
violation, |f methods of gradient search are to be used it is likewise vital to
know [f a particular search direction points into an infeasible region. This too
involves checking all constraints and the derivatives of constraints. It is
obvious, therefore, that the presence of many non-linear constraints which is
characteristic of structural optimization problems causes considerable
difficulties for any numerical optimization method. The success and efficiency
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of any search technique depends upon the nature of the constraints.

The simplest case is where all constraints are linear equalities. Here
as many variables may be eliminated (expressed in terms of other variables) as
there are equality constraints and the problem is then reduced to an uncon-
strained one in a reduced number of variables. The linear equality constraints
positively help the solution process. When the problem is constrained by linear
inequalities slack variables may be added to convert the constraints to equali-
ties and the solution can then be carried out as above by unconstrained methods.
Linear constraints can therefore be handled quite easily and efficiently.

In structural optimization the constraints are usually and unfortunately
non-linear inequalities. |t is the author's opinion that no numerical search
method for non-linear inequality constraints has yet been developed which can be
advocated on grounds of reliability and efficiency as suitable for anything but
the smallest structural optimization problems, i.e., about 5 - |0 variables and
a similar number of constraints. It is almost always possible to solve problems
more efficiently by the penalty function approach of section 4.2 or by the
methods to be outlined in the following sections. Many methods have been pro-
posed and they founder generally on the need for many frials and derivative
evaluations. These are necessary because of the difficulty experienced in
locating and following a non-linear boundary in N-dimensional space. The only
direct search method for non-linear constraints which could possibly be an
exception is that based upon the Simplex method of Nelder and Mead! which is a
zeroth-order method making trial evaluations at the vertices of a N-dimensional
regular figure which 'spins' through the feasible design space.

4.4 Linear Programming

Throughout this paper it has been emphasized that structural optimization
problems are generally highly non-linear. There is, however, a major exception
to this generalization which arises in the optimum plastic design of structures.
Consider the beam/column framework of a multistorey building such as that shown
in Fig. 2. The design of such a framework on a fully-plastic basis consists of
finding a set of fully-plastic moments My for all members of the framework so
that a prescribed factor of safety against collapse is achieved. The optimum
design is one in which the set of My values also minimizes the weight or cost of
the frame. For a frame of given layout member lengths are known and it is
possible to approximate the cost function for the frame as a |inear function of
the Mp values of all the members. |t should be noted that this is only an
approximation but is a very reasonable one to make in order to solve the design
problem which is in category 3 of the hierarchy described in section 2.

The constraints upon the problem are those of structural mechanics: [t is
necessary 1o ensure that in any possible collapse mode the work done by the
factored applied loads does not exceed the energy capacity of the rotations at
plastic hinges in the frame. This requirement leads to constraints in which
linear functions of the Mp values are bounded above by a known set of constants.
For completeness there should be one linear constraint for each possible collapse
mode. In this problem, then, both the objective function and all the constraint
functions are linear and l|inear programming may be used to find the optimal set
of Mp val ues.

Optimum fully-plastic design has received much attention in the past since
| inear programming may often be used for which efficient and reliable computer
package programs are available. However, the objective function is not truly
linear and from a structural point of view the constraints are incomplete since
several non-linear effects have to be omitted. For instance, elastic instability
of the frame, the reduction of plastic moment capacity due to axial load, and
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change of geometry effects cannot be included. There are also considerable
problems involved in ensuring that the actual collapse mode of the frame is
present among the constraints. Much research effort has been devoted to over-
coming some of these difficulties which is ample testimony to the ease of use
and popularity of linear programming.

Linear programming deals with problems similar to problem (1) in which all
functions gj» j =0, ..., Mare linear. Almost any textbook on optimization or
operational research gives several solution techniques so no specific reference
is made here. Several important features of |inear programming can be mentioned,
however. The first is that very large problems can be solved very efficiently.

Many thousands of variables and constraints can be handled effectively. It is
perhaps for this reason alone that linear programming is popular as a sequential
method, (see section 4.5), for structural optimization. It is very worthwhile

trying to force a problem into a linear format if possible because very large
problems can then be solved. Secondly the duality theory of |inear programming
has the advantage that it gives insight into the nature of the problem which
normally remains obscure. Linear duality may be summarized as follows:

Primal Problem Dual Problem
= :
Lo - L _ Y
Minimize W -l Ci X, Maximize Y g;% bJ ]
Subject to Sub ject to
p» >
a.. X. 2 b, = | eey M a,. A, ¢C i =1, sse, N
= Ji i ] J ’ ’ J‘=| Ji i i ’ 2
X, 2 0 i=1, ««., N AJ <0 J=1, v, M
Thus each primal l|inear programming problem in variables xj has a dual problem

in variables Aj such that the solution of either one is exactly equivalent to
solution of the other. A problem with few variables and many constraints has an
equivalent dual problem with many variables but few constraints, and so the
easier of the two problems may be solved.

Space precludes any further consideration of duality other than to mention
that the physical interpretation of dual variables for a real-world structural
design problem remains a very fertile area of research. Many authorsl!3,lt
have examined linear duality for problems arising in fully-plastic design of
structures and as a result have contributed greatly fo an understanding of the
basic behaviour of structures. As a final advantage of |inear programming it
should be noted that restrictions that variables take integer values or values
from a discrete set can be accommodated by linear programming in a rigorous
manner. This does not generally apply to other methods, apart from Dynamic
programming.

4.5 Sequential Linear Programming

Because |inear programming is an efficient and reliable technique which
can solve very large problems it has been used widely in a sequential manner for
the solution of non-linear problems. The way this is done is as follows.
Consider problem (1) with all functions gj, j =0, ..., M being non-linear. Take
a feasible trial point xj;, i =1, ..., N, and evaluate at this point the values
of all functions gj and the values of all first partial derivatives of all
functions gj. Each of the functions gj may then be replaced by a |inear approx-
imation which has the same value and gradients at the trial point. The
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approximating functions can be easily derived from a first-order Taylor series
expansion about the frial point. The resulting approximate problem is now a
linear programming one and may be solved as such. The result of this linear
programming problem then gives a new trial point at which a new approximating
| inear problem can be constructed. The solution of problem (1) is then
approached by means of a sequence of linear programs.

The sequential |inear programming method can be criticised in several ways.
Firstly, there is no proof that the sequence of linear approximations will
converge to the optimum of problem (1). Conceptually, convergence is oftfen
assumed but if the degree of non-linearity in the original problem is high
convergence of the sequence may be very slow. Also, a linear approximation to a
non-linear problem may be very inaccurate and the results of each linear program
may be highly infeasible for the original non-linear problem. In order to
ameliorate this move |imits are often used which add extra constraints to prevent
the linear search from going too far info infeasible regions. This increases the
number of cycles of iteration and has the effect of imposing convergence to a
point which is not necessarily the optimum of problem (1). The use of linear
programming implies that the optimum will always be found at a vertex of the
linear constraints but this is not necessarily true of general non-linear
problems.

However, despite these criticisms sequential |inear programming remains a
very popular method of structural optimization and although its performance some-
times leaves much to be desired it has been successfully used on a very wide
range of large and complex structural design problems. Popel® has given a
good description of sequential linear programming in AGARDograph 149 which is
entitled 'Structural Design Applications of Mathematical Programming Techniques'
and gives excel lent background material in the area of structural optimization.

A big advantage of the SLP method is that i+ can tackle large and complex
problems unsuited to any other technique. |t has frequently been linked to
finite element analysis programs to give an iterative optimum design capability.
In such cases considerable amounts of computer time are necessary and the final
results are sometimes only approximate optima but this method is the only way in
which complex problems can be solved. Examples in the field of structural design
are many but two may be referred to as they typify the performance of the method
on very complex problemsl64¢17,

4.6 Dynamic Programming

Dynamic programming solves a very special class of problems in which the
objective is to extremize the performance of a serial system.

F% Fﬁ 22 FJQ F%bA PQ Fﬂﬂ

—— | > o

d, sz dy

FIG.3

In Fig. 3 each box represents a stage in the serial system. Consider box I.

Input to this stage is the value of the performance po. By giving different
values to the decision variable d| the output performance p| of stage | is

varied. This output p| of stage | is the inpuf to stage 2 and the system
performance at the end of stage 2, pp, is modified from the input value p| by
decision variable dp. By the final stage N, the final performance criterion pN

is therefore a function of the initial performance pg and the N decision variables
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d| +«+, dy. The objective is to find values for pp and all the N decision
variables which extremize the final performance py. Dynamic programming is a
very efficient technique for solving such problems and was developed by
Bellman!é,

The dynamic programming method itself is not studied here but some
characteristics of the problem should be noted. First of all it is necessary to
have a serial system such as shown in Fig. 3 in which decisions taken at a
particular stage affect only performance after that stage and not before it. No
"looping-back' is possible. Although Fig. 3 shows only one decision variable at
each stage it is possible, though more expensive in time, to have multiple
decisions at each stage. The reason that dynamic programming is mentioned in
connection with structural optimization is that it is very rapid and efficient
in solving problems which fall into the suitable class. Unfortunately very few
structural optimization problems have the necessary sequential decision
characteristics. Palmer!9,20 has applied the method to optimizing the
geometry of transmission towers and frameworks with some success. As a general
comment upon the dynamic programming method for structural optimization it can
be said that it works very well indeed on suitable problems but few structural
problems are suitable,

4,7 Geometric Programming

Geometric programming is perhaps the most recently developed mathematical
programming method to appear on the structural optimization scene. Like linear
programming and dynamic programming, geometric programming solves a particular
class of problems but unlike these other methods the class of suitable problems
is quite large and many optimum structural design problems are suitable.
Geometric programming in its simplest form solves the problem:

Minimize 9% (xi) i =1, «es, N
Subject to gJ (x;) < | J=1, «oup) M (10)
x. 20 i =1, «e.y N

with the restrictions on the mathematical form of the functions gj That:

T N a,..
- JTi -
gJ (xi) = §=E CJT L=L X J=0, ..., M ()
and ij >0 for all j, t (12)

The class of suitable problems is therefore governed by the requirement that all
functions be sums of terms, each term involving products of variables raised to
known powers. Generally all constraints are non-linear inequalities and such
problems can be very difficult to solve directly. Geometric programming does
not attempt direct solution but uses theorems of geometric duality, described by
Duffin et al 2l to construct an equivalent dual problem. Using dual variables
§ the geometric dual problem exactly equivalent to (10}, (Il) and 12) is:

§

T . .

Maximize V (8) = i I ]1T -JL—~—J)
Jj=0 t=l Jt
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-
Sub ject to the constraints z%: 8 = | (13)
= ot
>
a $ =0 I = |; waaiz N
70§ JT ot
in which A=
o)
T
AJ = _ ij J=1ly, «ou, M
Jt 2 0 all j, t

The important feature of the geometric dual problem (13) is that the
constraints are linear equalities. As was mentioned in section 4.3 linear
equal ity constraints actually assist in maximizing V (8) and methods of uncon-
strained search can be adapted to solve the dual problem numerically. The geo-
metric programming method therefore uses duality theorems to convert problems of
a difficult type to solve directly into problems with linear equality constraints
which are much easier to solve. Since the appearance of Duffin, Peterson and
Zener's book?! in 1967 the method has been considerably extended and require-
ment (12) that all coefficients must be positive has now been removed in more
recent versions of the method. Also constraints of reversed sign can be handled.
Temp leman and Winterbottom?2 have summarized these recent developments in a
paper which describes a computer program for geometric programming and its
application to structural design.

Advantages of the method are that it is a non-linear one which works
effectively on highly non-linear problems, The class of suitable problems is
clearly defined and is as easy to recognize as |inear programming. A standard
format of problem input is available which makes solution by means of computer
package programs relatively easy, |t has been shown that very many structural
optimization problems are naturally suitable for solution by geometric
proegramming. The detailed design of almost all types of structural elements
(category 4 of the hierarchy described in section 2) can be expressed as
geometric programming problems., Equations (2) and (3) show that fthe physical
properties of a beam or column can be related to a single variable, A, raised fo
di fferent powers, Terms such as these typify category 4 problems and they are
in the form of (11) which is ideal for geometric programming. Templeman?3 gives
several examples of the optimum design of structural components such as beams,
corrugated plates and integrally-stiffened compression panels and also shows how
geometric approximations may be made to more general problems in structural
optimization., Non-standard problems can then be solved by a converging sequence
of geometric programming problems in a conceptually similar way to sequential
linear programming as described in section 4.5, This has the potential
advantage that more representative non-linear approximations rather than |inear
ones are made to non-linear problems. A final advantage of the method is that
the dual problem sheds new light on the optimum design and much insight can be
gained by attempting to interpret physically the dual of a structural design
problem, This point was made previously in connection with linear duality and
it seems likely that research now being carried out in several centres into
interpretation of primal/dual systems could in the future be of great benefit,
leading to new structural optimization techniques and enhanced understanding of
the design process and of structural behaviour,
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Finally, the disadvantages of the geometric programming method should be
mentioned, Firstly, it is the most difficult to understand of the methods
described here, Secondly, if a computer package is not readily available to a
prospective user of geometric programming then the effort involved in programming
the method is very large, At present there are only a few suitable computer
programs available. Thirdly the method is still relatively in its infancy, its
use is not widespread and much of its great potential is still to be realized.
Finally, the performance of the method on very large non-linear problems is
dominated rather by computer sftorage and hence also by run-time. Factual
evidence of this is as yet small but it may be that there is a fairly high limit
upon the size of geometric programming problems which can be solved within normal
economical limits.

D OPTIMALITY CRITERION METHODS

All the methods described in section 4 attempt to solve structural
optimization problems of the general form of problem (I) by mathematical and
numerical search methods. The philosophy adopted is that nothing is assumed
about the location or nature of the optimum. The optimum is reached by some
purely numerical search which is based upon the mathematical form of problem (1)
rather than the real-world structural design which problem (l) represents. The
structural engineer, however, sometimes feels that he knows much more about the
optimum structure than is present in its mathematical equivalent and that this
know|ledge might be useful in deriving a search method based upon structural
principles rather than upon a mathematical abstraction. The term optimality
criterion methods covers such approaches. Optimality criterion methods solve
problems such as problem (l) by search methods so strictly this section could be
numbered 4.8 and considered with all the other methods. The concept is so
different, however, as to warrant a separation from the other methods.

Optimality criterion methods are absolutely problem-dependent and a
particular criterion applies only to the optimum design of a particular type of
structure under very specific conditions. The philosophy of the optimality
criterion approach is first of all to investigate the nature of optimum struc-
tures of some specific type fo ftry fo establish a condition or set of conditions
satisfied only by the optimum structure and which are not satisfied by any other,
non-optimal design. For example such conditions might be that for a particular
type of structure under restrictions on stresses and displacements the optimum
structure always has a recognizable distribution of some form of energy among its
components and that this distribution is peculiar cnly to the optimum design.
Having found some structural criterion of optimality itis then necessary fo
devise some iterative algorithm which, starting with a non-optimal structure,
will successively redesign the structure so that a structure which satisfies the
optimality criterion and hence is optimal will be found.

For particular classes of structures the optimality criterion approach
solves the mathematical problem (l) very indirectly by completely replacing the
problem by an analogous one of iteratively redesigning a structure so that i+
satisfies some pre-established criterion of optimality. In a sense optimality
criterion methods are dual methods in that problem (1) is solved by solving a
completely different but equivalent 'dual' problem. The nature of this duality
between mathematical programming and optimality criterion methods is almost
totally unexplored but holds out considerable promise for further research work.

In developing an optimality criterion method for a particular class of
structures there are two distinct phases. First of all a relevant and unique
criterion of optimality for the class of structures must be found. This is
generally very difficult to do since such criteria are rarely obvious. Had
optimality criteria been obvious then mathematical programming would never have
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been necessary for optimum structural design. It is the requirement that the
criterion be unique to the optimum structure which is perhaps most difficult to

satisfy and indeed at the present time the technical |iferature holds examples
of many so-called optimality criteria which are not optimal at all in that they
can also be satisfied by non-optimal structures. The second phase is that of
developing a recursion relationship which will produce an iterative redesign

algorithm so that the optimality criterion can be satisfied. This too can
frequently be difficult to develop and it runs the risk like any numerical search
method of being unwieldy to operate or slow to converge. The optimality criterion
approach is a logical one which has great appeal to structural engineers since it
is based upon structural rather than mathematical principles. |t holds great
promise for the future although it can never entirely replace mathematical
programming methods but, |ike some of the methods described earlier, it is still
in its infancy and it still has to realize much of its potential,

At present very few rigorous, well-tested optimality criterion methods
exist although many have been proposed and the range of optimum structural design
problems which they cover is small, Generally they apply to overall sizing of
structural members in a multimember system such as a truss or frame, i.e.,
caTegorx 3 problems in the hierarchy of section 2. Some authors, notably
Prager2*, have developed optimality criteria for structural components such as
beams, sandwich plates, etc. For such structures the optimality criterion
generally is concerned with energy distributions in the parts of the structure.
Prager has concluded that volume integral of energy density in each part is pro-
pertional To the volume of the part in many cases with single constraints. When
multiple constraints are present the optimality criterion becomes more complica-
ted but this energy distribution pattern is still an optimality criterion
although in a modified form. Variations upon this energy-density optimality
criterion have been proven to be applicable to truss structures, notably by
Venkayya2® and many others. Indeed many types of structures may be designed by
optimality criteria methods with constraints upon stresses or displacements or
dynamic stiffness, and the big potential advantage which the optimality criterion
approach has is that very large problems can be designed this way, given a
suitable criterion and algorithm, whereas mathematical programming methods are
often suitable only for relatively smaller structures. A major difficulty is
encountered when structures are to be designed subject to multiple constraints of
di fferent types. For example, a ftruss may be required to satisfy both stress
constraints for which a criterion is available and multiple displacement con-
straints for which another criterion is known. Both criteria are not usually
satisfied simultaneously and although a composite optimality criterion can be
devised it is considerably more difficult to devise a rapid redesign algorithm
and the solution process can be very slow.

There are therefore many difficulties associated with the optimality
criterion approach and these are not always immediately obvious. The idea of
developing structurally based rather than mathematically based optimization
methods is, however, very appealing and holds out great hope for the future but
much more work remains fo be done in order to realize this potential.

6. CONCLUS |ONS

Structural optimization is at present a thriving area of research and
development. The philosophy is so very obviously right since the structural
engineer has historically been guided by the need and desire to produce struc-
tures which are in some respect 'better' or more efficient than those which have
gone before, The electronic computer has enabled design and optimum design to
be put on a more formal and rigorous basis and is the means by which the goals
of structural optimization may be achieved. However, it is fair comment to say
that the actual methods of optimization at present available are not entirely
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adequate for very many of the structural optimization problems which surround us
today. Mathematical programming methods can sometimes be laborious in operation
and are often restricted to only small to medium sized problems. Some methods
offer more promise for the future than others and mathematical programming is
still very much alive. In the author's opinion better methods will be developed
in the future perhaps based upon duality. Optimality criterion methods have
great appeal to the structural engineer yet at present they too are in their
infancy and require much more development.

In section 2 of this paper a hierarchy of structural optimization problems
was discussed. Research up to the present time has tended to be concentrated
mainly in categories 3 and 4 of this hierarchy = the easier problems.
Categories | and 2 are as yet little-explored and the potential rewards offered
for methods of solving such problems are very great. By about 1970 a watershed
had been reached in structural optimization. Prior to this date research had
concentrated upon marrying existing solution methods to structural design
problems and it became evident that the marriage was only partially successful.
Very many pressing problems remained to be solved. Since 1970 progress in
structural optimization has been along new lines of approach. The simpler
problems are now things of the past and only the harder ones remain. It is
significant that interest in these harder problems of structural optimization is
unabated. Over the last five years many new lines of approach have been opened
up and although progress has often been slow the full potential of the new
methods can now be clearly seen as a future goal. To achieve this potential is
the object of structural optimization today.

7. REFERENCES

l. Schmit, L. A. - 'Structural design by systematic synthesis', Proc. 2nd
Conf. on Electronic Computation, ASCE, 1960.

2 Michell, A. G. M. - 'The limit of economy of material in frame-structures',
Phil. Mag., Vol. 8, No. 47, London, 1904.

3 Hemp, W. S. - 'Optimum structures', Oxford University Press, 1973.

4, Sargent, R. W. H. - "Minimization without constraints', in 'Optimization

and Design', Avriel, M., Rijckaert, M. J., Wilde, D. J. (Eds), Prentice-Hall,
Englewood Cliffs, N.J., 1973,

5. Carpenter, W. C. and Smith E. A. - 'Computational efficiency in structural
optimization', Engineering Optimization, Vol. |, No. 3, 1975,

6. Fletcher, R. and Powell, M, J. D. - 'A rapidly convergent descent method
for minimization', Computer Jnl., Vol. 6, No. 2, 1963.

7. Powell, M. J. D. = '"An efficient method for finding the minimum of a
function of several variables without calculating derivatives', Computer Jnl.,
Vol. 7, No. 2, 1964.

8. Fiacco, A. V. and McCormick, G. P. - 'Nonlinear Programming. Sequential
Unconstrained Minimization Techniques', John Wiley, New York, [968.
9. Lootsma, F. A. - 'A survey of methods for solving constrained minimization

problems via unconstrained minimization', in 'Optimization and Design', Avriel, M.,
Rijckaert, M. J., Wilde, D. J. (Eds), Prentice Hall, Englewood Cliffs, N.J.,

1973.

10, Fox, R. L. - 'Optimization methods for engineering design', Addison-Wesley,
Reading, Mass., [97I.

Il. Moe, J. - '"Penalty function methods', Symp. on Optimization and Automated
Design of Structures, Report No. SK/M2l, Div. of Ship Structures, Tech. U. of
Norway, Trondheim, 1972.

12, Nelder, J. A. and Mead, R. - 'A simplex method for function minimization',
Computer Jni., Vol. 7, No. 4, 1965.

| 3. Munro, J. and Smith, D. L. - 'Linear programming duality in plastic analy-
sis and synthesis', Proc. Int. Symp. Computer-aided Structural Design, Warwick,|972.

14. Foulkes, J. D. = 'Linear programming and structural design', Proc. 2nd
Symp. Linear Programming, Washington, D.C., 1955.



60 Illa — OPTIMIZATION CONCEPTS AND TECHNIQUES

I5. Pope, G. G. - 'Sequence of linear programs' in 'Structural Design Applica-
tions of Mathematical Programming Techniques', Pope, G. G. and Schmit, L. A.
(eds), AGARD-AG-149, 1971.

16.  Smith, G. K. and Woodhead, R. G. - 'An optimal design scheme with applica-
tion to tanker fransverse structure', Engineering Optimization, Vol, I, No. 2,
1974,

17. Wills, J. = 'A mathematical optimization procedure and its application to
the design of bridge structures', Dept. of the Environment, Transport and Road
Research Laboratory, Report LR.555, Crowthorne, [973.

18. Bellman, R. E. - 'Dynamic programming', Princeton Univ. Press, [957.

19. Palmer, A. C. - 'Optimum structural design by dynamic programming', Jnl.,
ASCE, No. ST8, 1968,

20. Sheppard, D. J. and Palmer, A. C. - 'Optimal design of fransmission towers
by dynamic programming, 'Computers and Structures , Vol. 2, 1972,

21. Duffin, R, J., Peterson, E. L. and Zener, C. M, - 'Geometric programming.

Theory and applications', John Wiley, New York, 1967.

22. Templeman, A. B. and Winterbottom, S. K. - 'Structural design applications
of geometric programming,' AGARD-CP-123, 1973,

23, Templeman, A. B. - 'The use of geometric programming methods for structural
optimization', AGARD Lecture Series No. 70, 1974.

24, Prager, W. - 'Optimality criteria in structural design', AGARD-R-589, 1971,
25, Venkayya, V. B., Khot, N, S, and Berke, L. - 'Application of optimality
criteria approaches to automated design of large practical structures', AGARD-
CP-123, 1973,

SUMMARY

The paper considers the economic objectives of structural optimization
and shows that it has put design on a formal and rigorous basis. The size and
type of structural optimization problems is then examined and a hierarchy of
problem categories is discussed. Approximation methods are considered which
enable complex structural problems to be posed concisely. Seven mathematical
programming methods are described and critically discussed in the context of
a specification for a suitable optimization technique for engineering use.
Optimality criterion methods are then examined and the paper concludes that
presently available structural optimization techniques have yet to achieve
their full potential.

RESUME

L'article traite des buts économiques de l'optimisation structurale et
montre que le dimensionnement est posé sur une base formelle et rigoureuse.
Le type et l'importance des problemes d'optimisation structurale sont examinés;
une hiérarchie des catégories de problémes est discutée. Des méthodes d'approxi-
mation permettent de poser des problemes structuraux complexes de fagon concise.
Sept méthodes de programmation mathématique sont présentées et comparées dans le
cadre de directives pour une technique d'optimisation appropriée & l'usage de
1'ingénieur. Des criteres de méthodes d'optimisation sont discutés, L'article
conclut que les techniques actuelles d'optimisation structurale peuvent encore
etre améliorées.

ZUSAMMENF ASSUNG

Der Beitrag behandelt die wirtschaftlichen Aspekte bei der Optimierung von
Tragwerken und zeigt, dass die Bemessung auf einer formalen und strengen Grund-
lage beruht. Grdsse und Typen baulicher Optimierungsprobleme werden untersucht
und eine Rangordnung der Probleme diskutiert. Es werden Niherungsmethoden unter-
sucht, welche gestatten, komplexe bauliche Probleme rasch zu ldsen. Sieben mathe-
matische Programmierungsmethoden werden beschrieben und hinsichtlich des Anwen-
dungsbereiches kritisch verglichen. Saodann werden verschiedene Optimierungskri-
terien untersucht; der Beitrag schliesst mit der Feststellung, dass die gegen-
wirtig erzielte Optimierungstechnik ihre vollen M@glichkeiten noch nicht erreicht
hat,
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