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Optimization Concepts and Techniques in Structural Design
Concepts et techniques d‘optimisation

Grundlagen und Methoden

ANDREW B. TEMPLEMAN
Professor of Civil Engineering
University of Liverpool
Liverpool, GB

I INTRODUCT ION

Since the early 1960's structural optimization has established itself as
an important area of research in structural engineering and it is now gradually
becoming an integral part of the fechnological expertise of practising designers.
The phrase "structural optimization" conjures a very specific impression in the
minds of most engineers relating tfo the application of numerical search tech-
niques to mathematical models of certain types of structures. Whilst this
impression is correct in detail it is by no means the whole story. The history
of architecture and structural design has been characterized from the very
earliest times by efforts to design structures which were in some respect
"better" than their predecessors; to use materials and resources more efficiently
and to design structures which were as well-suited as possible to their
functions. This continual search for improvement is essentially an optimization
process, to use the term in its widest sense, and it pervades all present-day
engineering activities.

On a national and regional scale governments seek to invest in new
industries, resources and communications so as to obtain maximum benefit from a
limited investment. At the project level an engineer strives to produce
efficient, cheap and reliable designs for projects to satisfy functional
requirements. The contractor wishes to use his resources of manpower, machinery
and capital in the most efficient manner and the client is concerned whether his
structure will be economical to run, to use and to maintain. The whole process
of project planning, design, construction and operation is governed by the need
to produce the best possible solution. Traditionally, emphasis has been placed
on the infuitive skills and ability of experienced planners and engineers to
produce near-optimal solutions to problems. However, the demands of an increas-
ingly technological |ly-based population now require that projects are larger,
more expensive and more complex. Financial pressures towards cost economy are
increasing. Restrictions imposed by aesthetic, social, environmental and
technological factors are ever more stringent. A result of this increasing
complexity of the design process is that traditional reliance upon the skills of
individual designers must change to meet present-day circumstances.
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Consequently, more assistance is now sought from the digital computer, with its
speed and power to solve complex problems rapidly, to meet these demands.

Since the digital computer was first used on structural engineering
problems over twenty years ago it has completely transformed methods of struct-
ural analysis, so that now the use of matrix stiffness and flexibility methods
as well as finite element techniques is commonplace in structural design offices
throughout the world. However, as it became possible to analyse increasingly
complex structures it also became more difficult to interpret the results of the
analysis in a logical way for design purposes. |t was, therefore, a natural
trend in research to try to use the computer to produce design-oriented informa-
tion rather than analysis-oriented information for the designer to interpret.
Thus over the last ten or fifteen years research into aspects of computer-aided
structural design has considerably increased. Once it was recognized that the
engineering planning and design process is an optimum-seeking one it was also
natural to see whether the computer could not also be used to produce not merely
design information but optimum design information so that the structural
engineer could play his part effectively in the planning and design of efficient,
cheap and reliable structures. The computer, therefore, afforded the possibility
of helping with the two basic problems mentioned above of the increasing
technological complexity of structural design and the growing pressures fowards
cost control and economical designs.

However, just as the computer revolutionized structural analysis by
demanding new techniques suited to its abilities a similar revolution was
needed in design techniques if the computer was fo be of real use in this area.
In the early 1960's Schmitl and others gave a first insight into a new computer-
oriented approach to structural design by examining the application of newly-
developed techniques of mathematical programminy and optimization to problems of
structural design. Thus structural optimization in its modern form was born.
With the passing of time it is perhaps difficult to realize that in the early
1960's the philosophy of structural optimization was really very novel. The
early research referred to above clearly demonstrated what had not previously
been self-evident: That the largely ad hoc processes of structural design which
appeared to have little formal logic may in fact be expressed formally and in
mathematical terms, and that there was as much rigour and logic in solving an
optimum structural design problem as there was in solving a structural analysis
problem. Perhaps the largest contribution which the study of optimization has
given to structural engineering is that it has put structural design on a formal,
mathematical basis and by so doing has unified a previously fragmentary and ill-
disciplined subject.

Coming some fifteen years after Schmit's original work this paper examines
some of the more recent developments in structural optimization techniques. It
shows that there are still many difficulties to overcome for the full potential
of optimization to be realized and it is hoped that it will give an insight intfo
the way in which structural optimization creates a greater understanding of the
nature of the design process and of structural behaviour.

2. A HIERARCHY OF STRUCTURAL OPTIMIZATION PROBLEMS

The rationalizing and formalizing influence which optimization has had
upon structural design now means that structural optimization problems may be
conventionally expressed as:
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Minimize, or Maximize 9 (xi) i=1, ..., N )
<
Subject to constraints gJ (xi) =+ 0 J= 1y oy M r ()
>
X, 2 0 1 = 1y weny N J
The variables in this problem, xj, i =1, ..., N, usually represent physical

parameters of the structure tc be designed such as dimensions, spacings, bar
sizes, plate thicknesses, etc. These variables are under the designer's control
and he wishes to find "best", or optimal values for all of them. The objective
function gg (xj) which is to be extremized represents some evaluable criterion

of efficiency of the structure. The efficiency criteria most frequently used

are such things as minimum structural weight, minimum cost, maximum factor of
safety, etc. The choice of objective function will be commented upon later.

The M constraints 9j (xj) may be equalities or inequalities and they originate
from many sources. They specify, for example, the mechanical behaviour of the
structure under load, the known properties of the materials used, requirements

of relevant codes of practice, fabricational requirements, geometric and layout
requi rements, etc. All relevant restrictions and requirements upon the structure
must appear among the constraints. The non-negativity condition upon each
variable is necessary fto ensure that values are obtained for all the problem
variables which are real and feasible in an engineering sense. Sometimes integer
values or values from a discrete set may be required.

Generally structural optimization problems are large -and non-|inear except
for all but fthe simplest structures. This is seen if a single, very much
simplified structural element is examined. Fig. | shows the cross-sectional
shape of a typical reinforced concrete T-beam,

To design this beam of known length and
- Xy loading so as to minimize a simple cost
function involves finding optimal values

for the seven variables shown. The cost

rr—————
function go is fairly simple o write down.

A IT involves the cost of the concrete and
| of the steel, both roughly proportional to

b 3 the volumes of concrete and steel, and it
QCS Total also involves the cost of shuttering the
- Areas  beam during pouring. This cost depends
upon the perimeter of the cross-section.
L — The objective function is then a simple
LE one but is non-linear in the variables.
qfﬁjiffg;; Many constraints are necessary to ensure
that the concrete and steel can adequately
XCq carry the bending stresses in the beam and
o also resist shearing stresses. Codes of
practice prescribe maximum permissible
FIG.1 values for these stresses and also
prescribe a large number of other permiss-
ible values for such things as deflections, crack widths, bar spacings, efc.
There may be fabricational constraints which limit, for example, the bar areas
to be not less than some available size. The designer may also add constraints
himself if the beam has to fit some restricted location within a structure.
Typically to fully describe the optimum design problem, between ten and twenty
constraints may be needed in the seven variables and because of the functions
involved in these constraints they are almost all highly non-linear ones.

|
\f
B
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Problems of this size and complexity can now be solved fairly rapidly by a
variety of methods which will be outlined later in this paper. However, This
example is merely a single beam element. Most real-world structures have many
elements such as beams, columns, slabs, panels, etc., and to fully describe the
optimum design problem for such real-world structures may require many hundreds
of variables and constraints. The general characteristics of structural
optimization problems are therefore that they are large, multivariate, non-
linear, constrained problems.

Because problem size and complexity become enormous when all variables and
constraints are lumped together in a single problem a hierarchy of problems has
developed. The hierarchy is as follows:

l. Topology of the structure

2. Geometry of the structure

3. Overall sizes of structure members
4, Detailed design of elements

The logic and implications of this hierarchy can be demonstrated by reference to
the beam example which falls into category 4 of the hierarchy as it is a detailed
design of an element. Suppose this beam was one of a known number of beams
supporting a deck slab longitudinally. By optimizing the cost of each beam in
turn cost savings would accrue over a non-optimized design and may be consider-
able. However, the inquiring designer will ask himself whether the specified
number of beams is itself optimal. |f more longitudinal beams were used the

load to be carried by each would be reduced and so the necessary size would also
be reduced. The cost savings to be gained by using a larger number of smaller
beams or a smal ler number of larger beams might well be far greater than anything
achieved by merely paring down upon detailed design sizes. This type of problem
falls into category 3 of the hierarchy.

I f the deck and beams form part of a bridge over several piers then the
interested designer will soon find himself considering the cost savings to be
made by varying the distances between piers to arrive at an optimum geometric
arrangement in category 2 of the hierarchy. This promises the possibility of
even greater cost economy. Finally category | which holds out the greatest
savings of all, is concerned with topology. Was the decision to build a deck on
concrete beams over supporting piers itself optimal? Would not an alternative
structural form be more efficient? Why not use a steel box-section deck?

This example demonstrates the logic of the hierarchy fairly well and also
demonstrates two general features of it. Starting from the lowest category 4,
the higher up the hierarchy that optimization can be used the greater the
potential for economy becomes but also the more difficult optimization becomes
fo implement. This second feature is reflected by the fact that very little
work has been published on the optimum fopologies of real-world structures, the
work of Michell? being of theoretical interest rather than practical use.
Indeed, the present state of the art of sfructural optimization is that a vast
amount of research work has been published on methods for category 4 problems,
and it can be stated that most problems in this category can be solved fairly
rapidly. Much work has also been done in category 3 but success there has been
less general and new techniques are required. The available literature in
category 2 is fairly small but has significantly increased in the last two or
three years. Much more work remains to be done in this category and in category
| where significant practical literature is almost non-existent.
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3. APPROXIMATION CONCEPTS

Very often approximations are used in the formulation of optimum design
problems for two reasons. Firstly they can be used to hold problem sizes down
to a level at which computer solution does not become inordinately expensive.
Secondly they can be used to decompose a large design problem into a series of
smal ler problems. Another simple example demonstrates this. Consider the
problem of the optimum elastic design of the beam/column framework of a multi-
storey building such as that in Fig. 2. Each member of this framework may have

up to ten detailed dimension varia-
: . bles and perhaps ten to twent
Vertical Se’IF—welght and cons‘i’r‘aings. E\ comp lete op*rir)rlmm
imposed loads design problem for such a structure
including both overall member sizes
and detailed dimensions (i.e.,
categories 3 and 4) would therefore
involve hundreds of variables and
constraints and would be impossibly
Wind expensive in computation time.

Load Approximations can be used to
effectively decompose or separate out
the large problem into a single
category 3 program and many simple
category 4 problems. This is done by

4 J’ J selecting for each beam or column
4 e = 7 element of the structure a single
parameter and relating the cost,
FIG.2 weight and behaviour of the element

to this single parameter. In this
particular example a suitable parameter might be stiffness, E L. Each element
has thus been approximated and obviously in problems generally care must be
taken to ensure that the approximate element really does behave as the real
element does. The framework is then reassembled using approximate elements and
a single category 3 problem may be formulated. This would consist of finding a
complete set of optimal stiffness values for the framework which minimizes the
cost of the framework while satisfying as constraints the equations of equili-
brium and compatibility for all the applied load cases.

Having found the'set of optimal stiffness values an analysis of the frame
using these values determines all the beam and column moments and forces. Each
element may then be designed separately as a category 4 problem so that its cost
is minimized over all five fo ten detailed variables. The loadings are those
obtained in the analysis and the constraints would be the normal detailed
constraints plus an additional one that the stiffness of the element must be
equal to the value obtained for the approximate stiffness parameter in the over-
all size optimization.

Decomposition by means of approximations such as this is very widely used
with considerable success. Frequently, in the aerospace industry very complex
structures such as wing boxes, fin and tail structures, etc., are approximated
as assemblies of membrane plates and shear panels for which rapid minimum weight
design programs are available. One note of warning however; the last stage of
any optimum design problem should always be a detailed analysis of the optimum
design to ensure that approximations have not caused errors to be introduced.
Indeed, on a more general basis it should perhaps be made clear fthat optimiza-
tion is not intended to replace the designer. The cbjective is to provide him
with information on what the most efficient solution to the problem posed might
be. Only the designer can know whether the problem he posed is a complete one
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and whether it was representative of the real-world structure. Optimization can
only suggest a possible design which the designer is then at liberty to modify or
reject or accept after further analysis. There are always factors in the mind

of a designer which he cannot quantify but which nevertheless influence his

designs. In using structural optimization to assist him the designer should
attempt to formulate a representative problem only. According to how much he
feels has been pui intfo the problem or omitted he alone will know how much

reliance to place upon the suggested optimum design and also how much he must
alter it to satisfy himself regarding the unquantifiable factors such as
aesthetics. Structural optimization produces preliminary design information and
should never be expected to produce a final design.

In this section on approximation concepts it is useful to comment further
upon the choice of objective function to be extremized. In purely technical
problems involving reliability, dynamic response, etc., tThe correct objective
function is usually fairly obvious. In more general problems cost or weight
usually provide a direct measure of the efficiency of a design. In the aerospace
and shipbuilding fields weight is generally of paramount importance partly
because it directly reflects an element of cost but more because it directly
affects the operational efficiency of the vehicle. |In civil engineering weight
is perhaps not so important and cost seems to be the vital factor in design.

Some structural design applications of optimization in the civil field are fre-
quently criticized because weight has been used as an objective function or, if
cost has been used then not enough of the elements of cost arising from fabrica-
tion, erection, labour, etc., have been used or the cost coefficients are invalid
in an inflating economy. Sometimes these criticisms are valid but frequentiy the
solution is relatively insensitive to variations in the objective function. What
is important in constructing an objective function is to ensure that all the
variable major elements are included with coefficients of the right order. If,
in the future the price of steel was to reach the present price of gold tThen
designs for steel structures would change only minimally since labour costs would
likewise have escalated along with costs of all other materials. Cost objective
functions are almost always approximations in themselves and as was stated
earlier the important thing is to ensure rthat they are truly representative
approximations.

To conclude this section on approximation concepts the occasional require-
ment that variables must have integer values or values picked from a discrete set
is examined. Ihese requirements considerably complicate the solution of problems.
A useful way of handling them is first of all to ignore them and solve the
problem using continuous variables. The solution of this problem will then be in
the approximate area of the solution for integer or discrete variables in most
cases. Pathological examples can be constructed mathematically in which the
integer/discrete optimum is completely different from the continuous optimum but
this does not occur in real-world structural optimization. Having found a
continuous optimum integer programming may be used to find the integer/discrete
optimum in that region, or, as is perhaps more appropriate, the designer in his
analysis, checking and modification can round the continuous solution to suitable
discrete values. This continuous approximation to discrete functions is most use-
ful by virtue of the fact that it has reduced the area of search for a discrete
optimum to a small region around the continuous optimum. Had this discrete search
been made over the whole feasible design space it would be a very lengthy
procedure.

In the field of steel civil engineering structures geometric similarity
may be used to construct continuous functions representing the section proper-
ties of rolled steel sections which are available only in a range of discrete
sizes. Consider, for example, the range of available wide flange beams.
Select a characteristic cross-section parameter such as section area, A. The
assumption is now made that all beams in the range of available sizes are
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geometrical ly similar in shape but differ only in scale. Then with this assump-
tion it can be shown that the section modulus Z of a beam in tThis range is
related to its area A by the relationship:

Z = C A2 (2)

Similarly the moment of inertia, | and the depth d are given by:

n

| = Cy A2
1 (3)

d = Cy A2

and similar relationships hold for all section properties which may be related
to a single characteristic parameter, The coefficients C,, C,, C3, efc., are all
constants for the particular range of sections and may be found by examining any
discrete beam within the set.

This continuous approximation has essentially replaced the set of discrete
beams by a single variable A fo which all section properties are related by known
functions (2),(3), etc., |If variable A is used in an optimization problem the
optimal value A¥ will correspond very closely to perhaps two or three beams
within the set from which a discrete member may be selected., The assumption of
geometric similarity is not absolutely valid for all sets of available rolled
sections but is sufficiently accurate for the purpose here.

Thus far this paper has examined some of the major concepts of structural
optimization and some of the general techniques involved in problem formulation
for real-world structures. Very often it is difficult fo formulate a representa-
tive mathematical model for the design of some structures particularly in the
architectural area where the component of subjectivity in design is far greater
than objectivity., However, having formulated a problem in the general form of
problem (l) it is necessary to be able to solve it, and so solution methods for
structural optimization problems will now be considered.

4, SOLUT ION METHODS IN STRUCTURAL OPTIM|ZATION

It is important in any survey of methods of structural optimization to
di fferentiate between mathematical and structural optimization fechniques.
Although problems of optimum structural design can be expressed in mathematical
form (problem (1) ), the ideal solution technique from the viewpoint of a
structural engineer is quite different from what a mathematician would consider
ideal., Basically the structural engineer is interested in the structure which
the problem represents rather than the problem itself. He is interested in the
results of the optimization rather than the means whereby they were obtained.
Any optimization method for use in engineering problems must therefore be flex-
ible enough to solve as wide a range of problems as possible - frequently
problems will alter several times as new constraints and variables are introduced
by the engineer to more accurately represent his real-world design problem, The
method used should be robust in operation and reliable - +the engineer wants
useable results and is frustrated by a solution method which in operation is
very sensitive to the mathematics of a problem. Any method should be compara-
tively easy to use and should require a minimum of pre-sclution computer
programming and preparation. The engineer is comparatively little bothered by
the need to differentiate between global and local optimality of solutions since
a great many structural optimization problems display very flat, plateau-like
optima. Similarly, exfreme accuracy of the solution is not necessary since the
mathematical problem itself is only an approximation to a real-world structural
design and the designer is aware that the optimum solution is only a guide for
him and will probably require modification in accordance with factors not
included in the mathematical formulation.
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The mathematician, however, has a different viewpoint and is interested in
the means whereby results are obtained. He is happy 1o develop a method which
solves a very limited class of problems if it is efficient on those problems.
Flexibility of a method is of comparatively little interest. Methods are offen

reported in the mathematical literature which have low reliability - they are
efficient on some problems yet fail to produce results for purely mathematical
reasons on problems which to all intents and purposes look very similar., Such

methods are of little interest to an engineer who wants results all the fime.

By training, the mathematician concentrates upon such factors as solution
accuracy, speed and accuracy of convergence to the solution, and differentiation
between local and global optima.

It is not the intention to disparage the approach of the mathematician in
developing optimization techniques. Without this work structural optimization
would not be af its present stage of development. |t should be sfressed however
that it is very necessary to examine all mathematical fechniques carefully fo
determine whether they are suitable for the needs of the structural engineer.
Very often the structural engineer uses relatively simple and crude techniques
to solve problems, not out of ignorance of more sophisticated methods but
because he can place reliance upon the results obtained, This point is often
mis-understood but is an essential difference between mathematical and structural
optimization,

The methods now described are those which, after careful examination and
thorough testing by structural engineers, have been established as suitable for
optimum structural design problems, The criticisms levelled at them are likewise
based upon the performance of the methods on problems arising in the design of
real-world structures. At this stage it is useful to restate the basic
characteristics of most structural optimization problems which are that they are
large problems with many variables and a large number of non-linear constraints.

4.1 Unconstrained Methods

I+ may seem odd to commence a survey of methods of structural optimization
with methods for solving unconstrained problems since structural design problems
almost always have a large number of constraints, However, many of the concepts
of unconstrained methods are useful in constrained problems and also there are
methods which transform problems having constraints to unconstrained problems.
Unconstrained optimization can be formally expressed as:

Minimize 9 (xi) i=1, «..p, N (4)
I+ is not necessary to consider maximization separately since this can be
effected by minimizing the negative of go (xj). The N variables xj represent an
N-dimensional infinite design space in which all values are feasible. |In order
to find the minimum value of the function go the classical theory of optimization
examines all stationary points of g5, i.e., solves the set of equations:

9 '
~a->-<—i— O(xi)—O i =1, «ves, N (5)
The minimum must be one of the set of possible solutions of (5) and it can be
found by substitution of all solutions of (5) into (4), the lowest result being
chosen. However, there are very many circumstances under which this classical
approach just does not work, Typically, it does not work if go (xj) is a non-
analytic function or if some of the derivatives in (5) are discontinuous. The
science of optimization theory stems from the very frequent failure of fhe
classical approach to solve problems.
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In the absence of a successful classical approach to problem (4) a logical
method of finding the minimum value of go would seem to be to evaluate go at a
series of trial sets of values of the variables and to numerically select the
lowest result. This can be done by imposing a 'grid' over the design space and
evaluating go numerically at each grid intersection point. However, if the
likely range of each variable x; Is divided into equal divisions so as to give 10
trial values for each variable the total number of values of g5 which must be
evaluated is 10N, |f there are many variables, i.e., if N is large, this number
is very large and the method uses too much computer time. A random search in
which trial points are selected according to a statistically random sequence is
likewise Inefficient because of the large number of trial evaluations of go which
must be made even to locate a point near to the optimum,

A much better search strategy is to try to ensure that each trial evalua-
tion of gy is made according to a set of rules which give a good likelihood fhat
go Will be reduced. A vital concept in this context is that of the gradient of
go- The gradient of go with respect to some variable xj is simply the first
partial derivative of go for xi, i.e.,

§%T % (xj)

Obviously if the gradient of go for variable x; is negative then if the value of
Xj Is increased go can be expected to decrease. |f, at each new evaluation of

9o (xj) all the first partial derivatives can also be evaluated then a new trial
point at which the value of g5 could be expected to decrease can easily be found
by either increasing or decreasing each value of x{ according to the sign of ifs
partial derivative. Very many numerical search strategies are based upon using
gradient information to produce a new search direction in which new trial evalua-
tions may be made with maximum |ikelihood that go will decrease.

The steepest gradient method is one such strategy. The N gradients of go
at a particular ftrial point represent an N-dimensional plane which is exactly
tangential to the surface of go at the trial point. The steepest gradient method
finds that direction upon the tangent plane in which the slope of the plane is
maximum. Then by placing a new trial point somewhere along this direction in a
decreasing sense gy can be expected to decrease in value by more than if fthe
trial were placed in any other direction. The steepest gradient method is a
frequently used one in engineering design because of its reliability and its ease
of implementation. However, though it always finds a minimum it can often
converge very slowly. This is because the tangent plane is essentially a linear
approximation to the surface of go which is exact only at the trial point. Once
a new trial point is selected, even in the direction of the steepest gradient, at
some distance from the original trial point the non-linearity of go may render
the tangent plane approximation inaccurate, leading to very slow convergence.

For this reason directions other than the steepest gradient direction are
often used to form the basis of a search procedure. Methods based upon conjugate
directions are typical of these. Within the scope of this paper it is not
possible to examine these methods in detail but their objectives should be
stressed. The purpose of such methods is fo improve the rate of convergence of
methods |lke the steepest gradient which, although logical, is sometimes very
slow.

All methods of search which used gradient information as well as frial
evaluations are collectively termed first-order methods because they require
first partial derivatives of go. |In order to improve upon the efficiency of
these methods many second-order methods have been proposed and used. These
methods use the second partial derivatives of go, (i.e., information about the
local curvature of go) in order to speed convergence. Once again space precludes
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further examination of these methods other fthan to comment that because they use
more information about the local behaviour of go they are consequently more
efficient. For a very readable account of many different methods for uncon-
strained minimization reference should be made to the work of Sargent".

Several comments should be made on the general applicability of zeroth-,
first- and second-order methods to structural optimization. From the point of
view of speed and efficiency second-order methods are obviously strong candid-
ates. However, these methods require the prior and recurring evaluation of not
only the function gg but also all its first and second partial derivatives. This
can be very time consuming, |f go is a function of 50 variables xj, i =1, ...
50, then there is at each trial point a single function evaluation, 50 first
partial derivative evaluations and the matrix of second partial derivatives
requires the evaluation of 2500 elements. The computer time and space required
for preparatory work and general housekeeping operations can be considerable in
the implementation of second-order optimization methods. First-order methods
also suffer from this criticism but less so. Carpenter and Smith® have
compared the performance of zeroth-, first- and second-order methods on a
selection of simple structural optimization problems by the SUMT method®
This comparative study is valuable as it brings out very clearly the advantages
and the disadvantages of each method. They c0nc|uge that on the problems they
examined the first-order method of Fletcher-Powell was preferable for larger
problems, Newton's second-order method for small analytic problems and the
behaviour of Powell's method’” , a frequently used one, was generally poor.
However, it is also fair to comment that although this sort of information is
very useful it is inevitably problem-dependent. For some problems the first and
second partial derivatives may be easy to obtain while for others they may be
obtainable only by numerical difference fechniques which can be very laborious,
The choice of methods is therefore a complex one but, bearing in mind that
Carpenter and Smith compared only three methods which have been available for at
least ten years, their conclusions form a very useful guide.

4.2 Penalty Function Methods

The above section on unconstrained methods is necessary for an understand-
ing of penalty function methods which solve a constrained problem by means of a
sequence of unconstrained problems. Penalty function methods have been widely
used in structural optimization and are among the more popular methods.
Consider the equality-constrained problem:

Minimize 9% (xi) i I, «vep N
(6)

Subject to gJ (xi) =0 Jg=1, «vep, M

The penalty function approach replaces problem (6) by the unconstrained problem:

M
Minimize F = g (x.) + 2. P. [g. (x)]2 i =1, «ee, N (7)
o i T=1 J J i
In which values of Pj, j =1, +.., M, are positive constants. The function F is
therefore composed o* the original objective function go plus the value of each

constraint multiplied by a penalty factor Pj. Starting with some known set of
factors Pj, F is minimized using unconstrained techniques. All values of Pj are
then considerably increased and another unconstrained minimization of F is
performed. This process continues for increasing values of the penalty factors
and has the effect of forcing each of the constraint functions gj towards the
value zero. Thus as values of P; are increased the results of fthe sequence of
unconstrained minimizations of F tend towards the sclution of problem (6).
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Penalty function methods are also applicable to inequality constrained
problems. |f the constraints gj in problem (6) are writfen as:

g; x) 50 J= 0, e, M (8)

a suitable interior penalty function problem is:

ly veus N (9)

Minimize F = g_ (x.) = P %‘. [gJ. (x)]1 i
J=

where P is a positive penalty factor. Starting with a large value of the penalty
factor P an unconstrained search is carried out from a feasible starting point,
(i.e., values of x; which do not violate any of the constraints - hence an
interior or feasible point). The solution of this search cannot be at a point
which causes any constraint value g; fo be zero otherwise F would be infinite.
This time the effect of P is to keep the solution away from the constraint
boundaries. Further unconstrained searches are carried out using a sequence of
decreasing values of P thus the process can progressively approach any constraint
boundary, where gj = 0, if it wishes or can remain feasible, g; < O, if this is
advantageous. The results of the sequence of problems thus converges to the
minimum of go with constraints given by (8).

Much work has been published on penalty function methods and both interior
and exterior methods (the search is always in the infeasible region) have been
widely studied. A popular method is the SUMT method of Fiacco and McCormick®
to which reference should be made. Lootsma’ has given a comprehensive
review of the ToEic and its use in structural optimization has been championed by
Fox10 and Moell in particular.

The chief disadvantage of the approach is that although it converts
constrained optimization problems to the much simpler unconstrained form, it
requires a considerable amount of time to solve the unconstrained problem many
times. Furthermore the composite unconstrained objective function F contains all
the constraint functions gi.and since we have seen that structural optimization
problems usually have many constraints F can be very large. In solution of the
unconstrained minimization if first-order or second-order methods as described
in section 4.1 are used, partial derivatives of all the constraint functions gj
must be evaluated since they appear in F. Thus considerable time is necessary
for the evaluation of derivatives and for this reason the penalty function
approach cannot really be deemed suitable for large structural optimization
problems. |t has been used very effectively on the detailed design of structural
elements or components such as beams, plates, panels, etc., where the number of
variables is perhaps a maximum of |5 and the number of constraints is of the same
order. For more complex problems ifts efficiency can sometimes be rather poor.

4.3 Constrained Numerical Search

In section 4.1 methods of unconstrained numerical search were considered.
Here the feasible region is infinite. When constraints are present, however,
they limit the feasible region which is hedged around by constraints which must
not be violated. The only way of knowing whether a particular frial point is or
is not feasible is to evaluate all constraints at that point and check them for
violation, |f methods of gradient search are to be used it is likewise vital to
know [f a particular search direction points into an infeasible region. This too
involves checking all constraints and the derivatives of constraints. It is
obvious, therefore, that the presence of many non-linear constraints which is
characteristic of structural optimization problems causes considerable
difficulties for any numerical optimization method. The success and efficiency
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of any search technique depends upon the nature of the constraints.

The simplest case is where all constraints are linear equalities. Here
as many variables may be eliminated (expressed in terms of other variables) as
there are equality constraints and the problem is then reduced to an uncon-
strained one in a reduced number of variables. The linear equality constraints
positively help the solution process. When the problem is constrained by linear
inequalities slack variables may be added to convert the constraints to equali-
ties and the solution can then be carried out as above by unconstrained methods.
Linear constraints can therefore be handled quite easily and efficiently.

In structural optimization the constraints are usually and unfortunately
non-linear inequalities. |t is the author's opinion that no numerical search
method for non-linear inequality constraints has yet been developed which can be
advocated on grounds of reliability and efficiency as suitable for anything but
the smallest structural optimization problems, i.e., about 5 - |0 variables and
a similar number of constraints. It is almost always possible to solve problems
more efficiently by the penalty function approach of section 4.2 or by the
methods to be outlined in the following sections. Many methods have been pro-
posed and they founder generally on the need for many frials and derivative
evaluations. These are necessary because of the difficulty experienced in
locating and following a non-linear boundary in N-dimensional space. The only
direct search method for non-linear constraints which could possibly be an
exception is that based upon the Simplex method of Nelder and Mead! which is a
zeroth-order method making trial evaluations at the vertices of a N-dimensional
regular figure which 'spins' through the feasible design space.

4.4 Linear Programming

Throughout this paper it has been emphasized that structural optimization
problems are generally highly non-linear. There is, however, a major exception
to this generalization which arises in the optimum plastic design of structures.
Consider the beam/column framework of a multistorey building such as that shown
in Fig. 2. The design of such a framework on a fully-plastic basis consists of
finding a set of fully-plastic moments My for all members of the framework so
that a prescribed factor of safety against collapse is achieved. The optimum
design is one in which the set of My values also minimizes the weight or cost of
the frame. For a frame of given layout member lengths are known and it is
possible to approximate the cost function for the frame as a |inear function of
the Mp values of all the members. |t should be noted that this is only an
approximation but is a very reasonable one to make in order to solve the design
problem which is in category 3 of the hierarchy described in section 2.

The constraints upon the problem are those of structural mechanics: [t is
necessary 1o ensure that in any possible collapse mode the work done by the
factored applied loads does not exceed the energy capacity of the rotations at
plastic hinges in the frame. This requirement leads to constraints in which
linear functions of the Mp values are bounded above by a known set of constants.
For completeness there should be one linear constraint for each possible collapse
mode. In this problem, then, both the objective function and all the constraint
functions are linear and l|inear programming may be used to find the optimal set
of Mp val ues.

Optimum fully-plastic design has received much attention in the past since
| inear programming may often be used for which efficient and reliable computer
package programs are available. However, the objective function is not truly
linear and from a structural point of view the constraints are incomplete since
several non-linear effects have to be omitted. For instance, elastic instability
of the frame, the reduction of plastic moment capacity due to axial load, and
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change of geometry effects cannot be included. There are also considerable
problems involved in ensuring that the actual collapse mode of the frame is
present among the constraints. Much research effort has been devoted to over-
coming some of these difficulties which is ample testimony to the ease of use
and popularity of linear programming.

Linear programming deals with problems similar to problem (1) in which all
functions gj» j =0, ..., Mare linear. Almost any textbook on optimization or
operational research gives several solution techniques so no specific reference
is made here. Several important features of |inear programming can be mentioned,
however. The first is that very large problems can be solved very efficiently.

Many thousands of variables and constraints can be handled effectively. It is
perhaps for this reason alone that linear programming is popular as a sequential
method, (see section 4.5), for structural optimization. It is very worthwhile

trying to force a problem into a linear format if possible because very large
problems can then be solved. Secondly the duality theory of |inear programming
has the advantage that it gives insight into the nature of the problem which
normally remains obscure. Linear duality may be summarized as follows:

Primal Problem Dual Problem
= :
Lo - L _ Y
Minimize W -l Ci X, Maximize Y g;% bJ ]
Subject to Sub ject to
p» >
a.. X. 2 b, = | eey M a,. A, ¢C i =1, sse, N
= Ji i ] J ’ ’ J‘=| Ji i i ’ 2
X, 2 0 i=1, ««., N AJ <0 J=1, v, M
Thus each primal l|inear programming problem in variables xj has a dual problem

in variables Aj such that the solution of either one is exactly equivalent to
solution of the other. A problem with few variables and many constraints has an
equivalent dual problem with many variables but few constraints, and so the
easier of the two problems may be solved.

Space precludes any further consideration of duality other than to mention
that the physical interpretation of dual variables for a real-world structural
design problem remains a very fertile area of research. Many authorsl!3,lt
have examined linear duality for problems arising in fully-plastic design of
structures and as a result have contributed greatly fo an understanding of the
basic behaviour of structures. As a final advantage of |inear programming it
should be noted that restrictions that variables take integer values or values
from a discrete set can be accommodated by linear programming in a rigorous
manner. This does not generally apply to other methods, apart from Dynamic
programming.

4.5 Sequential Linear Programming

Because |inear programming is an efficient and reliable technique which
can solve very large problems it has been used widely in a sequential manner for
the solution of non-linear problems. The way this is done is as follows.
Consider problem (1) with all functions gj, j =0, ..., M being non-linear. Take
a feasible trial point xj;, i =1, ..., N, and evaluate at this point the values
of all functions gj and the values of all first partial derivatives of all
functions gj. Each of the functions gj may then be replaced by a |inear approx-
imation which has the same value and gradients at the trial point. The
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approximating functions can be easily derived from a first-order Taylor series
expansion about the frial point. The resulting approximate problem is now a
linear programming one and may be solved as such. The result of this linear
programming problem then gives a new trial point at which a new approximating
| inear problem can be constructed. The solution of problem (1) is then
approached by means of a sequence of linear programs.

The sequential |inear programming method can be criticised in several ways.
Firstly, there is no proof that the sequence of linear approximations will
converge to the optimum of problem (1). Conceptually, convergence is oftfen
assumed but if the degree of non-linearity in the original problem is high
convergence of the sequence may be very slow. Also, a linear approximation to a
non-linear problem may be very inaccurate and the results of each linear program
may be highly infeasible for the original non-linear problem. In order to
ameliorate this move |imits are often used which add extra constraints to prevent
the linear search from going too far info infeasible regions. This increases the
number of cycles of iteration and has the effect of imposing convergence to a
point which is not necessarily the optimum of problem (1). The use of linear
programming implies that the optimum will always be found at a vertex of the
linear constraints but this is not necessarily true of general non-linear
problems.

However, despite these criticisms sequential |inear programming remains a
very popular method of structural optimization and although its performance some-
times leaves much to be desired it has been successfully used on a very wide
range of large and complex structural design problems. Popel® has given a
good description of sequential linear programming in AGARDograph 149 which is
entitled 'Structural Design Applications of Mathematical Programming Techniques'
and gives excel lent background material in the area of structural optimization.

A big advantage of the SLP method is that i+ can tackle large and complex
problems unsuited to any other technique. |t has frequently been linked to
finite element analysis programs to give an iterative optimum design capability.
In such cases considerable amounts of computer time are necessary and the final
results are sometimes only approximate optima but this method is the only way in
which complex problems can be solved. Examples in the field of structural design
are many but two may be referred to as they typify the performance of the method
on very complex problemsl64¢17,

4.6 Dynamic Programming

Dynamic programming solves a very special class of problems in which the
objective is to extremize the performance of a serial system.

F% Fﬁ 22 FJQ F%bA PQ Fﬂﬂ

—— | > o

d, sz dy

FIG.3

In Fig. 3 each box represents a stage in the serial system. Consider box I.

Input to this stage is the value of the performance po. By giving different
values to the decision variable d| the output performance p| of stage | is

varied. This output p| of stage | is the inpuf to stage 2 and the system
performance at the end of stage 2, pp, is modified from the input value p| by
decision variable dp. By the final stage N, the final performance criterion pN

is therefore a function of the initial performance pg and the N decision variables
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d| +«+, dy. The objective is to find values for pp and all the N decision
variables which extremize the final performance py. Dynamic programming is a
very efficient technique for solving such problems and was developed by
Bellman!é,

The dynamic programming method itself is not studied here but some
characteristics of the problem should be noted. First of all it is necessary to
have a serial system such as shown in Fig. 3 in which decisions taken at a
particular stage affect only performance after that stage and not before it. No
"looping-back' is possible. Although Fig. 3 shows only one decision variable at
each stage it is possible, though more expensive in time, to have multiple
decisions at each stage. The reason that dynamic programming is mentioned in
connection with structural optimization is that it is very rapid and efficient
in solving problems which fall into the suitable class. Unfortunately very few
structural optimization problems have the necessary sequential decision
characteristics. Palmer!9,20 has applied the method to optimizing the
geometry of transmission towers and frameworks with some success. As a general
comment upon the dynamic programming method for structural optimization it can
be said that it works very well indeed on suitable problems but few structural
problems are suitable,

4,7 Geometric Programming

Geometric programming is perhaps the most recently developed mathematical
programming method to appear on the structural optimization scene. Like linear
programming and dynamic programming, geometric programming solves a particular
class of problems but unlike these other methods the class of suitable problems
is quite large and many optimum structural design problems are suitable.
Geometric programming in its simplest form solves the problem:

Minimize 9% (xi) i =1, «es, N
Subject to gJ (x;) < | J=1, «oup) M (10)
x. 20 i =1, «e.y N

with the restrictions on the mathematical form of the functions gj That:

T N a,..
- JTi -
gJ (xi) = §=E CJT L=L X J=0, ..., M ()
and ij >0 for all j, t (12)

The class of suitable problems is therefore governed by the requirement that all
functions be sums of terms, each term involving products of variables raised to
known powers. Generally all constraints are non-linear inequalities and such
problems can be very difficult to solve directly. Geometric programming does
not attempt direct solution but uses theorems of geometric duality, described by
Duffin et al 2l to construct an equivalent dual problem. Using dual variables
§ the geometric dual problem exactly equivalent to (10}, (Il) and 12) is:

§

T . .

Maximize V (8) = i I ]1T -JL—~—J)
Jj=0 t=l Jt
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-
Sub ject to the constraints z%: 8 = | (13)
= ot
>
a $ =0 I = |; waaiz N
70§ JT ot
in which A=
o)
T
AJ = _ ij J=1ly, «ou, M
Jt 2 0 all j, t

The important feature of the geometric dual problem (13) is that the
constraints are linear equalities. As was mentioned in section 4.3 linear
equal ity constraints actually assist in maximizing V (8) and methods of uncon-
strained search can be adapted to solve the dual problem numerically. The geo-
metric programming method therefore uses duality theorems to convert problems of
a difficult type to solve directly into problems with linear equality constraints
which are much easier to solve. Since the appearance of Duffin, Peterson and
Zener's book?! in 1967 the method has been considerably extended and require-
ment (12) that all coefficients must be positive has now been removed in more
recent versions of the method. Also constraints of reversed sign can be handled.
Temp leman and Winterbottom?2 have summarized these recent developments in a
paper which describes a computer program for geometric programming and its
application to structural design.

Advantages of the method are that it is a non-linear one which works
effectively on highly non-linear problems, The class of suitable problems is
clearly defined and is as easy to recognize as |inear programming. A standard
format of problem input is available which makes solution by means of computer
package programs relatively easy, |t has been shown that very many structural
optimization problems are naturally suitable for solution by geometric
proegramming. The detailed design of almost all types of structural elements
(category 4 of the hierarchy described in section 2) can be expressed as
geometric programming problems., Equations (2) and (3) show that fthe physical
properties of a beam or column can be related to a single variable, A, raised fo
di fferent powers, Terms such as these typify category 4 problems and they are
in the form of (11) which is ideal for geometric programming. Templeman?3 gives
several examples of the optimum design of structural components such as beams,
corrugated plates and integrally-stiffened compression panels and also shows how
geometric approximations may be made to more general problems in structural
optimization., Non-standard problems can then be solved by a converging sequence
of geometric programming problems in a conceptually similar way to sequential
linear programming as described in section 4.5, This has the potential
advantage that more representative non-linear approximations rather than |inear
ones are made to non-linear problems. A final advantage of the method is that
the dual problem sheds new light on the optimum design and much insight can be
gained by attempting to interpret physically the dual of a structural design
problem, This point was made previously in connection with linear duality and
it seems likely that research now being carried out in several centres into
interpretation of primal/dual systems could in the future be of great benefit,
leading to new structural optimization techniques and enhanced understanding of
the design process and of structural behaviour,
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Finally, the disadvantages of the geometric programming method should be
mentioned, Firstly, it is the most difficult to understand of the methods
described here, Secondly, if a computer package is not readily available to a
prospective user of geometric programming then the effort involved in programming
the method is very large, At present there are only a few suitable computer
programs available. Thirdly the method is still relatively in its infancy, its
use is not widespread and much of its great potential is still to be realized.
Finally, the performance of the method on very large non-linear problems is
dominated rather by computer sftorage and hence also by run-time. Factual
evidence of this is as yet small but it may be that there is a fairly high limit
upon the size of geometric programming problems which can be solved within normal
economical limits.

D OPTIMALITY CRITERION METHODS

All the methods described in section 4 attempt to solve structural
optimization problems of the general form of problem (I) by mathematical and
numerical search methods. The philosophy adopted is that nothing is assumed
about the location or nature of the optimum. The optimum is reached by some
purely numerical search which is based upon the mathematical form of problem (1)
rather than the real-world structural design which problem (l) represents. The
structural engineer, however, sometimes feels that he knows much more about the
optimum structure than is present in its mathematical equivalent and that this
know|ledge might be useful in deriving a search method based upon structural
principles rather than upon a mathematical abstraction. The term optimality
criterion methods covers such approaches. Optimality criterion methods solve
problems such as problem (l) by search methods so strictly this section could be
numbered 4.8 and considered with all the other methods. The concept is so
different, however, as to warrant a separation from the other methods.

Optimality criterion methods are absolutely problem-dependent and a
particular criterion applies only to the optimum design of a particular type of
structure under very specific conditions. The philosophy of the optimality
criterion approach is first of all to investigate the nature of optimum struc-
tures of some specific type fo ftry fo establish a condition or set of conditions
satisfied only by the optimum structure and which are not satisfied by any other,
non-optimal design. For example such conditions might be that for a particular
type of structure under restrictions on stresses and displacements the optimum
structure always has a recognizable distribution of some form of energy among its
components and that this distribution is peculiar cnly to the optimum design.
Having found some structural criterion of optimality itis then necessary fo
devise some iterative algorithm which, starting with a non-optimal structure,
will successively redesign the structure so that a structure which satisfies the
optimality criterion and hence is optimal will be found.

For particular classes of structures the optimality criterion approach
solves the mathematical problem (l) very indirectly by completely replacing the
problem by an analogous one of iteratively redesigning a structure so that i+
satisfies some pre-established criterion of optimality. In a sense optimality
criterion methods are dual methods in that problem (1) is solved by solving a
completely different but equivalent 'dual' problem. The nature of this duality
between mathematical programming and optimality criterion methods is almost
totally unexplored but holds out considerable promise for further research work.

In developing an optimality criterion method for a particular class of
structures there are two distinct phases. First of all a relevant and unique
criterion of optimality for the class of structures must be found. This is
generally very difficult to do since such criteria are rarely obvious. Had
optimality criteria been obvious then mathematical programming would never have
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been necessary for optimum structural design. It is the requirement that the
criterion be unique to the optimum structure which is perhaps most difficult to

satisfy and indeed at the present time the technical |iferature holds examples
of many so-called optimality criteria which are not optimal at all in that they
can also be satisfied by non-optimal structures. The second phase is that of
developing a recursion relationship which will produce an iterative redesign

algorithm so that the optimality criterion can be satisfied. This too can
frequently be difficult to develop and it runs the risk like any numerical search
method of being unwieldy to operate or slow to converge. The optimality criterion
approach is a logical one which has great appeal to structural engineers since it
is based upon structural rather than mathematical principles. |t holds great
promise for the future although it can never entirely replace mathematical
programming methods but, |ike some of the methods described earlier, it is still
in its infancy and it still has to realize much of its potential,

At present very few rigorous, well-tested optimality criterion methods
exist although many have been proposed and the range of optimum structural design
problems which they cover is small, Generally they apply to overall sizing of
structural members in a multimember system such as a truss or frame, i.e.,
caTegorx 3 problems in the hierarchy of section 2. Some authors, notably
Prager2*, have developed optimality criteria for structural components such as
beams, sandwich plates, etc. For such structures the optimality criterion
generally is concerned with energy distributions in the parts of the structure.
Prager has concluded that volume integral of energy density in each part is pro-
pertional To the volume of the part in many cases with single constraints. When
multiple constraints are present the optimality criterion becomes more complica-
ted but this energy distribution pattern is still an optimality criterion
although in a modified form. Variations upon this energy-density optimality
criterion have been proven to be applicable to truss structures, notably by
Venkayya2® and many others. Indeed many types of structures may be designed by
optimality criteria methods with constraints upon stresses or displacements or
dynamic stiffness, and the big potential advantage which the optimality criterion
approach has is that very large problems can be designed this way, given a
suitable criterion and algorithm, whereas mathematical programming methods are
often suitable only for relatively smaller structures. A major difficulty is
encountered when structures are to be designed subject to multiple constraints of
di fferent types. For example, a ftruss may be required to satisfy both stress
constraints for which a criterion is available and multiple displacement con-
straints for which another criterion is known. Both criteria are not usually
satisfied simultaneously and although a composite optimality criterion can be
devised it is considerably more difficult to devise a rapid redesign algorithm
and the solution process can be very slow.

There are therefore many difficulties associated with the optimality
criterion approach and these are not always immediately obvious. The idea of
developing structurally based rather than mathematically based optimization
methods is, however, very appealing and holds out great hope for the future but
much more work remains fo be done in order to realize this potential.

6. CONCLUS |ONS

Structural optimization is at present a thriving area of research and
development. The philosophy is so very obviously right since the structural
engineer has historically been guided by the need and desire to produce struc-
tures which are in some respect 'better' or more efficient than those which have
gone before, The electronic computer has enabled design and optimum design to
be put on a more formal and rigorous basis and is the means by which the goals
of structural optimization may be achieved. However, it is fair comment to say
that the actual methods of optimization at present available are not entirely
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adequate for very many of the structural optimization problems which surround us
today. Mathematical programming methods can sometimes be laborious in operation
and are often restricted to only small to medium sized problems. Some methods
offer more promise for the future than others and mathematical programming is
still very much alive. In the author's opinion better methods will be developed
in the future perhaps based upon duality. Optimality criterion methods have
great appeal to the structural engineer yet at present they too are in their
infancy and require much more development.

In section 2 of this paper a hierarchy of structural optimization problems
was discussed. Research up to the present time has tended to be concentrated
mainly in categories 3 and 4 of this hierarchy = the easier problems.
Categories | and 2 are as yet little-explored and the potential rewards offered
for methods of solving such problems are very great. By about 1970 a watershed
had been reached in structural optimization. Prior to this date research had
concentrated upon marrying existing solution methods to structural design
problems and it became evident that the marriage was only partially successful.
Very many pressing problems remained to be solved. Since 1970 progress in
structural optimization has been along new lines of approach. The simpler
problems are now things of the past and only the harder ones remain. It is
significant that interest in these harder problems of structural optimization is
unabated. Over the last five years many new lines of approach have been opened
up and although progress has often been slow the full potential of the new
methods can now be clearly seen as a future goal. To achieve this potential is
the object of structural optimization today.
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SUMMARY

The paper considers the economic objectives of structural optimization
and shows that it has put design on a formal and rigorous basis. The size and
type of structural optimization problems is then examined and a hierarchy of
problem categories is discussed. Approximation methods are considered which
enable complex structural problems to be posed concisely. Seven mathematical
programming methods are described and critically discussed in the context of
a specification for a suitable optimization technique for engineering use.
Optimality criterion methods are then examined and the paper concludes that
presently available structural optimization techniques have yet to achieve
their full potential.

RESUME

L'article traite des buts économiques de l'optimisation structurale et
montre que le dimensionnement est posé sur une base formelle et rigoureuse.
Le type et l'importance des problemes d'optimisation structurale sont examinés;
une hiérarchie des catégories de problémes est discutée. Des méthodes d'approxi-
mation permettent de poser des problemes structuraux complexes de fagon concise.
Sept méthodes de programmation mathématique sont présentées et comparées dans le
cadre de directives pour une technique d'optimisation appropriée & l'usage de
1'ingénieur. Des criteres de méthodes d'optimisation sont discutés, L'article
conclut que les techniques actuelles d'optimisation structurale peuvent encore
etre améliorées.

ZUSAMMENF ASSUNG

Der Beitrag behandelt die wirtschaftlichen Aspekte bei der Optimierung von
Tragwerken und zeigt, dass die Bemessung auf einer formalen und strengen Grund-
lage beruht. Grdsse und Typen baulicher Optimierungsprobleme werden untersucht
und eine Rangordnung der Probleme diskutiert. Es werden Niherungsmethoden unter-
sucht, welche gestatten, komplexe bauliche Probleme rasch zu ldsen. Sieben mathe-
matische Programmierungsmethoden werden beschrieben und hinsichtlich des Anwen-
dungsbereiches kritisch verglichen. Saodann werden verschiedene Optimierungskri-
terien untersucht; der Beitrag schliesst mit der Feststellung, dass die gegen-
wirtig erzielte Optimierungstechnik ihre vollen M@glichkeiten noch nicht erreicht
hat,
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1. INTRODUCTION

Many discussions in the I.A.B.S.E. proceedings have considered
structural optimization. For example, Professor Courbon defined
optimization as designing and construction a structure at the lowest
cost, with the object of fulfilling a well defined purpose.(1) In
particular, cost consideration must also be given to safety, service
1ife, maintenance and future adaptability. Since all of research
and practice in structural engineering is aimed towards such a goal
the activity known as structural optimization must be defined in a
unique way. That is, the development and application of a priori
directed and automated techniques for improving designs within well
defined cost contexts and recognized constraints. Within this
definition, therefore, questions of design creativity and ingenuity
are put aside in favor of quantitative comparisons among a vast
array of acceptable yet competing designs. Thus, in much the same
way as computer methods of structural analysis, the techniques of
structural optimization become an aid to the designer for rapidly
proportioning structural details and evaluating design alternatives
to obtain the best design among given choices. In this way, when
the engineer arrives at comparing quite different conceptual designs
for the same application he is fairly certain of intelligently com-
paring these alternatives and not unfavorably biasing one alternative
by poor proportioning of its details.

In the field of structural optimization the computer becomes central
as a tool for searching and sorting through the similar design concepts
and proportioning the element details for the most economical design.
Naturally, it arrives at a design which the engineer could equally have
obtained if he were prepared to invest the time and money to directly
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search among the design alternatives. The principal advantage of the
optimization methods is therefore its saving in design time and cost.
A further consideration with the expanding usage of computer analysis
programs to calculate structural behavior is that an optimization
program can eliminate much of the input-output and the costly data
handling effort. Since the methods result in a proportioned structure
which satisfies applicable codes it becomes unnecessary to review the
vast amounts of structural analysis output. Instead, the optimization
program produces design details as an output and in some cases could
be further programmed to produce drawings and material and fabrication
specifications.

2. RAISING THE DESIGN HIERARCHY

Since structural optimization over the last decade and a half
has successfully concerned itself with computer aided proportioning
of design details it is easy to ignore further applications. In
fact, some recent work has shown the possiblity of introducing into
the automated computer procedures design variables which had previous-
1y been thought to be either in the realm of creative decisions or
else difficult to program for computer selection. These additional
design variables have described geometry and shape of structures,
material choice, complete building design including comparison of basic-
ally different element types and design selections including overall
fabrication costs and material availability. Before embarking on a
description of several such examples it is worth considering from this
framework the historical developments of optimization applications.
There is in this regard an analeogy between computer developments
in both structural analysis and optimization. When digital computers
first became available civil engineers who were among its early inten-
sive users simply programmed classical methods of analysis such as
slope deflection and moment distribution. In a similar way the first
structural optimization applications were programs using such well known
iterative design methods as structural index, stress-ratio, fully stress
and other optimality criteria.(2)
A second development of computer applications were matrix analysis
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for specific structural types such as trusses, frames and grillages.
Paralleling this was specialized optimization programs for these same
structural types using methods: such as gradient directions or other
heuristic design search procedures.(3) The current stage of develop-
ment includes general purpose computer programs usually available from
machine manufacturers or time-share agencies. In analysis this often
means finite-element packages for linear and non-linear behavior. The
same evolution for design has been program packages each able to handle
a wide array of different structural elements and systems. It is
important to investigate in detail these current developments in opti-
mization since they include the methodology for extending applications
in both structural system and geometry optimization.

3. GENERAL PURPOSE OPTIMIZATION PROGRAMS

To explore the available methodology for structural optimization
the author prefers to divide iterative structural decision problems
into three categories. These are: 1) element design, 2) interconnected
structural systems and 3) discrete decision variables. Each of these
categories will now be considered. It is recognized that other areas
could be added particularly as we move further into conceptual and
creative decision variables but the three categories will suffice to
cover the needs of a computer optimization library for a typical design
practice.

Element Design - This design problem is characterized by a well
defined code of practice for the constraints and a relatively direct
method of calculating the element loading such as moment, shear, torsion
and axial load. Some examples of application are shown in Figure 1
including welded wide flange, unsymmetrical box girder and prestressed
beams.(4-6) Design variables are typically depths, thickness, shape,
reinforcement ratios and other design details which are often part of
the tedious aspects of design and for which economic selection rules
are not always available. Other published examples include welded
columns, gabled frame, stiffened ship plates, shear walls, prestressed
plates and reinforced concrete beams.(7-11) These examples typically
have a small number of independent design parameters (say less than 10)
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but relatively complex functional code constraints such as allowable
tension, compressive and shear stresses, buckling and displacement
constraints. In one example using the A.I.S.C. code the constraints
were due to lateral buckling and were discontinuous representing

a transition from elastic to inelastic behavior.(4) In some appli-
cations it becomes necessary to repeat the design for a large number
of different elements. For example, in the case of box girder sections
a particular overhead crane manufacturer using such sections needed
over 5000 specified designs.(5) This obviously required an efficient
design program.

Several computer packages have been developed to automate the
solution to element optimization. The author prefers to use programs
based on the penalty technique which combine the criteria function
(cost or weight) and the constraint into a single expression to be
minimized. (12) This transforms the more difficult non-linear pro-
gramming problem with cost and constraints into a more tractable
unconstrained minimization for which many straightforward solution
methods are available. Other methods have also been successfully used
on some problems including geometrical programming and linear programming.(13)
As was mentioned earlier, element design is also characterized by a
direct calculation of the forces on the elements. This may either be
for statically determinate structures or even for complex frameworks
in which a matrix structural analysis is used to solve for element forces.
It is assumed in the latter case that the element size does not affect
the force distribution within the structure; if this effect is significant
then several cycles of iteration may be necessary to converge both the
force distribution and element design. Since an element design optimization
usually involves comparing many alternatives it would be computationally
difficult to repeat the force analysis each time a design parameter were
changed.

System Optimization - This refers to structures where there is a
major physical interaction between different elements or there exists
design constraints based on total structural behavior such as stability,
stiffness, vibration and dynamic responses. Furthermore, system opti-
mization arises when some of the design variables relate to more then
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FIGURE 1: EXAMPLES OF ELEMENT DESIGN OPTIMIZATION

(a) Wide flange beam four variables, ref. 4
(b) Welded box girder, 5 variables, ref. 5
(c) Prestressed concrete beam, eleven variables, ref. 6
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FIGURE 2: EXAMPLES OF STRUCTURAL SYSTEM OPTIMIZATION

- - (a) Flat orthogonal normally loaded qrillage,
(c) ref. 14 variables - member sizes,
(b) Planar truss, variables - member areas, ref. 15
2N (c) Planar frame, variables - member sizes, ref. 16
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one element such as geometry, material or topology. In these cases,

the force distribution invariably requires a matrix or finite element
analysis. Computer costs usually restrict the number of possible

trials that the computer can sequentially examine as it searches for

the optimum to often under 10 trials. Some cases that have been optimized
include foundation or ship grillages, trusses and frames and are
illustrated in Figure 2.(14-16) The most efficient search techniques

for systems usually utilize some form of linear programming steps

since in this way large changes in design may be made with only a

single analysis interaction.(16,17)

Discrete Selection Parameters - This category of optimization is
considerably more complex then either the two first categories. Dis-
crete design variables are not always clearly defined or constant in
number and the cost function may be extremely complex and discontinu-
ous. The discrete nature of variables often requires heuristic or
intuitive search methods of solution which make general purpose programs
irrelevant. One method however, which has solved a variety of such
problems is the dynamic programming technique which is easy to program
if the basic problem formulation meets its definition.(18) Among the
reported structural design problems solved by dynamic programming are
the minimum cost of continuous coverplated highway bridge girders,
single story building selection of different roof, column and foun-
dation elements, spacing of supports of multi-span girders, thickness
variations in ship plate components, reinforcing bar arrangement in
continuous reinforced concrete beams and girder selection for minimum
material, detailing and fabrication costs.(19-24) These examples have
in common discrete variable selection and more important a sequencing
of decisions into stages which satisfy the dynamic programming criterion.
As an example in Figure 3, the single story optimization starts separately
with the roof and then includes the column and finally the foundation
and bay spacing. Since roof cost is independent of the supporting columns
and foundation this sequencing of decisions is possible. The same notion
of sequencing is true of the other dynamic programming examples mentioned.

4. GEOMETRY AND SHAPE OPTIMIZATION

In extending the design optimization hierarchy beyond the variables
associated with design details the variables associated with shape and

geometry have arisen. This is a natural continuation of much of the
early optimization work on truss and frame structures which optimized
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the force distribution within the structure or element optimization
which finds the best details in a specific cross section. Naturally
much qreater cost savings can be made by optimization of geometry
variables than by member selection alone since the force distribution
is relatively insensitive in many cases to the latter variables.

An example of this is illustrated in Figure 4 with a section of
a transmission tower.(25) With a fixed initial geometry as in Figure
4a 1ittle savings can be realized in structure weight by optimizing
the element force distribution. The difference between total optimized
weight and say the weight obtained by a traditional direct iterative
analysis and design approach is quite small even over a wide array of
load conditions and even displacement constraints. However, when
geometry variables are introduced the structural weight is reduced
18% as in Figure 4b. The geometry variables were the location of
joints and the width of the base support. In this shape optimization
the geometry design variables were separated from element design varia-
bles. For each change in geometry the minimum element design was
found by a direct design method such as stress ratio. The changes in
geometry were found by gradient methods.

A broader generalization of this search for optimum geometry or
"best shape" structure was reported by Zienkiewicz and Campbell.(26)
Starting with a finite-element analysis program an extension was pro-
grammed to automate the calculation of derivatives of structural be-
havior such as stresses and displacements with respect to various
structural shape parameters. Optimum changes in geometry were then
carried out by linear programming. Applications of this approach have
been reported for arch dam geometry, dam cutouts and plates. Vitiello
reported a similar program for beam shapes, gravity dams and seismic
loading.(27) By properly fitting the structural behavior with poly-
nomial functions of the geometry he was able to do the minimization
with a penalty function program. An example showing the gravity design
variables and the finite element modelling is given in Figure 5.

Ramakrishnan and Francavilla also using a linear programming approach
found optimum shape designs for plates, pressure vessel end closures,
and a gravity dam.(28)
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It is apparent that despite some of this work described in shape
optimization that much remains to be done and would accordingly be
very profitable. Certainly, once the geometry of a structure is fixed
there may be little amount of cost or material saving to be achieved
by optimiztion techniques. It is therefore important that the geometry
variables be considered as part of the automated design search. The

most fruitful application appears to be three dimensional heavy structures

such as towers, dams, pressure vessels, containment structures and
storage tanks for which indeed form may follow economy and structure
represents a major part of the total investment. In buildings,

except perhaps for high-rise or other structures in severe seismic or
climatic zones the potential material savings in the structure repre-
sents only a small percentage of the total building cost and therefore
cannot dictate geometry in conflict with other architectural considera-
tions. However, even in buildings particularly in industrial applica-
tions there may still be some gain to introducing geometry variables
concerned with bay dimensions or Tocation of shear walls and stiffening
trusses.

5. SYSTEM OPTIMIZATION

The above discussion has almost exclusively centered on design
variables which describe a structure but are in the main continuous
variables such as element sizes or geometry variables. An exception
has been the example in Figure 3 illustrating a single story building
with discrete variables. What is unique about this latter example is
the selection among alternative structural elements to perform the same
function. Thus not only, say rolled steel beams but welded girders,
reinforced concrete or prestressed beams and even trusses are sequen-
tially compared while finding the optimum. Similarly, for other
components of the structural load carrying system. Thus, the hierarchy
of possible designs entering an automated optimization is considerably
expanded.

Figure 6 shows a flow diagram of a general purpose program for
performing the sequential comparison and optimization. It has been
applied to design of single story buildings but may also be used for
high-rise buildings. The various components required for the structure
i.e., foundation, columns, girders, roof joints etc. are treated
independently. A table is developed which obtains the minimum cost of
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each component as a function of the loads, with the range of possible
loadings automatically established based on the input data. Each
component in such a table may be found only after comparison of
different types of elements to carry out the same function. These
individual elements may be from a stored 1ist of optimum designs or
else generated by element design programs for a specific structure.
Any convenient programming method either non-linear optimization or
direct design may be used for fihding the element table. The entire
program is then controlled with a dynamic programming type minimum
cost selection scheme to choose the best combination of elements.

The input data specifies which element types should be candidates

for a particular structure and new elements can be added to a program
library.

To make such general programs more accessible to designers simpli-
fied programming languages are needed. The input data must be in the
form of basic geometrical dimensions and load data. The connecting of
components must be inputted in a direct manner as well as specifying
the possible element types which are design candidates. Since the
variables are so general including element selection and geometry the
output need not be a detailed design specification but rather a broad
general indication of the element types and geometry which give the
minimum cost structure.

6. LIMITATIONS ON OPTIMIZATION APPLICATIONS

Since computers and procedures for automated optimum design have
been with us for some time it may be appropriate to reflect on why such
methods have not always entered routine office practice. To be sure, a
similar question may be raised about matrix analysis procedures that
despite readily available programs many structures are built today
after being analyzed with only crude approximate techniques. A
major reason, at least in the United States, is the lack of incen-
tive for designers to utilize computer methods which cost them
money but save the client construction cost. This is one reason
why many of the extensive applications of computer optimization have
been in areas of design-build operations where there is stiff com-
petition and hence a desire to reduce construction cost in order to
obtain a job. Other optimization applications have been to bridge
construction where many bridges are designed by state highway depart-
ments who are in effect the owners of the structure.
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Another limitation has been that many of the computer programs
have required detailed knowledge of mathematical programming and
computer software techniques. This is changing and as in more recently
developed structural analysis programs, the optimization routines in
some of the examples cited above do not require the user to be at all
familiar with such programming procedures. In fact, in many cases,
the user finds these optimum design programs easier to utilize then
traditional design tools or programs. It is this attraction, rather
then the construction cost saved by optimization which has often
decided the user in favor of this approach.

7. CONCLUSIONS

1. Advances in automated computer techniques for design have
reached the stage where many types of detailed design and selection
between alternatives for minimum cost can be carried out. Such design
tools could be used for lowering cost, increasing standardization of
elements and evaluating effects of changing constraints.

2.  Success in achieving programs for element design has suggested
that the design variable search be extended to include more significant
variables of material and geometry. In particular shape optimization
has been used, particularly for massive concrete structures such as
gravity and arch dams and containment structures.

3s System programs capable of data manipulation and automated
design of a wide variety of different structural schemes can be expected
during the next few years. This should make possible the application
of automated design by engineers with Tittle background in programming
and software techniques. At the same time there will still be demands
for special purpose programs which more efficiently automate the design
of a single type of structure. This will be done by organizations
which have repeated need for a particular structure and are prepared
to invest time and money in computer applications. An example of
this latter approach is the GAD system developed by Professor Goble
at Case Western Reserve University for the design of continuous welded
plate girder highway bridges.(5.19) The program has been in use by
the Ohio Department of Transportation for several years. The program
reflects the cost data, design details, code specification and con-
struction practices of that organization. However, due to the number
of bridges of this type which are built the investment in computer

programming was justified.
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4. Since the cost of developing optimization programs may be
large and the incentive for the design firms to use these programs
may be relatively small the advances into practice of such techniques
may be thwarted. A mechanism such as a central agency is needed to
develop, document and disseminate such programs to insure wide practical
utilization.
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SUMMARY

Structural optimization is defined as directed computer techniques for
improving designs within well defined cost contexts and recognized constraints.
Applications are divided into:

a) element design characterized by code constraints of practice;
b) system optimization involving large numbers of elements and
c) discrete decision variables.

Solutions and examples are presented for all three categories. Geometry
and shape optimization as well as general programs for optimizing a variety of
different structures is discussed in detail.

RESUME

L'optimisation structurale a pour but d'améliorer le dimensionnement de
structures au moyen de techniques appropriées d'ordinateur, dans des limites de
colts et de contraintes bien définies. Le domaine d'utilisation en est le suivant:
a) dimensionnement d'éléments conformément aux réglements de construction
b) optimisation de systemes composés d'un grand nombre d'éléments
c) variables discretes de décision.

Des solutions et des exemples sont donnés pour ces trois catégories. L'opti-
misation de la forme et des dimensions est présentée en détail; des programmes

généraux applicables a diverses structures sont également discutés.

ZUSAMMENF ASSUNG

Die Optimierung von Tragwerken wird definiert als unmittelbare Anwendung der
Computertechnik zum Entwurf und zur Berechnung von Konstruktionen bei genau um-
schriebenen Nebenbedingungen hinsichtlich Baukosten und zul&ssigen Spannungen. Die
Anwendungsmethoden werden aufgeteilt in:

a) Bemessung von Einzelelementen nach den geltenden Normenvorschriften,
b) Optimierung ganzer Systeme bestehend aus einer grossen Anzahl von Einzelelementen,
c) diskrete Entscheidungsvariable.

Flir alle drei Kategorien werden Ldsungen und Beispiele angegeben. Die Opti-
mierung der Form und der Abmessungen sowie allgemeine Programme fir die Optimierung
von verschiedenartigen Bauwerken werden eingehend besprochen.
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Applied Structural Optimization
I. INTRODUCTION

The total process for the design of a sophisticated structure
is a multistage procedure which ranges from consideration of overall
system requirements down to the detailed design of individual com-
ponents. While all levels of the design process have some greater
or lesser degree of interaction with each other, the past state-of-
the-art in design has demanded the assumption of a relatively loose
coupling between the stages. 1Initial work in structural optimiza-
tion has tended to maintain this stratification of design philoso-
phy, although this state of affairs has occurred, possibly, more as
a consequence of the methodology used for optimization than from
any desire to perpetuate the delineations between design stages.

In recognition of this stratification, a Eossible hierarchy of
design variable classes has been postulated.( ) The partitioning
implied in this manner is not rigid but is representative of pessi-
ble or probable design capabilities compared to total design
requirements.

The hierarchy is

a) Member Sizes

b) Configuration

c) Material Properties

d) Construction or Topology

In the first class, all geometric details of the structure are fully
defined and only member sizes are to be chosen by a design process.
Although apparently a v:iry restricted class of problems, this
actually represents (i) the limit of most of the optimization
capability available to date and (ii) an extremely wide class of
structural problems. It is a fact that in many structures the
location and configuration of a great deal of the primary struc-
ture is mandated by nonstructural considerations. Likewise materi-
als and construction will frequently be dictated by environment,
design codes, cost, etc. There are many other structures for which
the above does not apply.
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By configurational variables, location but not number of prin-
cipal components is implied. Hence, the first two members of the
hierarchy may be regarded as continuous variables*, whereas the
latter two categories clearly involve discrete noncontinuous vari-
ation of parameters. Because of the difficulties encountered in
dealing with noncontinuous variables within a mathematical frame-
work, principal attention has been generally confined to the first
two classes of variables, with maximum attention on the member
sizes.

The principal approaches to the optimization of structural
systems for minimum weight in the past have been based upon the
use of a combination of mathematical programming or other rigorous
numerical search techniques and an equally rigorous structural
analysis method. There have been many variations on this theme,
but the essential combination of methods has remained the same.
For analysis, finite element methods have been the most frequent
choice, while the numerical search techniques have run the gamut
from linear programming to Monte carlo. (2,3,4) while this type of
combination of methods is valid and appropriate for certain classes
of problems, within the individual strata of the overall design
process, it has led to certain intractable situations.

The rigor and sophistication of both the analysis and search
procedures inevitably mandate numerical complexity and large
computer costs for the optimization of anything approaching a
representative large scale system. This, in turn, has cast con-
siderable doubt upon the economic value of some optimization con-
cepts. While many difficulties have been encountered using tradi-
tional methods of mathematical programming, there have been signi-
ficant developments in new approaches to structural optimization
which have overcome fome of these difficulties for selected classes
of problems.(51517r8

While mathematical programming methods are fairly rigorous
and extremely general in their range of applicability, computer
programs developed along these lines tend to be effective for the
optimization of small scale systems only. When expanded for the
optimization of realistic large scale structures, such approaches
tend to become excessively costly and also of doubtful reliability
and accuracy. The major problems seem to arise from a large in-
crease in the number of analysis iterations with increase in the
number of design variables. 1In addition, the explicit or implicit
need to calculate numerical approximations to derivatives of con-
straints with respect to all variables means that each iterative
step itself becomes lengthy.

Some new developments in mathematical programming have tended
to overcome some of the difficulties but others remain. In addi-
tion, the possibility of further new developments in both analysis
and numerical search techniques cannot be overlooked.

*It is recognized that in many branches of structural engineering,
principal members may only be selected from standard sizes and are
not strictly continuous variables. This problem is usually treated
by considering section properties as continuous variables and then
selecting the nearest standard sizes for the final designs.
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One approach to the problem which apparently avoids many of
the pitfalls of mathematical programming is through the use of
optimality criteria formulations. (3,

The basic concept behind otimality criteria is the rejection
of the generality of mathematical programming and the utilization
of the physical characteristics of the structural optimization
problem to generate an approach of somewhat limited applicability
but of the greatest computational efficiency.

In the optimality criteria approach, preconditions regarding
the optimum structural system are generated based upon a physical,
mathematical or even intuitive understanding of the problem. A
simple search procedure is then developed to find the design
satisfying these specified criteria.

A full discussion of this approach to one facet of structural
optimization is given in Section II along with examples of the
applicability.

Even with the development of optimality criteria programs and
other similar approaches, these methods still suffer in many cases
from severe limitations with regard to class and ranges of design
parameters which can be treated as variables in a search for an
optimum system.

It is this latter fact which has tended to maintain the
stratification of the design process. It has been simply not
possible or practical to mix variables of the different hierarchy
classes in any rigorous search procedure. The major handicap has
been the lack of continuity of variation of some parameters. While
the concept of fixing configuration, mode of construction and
materials at the outset of design may be acceptable for some
structures, it will certainly fall far short of a goal of overall
system optimization. Attempts have been made, with varying 3
degrees of success, to incorporate configurational variables, (2/3)
Generally, the stumbling block to the use of configurational and
other variables (apart from computational costs) has been the
requirement for continuity of variation in the parameters, due to
the need for derivatives to provide search directions in a con-
tinuum space. With configurational variables this may be margin-
ally possible provided the topology is undisturbed but to effect
continuous variation in such concepts as material properties, con-
struction mode and topology is beyond the capabilities of the vast
majority of mathematical programming techniques.

For the optimization of large scale systems where many or all
of the above parameters are initially undefined, more flexible and
more general approaches have been sought. An additional considera-
tion has been to develop an approach which would avoid the high
computational costs of the more rigorous formulations, providing
thereby an economic tool for ready use in design trade-off studies.

One new approach to the determination of the minimum weight
of complex structural systems involving material, constructional
and configurational variables in addition to the more conventional
design variables has been developed and is labelled the "sieve-
search" technique. (%) In this new procedure, which sacrifices



80 llc — APPLIED STRUCTURAL OPTIMIZATION

some degree of rigor for economy and generality of application, an
attempt has been made to consider the effects of detailed design
on the overall configuration of the total system and thus tie to-
gether hitherto uncoupled design stages.

In performance of optimization studies using the sieve-search
technique, the guiding philosophy is the generation of an optimal
arrangement of pre-optimized components. In this approach, the
detail components of a structure are optimized first using local
loading conditions and then the major configurational parameters
are varied in order to find the optimal arrangement of the locally
optimized components. The optimal design is obtained by a sequen-
tial comparison of the individual designs based on discrete values
of configurational and constructional design variables. The above
procedure is labeled a sieve-search since all nonoptimum designs
are eliminated by the sequential comparisons leaving only the
least weight design. The process can be labeled "discrete" in
contrast to the more classic approaches wherein continuous vari-
ables are treated.

The sieve-search method was developed initially for an
applied to the design of an extensive class of surface effect
ships. Section III discusses the basic philosophy behind this
approach to structural optimization using the surface effect ship
as a prime example. The extension of the procedure to other
classes of structural design problems is both possible and
economically attractive. 1Its potential use for bridge design is
also discussed in Section III.

II. OPTIMIZATION USING OPTIMALITY-CRITERIA

As discussed previously, there are a number of basically
different approaches to the problem of overall structural optimi-
zation. While some of the variations in the approcaches stem from
differences in the classes and types of systems which are being
optimized, there are also problems for which two or more methods
of solution are available.

A classic problem, of great practical interest, is the opti-
mization of a structural system whose overall geometry is fully
defined and fixed by a set of external conditions but whose member
sizes are to be selected optimally. The structure will usually be
subjected to a multiplicity of loading conditions (no one of which
is uniguely critical) and in addition to known limitations on the
strengths of individual components, stiffness of the system may be
of critical importance. Also fabricational constraints or other
codes may mandate minimum sizes for constituent members.* For
this type of problem which is encountered frequently in engineer-
ing design, the primary approaches to optimization developed dur-
ing the 1960's were based upon the use of mathematical programming

*In discussing a structure, the concept of an assemblage of indi-
vidual elements is used. This is generally consistent with the
idea of a finite element model which is usually used for the actual
structural analysis. If a continuun is considered, it, too, would

be regresented as an assemblage of discrete elements,which may be
viewed as separate variables 1n an optimizdtion process.
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formulations.(4) Because of the computational difficulties en-
countered with mathematical programming, this approach has been
largely abandoned for large scale structures and newer methods
based on the concepts of optimality criteria have been developed.

The underlying concepts behind optimality criteria methods
can best be illustrated by considering the contrasts between
optimality criteria and mathematical programming. In mathematical
programming approaches, sets of rules are established for numerical
search procedures which will determine an optimal solution in a
strictly empirical manner. The set of search rules will guarantee
a continuous and monotonic decrease in a prescribed merit function,
essentially without regard to the physical (or sometimes even
mathematical) nature of that merit function. The search will
regard constraints, if such exist, and will continue searching
until no further improvement in the merit function is possible. No
preconditions concerning the nature of the optimum are specified
beyond the criterion that it is impossible or uneconomic to deter-
mine a further design which will be an improvement on the present
design. This approach may be labelled post hoc since the optimum
is identified essentially only on an after-the-fact basis. Both
the strength and weakness of mathematical programming reside in
this concept. The strength is the generality which this independ-
ence of mathematical formulation imparts, with the resulting wide
range of applicability; the weakness is that no use is made of any
of the physical characteristics of the problem and hence frequently
an unnecessarily long and costly solution process results. The
antithesis of this situation arises in an approach which recognizes
the physical nature of the structural optimization problem per se
and sets out to take fullest advantage of the restricted class of
problem. In this approach, some conditions are established ini-
tially concerning the nature of the design which will be regarded
as optimal. These conditions, which are defined before initiation
of the redesign process, may be rigorously exact, approximate or
even intuitively assumed. The essential requirement is that their
application will lead to a relatively simple (usually iterative)
algorithm for a redesign process converging on the design which
satisfies the initially prescribed criteria. This approach is
then labelled a priori, since the characteristics of the optimal
system are specified initially.

The classic and most obvious example of an optimality criteria
approach is the time-honored fully-stressed-design. Every practi-
cal engineer is fully aware of and would probably support the basic
idea that the most efficient (optimal) design is one in which every
member is used to its fullest extent under at least one loading
condition., Prior to the advent of computers and the development
of advanced methods of structural analysis using finite elements,
generations of structural engineers have traditionally attempted
to inject some degree of optimality into designs by analyzing a
trial structure, using some appropriate quasi-classical procedure,
and adjusting member sizes to eliminate over- or under-stressing.
The more ambitious engineers might even have re-analyzed and re-
sized the structure one or more times. Probably very few practic-
ing engineers ever wondered whether anything is invalid with this
rather natural 'calibrated-eyeball' approach. Accurate analysis
of indeterminate structures presented a difficult problem prior to
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the introduction of cComputers, discouraging the repeated use of
more elaborate schemes, while approximate analyses were somewhat
insensitive to the crucial effects of rerouting internal force
distributions resulting from resizing iterations.

With the appearance of computers in the fifties, the first
attempt 2t automated optimum sizing was the computerized version
of the above procedure, initially still relying on time-honored
approximate analysis methods. The ensuing development of the
finite element methods by the early sixties made rather accurate
analyses possible for indeterminate structures of virtually any
form or shape. Instead of just two or three resizing cycles now
a much larger number of cycles became feasible, at least for
numerical experimentation by researchers, even if not in practice.

This simple and intuitive concept was eventually formalized
as the fully-stressed-design (f.s.d.). To achieve f.s.d., the
most cononly used algorithm, although not the only one avail-
able (10 is the simple stress-ratio. In the stress-ratio algo-
rithm, it is assumed that the gross forces in any member of the
structure will not vary with member size and hence the member
properties may be adjusted directly in the ratio of the actual to
the allowable stress. In indeterminate structures, changing
member properties generally effects some redistribution of internal
forces, so that an iterative process is required to achieve a
f.s.d. The most important feature of the stress-ratio, and other
similar algorithms is, that, in marked contrast with direct numer-
ical search procedures, the number of re-analyses needed to reach
an apparently converged design is usually small and independent
of the size of the problem. This intuitive approach fulfilled a
need for automated sizing for strength requirements and the
strength optimization problem seemed to be under control, (11,12)
No such simple and efficient method existed at that time for stiff-
ness related problems.

In the late fifties, nonlinear programming methods were intro-
duced as the correct framework for the general structural optimiza-
tion problem.(l}]'l With the development of these more rigorous
methods, which were applicable to both strength and stiffness con-
straints, it was shown that f.s.d. is not necessarily the correct
optimal solution for indeterminate structures. On the other hand,
it was also shown that f.s.d. may indeed frequently be a correct
solution, or more importantly from an engineering viewpoint, may
be a close approximation to the correct solution. Thus with f.s.d.
a very efficient but invalid method of strength optimization is
provided. Fortunately not too many practicing engineers are
inclined to question the rigor and validity of f.s.d. and merely
welcome its advantages.

The standard f.s.d. stress-ratio redesign algorithm tends to
drive a structure towards a design with the stiffest routing of
internal force flow, which may or may not coincide with the opti-
mal force flows. This trend may not become apparent if only a few
resizing cycles are performed and because they do usually tend to
produce a succession of improved designs, they are of great wvalue
to the engineer.
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The potential sources of problems with f.s.d. are quite easy
to point out, but the extent to which they are present in any given
situation is extremely difficult to assess. The difficulties can
be demonstrated in two small example research problems, where
comparison with correct solutions, obtained by numerical search,
is possible. The two examples may be regarded as somewhat patho-
logical but even for these problems it is not entirely clear what
the true nature of the pathology is. Hence, it is not possible to
state categorically that any real system does not contain the same
disturbing influences. 1In the stress-ratio algorithm, only the
constraints (stresses) themselves are considered and no reference
is made to the factors of relevance to the merit condition, such
as density. Thus f.s.d. is completely insensitive to favoring
structural elements according to their strength to weight ratios.
Therefore, f.s.d. tends to break down in structures which contain
materials of different densities or markedly different allowable
stresses. The first example (Figure 1) is of two parallel bars
sharing a single load. One bar is of steel, the other is of alumi-
num but both have the same allowable stress. The stress-ratio
algorithm will increase the size of members with higher material
stiffness and/or lower allowable stress. In this example the alu-
minum bar will vanish and the steel bar will be retained. Clearly
this is a f.s.d. but not a minimum weight design. If both bars
are made of the same material, but with different allowables, the
algorithm will eliminate the higher strength bar, again a poor
design. It should be noted that the optimal solution for these
two problems is the other bar fully stressed. The difficulty here
lies with the stress-ratio algorithm, rather than the concept of
£f.5.d.

A secin? more elaborate example is the 1l0-bar truss shown in
Figure 2. (15 The truss has a single loading case and initially
the stress limit in all members is %25000 psi. The f.s.d. obtained
using stress-ratio weighs 1593 lb which is known to be optimal.
Successively raising the allowable stress in bar No. 10 to

+30000 psi, %50000 psi and %+70000 psi and again using a stress-
ratio,designs of 1545 1lb, 1725 1lb and 1725 1b, respectively, are
generated. The 1545 1lb design is also known to be optimal but

the last two solutions of 1725 1lb are clearly unreasonable and
considerably in error. In these two cases stress-ratio has tried
to eliminate the high strength bar, resultin? in the poor designs.
Using mathematical programming techniques(8,16), the optimal

design for the two high strength (50000 and 70000 psi) cases is
known to be 1497 1lb. Further examination of the problem reveals
the interesting fact that, in both the stress-ratio (1725 1lb) and
the optimal (1497 1b) designs, all members are either at their

full allowable strengths, or at their minimum sizes, except for

bar No. 10. 1In each case the stress in bar No. 10 is 37,5000 psi,
although both designs are radically different. Assigning an allow-
able stress of #37,500 psi to bar No. 10 and again applying stress-
ratio, results in a third fully-stressed-design, weighing 1568 1b,
which is quite different from the other two. Clearly the whole
field of f.s.d. needs further research. Some studies have been
conducted_and variations on the stress-ratio algorithm have been
proposed(l7), but with limited success.
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On the other side of the coin, large scale programs have been
developed, basically using f.s.d. and these programs have been
successfully applied to the design of real structures. Whether
or not such structures are truly optimal is somewhat academic when
it is realized that such designs obtained at moderate computer cost
are undoubtedly superior to those generated by hand.

Figure 3 presents the computer-generated plot of the finite
element idealization of a complex wing structure. The total model
had 5397 finite elements, 4104 displacement degrees of freedom and
20 separate loading conditions. Redesign studies were performed
on the inboard half of this structure starting from various ini-
tial designs. The model considered had 3275 finite elements
(design variables) and 2520 displacement degrees of freedom. Only
two loading conditions were considered critical for sizing. In all
cases only three iterations were performed showing acceptable con-
vergence. Six iterations would have been sufficient for accurate
production work. The program used for this optimization was
asop(18) and for the three iterations required 6000 seconds CPU
time on a CDC6600 computer.

The preceding discussion has dealt rather extensively with
f.s.d. because this is the classic example of an optimality cri-
terion, and it is an approach to optimization which is widely
recognized and accepted. It is, nevertheless, very limited in
its use. Its role as an optimality criterion, per se, would prob-
ably not have been recognized, if there had not been a pressing
need for the development of suitable and efficient optimization
procedures for stiffness constraints. The driving motivation for
the exploration of optimality criteria methods for stiffness con-
straints was the excessive cost of using direct numerical search
methods. What was sought was an approach as simple as stress-ratio
but for displacement constraints. Optimality criteria were investi-
gated since such concepts, by definition, contain gradient related
information as a result of their derivation. By taking full advan-
tage of the special structural properties of the problem, these
criteria should lead rapidly and efficiently to the solution.

The actual development of a practical method for stiffness
constraints was a multistage process in which many researchers
individually contributed key concepts(19,20,21,5) It is not of
relevance here to discuss all the stages in this development pro-
gression; a fuller description may be found in Reference 22,

The essential step in the development of the currently used
approach to stiffness constraints was the formulation of a single
displacement constraint problem using a Lagrangian multiplier. In
a structural system with fixed geometry,A;, the characteristic
sizes of constituent members, are considered to be design vari-
ables. If W(Aj) is the merit function for the structure and F(Aj)
is a single displacement which is to be constrained to have a
magnitude C, then values of A; which minimize W, while satisfying
the equality constraint can be determined by use of a Lagrangian
multiplier formulation. The expression

W* = W(a;) - A | F(A;)-C (1)
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is written and differentiated with respect to A; to yield

*
w* _ 8w . , 8F _ (2)
9A,

i oA, A4

Equation (2) is then the necessary condition for the optimum
system, or the optimality criterion. For specific classes of
problems, it can be proven that this condition is also sufficient
for global or local optima.

Equation (2) can be rewritten in the more revealing form

oW/ 0A;

—§F7—§§I = A = constant, for all i (3)

Written in this form, there can be seen the valuable and
relevant information that, in an optimal structure, the change in
the measure of the behavior (displacement) for a unit change in
the measure of merit is the same for every free variable. That
is, the cost of improvement in the design is the same for every
member in the optimal system. This statement is quite general
and applies to the optimization of a structure for any type of
merit function (weight, cost, etc.) and for any type of constraint
which is characteristic of the structure as a whole. Thus, not
only displacement constraints can be considered, but also overall
buckling, dynamic response, flutter and any other phenomena which
are indicative of total structural response.

By the same token, strength constraints do not satisfy the
criterion of Equation (3), since they are, of necessity, indivi-
dual characteristics of the constituent members and not of the
structure in toto.

In order to translate Equation (3) into a working procedure
for the stiffness optimization of a structure represented by an
assemblage of finite elements, some particularization of the
general definitions used previously is necessary. It is assumed
that both merit and stiffness of the system are linear functions
of the design variables A;. These specializations are not neces-
sary; they are made only to simplify the expressions for the cost
and constraint function derivatives for a concise presentation.
Other functional relationships are possible. One additional
specification is crucial to the derivation of the final simple
numerical procedure. This requirement, which is generally satis-
fied by most analytical methods, is that both the total cost and
total stiffness be sums of individual members contributions. As
a result, the simultaneous equations implied by Equation (3) un-
couple for each value of i and can hence be solved in an extremely
expedient manner using simple recursion formulae. The not very
widely recognized importance of these key considerations, satis-
fied fortuitously by finite element analysis techniques, is that
they remove obstacles which hitherto existed to the use of classi-
cal Lagrangian multiplier formulations for structural optimization.
It is assumed in the following brief development that the complete
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behavior of the structure is analyzed using the finite element
displacement method. In accordance with the above definitions, a
merit function (weight) is written

W(A;) = Zw, = W A (4)

Similarly the stiffness behavior is written

F(Rj) = Zej = Zejs; (5)

Equations (4) & (5) merely express the linear summations discussed
previously. wy & Ei are the contributions of individual unit-
sized elements to the total weight and stiffness of the system.
For a simple bar element with A; as the cross-sectional area

Wi = Lj Pj (6)

where L; is the bar length
and P; is unit material cost (density).

For other types of elements A; & Lj must be appropriately defined,
but the general form of Eq. (%) still holds.

The stiffness of a structure under an actual loading system
(P) is computed by imposing a virtual unit load system (Q) in the
direction of displacement required, and computing the virtual work
of system. The contribution of each element is given by

Pt 0
ej = 6; Ky 4 (7)
P, :
where oy are the vectors of the nodal displacement of
h

it element due to the actual and virtual loading
systems, K; = kj A; is the stiffness matrix of the
element and k; is the unitized element stiffness

matrix.

For other types of stiffness related constraints, such as
buckling, vibrational response, etc., corresponding relationships
to Eq. (7) can be derived and used in the subsequent development
of a suitable redesign algorithm. Examples of buckling and
dynamic response constraint formulations can be found in Refer-
ences 23 and 24. Substituting the above relationships into
Egq. (2) and after some algebraic manipulations the recursion
relationship is obtained

5 Pt Q Pt 0
v+l Ay 6; ki 6 6. ki 83
1 1 1
A; = i §5A§ Ls Pj\/ o i A (8)
* . e I
¢ Li Ay j Lj Pj
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where the superscripts v , v+ 1 indicate the values of
Aj at successive iterations and C* is the prescribed value
of the stiffness.

Eg. (8) is then the redesign algorithm for a single stiffness
equality constraint. 1In order to generalize the algorithm for
multiple inequality constraints, the recursion relationship is
applied to each constraint in turn and then the dominant values
of A; are selected for each member. The redesign process is iter-
ative at each stage and a procedure for partitioning design vari-
ables into active and passive groups is used to select which
members are effectively design by which constraints. This algo-
rithm, known as the envelope method, also permits the simultaneous
consideration of strength and minimum member sizes. The envelope
method is an obvious simplifying approximation and does not
strictly satisfy the correct optimality criteria for multiple
constraints. It basically disregards the sizing given by one
constraint when satisfying another.

Thus, analogous to the case of f.s.d., a procedure has been
obtained for stiffness redesign based on an approximate criterion
which has the merit of great simplicity and good general behavior.
Experience has shown that the solutions for stiffness constrained
problems obtained using the envelope method usually compare very
favorably with more rigorous solutions obtained otherwise at much
greater computational cost. The convergence characteristics of
the envelope method are similar to those of f.s.d. with usually
rapid convergence in a very small number of iterations, apparently
independent of problem size,.

A number of computer programs using optimalit% criteria algo-
rithms have been developed. The program OPTIM 11(8) is a large
scale program which contains eight different finite elements in
its basic library and is capable of application to a considerable
variety of large scale problems. The elements include bars, beams
and plates of various types. The program also contains a number
of special features such as provision for linking elements, plate
buckling computations and other capabilities intended to simplify
the analyst's work.

The capabilities of such optimization programs can be best
illustrated by a few example problems. These problems are gener-
ally small scale, but are intended to demonstrate the potentiali-
ties of the programs rather than to overwhelm by sheer size of
problem alone. The programs themselves are only really limited
by available computer size and the price (in terms of numbers of
analyses) which the designer is prepared to pay.

The first example (Fig. 3) is of a simple four-level tower
structure, composed of 72 primary members. The tower is subjected
to two loading conditions as indicated. For obvious reasons it is
desired to maintain the double symmetry of the structure, although
the loading itself is nonsymmetric. The automatic linking feature
is used to tie together elements where necessary. There are stiff-
ness constraints to ensure that the tower does not sway too much
under load. Figure 4 indicates that only four analyses were
required for convergence. The efficient redesign logic at each
stage requires only 10-15% of the analysis time.
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The second example is the geodesic dome of Figure 5, designed
for both strength and stiffness constraints. In this problem
involving 156 elements, the dome was subject to a uniform vertical
load and the vertical displacement of the central point was limited.
This problem was studied using various optimization programs avail-
able and full details of the results may be found in Reference 22.

Figure 6 represents the idealization of a wing carry-through
structure on a large heavy swing-wing aircraft. The loading arises
from operation with the wing in two different positions. The load-
ings on the pivot points were then principally flexural for the
wing in a forward, unswept position and torsional with the wing
fully swept back. In order to maintain the aerodynamic character-
istics of the wing, the rigidity of this structure must be very
high. Severe limits are therefore placed on the allowable dis-
placements and rotations of the pivot points. Initially a strength
only optimization was performed yielding a weight of 5035 1b in
50 iterations. This is a very slow convergence but it should be
noted that a weight of 5049 1lb (0.3% heavier) was reached by
iteration 18. The structure was then reoptimized with both
strength and displacement constraints. The least weight of
6159 1lb was reached at 50 iterations, with the same slow con-
vergence, but 6216 1lb (1% heavier) was obtained at iteration 14.

If all members of the initially obtained strength-limited
design had been directly scaled to reduce the displacements of
that design to meet the specified stiffness constraints, the
structure would have weighed 7961 1lb, over 29% heavier than the
actually optimized structure. This indicates the redistribution
of material effected by the optimization algorithm.

In this example, a bar idealization has been used for sim-
plicity, but in the actual structure, plates and shear webs would
be used. This raises an important point in structural optimiza-
tion regarding the influence of the idealization on the optimal
system. All redesign logic, for both stress and stiffness con-
straints is eventually predicated upon the detailed internal
stresses in the individual elements., Finite elements, or indeed
any other numerical analysis techniques, by their very nature
introduce a certain degree of approximation into a solution.
Finite elements are a piecewise representation of a continuum
and certain approximating assumptions are essential to their
basic derivation. The actual errors introduced into a given
analysis using finite elements is usually very small and hence
the results obtained are perfectly satisfactory for an engineer-
ing analysis. The widespread use and acceptance of finite element
methods is a testimony to their validity.

For optimization, where many analyses may be performed and
each redesign is dependent upon an erroneous analysis, the effect
of the inaccuracies may be cumulative. This does not imply that
the final system will be unsafe, but merely that the optimization
of a structure modelled by two slightly different idealizations
could result in two radically different designs. Care must be
exercised in the development of optimization programs to ensure
that only the most accurate analysis techniques are used. 1In
finite element analyses, bar elements are exact and involve no
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approximations. They are therefore frequently used for demonstra-
tion problems since they invite direct comparison of optimization
solutions obtained by other methods by eliminating idealization
errors.

The final example presented is that of the buckling of a
simple laced column (Figure 7). The column has 50 bar elements
and was optimized using a ?tiffness representation of the eigen-
value buckling problem.(23 The areas obtained for the chord
(axial) members are shown plotted in Figure 7 in comparison with
the exact solution obtained for the face sheets of a similar sand-
wich column. (25) The comparison is very encouraging.

ITII. OPTIMIZATION USING SIEVE-SEARCH

The selection of a truly optimal design to satisfy a par-
ticular set of engineering requirements is a complex process which
strictly involves the consideration of all the classes of variables
discussed in Section I. The approach presented in Section II deals
with a more limited design problem in which geometry, material and
construction are assumed to have been fully defined. A major
question indeed must be on what basis will these governing design
characteristics have been selected.

While it is true, that many psuedo-design parameters such as
materials and construction cannot be treated as continuous vari-
ables and hence cannot be incorporated into any standard mathemati-
cal programming search technique, other considerations do enter
into the picture. For the vast majority of engineering systems,
only a limited number of materials really come into consideration.
For civil engineering primary structures, titanium or boron-
reinforced plastics, for example would have little or no applic-
ability. Similarly reinforced concrete is seldom to be found in
aerospace structures. Thus although there may be a potentially
large number of possible materials and construction types, engineer-
ing practice and experience will indeed limit these to a finite
set, which may be considered discretely. 1In a similar manner,
although some aspects of the structural configuration, as defined
by the arrangement and location of the principal structural members,
are parameters to be selected by the designer, certain configura-
tional characteristics will be absolutely defined by the service
requirements of the structure. In addition, aesthetics and
engineering codes will probably place some restrictions on other
variables. The net result again is the specification of a finite
set of configurational parameters. Finally the detailed design
of individual structural components is governed by the critical
loading which they experience locally. This critical loading may
either arise from overall structural loading or may be a purely
localized loading system which has little influence on the struc-
ture as a whole. Thus the optimum design can be generated for a
given component under a specific loading system in isolation.
Extending this concept, a range of optimal members can be pre-
designed in some suitable manner for appropriate ranges of applied
loadings and sizes. This then is a so-called data bank. An
example of a data bank is a structural handbook, which specifies
appropriate code sizes of beams, columns, etc., for given applied
loadings. It is well recognized that internal loading distribu-
tions are not strongly influenced by small variations in member
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properties. Hence, except for highly pathological problems of the
type discussed in the previous section, it is assumed that only a
very limited number of redesign iterations is required for a satis-
factory degree of convergence. If the critical loading is purely
local, convergence is achieved almost immediately.

With the above considerations as guides, an approximate
optimization procedure for large structures was developed.(9) The
guiding philosophy in this sieve-search approach is that the
optimum system is an optimal arrangement of pre-optimized
components.

Individual components are optimized initially under local
loading conditions and the potential designs stored in a data bank.
A program is then set up which cyles sequentially through all the
finite combinations of the major variables. For each configuration
so defined, or segment thereof, an optimum design is generated
using the data banks and compared with the best design available
at that point. The best design is retained and the cycling is
continued.

The efficiency of this process is then highly dependent upon
the data banks available. These banks contain properties of
optimized components generated either by classical methods of
optimization or selected from standard structural codes. An
additional, but nonetheless important facet of the preset tech-
nique is the use of simplified engineering analysis methods where-
ever possible during the iterative phases of the redesign cycles.
Herein lies the efficiency of the sieve-search technique whereby
literally hundreds of redesigns are rapidly made for selected
configurational variables from which the optimum is obtained.

As a prime example of the sieve-search technique its applica-
tion to the design of class of surface effect vehicles (SEV) is
considered initially. The extension of the procedure to other
structural systems is discussed later with particular emphasis on
bridge structures.

Figure 8 is an actual photograph of a surface effect vehicle
which is prototypical of an extensive class of high speed cargo
vessels. Although operating in a marine environment, SEV are
essentially aircraft-type structures which must be supported on
a cushion of air. The development of least weight structures is
therefore of prime importance in the design of such vehicles since
the economic viability of SEV are dependent on low structural
weight.

Before initiating the design process consideration must be
given to the classes of parameters which would realistically be
regarded as variables in performing the actual design. Thus
external envelopes would be fixed by hydrodynamic and performance
requirements - although some trade-off studies between configura-
tions and performance might be desired. Figure 9 indicates the
general form of the external craft envelope.
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Constructional materials and modes may be fixed or may be
selectable from a limited class of candidates. Environmental con-
siderations will narrow the number of available materials and for
each material only a very small number of constructional modes
is technically feasible.

The internal arrangement of longitudinal and transverse beams
and bulkheads will have been fixed in an overall sense, but the
individual spacings and sizes will be treatable as free variables.
The only possible restrictions being dictated by internal storage
requirements. This then selects the classes of potential vari-
ables - material and construction modes, configurational variables
and component sizes. In a sieve-search procedure, an attempt is
made to consider all three classes.

In the particular case of SEV existing experience has
indicated that a major portion of the structural design is gov-
erned by local hydrostatic and hydrodynamic pressure loadings. In
addition, the requirement for internal cargo containers has a pro-
found influence on the ranges of beam and bulkhead spacings which
can be reasonably used in the ship design.

With these considerations, the design for minimum weight
can be conducted on the basis of optimizing the structure for
normal pressure loading and subsequently checking the resulting
design for strength due to overall bending, shear and torsion
loads. Plating (panel) thicknesses and beam cap areas are then
increased to ensure the overall integrity of the structure. This
approach led to two main procedural items - overall ship weight
minimization and plating optimization. These led naturally to
definition of the following variables:

a) Construction module, including both material and
constructional characteristics. Figure 10 presents
sixteen combinations of materials and constructions
which were considered feasible for this type of
system.

b) Configurational Variables (Figure 9)

1) Longitudinal bulkhead spacing, lLB

2) Transverse bulkhead spacing, 1pg
c) Dimensional Variables

1) Plating - Panel Skin Thickness and Stiffener
Dimensions

A finite number of longitudinal and transverse bulkheads and
transverse frame spacings are specified and these configurational
variables are optimized for minimum weight. Optimization of the
dimensional variables results in generation of the data banks
which store pre-optimized dimensional variables of structural
components. In the present application, panels of the type shown
in Figure 11 were optimized for minimum weight on the basis of
normal pressure. A penalty function formulation with a
Rosenbrock (26) search procedure was used. Geometric programming
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Figure 8. Prototype SEV

q SYMMETRY {

Figure 9. SEV Structural Envelope
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methods for structural optimization(27) also appear extremely pro-
mising for use in component design where constraint and merit
functions are expressible as nonlinear polynomials. The govern-
ing equations for the strength and stability of the panels under
the action of uniaxial compression and in-plane shearing were also
derived for use in the sieve-search method. For purposes of
simplification, the panels were assumed infinitely wide and all
critical conditions were expressed in terms of panel length, normal
pressure, material characteristics and panel cross-sectional dimen-
sions. The optimizations were then performed using the panel
cross-sectional dimensions as variables. In addition to strength
and stability constraints, consideration was also given to fabri-
cational limitations for the various types of sections optimized.

Sixteen data banks consisting of eight basic geometric
configurations with four materials namely, aluminum, steel, tita-
nium, glass reinforced plastics were calculated and labeled con-
struction modules. For these, all practical "failure" modes were
derived analytically in five basic categories: material strength,
overall buckling, local buckling, deformation limits and fabrica-
tion limits. Actually deformation and fabrication limits are not
failure modes, but rather design specification modes which in many
cases determined the optimum panel design.

When performing the optimization procedure, all of these
critical conditions were expressed as inequality constraints. The
fabricational constraints were based upon:

1) Considerations of practical sections, for example, no
overlap of flanges, and

2) Data on the range of extruded sections which could be
manufactured using existing dies and presses.

The deformation constraints were based upon the specific maximum
allowable panel deflections.

The data banks are entered during the sieve-search process
using the current spacing, L, and panel pressure, p, as shown by
the dashed line on Figure 11l. The resultant minimum weight, w,
and cross-sectional geometry is stored for subsequent weight
calculations.

A flow chart for the sieve-search program proper is shown
in Figure 12. For application of the method, the vehicle was
broken down into the four segments shown in Figure 9. These
segments were defined in the present case by variations in the
pressure loadings acting on the hull. Other forms of segmentation
could have been selected to suit any arbitrary conditions. Within
each segment certain configurational parameters were kept constant,
although varying from segment to segment. The location of the
longitudinal bulkheads was common to all segments. Each segment
was further broken down into smaller zones such as deck, sidehull,
etc. Each zone is then designed separately and combined to form
the design of a segment.
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The cyclic nature of the design process is apparent from the —
flow chart (Figure 12). It can be seen to be essentially a series
of iterative looping operations which indeed permit the sequential
consideration of all feasible possibilities.

The design process begins by selection of the appropriate
SEV gross weight and construction module. The next choice is of
the longitudinal bulkhead spacing from a list of allowable spacings.
In SEV's cargo container size provides a lower bound on bulkhead
spacing. For the specific longitudinal bulkhead spacing, allowable
ranges of transverse bulkhead spacings are defined for each seg-
ment. In each segment the geometry is fully defined. Using the
known local pressure loadings, the data banks are accessed for
appropriate loads and geometry for each zone. The weight of a
segment is computed and compared with that obtained for other
transverse bulkhead spacings. This is repeated for each segment
yielding the minimum weight design for the specified longitudinal
bulkhead spacing. The entire looping is then carried out again
for the next longitudinal bulkhead spacing and repeated to obtain
the minimum weight craft.

Final checks on strength are performed using engineering
analyses and where necessary incremental material is provided.
For the ship system costing data is also computed.

The program then automatically cycles to the next construc-
tion module and SEV configuration, and repeats the entire process.

The above program was used extensively in the design of a
range of SEV's varying from 500 to 10,000 tons gross weight.

Out of a total possible number of 232 ship designs, 173 were
obtained. Designs for the remaining 59 configurations were not
obtained due to the non-existence of minimum weight data for
certain pressure/length combinations in the data banks. The
availability of such data is directly dependent on the constraints
placed on panel deflection, stress, and geometry in the process of
generating the data banks. The constraints will yield, at times,
nonfeasible panel designs and these appear as blanks in the data
banks. If some of the constraints used in the component design
are considered to be artificially severe, they may be modified.
Using these less stringent criteria, additional ships designs
would have been obtained.

Computational time was as low as 20 cpu seconds per ship
design on an IBM 360/65 computer. The resulting output gave a
very full description of the proposed structure including all
scantlings, frame spacings and cost data.

As a second example of the use of the sieve-search procedure
in a structural design process, its potential application to a
bridge design problem is briefly considered.

For the purposes of a design study, a complete bridge
structure may be broken down into the three major subdivisions,
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(1) Deck

(ii) Primary structure spanning between piers and
supporting the deck

(iii) Substructure

The use of a sieve-search procedure for the optimal design of the
deck and primary structure is outlined in a flow chart (Figure 13).

The essential characteristics of multiple levels of itera-
tions with detailed design performed through the use of data banks
is retained from the previous example, although the actual opera-
tions performed at each iterative stage may be totally different.
For the bridge example the use of multiple data banks is deemed
necessary.

The data banks for a bridge structure may contain a variety
of different construction modules such as deck panels, plate or
tubular girders, precast concrete beams, steel wide-flange beams
with cover plates, cable arrangements or steel towers and concrete
columns. All such potential bridge structural components may be
pre-optimized on any suitable merit basis for suitable ranges of
critical loadings and span lengths. The optimized data is then
stored in banks readily accessible at the appropriate stage of
the sieve-search program.

In selecting the bridge configuration a number of choices
may exist and each may be programmed according to its intrinsic
shape. Table I from Reference 28 indicates that for various spans
alternate configurations may be possible, but engineering judgment
and/or environmental conditions as well as other factors may
narrow the choice of feasible designs.

For the deck construction, the most commonly used construc-
tions are in-situ concrete, precast concrete and steel. Also
experiencing growing popularity is the so-called orthotropic steel
deck consisting of deck plate stiffened by parallel stringers.
Some typical cross-sections may be found in Reference 28. 1In
order to choose an appropriate deck, the following prime factors
must be considered,

1. Strength, longitudinal and transverse
2. Dead weight
3. Cost

An efficient design includes the deck as part of the primary struc-
ture for load transferal and the true economic evaluation of the
above three items may be successfully achieved when and only when
the total bridge design is considered. For example, an ortho-
tropic steel deck if viewed only as a slab will not compete in

cost with reinforced concrete but the steel deck may be competi-
tive if its axial force capacity and reduced dead load effects

are considered through the complete superstructure and sub-
structure designs.

The comparisons of all typical deck sections in context with
the complete bridge structure are ideally suited for an automatic
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sieve-search procedure. Data banks for each of the candidate deck
cross-sections may be established. These files can be as sophis-
ticated as desired wherein a range of span lengths together with

a range of critical loads may be applied to each typical section.
Figure 11 illustrates this and associated with each minimum weight
(live + deal load), Wi, is a unit cost factor and optimal cross
section geometries. The minimum weight and/or cost is evaluated
under such constraints as deflection, strength, buckling, torsion,
web crippling, etc. The definition here may be either working-
load or ultimate. Fabricational limitations, code specifications
and cost penalty factors may be included as well.

In the sieve-search, a predetermined table of acceptable
longitudinal beam spacings may be specified, along with appropriate
transverse spacings. The program will cycle through all the
defined grids in its search for the optimum design. The configura-
tion is also controlled by combination of fixed and variable
lengths between abutments and piers. Each of the variable spans
would be designated as a semi-independent segment for which a
detailed design would be performed. For each segment, deck module
and beam arrangement, the appropriate specialized data banks would
be accessed to generate the local design which would then be
compared with the previously stored optimal design. All segmental
data is then assembled for the evaluation of the total design for
a given longitudinal beam spacing. Specialized input, labeled
"as-built" factors are provided to account for nonstructural items
such as expansion joints, catwalks, railings, wearing surfaces,
protective coatings, etc. After all potential longitudinal beam
spacings have been considered, an interim optimal design is obtained.
For this configuration, the superstructure is designed, again using
appropriate specialized data banks. At this point a complete deck
and superstructure have been designed and final check analyses
should be performed. Some incremental adjustments on component
sizing may be necessary. Consideration may even be given to the
use of some suitable form of optimality-criteria optimization to
refine a design, if this is felt to be appropriate.

Finally, the program would generate complete cost data for
the selected design, including maintenance. The program is then
repeated for other deck modules and configurations until the final
design is rendered.

The preceding discussion has not been based upon an existing
program but has been intended to indicate the possible extension
of the sieve-search procedure to a civil engineering structure.

Iv. CONCLUDING REMARKS

Two distinctly different approaches to the optimal design of
structures have been presented. 1In both cases, the greatest
possible emphasis has been placed on the practical aspects of
the design problem in an attempt to produce a workable tool for
the designer.

The optimality criteria approach is gaining acceptance by
designers because of its fortuitous combination of simplicity and
effectiveness. Computer programs based thereon are being used
simply because no other method exists at this time that can cope
with the very large number of variables encountered in finite
element representations of real structures.
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The use of the sieve-search procedure is a direct contrast
in approach. The results obtained from the SEV design studies for
an extremely modest expenditure of computer time, have indicated
that this method is also an efficient cost-effective approach to
automated optimal design. The ideal solution would possibly
appear to be a combination of the two approaches, whereby the
sieve-search defines configuration and noncontinuous variables
and the optimality criteria method is used for refinement of the
design. The extension of the procedures to other classes of
design offers a considerable potential for overall system
optimization.
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SUMMARY

Examples are presented of two approaches to the optimal design of complex
structural systems. The first approach, based upon the use of optimality crite-
ria is capable of optimizing finite element representations of large scale,
complex structures with prescribed geometry. Both strength and stiffness con-
straints are considered. The second procedure is labeled sieve-search and is
used for the overall optimization of structures. The method permits the full
variation of construction method, materials and configuration as well as com-
ponent sizing.

RESUME

Des exemples de calcul d'optimisation pour des systémes de structures
complexes sont présentées selon deux approches. La premiere, basée sur le cri-
tere d'optimisation, permet de résoudre des ensembles de grande dimension d'élé-
ments finis, ou des structures complexes & géométrie donnée. Les contraintes de
résistance et de raideur sont prises en considération. La seconde méthode, dite
"sieve-search" (tamiser-chercher), sert & l'optimisation globale des structures.
La méthode permet une compleéte variation de la méthode de construction, des ma-
tériaux, de la forme et des dimensions.

ZUSAMMENF ASSUNG

Beispiele des Computer-Einsatzes bei der Optimierung von komplizierten Trag-
werken sind nach zwei Methoden aufgeteilt. Die erste Methode wird das Optimierungs-
kriterium benitzen, und erlaubt die Optimierung von komplexen Tragwerken mit einer
bestimmten Geometrie, durch machtigen Darstellungen finiten Elementen. Die zweite
Methode, die"sieve-search" (sieben-suchen) heisst, wird fiir die globale Optimierung
von Tragwerken benitzt. Sie erlaubt eine totale Bearbeitung der Baumethode, der Ma-
terialien, der Form und der Abmessungen,
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