
Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band: 10 (1976)

Rubrik: Theme IIb: System and geometrical optimization for linear and non-
linear structural behaviour

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


IIb
Optimisation des systemes et des

dimensions pour des comportements
structuraux lineaires et non-lineaires
Optimierung der Systeme und der

Abmessungen bei linearem und
nichtlinearem Verhalten des Tragwerkes

System and Geometrical Optimization for
Linear and Non-Linear Structural Behaviour



Leere Seite
Blank page
Page vide



IIb

Über das Leistungsvermögen von Tragwerken am Beispiel von Balken,
Druckbogen und Zugbogen
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Tension Arches

Capacite de resistance de structures telles que poutres, arcs de
compression et arcs de tension

HELMUT BOMHARD
Direktor der Dyckerhoff & Widmann AG

München, BRD
1. Einführung

Balken, Druckbogen und Zugbogen sind die Grundformen aller
Tragwerke zur Bewältigung von Spannweiten. Die eine Spannweite
bestimmenden Größen und ihr Zusammenwirken, die Bandbreite technisch
möglicher Spannweiten, lassen sich denn auch an diesen Grundformen
am besten studieren. Dies um so mehr als die Gesetzmäßigkeiten
verhältnismäßig leicht analytisch faßbar sind.

Ziel des Beitrags sind Spannweitenfunktionen für alle drei
Grundformen bei allgemeinen Baustoffgesetzen und ggf. Gleichgewicht
am verformten System, wenn nötig mit nichtlinearen Geometriebeziehungen,

auf deterministischer Basis und für statische Belastung.
Die Spannweitenfunktionen bilden wichtige Grundlagen für jeden

Entwurf und jede Tragwerkentscheidung und sind Hilfen bei der
Optimierung.

2. Die Spannweitenfunktion
Die Spannweite ist Ausdruck des Leistungsvermögens. Sie ist

bei einem bestimmten Versagenszustand eine Funktion des Systems
(S), der Form (F) und der Baustoffe (M) des Tragwerks sowie der
Fremdlast (L), die getragen werden muß:

1 f (System, Form, Baustoff, Fremdlast) (1).
"Fremdlast" ist für das Tragwerk alles, was nicht Teil seiner
tragenden Form aktives Gewicht g ist, wie etwa das Gewicht von

EL

Pfetten passives Gewicht g), die quer zu einem Balken gespannt
sind und die gesamte Verkehrslast p.

Die Spannweitenfunktion (1) läßt sich unter bestimmten
Voraussetzungen als Produkt dreier Kenngrößen K schreiben:

1 %+F,.. *
KM+Fm]pT,

* KL XGr ' KL <2a>'
längs quer

nämlich dann, wenn 1. das System sich statisch bestimmt verhält,
2. das Gleichgewicht am unverformten System angeschrieben werden
kann und 3. Fremdlast g+ p und aktives Gewicht g affin sind. Es
beschreiben: "
Ks F das System und die Verteilung der Tragwerkmasse

längs in seiner Längsrichtung,
KM+F c*ie Bsustoff6 und die Verteilung der Tragwerk-

quer masse in Systemquerrichtung,
KL die Fremdlast.
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So aufgeschlüsselt sind die sehr unterschiedlichen Einflüsse, die
1 bestimmen, am leichtesten durchschaubar.

Bei Lastaffinität allein ist: 1 Kg+p,M • kt ¦'¦ar" ^L (^b).
Die Einflüsse aus System, Form und Baustoff lassen sich dann nicht
mehr trennen.

In (2) ±St: KL 1 + (gp'+p)/ga » 0<KL<1 (3).
Die Grenzspannweite 1^ ist demnach die Spannweite bei verschwindender

Fremdlast (KT =1). Sie kann nicht mehr übertroffen werden:
Das Leistungsvermögen des Tragwerks ist erschöpft.

Den Untersuchungen liegen der Einfachheit halber Spannweitenfunktionen

nach (2) zugrunde. Die so gewonnenen Aussagen bleiben
qualitativ gültig, auch wenn Fremdlast und tragendes aktives
Gewicht nicht affin sind.
3. Die Tragwerkformen
3.1 Balken

Grenzfälle von Balkensystemen sind der "einfache Balken" und
der "Kragbalken". Mit ihnen ist der gesamte Leistungsspielraum von
Balkensystemen faßbar. Der einfache Balken begrenzt das Leistungsvermögen

nach unten, der Kragbalken nach oben. Seilverspannte Balken

werden nicht betrachtet. Sie besitzen bei engen Seilabständen
hohes Leistungsvermögen und sind dann dem Kragbalken mit dem
Idealquerschnitt my 1 (s. Bild 2) vergleichbar.

Der Einfluß der Baustoffe und der Querschnittform ist bei
beiden Systemen gleich: P R mU

M+Fquer T V ^
Dabei bedeuten:
P R Rechenfestigkeit des Bezugsbaustoffs
2T= a3 Berechnungsgewicht des Balkenmaterials im ~

Beschleunigungsfeld a (Erde a 9,81 m/s
P r/'JT Reißlänge bzw. Zerdrückhöhe des Balkenmaterials

bei zugfestem bzw. druckfestem Bezugsbaustoff
mn bezogenes Bruchmoment M„/F d ßR,

als Maß der Beanspruchbarkeit des Querschnitts
(Fläche F, Höhe d, Breite b) mit dem Größtmoment

V Gesamtsicherheitsbeiwert.
Wenn für das Tragvermögen ausnahmsweise der Gebrauchszustand
maßgebend ist, muß in (4) ny,/ V durch m des Gebrauchszustands
ersetzt werden.

Die Bandbreite des
schieden:

Id 8 Ä <
~55 1 JL 1

Bf,
k- d

I

; Faktors KC|T-, ist dagegen sehr ver-
S+Flängs

< 9,9 f (5)

S+Flängs
"

co : ideal /fi\Bild 1: real KOJ

< oo : ideal /7\Bild 1: real w;
(1/4 der Werte)



Die Werte auf der linken Seite gehören zu Balken mit konstantem
Querschnitt, die auf der rechten zu - in jedem Querschnitt -
vollbeanspruchten mit konstanter Höhe und idealem Zweipunktquerschnitt
(quasi Fachwerkbalken). Im einen Fall ist die Tragwerkmasse
demnach überhaupt nicht auf den Momentenverlauf abgestimmt, im anderen

dagegen vollkommen.
^S(l/d)Ks+Flängs gp+p const. Der ideale Wert oo besagt
[4 ~ _" nicht, daß 1 auch bei realen

00 Kragbalken oo groß oder auch nur
sehr groß werden kann. Durch

US

©3J ^—c—\ d const.
vollbeansprucht, nur lu.X
\ — K h-rnncf P^-p b= const.
vollbeansprucht

©

© const2-^—r
ue

2.0 Gn/(Gn+P)1.0Bild 1

nicht affine Fremdlast und einen
im Bereich der Kragbalkenspitze
technologisch bedingten Mindest-
balkenquerschnitt sinkt das
Leistungsvermögen außerordentlich
ab: der in (6) und (7) angegebene

oo große Leistungsspielraum
schrumpft z.B. allein durch eine
konstante Fremdlast auf den in
Bild 1 schraffierten endlichen
Bereich zusammen. Der baupraktisch

nutzbare Spielraum ist
noch kleiner, vor allem wenn d

+¦ const. ist (im Bild gerastert) oder unterschiedliche Lastfälle
zu berücksichtigen sind.
3.2 Druckbogen

Die nach oben gekrümmte Bogenform ist keine Form minimaler
potentieller Energie. Ein Druckbogen hat deshalb den Drang, nach
unten durchzuschlagen, sein Tragvermögen geht spätestens mit dem
Einsetzen des Durchschlags verloren. Obwohl Durchschlagvorgänge
nur mit einer geometrisch nichtlinearen Theorie faßbar sind, genügt
für die numerische Traglastrechnung im Schlankheitsbereich, den die
technischen Baubestimmungen erlauben, die geometrisch linearisierte
Theorie. Bei den baupraktisch allein bedeutsamen Pfeilverhältnissenf/l > 0,1 kann außerdem die Achsdehnung unberücksichtigt bleiben.

Das Leistungsvermögen ist am kleinsten, wenn der Durchschlagvorgang
ohne Gleichgewichtsverzweigung abläuft. Dazu gehören

Lastkombinationen, die die jeweils kritische Ausweichform durch gleichsinnige
Störmomente begünstigen: antimetrische Momente beim 2-Ge-

lenk-Bogen, beim gelenklosen Bogen und beim steilen 3-Gelenk-Bogen,
symmetrische dagegen, wenn dieser flach ist (etwa f/l < 0,3). Die
kritische Fremdlast muß demnach zwei Anteile enthalten: einen
voraussetzungsgemäß zu g& affinen - durch KL erfaßten - und einen
anderen, - durch ft gekennzeichneten - der die Störmomente erzeugt
(P= qanti KL/ga,G bei antimetrischer Störlast qanti,P VA.G1
bei symmetrischer Störlast Q„ im Bogenscheitel).

Für den als Stützlinie für g geformten Kettenlinienbogen (F
const.) sind die Kenngrößen für System, Form und Baustoff KS+F+M*

cosfA
cos f.E: 1/4-PM

-cosfA
Pacos

i)y C0SPe

<%¦ C0STe v

nH.Ecr 1 (8)
V -rrgif VG 2

(1+-^co£rpE)

1-C0SfA/l
cos

Pr
Y C0SfE LlLE T 2mA/d

V + TI sinfE er

(9)

(10).



" ° 1-COSP. -, fFür flache Kettenlinienbogen ist cqs j - 8 j (11).

136 IIb - ÜBER DAS LEISTUNGSVERMÖGEN VON TRAGWERKEN

Die bezogenen kritischen Schnittgrößen n N/Ff)R und m

enthalten implizit die Einflüsse aus (S), (F), (M) und (L). Bis auf
das Glied mit v~,der lotrechten Verschiebung des Scheitelgelenks
beim 3-Gelenk-Bogen, stimmen (8)(9)(10) formal mit den Ausdrücken
der Theorie 1. Ordnung überein. Ab etwa f/l > 0,3 gilt (9) auch
für den 3-Gelenk-Bogen. 1-cosP

TL
Damit kann bis etwa f/l < 0,3 gerechnet werden.

Das Leistungsvermögen ist um so kleiner, je größer die
Störmomente sind und je schlanker der Bogen ist. Es wird dann auch
mehr und mehr f/1-unabhängig. Nur bei sehr kleinen Störmomenten
werden in etwa die klassischen Extremstellen für max. 1 erreicht
(z.B. f/l 0,3 beim Kettenlinienbogen). Der Leistungsabbau kann
in allgemeiner Form nur qualitativ angeschrieben werden:

np,cr ^ np,UII < nf),UI < nU,(m 0) (12)*

Bei n.. ist wegen m 0 das Leistungsvermögen des Querschnitts
ausgenutzt, durch die Störmomente nimmt es ab auf no „y, durch den

Einfluß der Bogenverformungen auf nn tjtt-; bei "Stabilitätsversagen"
geht das Tragvermögen bereits im Innern des n-m-Interaktionsdiagramms

verloren, nn ist dann>nn ijjj. Numerische Berechnung
ohne besonderen Aufwand nach [l] möglich, dort und in [2] Beispiele

zu (12).
Großes Leistungsvermögen setzt gedrungene Bogen voraus.

Querschnitte, die dem idealen 2-Punkt-Querschnitt nahekommen, bringen
Leistungssteigerung vor allem bei großem l/d, f/l und großen
Störmomenten. Der gelenklose Bogen ist am leistungsstärksten. Ausweichen

senkrecht zur Bogenebene bedeutet zusätzlichen Leistungsabbau.
3.3 Zugbogen

Ein biegesteifer Zugbogen vermag, dem Druckbogen ähnlich, das
Leistungsvermögen des Querschnitts nicht auszunutzen:

wenn auch bei ihm die Systemverformungen (nn „jj > xin „j) lei-
stungssteigernd wirken. ' '

Ein Zugbogen muß aber nicht biegesteif sein: Die hängende Bo-
genform ermöglicht als Form minimaler potentieller Energie den
biegeweichen Bogen mit voller Querschnittausnutzung

np,cr =nU,(m= 0) (14)'
Er wird dadurch zum leistungsfähigsten System.

Baupraktisch bedeutsam ist allein der flache Kettenlinienbogen
mlt

K -Ifi fUA (15)
KM+Fquer" T V

^ _ ^
KS+* ¦ 8 j*8| (16).

bz

i t
langS Vi + I6(f/1)2



HELMUT BOMHARD 137

Je nach Bogenbaustoff kann statt n„./v auch der Wert des
Gebrauchszustandes n.= rir o) maßgebend sein. Der Zirkumflex
kennzeichnet das Pfeilverhältnis des verformten Bogens

f/l *¦ f/l V1 + 3/8./ d/f)2 ' (S ~ t>)/l (17)
mit der gedehnten Bogenlänge b.

Von allen Tragwerkformen für Baukonstruktionen dürfen beim
biegeweichen Bogen als einziger die Geometriebeziehungen nicht von
vornherein linearisiert werden. Dem entspricht (17). Die lineare
Beziehung geht um so eher verloren, je flacher der Bogen ist.

Der biegeweiche Bogen ist kinematisch verschieblich, weil seine
Achse stets Seillinie der jeweiligen Belastung sein muß.

Kritisch sind antimetrische Störungen zusammen mit hoher Entlastung.
Sie können mit wachsendem f/l Anlaß großer Verformungen sein, ein
zu leichter oder ein in anderer Weise nicht ausreichend stabilisierter

Bogen kann nach oben durchschlagen. Dieses Durchschlagproblem,
das in [2] behandelt ist, beeinträchtigt das Leistungsvermögen

nicht.
4. Die Baustoffe

Die Leistungskenngrößen K enthalten den Baustoffeinfluß in
allgemeingültiger Form als Produkt

nR/r ' nu bzw- nR/-^ * mU (18)
Die Spannungsdehnungslini^n stecken dabei in n und m, ebenso die
Querschnittform und der kritische Dehnungszustand.

Das Leistungsvermögen wächst mit der Reißlänge und der
Zerdrückhöhe. Hochfeste Stähle und hochfeste Betone und Leichtbetone
kennzeichnen die Entwicklung, mit der Tendenz, auch im Betonbau zu
Werten zu kommen, die denen von Baustahl vergleichbar sind.

Für ny und m,. lassen sich von der Spannungsdehnungslinie
unabhängige obere Grenzwerte angeben:

r.|j 1
mU °'5 mU 1,°

1-F !¦¦¦1/2
Form
beliebig 1/2 F a^m QF ±

Bild 2 pD= ßz= pR pD= pR pz/pD^m
bei homogenem Material, n,, 1 ist im biegeweichen Zugbogen
realisierbar, my 0,5 und 1,0 lassen sich als die Beanspruchbarkeiten
der Querschnitte von Fachwerkbalken deuten, deren Diagonalengewicht
verschwindend klein ist. Tatsächlich brauchen alle biegebeanspruchten

baupraktischen Querschnitte gewisse Zuggurtmassen und, vor
allem im Vollwandbereich, Stegmassen, die das Leistungsvermögen
verringern. Für sie sind deshalb dl. 0,5 und 1,0 unerreichbare Grenzwerte:

0,5 für die Querschnitte des Stahlbaus, 1,0 für die des
Spannbetonbaus.

Für Betontragwerke seien noch einige weitere Angaben gemacht:
4.1 Balken

Das Leistungsvermögen der Balkenquerschnitte wird durch die
Tragfähigkeit der Biegedruckzone begrenzt (Grenzstauchung £v,T).
Voll nutzbar wird es durch eine entsprechend hohe Bewehrung der Bie-
gezugzone, wobei die Bewehrungsgrenze normalerweise aus dem Wunsch
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folgt, ein Versagen der Druckzone zu vermeiden, bevor die
Zugbewehrung fließt (Bruchvorankündigung durch £ > 3 %o).

Im übrigen wird hohes Leistungsvermögen durch geschicktes Formen

der Querschnitte erreicht. Wie groß dabei der Spielraum ist,
zeigen die Grenzformen "Rechteckquerschnitt" mit ny, ^ 0,25 und
"idealer Zweipunktquerschnitt" mit m,. 1,0 bei unbewehrter Druckzone.

Die Bandbreite der realen, baupraktischen Querschnitte ist
der in Zuggurt und Steg allein schon technologisch bedingten
Betonflächen wegen beträchtlich schmaler. Die bei großen Spannweiten
bisher gebauten Formen vollwandiger Balken besitzen etwa

0,35 < mu <0,60
0,40 < /U /Ufts/ PR <0,65

Je höher m., ist, um so weniger ist die Beanspruchbarkeit von der
6" -£ -Linie des Betons abhängig.

Nur mit Hilfe der Vorspannung gelingt es, dem Idealquerschnitt
mit m,, =1,0 nahezukommen, denn nur durch Vorwegnehmen der
Stahldehnung werden hochfeste Stähle ausnutzbar, so daß sich große und
größte Zugkräfte in verhältnismäßig kleinen Betonquerschnitten
unterbringen lassen. Die damit erzielbare Einsparung an Querschnittfläche

wächst mit der Spannweite. Der Vorspanngrad selbst beeinflußt

i.a. nur das Verhalten im Gebrauchszustand, nicht aber das
Leistungsvermögen. Auch eine "Druckspannbewehrung" zur Zugvorspannung

der Druckzone erhöht das Leistungsvermögen nur durch den
Bewehrungsgehalt der Druckzone. Wenn die Gebrauchsfähigkeit dies
zuläßt, soll auch bei Vorspannung nicht mehr Bewehrung eingelegt werden,

als der Bruchzustand erfordert mit einem möglichst hohen
Anteil an Spannstahl.
4.2 Druckbogen

Im Druckbogen sind zweipunktnahe Querschnittformen der einfachen
Rechteckform nicht so selbstverständlich weit überlegen wie im

Balken, weil die ihnen eigene überragende Steifigkeit verlorengeht,
sobald einer der Gurte reißt. Die Tragfähigkeit fällt dann jäh ab,
auf Werte, die sich von denen des Rechteckquerschnitts meist
nurmehr unwesentlich unterscheiden. Hohlquerschnitte sind deshalb nur
dann entscheidend leistungsfähiger, wenn sie im gesamten
Beanspruchungsbereich ungerissen bleiben. Dazu bedarf es vielfach gedrungener

Bogen, vor allem bei merklichen Störmomenten und mit wachsendem
f/l. Auch eine Vorspannung kann manchmal zweckmäßig sein.

Mit dem Bewehrungsgehalt ist das Leistungsvermögen nur im
Zugbruchbereich entscheidend zu beeinflussen. Die Wirkung wächst mit
den Störmomenten und wird durch die Schlankheit beschleunigt. Doch
ist selbst bei großen Störmomenten eine bewehrungsproportionale
Leistungssteigerung nicht erreichbar. Nahezu ohne Wirkung bleibt
der Bewehrungsgehalt bei Stabilitätsversagen, zu dem sehr kleine
bis kleine Störmomente gehören. Dann kommt es vor allem auf die
(3 - £-Linie des Betons an.

Die Bandbreite der nn des Zweigelenkbogens ist in [2]
untersucht. lJ,cr

4.3 Zugbogen
Im biegeweichen Zugbogen hat der Beton, anders als in den mit

Biegung arbeitenden Systemen, keine wesentliche Tragfunktion, diese
übernehmen die Spannglieder. Der Beton bildet vor allem Raumabschluß

oder Fahrbahn, formstabilisierendes Element (Schale, Platte,
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Gewicht) und Korrosionsschutz der Bewehrung.
Wenn Spannglieder der Festigkeit ßz die Bewehrung bilden, ist

n UA /"z PZ/ PR (20)'
Der Bewehrungsgehalt/U. hat nur technologische Grenzen: Die
Spannglieder sollen des einfachen Korrosionsschutzes wegen im
Betonquerschnitt Platz finden. Das ergibt

etwa/«z < 0,15 (21).
Bei Balken und Druckbogen setzt das Tragvermögen der Biegedruckzone

dem Bewehrungsgehalt weit niedrigere technische Grenzen:
/U. (In/ Ps ocier /Ä 2

1 als oberste Schranke beim idealen
Zweipunktquerschnitt mit nu. 1 und etwa/ü < 0,65 oder// < 0,015
bei den baupraktischen Vollwandquerschnitten (19). Der biegeweiche
Zugbogen kann demnach etwa 10mal so stark bewehrt werden wie Balken

oder Druckbogen. Das, zusammen mit einem hohen Pz, begründet
sein überlegenes Leistungsvermögen.

Die nutzbare Stahlfestigkeit ft? hängt allein vom plastischen
Verformungsvermögen des Bogens ab. Sein Gleichgewicht verlangt ein
Spannungsgefälle von den Kämpfern zur Bogenmitte. Deshalb ist das
plastische Verformungsvermögen nur mit Stählen nutzbar, die einen
Verfestigungsbereich besitzen. Das ist bei allen Spannstählen mehr
oder weniger ausgeprägt der Fall. Da sich der Bogen nicht beliebig
weit in den Verfestigungsbereich hinein verformen darf, wird ft z
durch das Erreichen kritischer Spannstahldehnungen begrenzt, etwa

crit. £z < (1,0 bis 1,5) 10~2 +£z(o) (22),

mit der Spannbettdehnung £ *0' [3]. Bei Bogen bis etwa f/l<0,1
wird dadurch ß_ so groß, daß die im Gebrauchszustand zulässige
Stahlspannung zul Sz mit nA =MZ zul <o J P r (23)
das Leistungsvermögen bestimmt. - Bei Stählen mit idealelastisch-
idealplastischem bzw. sprödem Verhalten wäre ßz ßs bzw. ft _ zu
setzen.
5. Die Tragwerkmasse

Die das aktive Gewicht g bildende Tragwerkmasse ist dann am

wirksamsten eingesetzt, wenn sie
- an jeder Tragwerkstelle und
- in jeder Querschnittfaser voll ausgenutzt ist und
- selbst möglichst wenig Beanspruchung erzeugt.

Damit ist hohes Leistungsvermögen gegeben, nicht aber unbedingt
auch ein optimales Tragwerk vom Aufwand und Nutzen her gesehen.
Je weniger das Leistungsvermögen gefordert wird, um so mehr darf
und wird man von diesen Kriterien abweichen.

Das Abstimmen von Tragwerkmasse und Momentenverlauf lohnt
sich demnach am meisten beim Kragbalken, der dadurch viel
leistungsfähiger als der einfache Balken wird. Dieser reagiert darauf
viel weniger empfindlich, weshalb bei ihm der mögliche Leistungsgewinn

nur ein ziemlich grobes Abstimmen rechtfertigt (5) (6).
Begründet ist dies in der unterschiedlichen Völligkeit des Momentenbildes

beider Systeme: Der Kragbalken braucht, im Gegensatz zum
einfachen Balken, die Tragwerkmasse dort, wo sie nur mit kleinem
Hebelarm momentenwirksam ist. Ein Tragwerk aus aneinandergereihten,

richtig geformten Kragbalken ist deshalb auch leistungsfähi-
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ger als ein solches mit Einhängebalken oder aus Durchlaufbalken. Da
der einfache Balken auch "Ersatzbalken" der Bogen ist, lohnen auch
diese das Abstimmen der Tragwerkmasse auf den Beanspruchungsverlauf
nur mit einem ähnlich eng begrenzten Leistungszuwachs. Der
Zweigelenkdruckbogen nach (9) kann dadurch wenig mehr als 10 % weiter
gespannt werden. Beim biegeweichen Zugbogen scheidet diese Möglichkeit,

Leistung zu gewinnen, fast ganz aus.
Nicht ausgenutzte Tragwerkmasse kann sich sehr unterschiedlich

bemerkbar machen: solange sie die Grenzspannweite 1~ unbeeinflußt
läßt, bedeutet sie eine Leistungsreserve und wirkt wie eine erhöhte
Fremdlast, sobald durch sie aber 1„ kleiner wird, wirkt sie lei-
stungsmindernd. Das typische Beispiel für eine solche Leistungsminderung

ist der Kragbalken mit F const.
Bei jedem Tragwerk dürfen bestimmte Mindestabmessungen nicht

unterschritten werden, die untere Grenze der Tragwerkmasse ist
deshalb technologisch bedingt. Auch das sind nicht ausgenutzte
Tragwerkmassen und leistungsmäßig dementsprechend zu behandeln.

6. Die Fremdlast
Beide Anteile der Fremdlast, die nutzungsbedingte Verkehrslast

p und das konstruktionsbedingte passive Gewicht e beeinflussen das

Leistungsvermögen gleich nachteilig durch KL< 1,0. Vor allem bei
hoher Leistungsforderung muß deshalb e so klein wie möglich gehalten

werden, e ist nicht immer nur Gewicht, auch die formstabilisierende

Vorspannung in Seilwerken und Seilnetzen zählt dazu.
Flächentragwerke nutzen die Baumasse vielfältig, sie haben daher meist
ein verhältnismäßig kleines g. Stabtragwerke mit ihren eindimensionalen

Traggliedern dagegen ein großes.
Eine zur Tragwerkmasse nicht affine Fremdlast ist leistungsmäßig
über ihre beanspruchungswirksamenHebelarme zu beurteilen.

Sind sie größer als die der Tragwerkmasse, wirkt die Nichtaffinität
leistungsmindernd. Nur beim Kragbalken mit einer auf die Beanspruchung

abgestimmten Tragwerkmasse ist die Annahme einer Affinität
keine gute erste Näherung, weil bei ihm eine konstante Fremdlast
sehr leistungsmindernd ist.
7. Das Maßstabgesetz

Die Spannweitenfunktion (1) beschreibt 1 als absolute Größe;
mit T/fip multipliziert enthält sie nur mehr relative Größen:
1* Tl nR =T/nR " f (Verhältniswerte für (S), (F), (M), (L)) (1a).

Das ist das Maßstabgesetz des Leistungsvermögens. Beispiel:
-i T - r mu d 1

nR " v T i+(gp+P;/ga •

Die linke Seite sagt nun aus, wie weit die Reißlänge oder Zerdrückhöhe
des Bezugsbaustoffs als Spannweite nutzbar ist, - über tf a^

ist der Einfluß allgemeiner Schwerkraftfelder enthalten.
Wenn die Beanspruchbarkeit ausgenutzt und damit wie die

Reißlänge und Zerdrückhöhe ein Festwert ist, müssen die Maßstabsfaktoren:
X für die Spannweite, X d /-, für das Bauhöhenverhältnis und

X„ für das Lastverhältnis die Bedingung
KL
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X= Xd/l' XKT 0der X=X/Xd/l XKT (24)

erfüllen. Statt \„ interessiert X der Maßstabsfaktor für die
J-j 3.

Tragwerkmasse, der mit ihm verknüpft ist. Bei konstant bleibender
Fremdlast ist dieser

- 1 - KT < 2 < 1 \2-X
X, X =±- ^ X bei KT ^ V -^3 (25)

ga 1 - Xkl > L > X X2 - 1

\ > n t • j. •• besteht
Xg < 0:Leistungsvermögen versagt#a

p
Bei X X und\,/, 1 ist das gesamte Tragwerk affin größer

a
geworden. KL ist auf das Ausgangstragwerk bezogen.

Die Auswertung zeigt: Nur bei kleinen Spannweiten ist es
möglich, ein Tragwerk, das sich bei einer Bauaufgabe bewährt hat,
durch bloß affines Vergrößern einer größeren Aufgabe anzupassen.
Bei großen Spannweiten muß stets und vor allem auch das Bauhöhenoder

Pfeilverhältnis vergrößert werden.
Das bedeutet: Große Tragwerke müssen nicht nur massiger sein

als kleine, System, Form und Baustoffe sind schließlich nicht mehr
frei wählbar, sondern werden eine Funktion der absoluten Größe.

(25) ist für Balken ermittelt. Die damit gewonnenen Aussagen
gelten qualitativ auch für Bogen.

8. Das wirtschaftliche Leistungsvermögen
Das technische Leistungsvermögen endet mit der Grenzspannweite

lGr. Tatsächlich wird ein Tragwerk aber lange vorher
bedeutungslos, weil seine Wirtschaftlichkeit verlorengeht.

Aus (2) (3) folgt das aktive Gewicht, das bei gegebener
Fremdlast aufzuwenden ist, um eine gegebene Spannweite zu bewältigen:

1

ga 1—/1 - 1 (£p+P) > technolog. ga (26).

Die Tragwerkmasse, beschrieben durch g wächst demnach hyperbo-
lisch mit abnehmendem Verhältnis lGr/l oder je mehr das technische

Leistungsvermögen ausgeschöpft wird. Sie wird schließlich
unwirtschaftlich groß, bei lGr/l 1 unendlich groß, auch wenn die
Fremdlast noch so klein ist.

Ziel des Entwerfens muß es demnach sein, System und Baustoffe
so zu wählen, das System so zu formen und das passive Gewicht so
zu beeinflussen, daß der Abstand 1„ - 1 groß genug bleibt, um g

vernünftig klein zu halten. Wird für ein bestimmtes Tragwerk g
unwirtschaftlich groß, muß ein leistungsfähigeres mit größerer
Grenzspannweite gewählt werden. Ausreichendes Leistungsvermögen
ist dabei im gesamten Spannweitenbereich nötig.

Die Tragwerkmasse zeigt zwar, daß die wahren Leistungsgrenzen
wirtschaftlich bedingt sind, doch ist das im Leichtbau sinnvolle
Prinzip des minimalen Gewichts kein allgemein brauchbares Kriterium

für niedrige Herstellkosten oder gar für ein wirtschaftliches
Bauwerk. Dazu sind die Stoff- und Verarbeitungskosten der einzel-
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nen Baustoffe viel zu unterschiedlich. Wenn z.B. im Stahlbau
g /(e +p) < 0,5 die wirtschaftliche Grenze wäre, müßte sie im

Betonbau um ein Vielfaches höher sein. Außerdem ist der Aufwand
für die Stützkonstruktionen einzubeziehen, der vom einfachen Balken

über den Kragbalken und Druckbogen bis zum erdverankerten
Zugbogen größer und größer wird. Die Wirtschaftlichkeit eines
Bauwerks ist deshalb - wenn überhaupt - nur im Einzelfall und nur als
Ganzes zutreffend zu beurteilen.
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ZUSAMMENFASSUNG

Balken, Druckbogen und Zugbogen sind die Grundformen aller zur
Bewältigung von Spannweiten geeigneten Tragwerke. Die für sie im gesamten
Leistungsbereich massgebenden Spannweitenfunktionen werden angegeben und
die diese bestimmenden Kenngrössen untersucht und diskutiert. Nichtlineari-
täten der Baustoffe und - soweit erforderlich - auch der Geometrie werden
berücksichtigt. Der Einfluss unterschiedlicher Baustoffgesetze und der
Vorspannung wird studiert. Die Grenzen der Wirtschaftlichkeit und ihre
Kriterien werden aufgezeigt.

SUMMARY

Beams, compression arches and tension arches are the fundamentals of all
structures suitable to cope with spans. The Standard span functions for the
whole capacity ränge are specified and their characteristic values examined
and discussed. Nonlinearities of building materials and - as far as necessary

- of the geometry are considered. The effects of different laws of
building material and of prestressing are studied. Limits of economy and
their criteria are shown.

RESUME

Des poutres, des arcs de compression et des arcs de traction constituent
les formes fondamentales de toutes les structures franchissant une certaine
portee. Les fonctions de portees determinantes sont indiquees, leurs valeurs
caracteristiques sont examinees et commentees. Des non-linearites des
materiaux de construction et - si necessaire - de la geometrie sont
considerees. L'influence de differentes lois relatives aux materiaux de
construction ainsi que de la precontrainte sont etudiees. Les limites
Economiques et leurs criteres sont donnes.
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1. Introduction
The purpose of this paper is to propose a basic parameter effective to the

optimum designs of arch and Suspension bridges. Since the dynamic factors e.

g., eigenvalues and eigenvectors and the static factors e.g., influence
lines for deflection and bending moment of an arch or Suspension bridge
are subjected to this parameter only, designated by F we are able to determine

the F value which satisfies the structural optimization of the bridge,
which means that one constraint can be made for the design variables of the

bridge. For the optimum design of an arch or Suspension bridge, its geometry

and the cross sectional areas of the elements such as the arch and the

stiffening girder will be the design variables. These design variables are

usually found by mathematical and numerical search methods. Although these

search methods are applicable to a variety of problems, they require repeating
similar calculation changing the values of the design variables until the Optimum

conditions are satisfied. So, it will save much Computer cost to give the

one constraint for the design variables.
There are many analogous points between a Suspension bridge and an arch

bridge, and they may be said to be essentially of the same type of structure
from the view-point that they have girders stiffened with parabolic members

cable and arch respectively. So, both structures can be analyzed by a

common theory (2).
In general, the cross sections of the elements such as the arch and the

stiffening girder are variable. For these elements, the average values should
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be used as approximate values. The errors due to the approximation seem to be

small judging from numerical examples.

2. Theory

In this paper, the bridges are assumed to satisfy the following conditions:
(i) The stiffening girder is of uniform cross section and simply supported at

both ends.

(ii) The cross section of the arch or cable is constant and its mass is
transferred to the stiffening girder.
(iii) The flexural rigidity of the arch can be transferred approximately to the

stiffening girder.
(iv) The arch or cable configuration is given by a parabolic function.
(v) The arch or cable and stiffening girder are connected with an infinite
number of hangers whose elongations are completely neglected.

When the arch and stiffening
girder shown in Fig. 1 is forcibly
deformed by the amount given by

nnx
W l a sin-

n
(1)

where l : span, the horizontal
thrust Äff of the arch is found

from the compatibility condition:
Fig. 1

hsH

where

l6fEB y
an

¦rr-i2 l nSil n
for n 1,3,5,...

0 for n 2,h,6,...
A

aB
A

a + 1 + RfX-12 + SQ0(JL)k
3

(2)

(3)

(U)

A A : cross sectional area of arch girder From this, we see thata y
the arch resists Symmetrie deformation only and does not resist asymmetric
deformation. In other words, for asymmetric deformation the arch bridge is
reduced to a simple girder.

The amplitude of the simple girder loaded with a periodical uniform load

p sintüt in Fig. 2 is given by

kp

Ttp
n n(tss -lü'

9"-

i rnrx
2, s^~l—) (5)
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where

r wir i2 / EI
«gn (-iH V"p-

n-th natural frequency of the

girder and p : mass per unit
length of the girder.
When the arch bridge is forced

to vibrate at the amplitude

represented by Eq. (5), the thrust

UJ
AH AH

AH -f l-AH
Fig. 2

IsH caused in the arch is computed directly from Eqs. (2) and (5), i.e.,

A#
GkfEB y

9 .9 l2 72 L 2, 2 2,,
it pl n n (os -tss

gn

(6)

When the arch is isolated from the girder, retaining its deformation, a uniform

load p must be placed on the arch to let it satisfy the equilibrium condition

of force and moment, and its magnitude is determined from,(3)

_ _§£_ AH _
512g.f2B

y i" 72
M _ " P l 2, 2i Trpi n n \iss

k L 2, 2 27 Pa
rz n (w -u ö

(7)

Fig. 3

Let us superpose the arch and

girder to restore the arch bridge.
The arch bridge constructed in this
way is subjected to a uniform load
with the magnitude

P0 Pa + Pg (8)

Using the condition that the applied
force must be zero for free Vibration,
i.e.,

p + p 0 (9)

we arrive at the following frequency

equation:

1 + —27-^^72—27- °
tt pi n lü) -IlS

gn
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which can be expressible in the following nondimensional form,(l)

F(X)
67-

TT I
512,

1
j?B n n(l-nX2)

1
67-, %Z2~k

1.001U

where

X JZL i-T-f/ EI
3 gl <¦ l ' V P

(12) 0.5

The left hand side, i.e., F —

value is a non-dimensional value

to be determined from the dimensions

of the arch bridge. The

relation between F and X is
shown in Fig. 3. The m-th

natural mode <J> (x) is computed

by substituting the m-th natural

frequency tss obtained

from Eq. (ll), into Eq. (5).
That is,

(11)

m= 1Pi
1.0

F 0.00491
0.01200
0.01620
0.02350

03 20
03960

^x".N. \¦\\
0.5 ^ //.'

1.0

1.5 -

Fig. U

<j> (x) V b sin ni.x
mn t 2 2>

n(u -10
gn m

(13)

For the normalized mode $ (x) we have

• (x) - C l b sin (-S22-) (f (-V) { Ibt,m m L mn l ' m pl L mn
n

-1 (ll*)

e first normalized mode $ (a;) is shown in Fig. k for some F-values.m=l BTh

Once the m-th natural frequencies iss and the normalized modes $ (x) have
m m

been found, the dynamic and static responses are easily determined.

The static deflection w at x due to the force P. applied at x. is
s u -)

found from

$ (a:) 4>(x.)
". ¦ l "

2
'?

P0
m u

m

(15)

and the bending moment M is calculated from

M8 - EI
d2w_

(16)
dx
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Note that these responses are subjected to the non-dimensional parameter F

For example, the influence lines for deflection at l/k and 1/2 points are
shown in Figs. (5) and (6).

(L/2)

21
rr'El

-0.0

r^> 3\
0.0

002

%0.03

WWr^d0.04

\\\
0.05

IX, L/2)

0.06 v-l

0.07

Fig. 5s

F=0.0I00 \
0.0163 \,J

00200 I
— - 00304

00400
00500

The aforementioned equations

can be used for the arch

bridges shown in Fig. 7 by

changing the cross sectional
areas and flexural ridigities
of arches and stiffening girders.

For the System (e) in
Fig. 7, the flexural ridigity
J of the girder is zero and

9
the cross sectional area A

3
of the girder is infinity.
The above equations derived for
arch bridges can be applied to

Suspension bridges. For the

Suspension bridge shown in Fig.

8, the B in Eq. (U) is

c 2£
tPei

Fig. 6

(Xi L/4) ¦
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0.02

0.04

006

008

F= 0.0100
0.0163
0.0200
00304
00400
0.0500

/,

Ittt
l
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Fig. 7
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Fig. 8
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A

B — 2
1 1 (17)

1 + 8(^-)2 + 19-2(-£-)1* + ~y~ sec3^ + -— sec3a2

where A : cross sectional area of the cable.
c
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SUMMARY

This paper proposes a basic parameter effective to the optimum design
of arch and Suspension bridges. The dynamic factors (for example, eigenvalue

problem) and static factors (for example, stress and deformation)
of these bridges are subjected to this parameter only, which means that
one constraint can be made for some design variables. So, numerical
calculation will easily be done on the basis of this parameter. Several
diagrams are shown.

RESUME

Ce memoire propose un parametre fondamental qui est efficace pour le
calcul optimal de ponts suspendus et en arc. Les facteurs dynamiques
(par exemple le probleme des valeurs principales) et les facteurs statiques
(par exemple la contrainte et la deformation) de ces ponts ne dependent que
de ce parametre. Le nombre de variables peut alors etre reduit et les
calculs numeriques effectues facilement. Quelques diagrammes sont presentes.

ZUSAMMENFASSUNG

In dieser Mitteilung wird ein für die Optimierung von Bogen- und
Hängebrücken geeigneter Grundparameter vorgeschlagen, der dynamische Faktoren
(z.B. Eigenwertprobleme) und statische Faktoren (z.B. Spannung und Deformation)

dieser Brücken berücksichtigen kann. Dies bedeutet, dass die Zahl der
Entwurfsvariablen reduziert und die Berechnung vereinfacht werden kann.
Diagramme für die praktische Anwendung werden angegeben.
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1. Introduction
When a long-span Suspension bridge is planned, the selection

of its floor system as well as its suspended structure has great
influence on its safety and economy, and its erection and maintenance.

When a floor system is planned at a long-span Suspension
bridge provided with stiffening truss girders, many kinds of floor
Systems can be proposed as discussed later in this paper. At the
present study, structural features of various floor Systems are
examined and compared with one another on such condition as
fabrication, erection, maintenance, economy, etc..

Through discussions the relationship of planning of the
floor System with construction methods will be evaluated in detail
for a design example of bridge in Japan.

2. Suspended Stiffening Structures and Floor System

In the planning of a long-span
Suspension bridge two type of
suspended stiffening structures are
considered: one is a truss type structure

and another is a box girder type
one. Since the former is more
conventional than the latter in Japan,
a truss type stiffening structure
with a floor system combined with an
open grating floor, as shown in
Fig. 1.

Many kinds of construction methods

for the floor system can be
proposed as discussed later in this
paper. Now, the comparative study was
carried out on a heavy weight floor
system (closed steel grating floor)
with a light weight one (steel plate
deck) in steel amount and cost at

Open Gräting
Floor

Steel Plate
Deck

fcB EH r"T"TuT"3^I

M y

p=

Fig. 1 Cross Section of
Suspension Bridge
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their construction time, at an ülustrated Suspension bridge, which
has a length of 16 30 m consisting of a main span of 870 m and two
side spans of each 380 m, and has a width of 30 m. The result of
this comparision is given in the Table 1, which shows that the
bridge with the light weight floor system has the advantage of the
heavy weight one in steel amount and cost. Since there is an opinion

that the floor system had better be heavier judged from the
aerodynamic stability of a long-span Suspension bridge, the relative

merits for aerodynamic stability between heavy and light
weight floor Systems have to be discussed separately.

Table 1 Comparision for steel construction of
öuper-structure at Suspension bridge

Steel Works

Bridge with Closed
Steel Grating Floor

Bridge with Steel
Plate Deck

Weight
(ton)

Unit
Price

!irjr yen)

Sum of
Money

(ltfyen;
Weight
(ton)

Unit Sum of
Price Money

(IO3 yen)U0syen)
Floor System 11 420 350 3 997 11 930 400 4 772

Stiffening Structure 26 750 400 10 700 26 250 400 10 500

Cable 20 840 600 12 504 18 580 600 11 148

Tower 10 930 400 4 372 10 230 400 4 112

Anchorage 5 660 300 1 698 4 980 300 1 494

Total 75 600 33 271 61 970 32 026

3. Outline of Each Floor System

In planning of a floor system for a long-span Suspension
bridge, its laod-carrying capacity, durability, aerodynamic
stability, deformation adaptability, easy and fast erection, easy
maintenance, overall cost saving and so on, have to be examined.
Several floor Systems including new construction methods which have
been developed by authors, will be discussed as follows:
(1) Floor System with reinforced concrete slab: A conventional

reinforced concrete slab deck is considered to be generally
cheapest one among various floor decks at present day in Japan.
On the other hand, site works of forming and reinforcing at
high elevation of a bridge are not always suitable for safe and
fast erection.
Floor system with closed steel grating Floor'™: This type of
floor, as shown in Fig. 2, was
adopted in Verrazano Narrows

(2)

Joint of Slab

Concret istributing Bars

Small I-Beams

Sma 11

Con

Stringer

Stringer ^-^ Steel Plate

Fig. 2 Detail of Grating Floor System
Fig. 3 Detail of Precast Concrete

Steel Grating Floor
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(UAS), Kanmon Bridge(Japan) and so on.
(3) Floor System with precast concrete steel grating floor:

This floor is ülustrated in Fig. 3, and its slab concrete is
precast at a shop and after it is connected to steel stringer,
concrete is cast between slab and slab, and also between slab
and stringer.

(4) Floor system with prefabricated steel deck plate sandwiching
concrete: This deck proposed by authors31, consists of two
steel plates and concrete sandwiched between them. These
plates are connected with stud bolts, and stud shear connectors
are welded to both of the plates making a steel-concrete
composite deck. Photo. 1 shows shop assembly of this deck before
filling up concrete. Fig. 4

and 5 show jointing methods \ „ i?_^ \ "j^j^nffi jj^»-
of this deck.

* %
1_B 1 „ ¦'- II-z ¦ 1 \

fe
W

^^W mw W 1fj w V
Fig. 4 Jointing of Deck Plates

Photo. 1 Assembly of deck

ma tu

Fig. 5 Jointing of Deck Plate to Beam
ww

(5) Floor system for prefabricated composite girder:
This composite girder, proposed by the authors^ as shown in
Fig. 6, consists of an inverted steel T-beam without an upper
flange and a steel grating floor frame, which is directly
attached at a shop. After the prefabricated floor deck is
connected to main cross beam of stiffening trusses, the slab
concrete is cast at the site.

(6) Floor system with orthotropic steel plate deck: A typical
steel deck panel which is well known is shown in Fig. 7.

Pavement
Small I-Beams.-.'-^i^-^Concrete

Distributing
Bars

Steel Deck
PlatesS

Steel
Plate

Longitudinal
Ribs

Stringer

Fig

Haunch
Plate

Cross Ribs

Stringer
6 Detail of Prefabricated

Composite Girder
Fig. 7 Ditail of Orthotropic

Steel Plate Deck

(7) Hollow steel plate deck: This deck developed by the authors
has such a cross section as shown in Photo. 2, and the welded
steel deck consists of two face plates and core plates which
are installed diagonally as shown Photo. 2. To apply this deck
to a floor system at a Suspension bridge, it is set on main
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cross beams of trusses directly
without stringer.

4. Comparision of Floor Systems
in Terms of Weight and Cost
In order to evaluate which

floor System will be the most suitable

for a long-span Suspension
bridge, the design of each floor
System outlined above was carried Photo. 2 Hollow Steel
out under the same design require- Plate Deck

ments that each floor system has a
span length of 12 m and a width of 11 m, and carries a live load of
20 tons truck specified at the Specification for Design of Highway
Bridges, Japan Road Association, 1974. As the result of the design,
dimension and construction cost of each floor system were obtained,
and then unit weight and unit cost per square meters of a floor
area could be calculated as shown in Table 2. The value of unit
weight and unit cost show that the heaviest reinforced concrete
slab is cheapest in cost while the lightest steel plate deck and
hollow steel plate deck are high-priced. Therefore, it might be
not only very difficult, but also risky to make decision only by
these two conditions, because for a long-span Suspension bridge the
third condition expressed in terms of a kind of function or
Performance of the floor system has to be examined.

5. Function Condition and Decision Matrix
As function conditions, fabrication, erection, construction

time, wind-resistance, paving, maintenance and overall economy may
be considered for long-span Suspension bridges. Each of the function

conditions are defined as follows:
(1) Fabrication condition: the nature of fabrication works to

evaluate easiness or hardness of steel works at a shop and time
requirement for fabrication.

(2) Erection condition: the nature of erection works to evaluate
easiness or hardness of field works and safety for Operation at
the site.

(3) Construction time: the time nature of erection works to evalu¬
ate a construction period.

(4) Wind-resistance: the condition of resistance against wind de¬
pending upon the height of a floor System and some other
requirements

(5) Paving: the nature of paving works depending upon the smooth-
ness floor surface.

(6) Maintenance: the nature of maintenance works to be evaluated
by painting on steel surface of a floor System, etc..

(7) Overall economy: an effect of the weight of a floor System on
an overall construction cost of the whole bridge, because as
seen in Table 1, the weight of the floor system of a Suspension
bridge may have great influence on the overall construction
cost of the bridge.
While the weight and cost of a floor system is deterministic

and certain, these function or performance conditions are uncertain
and not deterministic. Therefore, it will be reasonable to evaluate

a degree of those conditions by "excellent", "good", "ordinary"
and "undesirable", to which marks may be given, respectively, with
4 points, 3 points, 2 points and one point for trial. Furthermore,
a so-called emphasis coefficient k, may be proposed to evaluate
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Table 2 Comparision of Floor Sy stems

SJ r-i
o 0) i j<! cu

E-I o Ol B U VJ
QJ rH 4-1 00 o IU ra

E-E AJ U, US c t_> c rH
>* c u CS •H Ve He

o U OO •V J- O TJ
,—E o c m CJ O CU Ve cu

C -H u •H rH ej O
Ol O EJ m 3 Ue ra o ra cu

E-> 1-1 o ra o TJ O e-H

C/J O Ve •H C (U •H Ue Ph
Ue u o i-r O Ve ra u Ve

o ¦O E-H CO Jj C/J 0) JJ CU

IU Ue OJ r-H ra Ve ra vj rH

Conditions C O 10
O 00

O EU

0) IU
M-l

11) O C
EVE *H

CU ÜJ

CU

CU rH O
Ve ej VE HS O VE O

Od fc. C_> -H He tn Cu O CJ IIe O. cn X o

Unit Weight of Floor 530 460 490 380 470 220 220

System [&) in Ranking 7 4 6 3 5 1 1

Unit Cost of Floor 50 000 60 000 65 000 70 000 65 000 85 000 75 000

System [-sr] in Ranking 1 2 3 5 3 7 6

Fi 4 3 2 1 1 1 2
Fabrication 8 6 4 2 2 2 4ki= 2

Erection F2 1

3

3
9

3

9

2
6

3
9

4
12

4

12kz= 3

Construction
Time

F3 1

3

2

6
3

9

3

9

3

9

4

12
4

12kj= 3
Wind-
Resistance

Fe. 3

6
3

6
3

6
3

6
3

6
3

6
4

8kt 2

Paving F, 3 3 3 2 3 2 2

k5= 2 6 6 6 4 6 4 4

Ft 3 2 3 1 2 2
Maintenance

6 4 6 4 4 4 4k6= 2

Overrall
Economy

F7 1

3
2

6
2

6
3

9
2

6
4

12
4

12k7= 3

Total EF, 16
35

18
43

19
46

16
40

17
42

20
52

22
56Ek, F,

3
EF, / 7

in I3oint 2.29 2.57 2.71 2.29 2.43 2. 36 3.14

Mean

Va'. in 1Banking 6 4 3 6 5 2 1

EkiFi
Eki

in 1'oint 2.06 2.53 2.71 2.35 2.47 3.06 3.29

in IBanking 7 4 3 6 5 2 1

relative importance among the function condition or to emphsize
relatively a specific condition. Here, the value of k is taken
tentatively two or three, because it is very difficult to give
deterministic numbers verified by numerical Statistical data.

As shown in Table 2, each floor system depending on construction
mehtods and each function condition with its emphasis coefficient

will make a decision matrix and its outcome will express
functional nature or performance evaluated by marks. In Table 2,

Fj the i-th function condition with i=l to 7,
ki the i-th emphasis coefficient with i=l to 7.

The decision-making for function or Performance will be made by
either EFj /7 or Ek; Fj /ZK, where

EFj/7 a mean value for k| =1
Ek; Fj /Skj a weight mean value.

The final decision has to be made in the overall result for
weight, cost and function of each floor system, depending on the
importance of these three factors because there is no common objective

function among the factors for the most optimum floor system.
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6. Conclusion
The following decision-making in planning will be concluded

from Table 2 as an example:
(1) The most conventional reinforced concrete floor System is

cheaper in construction cost, but is heavier in weight and
undesirable in Performance or function.

(2) Steel plate deck or hollow steel plate deck is more expensive
in construction cost, but is lighter in weight and more desirable

in Performance or function, especially in erection and
overall economy.

(3) The emphasis coefficient has to be determined more precisely,
objectively by various field conditions at the site of bridge
erection and subjectively by designer's judgement. With well-
selected values of the emphasis coefficient, more weighted
evaluation for the nature of function or Performance could be
made.

(4) When the suitability of a floor system cannot be judged from
deterministic ranking alone based on its comparative designs,
the relative evaluation of the floor system on its Performance
or function which is generally uncertain, will be of great help
to approach to its optimum construction method.
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SUMMARY

The present study is intended to plan properly the floor system which
will be optimum for a long-span Suspension bridge with stiffening truss.
Various construction methods for the floor System are examined in
construction cost and weight by comparative designs, and also in its
Performance or function by a decision matrix.
RESUME

Le but de cette etude est de concevoir de faijon optimale le Systeme de
platelage d'un pont suspendu de longue portee, dont le tablier est une
poutre ä treillis. Plusieurs types de platelage sont considöres, du point
de vue methode de construction, coüt, poids, Performances, utilisation;
une matrice de döcision est proposee.
ZUSAMMENFAS SUNG

Zweck dieses Berichtes ist es, das Deckensystem weitgespannter
Hängebrücken mit Fachwerkaussteifung zu optimalisieren. Verschiedene
Deckensysteme werden vom Standpunkt der Ausführung, der Kosten, des Gewichts
und der Nutzung anhand einer Entscheidungsmatrix überprüft.
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!<, Introduction
The deterministic optimization of statically indeterminate

reinforced concrete or steel structures of non-linear behaviour
has been worked out in detail e.g. [l, 2, 3 ]. In contrast to this
in the field of the stochastic frame optimization a great number
of problems are left insolved.

It is well known [4] that the failure probability of statically
indeterminate structures is lower than that of statically

determinate ones. This is due to the fact that in the semiproba-
listic design used almost all over the world, the failure
probability is associated with one critical cross section /elementary
beam length/ only. In reality, the failure of a statically
indeterminate structure is not characterized with the failure of
one, but of several critical sections /elementary beam lengths/.
Obviously, the probability of the simultaneous failure of several
critical sections /elementary beam lengths/ is lower than the
failure probability of one critical section /elementary beam
length/ alone.

In this contribution the increase of the plastic collapse
load of a given probability is investigated for statically
indeterminate linear plane structures on the basis of the investigations

carried out at the Hungarian Institute for Building Science
[5, 6, 7]
2. The structural model

The model of the structures investigated is characterized
with the following conditions:

/a/ the plane structure is formed of linear bars;
/b/ only one-parametric concentrated static loads are taken

into aecount, with the restriction, that constant moment
length cannot appear;

/c/ the influence of shear and normal forces and longitudinal
deformations is neglected;

/d/ the collapse mechanism is determined by plastic hinges
due to bending only;

/e/ rigid-plastic material behaviour is assumed, i.e. the
rotations are concentrated in the plastic hinges and the
bars between the plastic hinges are rigid;/f/ the critical elementary bar lengths /hereinafter referrgd
to as critical sections/ at which, in cese of concentrated
loads, plastic hinges can be formed are the discontinuity
points of the functions or the first derivatives of the
bending moments or those of the plastic moment capacities;

/g/ all the quantities influencing collapse load are assumed
deterministic but the bending moment capacity is assumed
random variable with infinitely divisible distribution
function [8] „
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As the consequence of conditions /c/ and /d/ the stability
problem is not investigated.

Condition /b/ regarding the lack of constant bending moment
lengths means that the position of the critical sections is
deterministic. If constant bending moment lengths exist, the position

of the critical sections should be e random variable and
together with the moment capacity can be characterized with an
extremal distribution functioi3only

In accordance with condition /g/ the distribution function
among others could be the normal or gamma-type distribution.

3. Formulation and Solution of the Problem
The problem is solved by the kinematic approach of the

plastic analysis to determine the smallest load factor in case
of which a collapse mechanism can be formed. For the Solution
the so called Combinations of Mechanisms method was used in
which from a set of independent elementary mechanisms the real
collapse mechanism with thesmallest load factor is determined
from the linear combination of these elementary mechanisms.
This method which is well known for the deterministic model
[9, 1, 2] was developed for the stochastic model. A related
economic problem was independently solved in [lO]

The problem for both models can be formulated as one of
mathematical progra; .ming, where the objective function is the

!X load factor

1 9* M -» min /l/
and the constraints are the following system of linear
equations

Ö* t* Qf /2/
t*e 1 /3/

where Q is the vector of the inelastic rotations
at s critical sections;

Q=f is the matrix of the inelastic rotations of
the set of m independent. elementary mecha-
ni srns
and m s-n, where n is the degree of
statical indeterminacy;

e_ is the vector of external work, done by
loads during the formation of elementary
mechanisms;

t_ is the vector of constants of the linear
combinations forming critical collapse
mechanism.

The vector of the inelastic rotations was divided according
to [l, 2] as

9 G+- 0" A/
and the method was completed with the justification of the
uniqueness condition for /4/ in [6,7] as

0+© Q"= 0 /5/
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where the symbol 0 is the so called logical product. The
justification showed for both the deterministic and the
stochastic model that the uniqueness condition /5/ is always
fulfilled automatically for the extreme of the objective
function. Consequently, this non linear condition can be
neglected and the remaining constraints are linear.
The vector jt can be written in the form

t t' - t" /6/
»

where £ is the new variable vector which in case of
subsequent t" will always be non-negative,

tit is a constant vector.
Having /4/ and /6/ the objective function can be written

in the following form

M* • X fl/y, M" • X -*¦ mm

(2s+rn) 2s+m)
and the constraints will be replaced by the following System
of linear equations

A x
s

b

(2s+m7s+l)(2s+m) (s + 1) /8/

where M* [m+*, tf", 0*] *
X s 0

+ * 0'* t

A "i -I ~Q*~
Sf b "-ff i""

o* Q* e* i^t"
_ —

+ - are vectors of the positive and negative plasticM and M moment capacities at the critical sections and

I and-I are identity matrices of appropriate signs.
The plastic moment capacities for the deterministic model

are fixed values, but for the stochastic model they are random
variables of known distribution function. The combination of
these plastic moment capacities results in the collapse load
factor, which, consequently, will also be a random variable of
the same type of distribution function.

Any point of the distribution function of the collapse load
factor i.e. the collapse load of a given probability can be
determined as follows.

It is well known [8] that any linear combination of random
variables with infinitely divisible distribution function will be
of the same type of distribution function. The mean value, the
Standard deviation etc. of the resulting distribution can be
expressed knowing the mean values, Standard deviation etc. of
the initial distribution and the combination coefficients as:

^ (Q+)*M+ + (ö* *M-

d*(»)-M*h%K

/9/

/IO/
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where q and q~ are the variances of the respective plastic" moment capacities.
Assume according to [lll that the failure probability of a

structure will be p =8,2.10~5. Knowing the distribution function
of -a determine tha? value of S\ depending on vectors &Z and

9" for which the probability of oecurence of the smallest A
will be less than the given p If u will be the quantile p
of the standardized distribution function, then this Ok value
will be

^s - D(ä) u0 + ^ /n/
Using the previous expressions the value of Äs can be given as
function of rotation vectors as

^s uo^* Q X + M*x /12/
where Gl=\ q+, q~ is a diagonal matrix, formed of vectors

- q^and q"".
The minimum of this objective function, which in this way is
deterministic, will be the collapse load of the given probability
according to the stochastic model.

For the deterministic model the objective function is linear
and for its Solution the simplex method is appropriate. However,
for the stochastic model, the objective function is coneave as
was shown in [6] This type of problem, with linear constraint
can be solved by the cutting plane method [12] well suitable for
Computer applications [13]

4. Practical application of the method
The effectiveness of the more exaet stochastic model was chetked

on some practical examples of different parameters.
The deterministic and stochastic models can be compared by

prescribing similar failure probabilities for critical sections
using the deterministic model /p./ and for the whole structure
using the stochastic E-nodel /p_/ and determining how much the load
bearing capacity computed according to the deterministic model
will be exceeded by the one computed according to the stochastic
model.

It was proved [7] that for this condition the deterministic
load bearing capacity will be a lower bound Solution of the
stochastic load bearing capacity. In [6, 7] two simple upper bound
solutions were also given.

Simple one span, one storey frames were analysed in case of
7 loading schemes, consisting of vertical and horizontal

concentrated loads. The possible distributed loads were modelled by
a system consisting of an odd number of concentrated loads.

The distribution function of the plastic moment capacities
of the critical sections was assumed to be of normal distribution.

The span / l / to height /h/ ratio was assumed as l/h=2,4,1/2.
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The assumed ratios of the plastic moment capacities of the
girder /SI./ and the column /M, / are shown in the Table 1.

Table 1

Plastic moment

capacity type
1 2 3

v%
+ 3/2 1 3

- 1 2/3 3/2

Signs + and - indicate moments, producing tension at the inner
and outer side, respectively, of the bars. The coefficient of
Variation of the plastic moment capacities was assumed as
rs0.015, 0.05, 0.15 and 0.25. Of course for the latter and
small failure probabilities the assumed normal distribution
gives a considerable error, The convergence of the Solution
was very slow in case of high coefficients of variations, too.

Altogether 3o frames were
investigated using both the
deterministic and the stochastic
model.
The results of the calculation
for the frame shown in Fig.l
are given in Table 2.

7? AP AP AP AP AP QP

111LLU6P

nrn

h--l

Fig.l
Table 2

-^parameters

nuraber~"""^---^^
of example

l/h
plastic moment
capacity type \o r Pi

lo 2 1
l.lo4
l.o51

0.553
0.782

1,9.10-«=
1.6.10-3

13 4 1
l.o78
l,o26

0.663
o.887

6,1,10-3
4.1.10-4

16 1/2 1
1.116
I.06I

o.5oo
0.738

3.O.10"2
2,7.10-3

22 2 3
l.o82
l.o32

o,648
0.862

7.4.10-3
5.3.10-4

where C\ „„ and
so

7. do are the collapse load factors for the
stochastic and for the deterministic
model, respectively,
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r r, is the coefficient of Variation of the collapse load
factor for the frame,

r is the coefficient of Variation of the plastic moment
capacity at the critical sections,

p. is failure probability of the plastic moment capacity1 at the critical sections, assuming the failure
probability of the whole frame p 8,2„10-5.

The two values in each box in Table 2 correspon;. to the lower
and upper bound values after iterations consuming prefixed
Computer time.

5. Discussion of the results
/a/ Fron the results it became clear, that a substantial

difference is observed between the load bearing capacity

of the deterministic and the stochastic structural
models. This difference is given in Table 3.

Table 3

r o.ol5 o.o5 0.15

*so / ^do 2-3 % 3-12 % 22 %

/b/ The different analyses according to the deterministic and
stochastic models give not only different collapse load
factors, but in some cases different failure mechanisms
too, as is shown in Fig.2.

V 24P

+28

mi

Fig. 2

a - the frame scheme; b
the deterministic model;
to the stochastic model.

failure mechanism according to
c - failure mechanism according

/c/ The coeffici
of the frame
for the dete
ratio of r ^

/d/ There is ano
according to
the failure
at the criti
of the whole

ents of Variation of the collapse load factor
for the stochastic model are much lower than

rministic model, as can be seen in Table 2. The
/r was between o,5 and o,78.
ther way of comparison of the results obtained
the two models. This is the determination of

probabilities of the plastic moment capacities
cal sections pi at a given failure probability
frame p„ 8,2.10"5 accordin: to the stochasticP0= 8,2.
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model. These values of p. in case of examples of good convergence
were in the ränge of 10"^ - 2.10-2, which is much higher than in
case of the deterministic model, where in each critical section
p- 8 2.10"5 should be maintained.

6. Conclusions
The stochastic structural model for statically indeterminate

plane structures formed from linear bars gives considerably higher
load bearing capacity, lower coefficient of Variation, higher
failure probability in each critical section, than the deterministic

structural model. In some cases the failure mechanisms can
also be different for stochastic and deterministic models.

It is plamed to investigate distributions more realistic
than the normal one taking the elastic-plastic material behaviour
and the randomness of the critical seation position into aecount.
Examples of more complicated structural schemes are planned to
be analysed by applying computational methods of better
convergence.
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SUMMARY

The increase of the plastic collapse load of a given probability is
investigated for statically indeterminate linear plane structures,
assuming the plastic moment capacities at the critical section to be
random variables of infinitely divisible distribution. The Combinations
of Mechanisms method was developed for the stochastic structural model.
The mathematical and computational problems were solved and 30 simple
frame examples were investigated. The results showed higher plastic
collapse load, lower coefficient of Variation and higher possible
critical section failure probabilities for the stochastic model as
compared to the deterministic one.

RESUME

L'augmentation de la Charge plastique de rupture pour une probabilite
donnee est examinee pour des systemes de barres hyperstatiques en plan,
sous la condition que les capacites de moment plastique sont des variables
probables d'une distribution infiniment divisible. La "combinaison des
mecanismes" est developpee pour le cas du modele stochastique. Les problemes
mathematiques et d'ordinateur sont resolus et 30 portiques simples examines.
Les resultats ont montre pour le modele stochastique une Charge de rupture
plastique elevee, un moindre coefficient de Variation et une plus grande
probabilite de rupture possible compare au modele deterministique.

ZUSAMMENFASSUNG

Die Erhöhung der plastischen Bruchlast gegebener Wahrscheinlichkeit
wurde bei statisch unbestimmten ebenen Stabwerken unter der Bedingung
geprüft, dass die plastische Momenten-Tragfähigkeit in den kritischen
Querschnitten eine unbegrenzt dividierbare Zufallsvariante ist. Die
Methode der "Kombination der Mechanismen" wurde im Fall eines stochastischen

Konstruktionsmodells weiterentwickelt. Mathematische und
rechnungstechnische Fragen wurden gelöst und das Zahlenmaterial von 30 einfachen
Rahmen geprüft. Die Ergebnisse zeigen eine höhere plastische Bruchlast,
kleinere Variationskoeffiziente und grössere mögliche Wahrscheinlichkeit
der Zerstörung im Falle des stochastischen Modells gegenüber dem
deterministischen Modell.



IIb

Structural System Optimization Based on Suboptimizing Method of
Member Elements

L'optimisation du Systeme structural basee sur la suboptimisation
d'eiements

Optimierung der Tragstrukturen auf Grund der Suboptimierungsmethode
der Teilelemente

SADAJI OHKUBO TOSHIE OKUMURA
Associate Professor Professor Emeritus
Ehime University University of Tokyo
Matsuyama, Japan Tokyo, Japan

1. INTRODUCTION

The complexity and difficulty arised in the optimization procedure of a practical

structural system are caused mainly by the various characteristic and numerous

design variables and constraints involved in a structural System. The metho-
dological expansion on the treatment of such design variables and constraints has
been expected for the efficient optimum design method of the structural Systems.
This paper presents practical optimization methods intended to solve the problems
based on suboptimization of structural elements.

In the optimum design methods presented herein, suboptimization of the structural

elements are performed first for the ränge of possible loadings and design
variables, then suboptimized relationships between an intensive design variable
and design constraints, objective function etc. are introduced. Using these
relationships logical reductions in the number of design variables and constraints,
and introduction of material selection variables may be possible. Objective
function is also simplified, and geometrical and discrete variables can be treated
easily. The optimum solutions are found by sequential linear programming algorithm
and graphical approach. Examples of cost minimization problems of highway girders
and minimum weight design of trusses are presented. Using the methods direct Optimum

design diagrams for highway girders have been established.
2. OPTIMUM DESIGN USING SUBOPTIMIZATION OF STRUCTURAL ELEMENTS AND SLP METHOD

2.1 Girder Problems

Problem Formation - The cost minimization problems of constant-depth highway
welded plate girders are solved by SLP method using suboptimization of girder
elements. The design variables are assumed as cross sectional dimensions, length,
i, and steel type, M, to be used for each girder segment. Design criteria imposed
in the steel girder section are constraints on allowable stresses, plate
thicknesses for stability of the girder and minimum rigidities of vertical and
horizontal stiffeners which are taken from "Specifications for Steel Highway Bridges".
(Ref. 13) Discrete constraints on commercial availability of plate thicknesses
are also considered.

Total cost of the girder, TCOST, is assumed to consist of material cost, CM,

fabrication cost, CFFx(l+FF), and welding cost, CWM + CWFx(l+FF), which are evaluated

with reference to "Tables of Prime Costs for Steel Highway Bridges".(Ref. 14)
NM NM

TCOST ECOST; X £; C [ CM{+ CFF£x(l+FF) + CWM{ + CWF,x(l+FF) ] x fc (1)

in which FF factor of indirect fabrication cost, CWM cost for welding materials,
CWF welding cost.
Suboptimization of Girder Elements - In the girder problems, behavior variables

are determined by the arrangement of moment of inertia, I, and length, jj,
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of each girder segment and usually dimensions of a girder section are determined
by applied maximum bending moment. For this reason suboptimization of the girder
sections are performed first for various combinations of steel types, M, web

heights, WH, and bending moments, BM, by taking into aecount all of the design
variables and constraints.

The mixed-discrete nonlinear optimization
Problems of the girder sections may be solved
quite effectively by a modified branch and bound
algorithm and SLP method, where the order to
branch and bound of discrete variables is
preassigned according to their importance for the
design of girder section, and only two adjacent
discrete values to the continuous optimum Solution

are examined for their optimality. Macro
flow chart of the algorithm is shown in Fig. 1.
The results of suboptimization of girder
elements are arranged in terms of moment of inertia
and I-RBM, I-COST, I-SDIM, RBM-GW relationships
for each steel type and web height are introduced,

where RBM maximum resisting bending
moment, COST minimum cost per unit length,
SDIM optimum sectional dimensions, GW girder
weight per unit length. I-RBM and I-COST
relationships shown in Fig. 2 may be expressed as

RBM(I) a-I + b, COST(I) c-I + d (2)
The coefficients a, b, c and d are all
constants for the particular ränge of I, M and WH.

Since flange plate thicknesses are increased
discretely as applied bending moment increases,
unit price of the steel plate and size of the
fillet welding are changed also discretely and
I-COST relationships are varied discontinuously
at such points. On the contrary I-RBM relationships

are varied linearly and may be expressed
by several linear equations accurately.

Simplification of Problem and Introduction
of Material Selection Variables - I-RBM
relationships introduced by this method express the
allowable upper limit of resisting bending
moments of the girder sections to satisfy all of
the constraints. Minimum costs of the girder
sections with I, WH and M may be evaluated
directly from related I-COST relationships. Therefore

by using these relationships I of each
girder element may be considered as a new design
variable instead of all of the sectional dimensions

if web height is preassigned as a design
parameter and BM < RBM relationship comes to a
new intensive constraint in place of all of the
restrictions. This reduction in the number of
design variables and constraints to be considered simultaneously gives significant

advantages to solve complex structural optimization problems, such as
simplification of the problem formulation and evaluation of the sensitivities,
reduction of the core size and computation time, improvement of the convergency
to the optimum Solution. Furthermore the differences of values between two
material types at a value of I in the I-RBM and I-COST relationships may be
considered as the partial derivatives with respect to the design variable for
selecting optimum steel type to be used for each girder element.(Fig. 2) The
material selection variables M are introduced based on this concept, which

(yen/ern

lö HEIGHT 1700 m

- RBM

COST

äCOSI
3MP3RBM

3MP.

3MMm
3RBH
3MM

(xlOW)

Fig. 2 I-RBM, I-COST Relationships for Girders
with Heb Height 1700 nm
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consist of MP and MM. The former are provided for selection of the stronger steel
type and the latter are for the weaker. MP and MM are treated as independent
continuous variables same as I and i.

Optimization by SLP Method - The girder is analysed by the displacement
method and the behavior variables and their partial derivatives with respect to
I, i, M are evaluated by using the influence line analysis. Partial derivatives
of RBM and COST with respect to I, i, M are also evaluated from related I-RBM
and I-COST relationships. The nonlinear optimum design problem is approximated
with a linear programming problem by the first order terms of Taylor series
expansion and an improved Solution is determined by Simplex algorithm. Adaptive
move limit constraints on the changes of design variables are also added to
ensure the convergency to optimum Solution. Since the material selection variables
are assumed here as continuous variables, which are modified to the nearest
discrete steel types at every iteration of analysis. If a Solution comes closely to
the optimum Solution, all steel types are fixed as most profitable and material
selection variables are eliminated from a set of the design variables. Then the
problem is reanalysed until optimum Solution is obtained. The optimum sectional
dimensions for each girder element may be decided directly from the related
I-SDIM relationships.

Examples - The method has been applied to many cases of simple span, 2~ 3-
span continuous constant-depth highway girders and three examples are presented
in Table 1 in which the solutions are compared with the results by graphical
approach described later. In Table 1 BW bridge width, SL span length, WH

web height, Pt a concentrated live
load, uniformly distributed live

distributed dead load which
1«

load, q

differs with each girder segment, but
averaged value in the girder is shown
in the table.

Approximate convergency to the
optimum Solution including material
selection is quite well by using move
limit constraints, but computation
time and number of iteration of re-
analysis required for the optimum
Solution are increased so much as
number of design variables and
constraints increases as seen in Table 1

Comparisons of several solutions with
different initial inputs should be
made for confirmation of the global
optimum Solution.
2.2 TRUSS PROBLEMS

Table 1 Optimum Sol utions by SLP Method and Graphical Method

Seg
No,

SLP Method Graphical Method Desiqn Condition
L (cm) I lern') M" L (cm) I (cm') M" BW= 8.00 m

SL= 30.0 m1 296.7 1389224 41 293.7 1376687 41

2 701.2 1507252 58 710.0 1520473 58 HH= 200 cm

l-SP

3 1SO0.O 2113595 58 1500.0 2113532 58 P.= 17.990 t
q,= 1.259 t/m
q,= 2.310 t/m

Hin TCOST 1643675(YEN 1643622 (YEN
CPU TIME 15O-2O0(sec' 10-16 (see

Nu.of Iter 15- 20 3- 5
1 323.1 779103 50 285.0 697606 50 6H= 8.00 m

2 725.7 1430407 50 618.8 1288148 50 SL= 30.0 m

; 3 1997.0 1695642 50 1962.0 1712473 50 WH» 170 cm
^ 4 2683.0 1085665 50 2702.2,, 1136303 50 p,= 17.955 t/m
2-SP

5 3000.0 1429441 58 3000.0 1431270 58 q,= 1.257 t/m
q,= 2.300 t/mHin.TCOST 2891515 YFN 2893060 (YEN

CPU TIME 60-100 see 3~ 4 (see
No.of lter. 20-25 5- 8

1 248.8 888658 41 233.8 846592 41 BM= 8.00 m

2 559.9 1250520 50 546.5 1238921 50 BL= 90.0 m

3 1850.0 1700003 50 1805.6 1723537 50 UH= 190 cm

: 4 2486.0- 1217784 50 2501.5, 1217830 50 Span Ratio ¦
5 2812.5 2180159 50 2812.5 2128666 50 1 : 1.2 : 1

SP 6 3153.0 2180159 50 3153.5 2128666 50 p,,= 18.042 t
i 7 3841.0 1159787 50 3898.8 1112415 50 p„= 17.747 t

8 4500.0 1486529 50 4500.0 1529952 50 q,= 1.263 t/m
q„= 1.242 t/m
q,.= 2.030 t/m
q„= 2.031 t/m

Min.TCOST 4241036IYEN 4224079 YEN

CPU TIME 300-450(sec 10-15 see
No.of Iter. 25-35 8- 12

Calculated by FAC0M 230-28
'"Calculated by HITAC 8800/8700

(s) indicats intermediate support

41 SS41 (JIS) Steel
50 SM50 (JIS) Steel
58 SM58 (JIS) Steel

The truss problems are solved as
weight minimization problems and cross sectional dimensions of the member and
coordinates of the panel points are considered as design variables. The steel
is fixed as SS41 (JIS) only.

Suboptimization of member elements - In the truss problems, suboptimization
of the compression and tension members for many combinations of applied

loads and member lengths are treated first, then sectional area A - maximum
allowable stress 6" A - optimum sectional dimensions, SDIM, relationships for
various member lengths are introduced. A-6» Relationships at any member length
may closely be approximated as

c7a (a-(A-b)}/n + C or 5a d-A + e (3)
in which a, b, c, d, e and n are all constants related to the member length and
A. A- 6arelationships express the allowable upper limits of the stresses of
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members with A which are guaranteed to satisfy
all of the constraints prescribed to the member

design.
By using A-0^ relationships all design

variables and constraints imposed in the member
design can be replaced only by A and a<aA
relationships respectively, moreover the derivatives

of Or. with respect to the geometry variables

Xg can be evaluated simply as

(4)

80
(28)

70
(27)

60
(26)

3X lj AX<

(i) 2

50

(25)

40
(24)

30
(23)

20

(22)

1
(6)

2 3

(3)/
ul—

A'5'Ä
/ Y, \/ 1 \

TOTAL VOLUlit

^.

D.C

H0VE LIMIT
- 0.C

in which Aoai represents the change in o~a at
i-th member due to the change in i-th member

length. The problem is approximated as a linear
programming problem and reanalyzed until Optimum

Solution is obtained.

Examples - An example of eleven bar truss
subjected to the moving loads P=50 ton, qt=4
ton/m, and the dead load c\ =2 ton/m is shown in
Fig. 3. The panel length is fixed as 5 m.
Sectional areas of member 1 to 6 and coordinates
of panel point 1 and 2, Y]y Y2 are assumed as
the design variables and only Oi.aA constraints
of the members are taken into aecount. The
initial Y, and Yz are assumed as 500 cm, however

they are reduced finally to 340 cm and 483
cm respectively. Furthermore, members 1, 2, 3,
4 and 6 are fully stressed, while sectional
area of member 5 is determined by the maximum slenderness ratio requirement. The
minimum total volume obtained is 25.56 x 10*cm3 and maximum live loads displacement

is 1.17 cm at panel point 5.
In the case maximum live loads displacements of the panel points are limited

to 1.0 cm, the Optimum Solution is found such that the sectional areas A t are
29.58, 45.45, 66.71, 45.13, 39.30, 62.90(cm2) respectively and Y, 428 cm, Y2
549 cm with the total volume 27.53 x104cm3. The total volume increases 7.7% more
than previous Solution and only member 3 and 6 are fully stressed.

Topological Member Arrangement - If the constraints on lower limits of
member sections are not imposed, sectional areas of unnecessary members come to
0 cm2. Then optimum topological member arrangement of truss may also be determined.

Several simple examples on this problem are shown in Ref. 2).

9 11 13

0F ITERATION

Fig. 3 11-ßar Truss, Moving Loads, tr<ira Constraints

3. GRAPHICAL OPTIMIZATION OF HIGHWAY GIRDERS BASED ON SUBOPTIMIZATION OF

GIRDER ELEMENTS

SLP method has been used successfully on a wide ränge of large and complex
structural optimization problems, however in the optimization procedures partial
derivatives of the behavior variables and objective function with respect to the
design variables should be evaluated at every iteration of reanalysis. Therefore
as depicted in the previous girder examples computation time is so much increased
as number of design variables increases and more efficient methods to solve the
large optimization problems are expected. Graphical optimization method, an
approximate approach based on suboptimization of girder elements, has been developed

for solving such problems and applied to the cost minimization girder problems.

Design Procedure by Graphical Method - In the graphical approach, a minimum
cost diagram related to the initial girder arrangement is developed first by
using maximum bending moment diagram of the girder and I-RBM, I-COST relationships.

Then improvement of I, il and M of each girder segment is performed by
investigation of the change in minimum cost at the adjoining two segments due
to a change of segment length, A£. In case of Fig. 4, the change of minimum cost
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of the girder, ATCOST l( due to a change of A£^
can be evaluated as

ATCOST ACOST.l-£l- ACOST. • A£L (5)

If ATCOSTl is positive, A£ t may proceed to -hl-.
direction. The improvement due to Ait;, may be
finished when ATCOST- converges to zero them next
improvement on £ l+,is performed. After the
improvement of all segments is accomplished, the
girder is reanalyzed with new I, t and M and the
procedure is repeated until a converged Solution
will be obtained. Three highway girder examples
are given in Table 1.

In this approach, attention is paid only to
the change of objective function in order to
improve the design variables of a girder segment,
and effects to the over all behavior variables
caused by changes of the design variables are
evaluated by reanalysis of the girder. In this
sense graphical method is more approximate
approach than SLP method, but convergency to the
global Optimum Solution by this method is quite
well as seen in Table 1. Computation times
required for optimum Solution are reduced notably
as 3-5 see. and 10 ~ 15 see. on HITAC 8800/8700
for 2 and 3-span continuous girder problems
respectively, which are 1/12 ~ 1/30 cpu. time
compared with SLP method. Larger reduction in cpu.
time is made as number of variables and
constraints increases.

h-:

Drioinal Miji. COST Diagram

Max. Bending Mneffit Diagram

LU.

e) COST,

£ COST,

Fig. 4 The Change of TCOST due to 4Li

(xl0*YEN)
300

RIDGE HI0TH • 8.00 M

J 30m I 30m J

p 17.955 t
q 1.257 t/m
q • 2.300 t/m
(at WH 170 cm)

PS.4'r!.
1.2

1.0 1

¦ 0.8 §
0.6

160 180 200 220 240

UH ¦«>

Fig. 5 WH-TCOST. StSt-J Relationships for 2-Span
Continuous Girder SL 30 m, BU 8.00 m

Optimum Web Height - To decide the optimum
web height at each span length, optimum solutions
for several web heights should be compared with
each other. Fig. 5 shows an example for 2-span
continuous girder with span length 30 m. As seen
clearly in the figure, several local minimum
solutions exist on web heights and the girder with WH=170 cm gives absolutely minimum

cost in this example. For this reason, web height should be treated as a

parametric variable in cost minimization highway girder problems.

Optimum Design Diagrams for Highway Girder Bridges - For the purpose of
direct optimum design or planning of 1~ 3-span constant-depth highway welded
plate girders, various optimum design diagrams and tables such as span length -
minimum total cost, optimum WH, I, i, M, and I - SDIM relationships for the girders

with nonuniform cross sections,and bending moment - minimum cost, optimum WH,

I, M, GW diagrams for the girders with uniform cross sections have been
established by using the graphical method, and they will be published soon.6,7'6

The optimum design diagrams mentioned above may be utilized as one of the
suboptimized structural size design programs in a general purpose system program
for highway bridges.
4. CONCLUSIONS

Practical structural optimization methods based on suboptimization of structural

elements, SLP and graphical method are presented.
An element size optimization for minimum cost is formulated as a mixed-dis-

crete nonlinear programming problem, and a modified branch and bound algorithm
with SLP can be solved the problem effectively. Cpu. time was 1.0 see. on FACOM

230-75 required for an optimum Solution of the girder section.
By using the relationships obtained from suboptimization of structural

elements, structural optimization problems may be simplified and be solved effectively.
Moreover material selection variables and graphical optimization algorithm
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have been developed on the basis of this design concepts.
SLP method may be utilized successfully on a wide ränge of large and complex

structural optimization problems and its approximate convergency to the optimum
Solution is quite well, however computation time and number of iteration of
reanalysis increases so much as design variables and constraints increases.

Graphical optimization method is a practical and efficient design method
for the cost minimization problems of highway girders. Formation of the Computer
program is simple, and excellent convergency to the global optimum Solution and
existence of several local minima on web height have been confirmed. Design
diagrams prepared for direct cost minimum design or planning of highway girders have
been established by this method. The design diagrams may be utilized as one of
the suboptimized structural size design data in a general purpose System program
for highway bridges.
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SUMMARY - The optimum design concepts based on suboptimization of struc¬
tural elements are presented. Large scale and complex structural

cost minimization problems may be simplified, and treatments of various types
of design variables and constraints such as sizing, material selection,
geometry, continuous, discrete corne to ease by this concept SLP method and

graphical optimization method are used effectively to find the minimum cost
solutions of highway girder and truss examples.

RESUME - Les concepts de l'optimisation bas<§s sur la suboptimisation d'£l<§-
ments structuraux sont prtSsentös. Cette suboptimisation permet de

simplifier des problemes de minimisation de coüt de structures complexes de

grande dimension; eile facilite le traitement de variables de projet, de
contraintes de types varies telles que dimensionnement, selection de matSri-
aux, g<§om<Strie, continu, discret,... La möthode "SLP" et la methode
d'optimisation graphique s'emploient pour trouver efficacement des solutions
permettant de construire, au coüt minimum, des ponts et des charpentes.
ZUSAMMENFASSUNG - Das Konzept des optimierten Entwurfes aufgrund der Sub-
optimierung struktureller Elemente wird dargestellt. Durch dieses Konzept
lassen sich die Probleme der Kostenminimierung vereinfachen sowie die Behandlung

verschiedener Arten von Entwurfsvariablen und Randbedingungen, wie z.B.
Abmessungen, Materialwahl, Geometrie, stetige und unstetige Formen, überdies
erleichtern. Die SLP-Methode und die Methode graphischer Optimierung werden
verwendet, um die effektiven Minimalkosten eines Brückenträgers une eines
Fachwerks zu erhalten.
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Dr. d. techn. Wissensch., Professor Kand. d. techn. Wissensch.
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Die Aufgabe der Automatisierung des ProjektierungSEablaufs im

Stahlbetonbrückenbau kann als AufgEabe der mathematischen Programmierung

betrachtet werden. Es soll der Vektor eingeordneter Brückenparameter«¦

Satz) ermittelt werden, der dem gegebenen System von Einschränkungen

entspreche und eine Funktion des Zweckes minimisierte.

Der Optimjsierungsvorgang umfasst den Projektierungsablauf die

VariEanteneinschätzung und die Auswahl von optimialen Losungen,

Eine der wichtigsten und aufwendigsten Stufen, die den grössten

Teil der Maschinenzeit in Anspruch nimmt ist die Berechnung unter

Berücksichtigung der Raumwirkung der Konstruktion, der Einflüsse der

plastischen Verformungen, der dynamischen Einwirkungen der Belastungen.

Da bei der Auswrahl der optimalen Lösungen eine grosse Anziahl von

VEariEanten zu untersuchen und zu Eanalysieren war, waren ausführliche

aufwendige) BerechnungsverfEahren unter Anwendung von EDV auch

in der Stufe des Skizzenprojektierens schwer zu verwirklichen sind.

Man muss wenig aufwendige Berechnungsverfahren mit genügender

Genauigkeit schaffen.
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Allgemeine Verehren für vereinfachte Berechnungen, Edie auf gr obannä-

hrender Ideialisierung des Berechnungsschemas gegründet sind, führen meist

zu wesentlichen Fehlern, Wsas mit sich irrati onelle Verteilung des Materi—

Eals in der Konstruktion bringt.

Eis wird eine prinzipiell neue Auffassung der Ausiarbaitung neuer

vereifachten. BerechnungsverfEahren empfohlen, welches auf der mathematischen

Verarbeitung des gewonnenen Resultats von den in den EDV

durchgeführten strengen räumlichen Berechnungen b<asiert \_ 1 J

Gegenwärtig sind Algorithmus und Programm (SPIKA) für einen

vollen Zyklus der räumlichen Berechnung der PlattenbEalkenkonstruktionen

ausgearbeitet, die die konstruktion Einflussflächen für verschiedene

Spannungen und Verschiebungen, ihre Belastungen an den ungünstigsten Stellen,

die Ermittlung des Extremums der rechnerischen und massgebenden Werte

für Spannungen und Verschiebungen einschliessen»

Das Programm SPI KA für räumliche Berechnung von Rlattenkons-

truktionen ist mehrmals beim Projektieren von Brücken und anderen

Bauwerken verwendet.

Indem man umfangreiche bei der räumlichen Berechnung dev Brüc—

kenüberbEauten gewonnene Ergebnisse ausnutzt, kann man einfache mathe—

matiche Modelle zusammenstellen, welche auch Abhängigkeiten zwischen

Form, Anordnung, Grosse der Bauteile und verformtem — gespanntem

Zustand der Konstruktion unter ständiger, ungünstiger Verkehrslas sowie

anderen rechnerischen Belastungen widerspiegelt. Zur Herstellung solcher

mathematischen Modelle ist die Anlage der Regressionsan<alyse verwendet»

Die Verfahren der Regressionsanalyse sind auf der Aufwendung

einer grossen j<\nzahl von gespeicherten statischen Angaben begründet,

die aus Versuch, langzeitiger Beobachtung des Verhaltens der tatsäch-
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liehen Konstruktion oder aus übrigen Quellen erhalten sind. In gegebenen

FEalle ist die Information als Ergebnis mehrmals durchgeführter räumlicher

Berechnungen gespeichert.

Das mathematische Modell des räumlichen Verhaltens der Konstruktion

vom vorgegebenen Schema stellt eine Formel dar, wo die gesuchte

Extremspannung oder — Verschiebung als von den geometrischen Haupt—

Parametern der Konstruktion und von den physisch — mechanischen

Eigenschaften des Materials und der Belastung abhängige Funktion

dargestellt ist»

Die Extremspannung oder — Verschiebung in einem Bauteil der

Plattenbialkenkonstruktion einer frei gelagerter Brücke kann als Funktion

P-f(tIG,BiA,KIMIH,C„xfy)
ausgedrückt werden;

wobei;

£ - Spannweite,

C2, — Durchfahrtsprofil,

Pj. — geometrische Parameter der Träger {, - 1, 2, ..»., k

TY — geometrische Parameter von Platten,

K - Anzahl von Trägern»

M ™ physisch-mechanische Kennwerte vom Material,

Lj — Belastungsangaben.

P - Information über Anordnung des Brückenüberbaues
D

X V*- KooroVinaten des Überbauguerschnitts.

Die Formeln wie (lj lassen den Einfluss von mehreren Parametern

auf den gespannten—verformten Zustand der Konstruktion analysieren,

PrEaktisch ist es zweckmässiger für gestellte Aufgaben nur einen Teil
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von Parametern der Funktion (1) zu berücksichtigen, «die anderen werden

festgestellt.

Bei der Konstruktion der mathematischen Modelle sind für die EDV

bestimmte Programme der Regressionsanalyse verwendet. Mit diesen

ProgrEammen kann man ein polynomiales Modell gegebenen Grades Zusammen«

stellen:

wobei

P=^o + I JMi + £ jVi*J + -»<4,<r, «Ujtrv J

ß

Ki*a

- unbekannte Faktoren,
L

Y. - zuberücksichtigende Parameter,

I") - Anzahl von Parameter,

Werden wir die einfachsten Beispiele für Konstruktion der Verhältnisse

wie (l) betrachten,

1« Der frei gelagerte Überbau ohne Querscheiben von Autobahnbrücken

aus StEahlbeton mit gleichen Trägern«

Beim angegebenen Durchfahrtsprofil kann das rechnerische

Biegemoment von der Verkehrslast in Hauptträgern des Überbaues mit der Formel

M,= A, + £(Ai + A3e + A4t) (2)

ermittelt,

wobei

KA — rechnerischer Extrembiegemoment von der Verkeh—

rslast (es werden LEasten HK-80, H—30 und Träger

für Fussgängerstege unter Berücksichtigung des

Überlrastungsfaktors und des dynamischen Fiaktors be—

trEachtet),

F - Spannweite,
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|£ - Anzahl von Hauptträgern,

T — Liänge der Fussgängerauskragungen,

A.— unbekannte Kpeffizienten»

2. Der freigelagerte Flattenüberbau.

Beim angegebenen Durchfahrtsprofil können Biegemomente mit den

Formeln-

M„-(ß(+ ltl)l + ß^cE2+(B^n+B5Pt)£2,

My - (c,+c2e)e + C3 ^ce2+(c4q,n+c5i?)t
<3>

ermittelt,

wobei

l^^V IVlvy ~ rechnerische extremale Quer - und Längsbiegemomente;
eA j y

Q - - Eigengewicht,

1- — Belsastung aus FahrbEahndecke,

P -Gewicht der Fussgängerstege,

ft. P. - unbekiannte Koeffizienten,

A- R- P- "" Koeffizienten sind mittels mathematischen Be<arbeitung

der gewonnenen Ergebnisse der räumlichen Berechnung

für verschiedene Durchfahrtsprofile gewonnen. Analogisch

sind auch Abhängigkeiten zur Ermittlung von anderen

Arten der Spannungen und Verschiebungen erhalten.

Die Genauigkeit der mittels Regressionsanalyse gewonnenen Formeln

hsängt wesentlich vom Umfang der gespeicherten Information ab.Daraufhin,

sind Resultate aller nach Programm SP1KA durchgeführten räumlichen

Berechnungen im langzeittichen Speicher von EDV für nachfolgende

mathematische VerEarbeitung gesammelt.

Die Formeln wie (2,3) finden ihren Einsatz in der Anfangsstufe des

Projektierens, wenn alle Varianten untersucht werden, alle Kombinationen

und Ausmasse von KonstruktionsbEautellen vorgesehen werden und mehr*-
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malige wiederholte Berechnungen nötig sind.

Die Anwendung solcher Formeln beim optimalen Projektieren von

Brückenüberbauten lässt stark die Wirksamkeit des Suchens nach

optimalen Lösungen steigern.

X, Ulizkij BJ,, Potapkin AA» Rudenko W.I.3 Ssacharowa I.D,3

Jegoruschkin J.M. "Räumliche Brückenberechnungen (unter Anwendung

von EDV)J' M. Verkehrsverlag, 1967,

ZUSAMMENFASSUNG

Es werden einige Optimierungsprobleme beim Projektieren von
Stahlbetonbrücken mitgeteilt, die auf einer neuen Auffassung der Ermittlung
des Spannungs- und Formänderungszustandes der Brückenkonstruktion
basieren. Dabei erzielt man reduzierten Berechnungsaufwand und erhöhte
Wirksamkeit beim Suchen nach optimalen Lösungen.

SUMMARY

Some optimization problems in the design of concrete bridges are solved
with a new approach for predicting stress-strain State of bridges. This
method reduces to a considerable degree time consuming calculations and
increases the efficiency of search of optimal Solution.

RESUME

Quelques problemes d'optimisation sont resolus gräce ä une nouvelle
coneeption de l'etat contraintes-deformations des ponts. Cette methode
permet une diminution importante du temps de calcul et une augmentation
d'efficacite de l'optimisation.
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